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DISK–CYCLICITY AND CODISK–CYCLICITY

OF CERTAIN SHIFT OPERATORS

YU-XIA LIANG AND ZE-HUA ZHOU

(Communicated by P.-Y. Wu)

Abstract. In this paper we characterize the disk-cyclicity and codisk-cyclicity of the bilateral
weighted shifts on Hilbert space �2(Z,K ) with weight sequence {An}n∈Z of positive invertible
diagonal operators on a separable complex Hilbert space K , respectively. At last, we establish
similar results for the disk-cyclic and codisk-cyclic shift operator B on L2(β) defined by B f j =
f j−1 , j ∈ Z , where { f j} j∈Z is a basis of L2(β) .

1. Introduction

Let H be an infinite dimensional separable complex Hilbert space, and B(H )
be the Banach algebra of all linear bounded operators on H . For T ∈ B(H ) , T is
called hypercyclic (respectively, supercyclic) provided there is some x ∈ H such that
the orbit Orb(T,x) = {Tnx : n = 0,1,2 · · ·} (respectively, the projective orbit {λTnx :
λ ∈ C,n = 0,1,2 · · ·} ) is dense in H . Hypercyclic and supercyclic operators have re-
ceived considerable attention recently, especially since they arise in familiar classes of
operators, for example, weighted shifts, composition operators, adjoints of weighted
composition operators. For motivation, examples and background about linear dynam-
ics, we refer the readers to the books [3] by Bayart and Matheron, [6] by Grosse-
Erdmann and Manguillot and papers [5] and [14]–[16]. Now we introduce the defini-
tion of disk-cyclicity from the papers [1, 8, 10]. An operator T ∈ B(H ) is disk-cyclic
if there exists a vector x ∈ H such that the set {αTnx : α ∈ C,0 < |α| � 1, n � 0}
is norm-dense in H . In this case x is called a disk-cyclic vector for T . As a con-
sequence, every hypercyclic operator is disk-cyclic, and every disk-cyclic operator is
supercyclic. Besides, T is disk-cyclic if and only if for all non-empty open sets U , V ,
there exist n ∈ N , α ∈ C with 0 < |α| � 1 such that Tn(αU)∩V �= /0.

For T ∈ B(H ), we give the notation

DC(T ) = {x ∈ H : x is a disk-cyclic vector for T}. (1.1)

Then DC(T ) =
⋂

k

(⋃
|α |�1

⋃
n T−n(αUk)

)
, where {Uk}∞

k=1 is a countable base for the

topology on H . Thus a non-empty set of disk-cyclic vectors is a dense Gδ -set in H .
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As we all know, Kitai found the Hypercyclicity Criterion in her Ph.D dissertation [11]
that ensures a linear operator to be hypercyclic. A few years later it was rediscovered
by Gethner and Shapiro [4]. Whether this criterion was equivalent to hypercyclicity
was an open problem for many years. Bayart and Matheron [2] showed that the equiv-
alence fails on classical Banach spaces, and even on a Hilbert space. In 2002, Jamil [8]
proposed the Disk-Cyclicity Criterion in Hilbert space to show the existence of some
disk-cyclic operators, which is similar to the Supercyclicity Criterion. Besides, another
criterion for disk-cyclic operators—Three Open Set’s Conditions has been proved by
Jamil and Helal in [9]. Next we begin by recalling these two sufficient conditions for
disk-cyclic operators.

PROPOSITION 1.1. [10, Proposition 2.4] or [9] (Three Open Set’s Conditions)
Let T ∈ B(H ), U , V be non-empty open sets in H and W be a neighborhood of
zero in H . If there are n∈ N and α ∈ C with 0 < |α|� 1 such that T n(αU)∩W �= /0
and Tn(αW )∩V �= /0, then T is disk-cyclic.

PROPOSITION 1.2. [10, Proposition 2.5] (Disk-Cyclicity Criterion) Let T ∈B(H )
such that

(1) There are dense sets X ,Y in H and right inverse to T (not necessary
bounded) S such that S(Y ) ⊂ Y and TS = IY .

(2) There is a sequence (nk) ⊂ N such that
(a) lim

k→∞
‖Snky‖ = 0 for all y ∈ Y ;

(b) lim
k→∞

‖Tnkx‖‖Snky‖ = 0 for all x ∈ X , y ∈ Y .

Then T is disk-cyclic.

The equivalent characterizations for the disk-cyclic forward weighted shift were
obtained in [10].

PROPOSITION 1.3. [10, Theorem 3.1] Let T be a forward weighted shift with
weight sequence {wn}n∈Z acting on the sequence space �2(Z) . Then the following
statements are equivalent:

(1) T is disk-cyclic.
(2) For all q ∈ N,
(a) limsup

n→∞
min

{
∏h−1

h−n wk : |h| � q
}

= ∞;

(b) liminf
n→∞

max

{
∏ j+n−1

j wk

∏h−1
h−n wk

: |h|, | j| � q

}
= 0.

(3) T satisfies the Disk-Cyclicity Criterion.

For other related conclusions about weighted shifts, the readers can consult, for
example, [13, 18]. Here we cite a definition which will be used to show the conjugacy
of the backward bilateral shift and forward bilateral shift and so on.

DEFINITION 1.4. [6, Definition 1.5] Let S : Y →Y and T : X → X be dynamical
systems.
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(a) Then T is called quasiconjugate to S if there exists a continuous map φ :Y →
X with dense range such that T ◦φ = φ ◦ S.

(b) If φ can be chosen to be a homeomorphism, then S and T are called conju-
gate.

Note that hypercyclicity and supercyclicity are preserved under quasiconjugacy.
Similarly the following proposition holds.

PROPOSITION 1.5. Disk-cyclicity (Codisk-cyclicity) for an operator T ∈ B(H )
is preserved under quasiconjugacy.

The purpose of the current paper is to investigate some equivalent characterizations
for the disk-cyclic and codisk-cyclic bilateral weighted shifts acting on the Hilbert space
�2(Z,K ) . For the information about the space �2(Z,K ) , we refer the readers to the
paper [7]. For the completeness we introduce it in detail.

As usual, Z is the set of all integers. Let K be a separable complex Hilbert space
with an orthonormal basis { fk}∞

k=0. Define a separable Hilbert space

�2(Z,K ) = {x = (· · · ,x−1, [x0],x1, · · ·) : xi ∈ K and ∑
i∈Z

‖xi‖2 < ∞},

under the inner product
〈x,y〉 = ∑

i∈Z

〈xi,yi〉K ,

where x = (· · · ,x−1, [x0],x1, · · ·) and y = (· · · ,y−1, [y0],y1, · · ·) for xi, yi ∈ K .
Let {An} (n∈ Z) be a uniformly bounded sequence of invertible positive diagonal

operators on K . We define two bilateral weighted shifts on �2(Z,K ) .
(i) The forward bilateral weighted shift T on �2(Z,K ) is defined by

T (· · · ,x−1, [x0],x1, · · ·) = (· · · ,A−2x−2, [A−1x−1],A0x0, · · ·).
Since {An}∞

n=−∞ is uniformly bounded, then ‖T‖ = sup
i∈Z

‖Ai‖ < ∞. Moreover,

Tn(· · · ,x−1, [x0],x1, · · ·) = (· · · ,y−1, [y0],y1, · · ·), n ∈ N,

where

yn+ j =
n−1

∏
s=0

Aj+sx j or y j =
n−1

∏
s=0

Aj+s−nx j−n. (1.2)

Hence

‖Tn‖ = sup
j
‖

n−1

∏
s=0

Aj+s‖ = sup
j
‖

j+n−1

∏
s= j

As‖. (1.3)

If {A−1
n }∞

n=−∞ is also uniformly bounded, then T−1 is the backward bilateral weighted
shift on �2(Z,K ) as below

T−1(· · · ,x−1, [x0],x1, · · ·) = (· · · ,A−1
−1x0, [A−1

0 x1],A−1
1 x2, · · ·). (1.4)
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Then
T−n(· · · ,x−1, [x0],x1, · · ·) = (· · · ,z−1, [z0],z1, · · ·), n ∈ N,

where

z j−n =
n−1

∏
s=0

A−1
j−n+sx j or z j =

n−1

∏
s=0

A−1
j+sxn+ j.

It implies that

‖T−n‖ = sup
j
‖

n−1

∏
s=0

A−1
j−n+s‖ = sup

j
‖

j−1

∏
s= j−n

A−1
s ‖. (1.5)

(ii) The backward bilateral weighted shift T on �2(Z,K ) is given by

T (· · · ,x−1, [x0],x1, · · ·) = (· · · ,A−1x0, [A0x1],A1x2, · · ·).
Then

Tn(· · · ,x−1, [x0],x1, · · ·) = (· · · ,y−1, [y0],y1, · · ·),
where

y j =
n−1

∏
s=0

Aj+sxn+ j or y j−n =
n−1

∏
s=0

Aj−n+sx j. (1.6)

Thus

‖Tn‖ = sup
j
‖

n−1

∏
s=0

Aj−n+s‖ = sup
j
‖

j−1

∏
s= j−n

As‖. (1.7)

Further, if {A−1
n }∞

n=−∞ is also uniformly bounded, then T−1 is the forward bilateral
weighted shift on �2(Z,K ) as follows

T−n(· · · ,x−1, [x0],x1, · · ·) = (· · · ,z−1, [z0],z1, · · ·),
where

z j =
n−1

∏
s=0

A−1
j+s−nx j−n or zn+ j =

n−1

∏
s=0

A−1
j+sx j. (1.8)

It yeilds that

‖T−n‖ = sup
j
‖

n−1

∏
s=0

A−1
j+s‖ = sup

j
‖

j+n−1

∏
s= j

A−1
s ‖. (1.9)

Since each An is an invertible diagonal operator on K , we conclude that

‖An‖ = sup
k
‖An fk‖, ‖A−1

n ‖ = sup
k
‖A−1

n fk‖ and sup
k
‖An fk‖ =

1

inf
k
‖A−1

n fk‖
. (1.10)
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2. Disk-cyclic weighted shifts

In this section, we are concerned with the equivalent conditions for the disk-cyclic
weighted shifts. For a better understanding, we cite the supercyclicity of the bilateral
weighted shifts on �2(Z,K ) .

THEOREM 2.1. (1) [12, Theorem 3.2] Let T be a forward bilateral weighted
shift on �2(Z,K ) with weight sequence {An}∞

n=−∞, where {An} is a uniformly bounded
sequence of positive invertible diagonal operators on K . Then T is supercyclic if and
only if for every q ∈ N,

liminf
n→∞

max{‖
j+n−1

∏
k= j

Ak‖‖
h−1

∏
k=h−n

A−1
k ‖ : | j|, |h| � q} = 0. (2.1)

(2) [12, Theorem 3.3] Let T be a backward bilateral operator weighted shift on
�2(Z,K ) with weight sequence {An}∞

n=−∞ , where {An} is a uniformly bounded se-
quence of positive invertible diagonal operator on K . Then T is supercyclic if and
only if for every q ∈ N,

liminf
n→∞

max{‖
j−n

∏
k= j−1

Ak‖‖
h+n−1

∏
k=h

A−1
k ‖ : | j|, |h| � q} = 0.

The following theorem describes the disk-cyclic forward bilateral weighted shifts
on �2(Z,K ) .

THEOREM 2.2. Let T be a forward bilateral weighted shift on �2(Z,K ) with
weight sequence {An}∞

n=−∞, where {An} is a uniformly bounded sequence of positive
invertible diagonal operators on K . Then the following statements are equivalent:

(1) T is disk-cyclic.
(2) For all q ∈ N,

(a) liminf
n→∞

max
{
‖∏ j−1

k= j−n A−1
k ‖, | j| � q

}
= 0;

(b) liminf
n→∞

max
{
‖∏ j+n−1

k= j Ak‖‖∏h−1
s=h−n A−1

s ‖, |h|, | j| � q
}

= 0.

(3) T satisfies the Disk-Cyclicity Criterion.

Proof. (3) ⇒ (1). This implication is obvious.
(1) ⇒ (2). Suppose T is disk-cyclic. Let ε > 0, q ∈ N be given. Choose δ > 0

such that δ/(1− δ ) < ε. For an arbitrary fixed non-negative integer i, consider the
vector z = (· · · ,z−1, [z0],z1, · · ·) ∈ �2(Z,K ) defined by z j = fi if | j| � q and z j = 0 if
| j| > q.

Since T is disk-cyclic, by the density of the disk-cyclic vectors, there exist a vector
x = (· · · ,x−1, [x0],x1, · · ·) and a complex number α with 0 < |α| � 1 such that the set
{αTnx : α ∈ C,0 < |α| � 1, n � 0} is norm-dense in �2(Z,K ) and

‖x− z‖< δ . (2.2)
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Meanwhile, there exists a subsequence of {αTnx}n converging to z. Then we can
choose a positive integer n > 2q such that

‖αTnx− z‖ < δ , (2.3)

where Tnx = (· · · ,y−1, [y0],y1, · · ·) . It implies that{
‖x j‖ < δ , for all | j| > q;

‖x j − fi‖ < δ , for all | j| � q.{ ‖αy j‖ < δ , if | j| > q;
‖αy j − fi‖ < δ , if | j| � q.

Since x ∈ �2(Z,K ), there exist scalars α( j)
k such that x j = ∑∞

k=0 α( j)
k fk. Then⎧⎪⎪⎨⎪⎪⎩

|α( j)
k | < δ , | j| > q and for all k;

|α( j)
k | < δ , | j| � q and for k �= i;

|α( j)
k | > 1− δ , | j| � q and for k = i.

(2.4)

From the hypothesis n > 2q, we verify that j+n > q for all | j|� q and hence it follows
that

‖αy j+n‖ < δ , for all | j| � q.

By (1.2),

y j+n =
n−1

∏
s=0

Aj+sx j =
∞

∑
k=0

α( j)
k

n−1

∏
s=0

Aj+s fk.

That is,

|α||α( j)
k |‖

n−1

∏
s=0

Aj+s fk‖ < δ , for all k and | j| � q.

If k = i , by the third inequality in (2.4), it yields that

|α|‖
n−1

∏
s=0

Aj+s fi‖ <
δ

1− δ
, for all | j| � q.

Thus

‖
j+n−1

∏
s= j

As‖ = sup
i
‖

n−1

∏
s=0

Aj+s fi‖ � δ
|α|(1− δ )

, for all | j| � q. (2.5)

Again from (1.2), it leads that

y j =
n−1

∏
s=0

Aj+s−nx j−n =
∞

∑
k=0

α( j−n)
k

n−1

∏
s=0

Aj+s−n fk.
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Then by (2.3), we derive that⎧⎨⎩ (i) ‖αα( j−n)
k ∏n−1

s=0 Aj+s−n fk − fk‖ < δ , for k = i;

(ii) ‖αα( j−n)
k ∏n−1

s=0 Aj+s−n fk‖ < δ , for k �= i.
(2.6)

Since n > 2q, it holds that | j−n|> q for all | j| � q. Employing the second inequality

in (2.4), we conclude that |α( j−n)
k | < δ for all k. If k = i ,

|α( j−n)
i | < δ , for all | j| � q. (2.7)

Rewrite (2.6)(i) as

|α||α( j−n)
i |‖

n−1

∏
s=0

Aj+s−n fi‖ > 1− δ , for all | j| � q. (2.8)

Combining (2.7) and (2.8), it implies that

|α|‖
j−1

∏
k= j−n

Ak fi‖ >
1− δ

δ
, for all | j| � q.

Since the above inequality holds for an arbitrary i , then

inf
i
‖

j−1

∏
k= j−n

Ak fi‖ � 1− δ
|α|δ , for all | j| � q,

and further by the third equation in (1.10), it follows that

sup
i
‖

j−1

∏
k= j−n

A−1
k fi‖ =

1

inf
i
‖∏ j−1

k= j−n Ak fi‖
� |α|δ

1− δ
, for all | j| � q.

Therefore

‖
j−1

∏
k= j−n

A−1
k ‖ � |α|δ

1− δ
� δ

1− δ
< ε, for all | j| � q. (2.9)

Consequently, multiplying (2.5) and (2.9), we formulate

‖
j+n−1

∏
k= j

Ak‖‖
h−1

∏
s=h−n

A−1
s ‖ <

δ
|α|(1− δ )

|α|δ
1− δ

< ε2, for all |h|, | j| � q.

Considering the above two inequalities and ε is arbitrary, we obtain (2).
(2) ⇒ (3) . Denote

α(n,q) = max

{
‖

j−1

∏
k= j−n

A−1
k ‖, | j| � q

}
,

β (n,q) = max

{
‖

j+n−1

∏
k= j

Ak‖‖
h−1

∏
s=h−n

A−1
s ‖, |h|, | j| � q

}
.
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By the condition (2) and the definition of liminf
n→∞

, there exist integers 1 � n1 < n2 <

n3 < · · · satisfying, for each q ∈ N , that

α(nq,q) <
1
q

and β (nq,q) <
1
q
. (2.10)

For the above q ∈ N , define

Gq = {(x j) ∈ �2(Z,K ) : x j = 0 for | j| > q}.

Then choose X0 = Y0 =
⋃

q∈N

Gq , which are dense subsets of �2(Z,K ) . Define the

mapping S : Y0 → �2(Z,K ) by

S(· · · ,x−1, [x0],x1, · · ·) = (· · · ,A−1
−1x0, [A−1

0 x1],A−1
1 x2, · · ·),

and let Snk = Snk . It holds trivially that S(Y0) ⊂ Y0 and

TS = IdY0 .

For g,h ∈ Gq , by (1.3),(1.5) and (2.10), it yields that

‖Tnqg‖ � max

{
‖

j+nq−1

∏
k= j

Ak‖, | j| � q

}
‖g‖,

‖Snqh‖ � max

{
‖

l−1

∏
k=l−nq

A−1
k ‖, |l| � q

}
‖h‖

= α(nq,q)‖h‖<
1
q
‖h‖.

‖Tnqg‖‖Snqh‖ � max

{
‖

j+nq−1

∏
k= j

Ak‖‖
l−1

∏
k=l−nq

A−1
k ‖, | j| � q, |l| � q

}
‖g‖‖h‖

= β (nq,q)‖g‖‖h‖<
1
q
‖g‖‖h‖.

Combining the above two inequalities, we prove that

lim
q→∞

‖Tnqg‖‖Snqh‖ = 0 and lim
q→∞

‖Snqh‖ = 0.

That is, the operator T satisfies Proposition 1.2 with respect to the sequence {nq}q ,
then we get (3). This proves the desired results. �

We further have the following corollary.
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COROLLARY 2.3. Let T be a disk-cyclic forward bilateral weighted shift on
�2(Z,K ) with weight sequence {An}∞

n=−∞, where {An} is a uniformly bounded se-
quence of positive invertible diagonal operators on K . Then there is a sequence
{nr} ⊂ N such that

lim
r→∞

‖
nr

∏
k=1

A−1
−k‖ = 0 and lim

r→∞
‖

nr

∏
k=1

Ak‖‖
nr

∏
s=1

A−1
−s‖ = 0. (2.11)

Proof. Take q = 0 in Theorem 2.2 (2), then j = h = 0. Hence

liminf
n→∞

‖
−1

∏
k=−n

A−1
k ‖ = 0 and liminf

n→∞
‖

n−1

∏
k=0

Ak‖‖
−1

∏
k=−n

A−1
k ‖ = 0.

In particular, there is a sequence {nr} ⊂ N such that

lim
r→∞

‖
nr

∏
k=1

A−1
−k‖ = 0 and lim

r→∞
‖

nr−1

∏
k=0

Ak‖‖
nr

∏
k=1

A−1
−k‖ = 0.

Let ε > 0, then there is N > 0 such that for all r > N,

‖
nr

∏
k=1

A−1
−k‖ < ε and ‖

nr−1

∏
k=0

Ak‖‖
nr

∏
k=1

A−1
−k‖ < ε

1

‖A−1
0 ‖‖Anr‖

.

That is,

‖
nr

∏
k=1

A−1
−k‖ < ε and ‖

nr

∏
k=1

Ak‖‖
nr

∏
k=1

A−1
−k‖ < ε.

Consequently, (2.11) is true. �

THEOREM 2.4. Let T be a forward bilateral weighted shift on �2(Z,K ) with
weight sequence {An}∞

n=−∞, where {An} is a uniformly bounded sequence of positive
invertible diagonal operators on K and {A−1

n } is also a uniformly bounded sequence.
Then the following statements are equivalent:

(1) T is disk-cyclic.
(2) There is a sequence {nr} ⊂ N , nr → ∞, such that
(a) lim

r→∞
‖∏nr

k=1 A−1
−k‖ = 0;

(b) lim
r→∞

‖∏nr
k=1 Ak‖‖∏nr

s=1 A−1
−s‖ = 0.

Proof. (1) ⇒ (2) . This implication follows from Corollary 2.3.
(2) ⇒ (1) . Suppose that (2) holds, we will require Theorem 2.2 to show (1).

Denote M := max{sup
n∈Z

‖An‖, sup
n∈Z

‖A−1
n ‖} < ∞. Let ε > 0 and q ∈ N . For a δ > 0 (we

will prescribe δ later), there is an arbitrarily large nr such that

‖
nr

∏
k=1

A−1
−k‖ < δ and ‖

nr

∏
k=1

Ak‖‖
nr

∏
s=1

A−1
−s‖ < δ . (2.12)
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Let n = nr +q+2 and h∈Z with |h|� q. Then nr +1 � n−h. Employing (2.12),
we conclude that

‖
h−1

∏
h−n

A−1
k ‖ = ‖

n−h

∏
1−h

A−1
−k‖ � Mh‖

nr

∏
k=1

A−1
−k‖‖

n−h

∏
nr+1

A−1
−k‖, (2.13)

here {Mh} is a finite collection of positive constants depending only on q . Since n−
h− (nr +1) � 2q+1, then

‖
n−h

∏
nr+1

A−1
−k‖ � M2q+1.

It follows from (2.13) that

‖
h−1

∏
h−n

A−1
k ‖ � MhM

2q+1‖
nr

∏
k=1

A−1
−k‖. (2.14)

Let M0 = max{Mh : |h| � q}, by (2.12), we deduce that

‖
h−1

∏
h−n

A−1
k ‖ � M0M

2q+1‖
nr

∏
k=1

A−1
−k‖ � M0M

2q+1δ . (2.15)

On the other hand, let j ∈ Z with | j| � q. Then j+n−1 � nr +1 > nr � 1. Thus

‖
j+n−1

∏
k= j

Ak‖ � M̃j‖
nr

∏
k=1

Ak‖‖
j+n−1

∏
nr+1

Ak‖,

where {M̃j} is a finite collection of positive constants depending only on q . Since
j � q , then j +n−1− (nr +1) � 2q and

‖
j+n−1

∏
nr+1

Ak‖ � M2q.

Let M̃0 = max{M̃j : | j| � q} , consequently,

‖
j+n−1

∏
k= j

Ak‖ � M̃jM
2q‖

nr

∏
k=1

Ak‖ � M̃0M
2q‖

nr

∏
k=1

Ak‖. (2.16)

Combining (2.12), (2.14) and (2.16), for j,h ∈ Z with | j|, |h| � q, we show that

‖
j+n−1

∏
k= j

Ak‖‖
h−1

∏
s=h−n

A−1
s ‖ = ‖

j+n−1

∏
k= j

Ak‖‖
n−h

∏
s=1−h

A−1
−s‖

� M0M̃0M
2q+1M2q‖

nr

∏
k=1

A−1
−k‖‖

nr

∏
k=1

Ak‖ < αδ , (2.17)
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where α = M0M̃0M4q+1 is a constant depending only on q. Let

δ = min

{
ε
α

,
ε

M0M2q+1

}
.

Observing from (2.15) and (2.17), we arrive at

(a) liminf
n→∞

max
{
‖∏ j−1

k= j−n A−1
k ‖, | j| � q

}
= 0;

(b) liminf
n→∞

max
{
‖∏ j+n−1

k= j Ak‖‖∏h−1
s=h−n A−1

s ‖, |h|, | j| � q
}

= 0.

An application of Theorem 2.2 tells us that T is disk-cyclic. The proof of the
theorem is complete. �

Through the mapping φ : �2(Z,K ) → �2(Z,K ),(xn) → (x−n) , it turns out that
the backward bilateral shift T with weight sequence {An} is conjugate to a forward
bilateral shift S with weight sequence {A−n−1} . We get down to the details as follows:

S ◦φ(· · · ,x−1, [x0],x1, · · ·)
= S(· · · ,x1, [x0],x−1, · · ·)
= (· · · ,A1x2, [A0x1],A−1x0, · · ·).

φ ◦T (· · · ,x−1, [x0],x1, · · ·)
= φ(· · · ,A−1x0, [A0x1],A1x2, · · ·)
= (· · · ,A1x2, [A0x1],A−1x0, · · ·).

That is, S ◦ φ = φ ◦T. Hence the characterizations for the disk-cyclic (codisk-cyclic)
forward bilateral shift S with weight sequence {A−n−1} can be applied to the disk-
cyclicity (codisk-cyclicity) of the backward bilateral shift T with weight sequence
{An} . By Proposition 1.5, Theorems 2.5 and 2.6 can be deduced from Theorems 2.2
and 2.4, just replacing the weight sequence {An} by {A−n−1} , respectively. So we
omit the details here.

THEOREM 2.5. Let T be a backward bilateral weighted shift on �2(Z,K ) with
weight sequence {An}∞

n=−∞ , where {An} is a uniformly bounded sequence of positive
invertible diagonal operator on K . Then the following statements are equivalent:

(1) T is disk-cyclic.
(2) For all q ∈ N,

(a) liminf
n→∞

max{‖∏ j+n−1
k= j A−1

k ‖ : | j| � q} = 0;

(b) liminf
n→∞

max{‖∏ j−1
k= j−n Ak‖‖∏h+n−1

k=h A−1
k ‖, | j|, |h| � q} = 0.

(3) T satisfies the Disk-Cyclicity Criterion.

THEOREM 2.6. Let T be a backward bilateral weighted shift on �2(Z,K ) with
weight sequence {An}∞

n=−∞ , where {An} is a uniformly bounded sequence of positive
invertible diagonal operator on K and {A−1

n } is also a uniformly bounded sequence.
Then the following statements are equivalent:

(1) T is disk-cyclic.
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(2) There is a sequence {nr} ⊂ N , nr → ∞, such that
(a) lim

r→∞
‖∏nr

k=1 A−1
k ‖ = 0;

(b) lim
r→∞

‖∏nr
k=1 A−k‖‖∏nr

k=1 A−1
k ‖ = 0.

3. Codisk-cyclic weighted shifts

In this section, we turn our attention to study the codisk-cyclic bilateral weighted
shifts on �2(Z,K ) . An operator T ∈ B(H ) is codisk-cyclic if there exists x ∈ H
such that

{αTnx : α ∈ C, |α| � 1, n � 0} is norm-dense in H ,

and x is said to be a codisk-cyclic vector for T . Clearly every codisk-cyclic operator is
supercyclic as well. Also, T is codisk-cyclic if and only if for all non-empty open sets
U , V , there exist n ∈ N , α ∈ C with |α| � 1 such that Tn(αU)∩V �= /0. Due to the
fact Tn(αU)∩V �= /0 if and only if U ∩T−n

(
1
α V

) �= /0, therefore an inverse operator
T is codisk-cyclic if and only if T−1 is disk-cyclic. Analogously, the Codisk-Cyclicity
Criterion is the main ingredient to discover codisk-cyclic operators, which provides a
sufficient condition for bounded linear operators to have codisk-cyclic vectors.

PROPOSITION 3.1. [8] (Codisk-Cyclicity Criterion) Let T ∈ B(H ) such that
(1) There are dense sets X ,Y in H and a right inverse to T (not necessarily

bounded) S such that S(Y ) ⊂ Y and TS = IY .
(2) There is a sequence {nk} ⊂ N such that
(a) lim

k→∞
‖Tnkx‖ = 0 for all x ∈ X ;

(b) lim
k→∞

‖Tnkx‖‖Snky‖ = 0 for all x ∈ X , y ∈ Y .

Then T is codisk-cyclic.

Depending on Proposition 3.1, we can arrive at the following theorems corre-
sponding to ones in Section 2.

THEOREM 3.2. Let T be a forward bilateral weighted shift on �2(Z,K ) with
weight sequence {An}∞

n=−∞, where {An} is a uniformly bounded sequence of positive
invertible diagonal operators on K . Then the following statements are equivalent:

(1) T is codisk-cyclic.
(2) For all q ∈ N,

(a) liminf
n→∞

max
{
‖∏ j+n−1

k= j Ak‖, | j| � q
}

= 0;

(b) liminf
n→∞

max
{
‖∏ j+n−1

k= j Ak‖‖∏h−1
s=h−n A−1

s ‖, |h|, | j| � q
}

= 0.

(3) T satisfies the Codisk-Cyclicity Criterion.

THEOREM 3.3. Let T be a forward bilateral weighted shift on �2(Z,K ) with
weight sequence {An}∞

n=−∞, where {An} is a uniformly bounded sequence of positive
invertible diagonal operators on K and {A−1

n } is also a uniformly bounded sequence.
Then the following statements are equivalent:
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(1) T is codisk-cyclic.
(2) There is a sequence {nr} ⊂ N , nr → ∞, such that
(a) lim

r→∞
‖∏nr

k=1 Ak‖ = 0;

(b) lim
r→∞

‖∏nr
k=1 Ak‖‖∏nr

s=1 A−1
−s‖ = 0.

THEOREM 3.4. Let T be a backward bilateral weighted shift on �2(Z,K ) with
weight sequence {An}∞

n=−∞ , where {An} is a uniformly bounded sequence of positive
invertible diagonal operator on K . Then the following statements are equivalent:

(1) T is codisk-cyclic.
(2) For all q ∈ N,

(a) liminf
n→∞

max
{
‖∏ j−1

k= j−n Ak‖, | j| � q
}

= 0;

(b) liminf
n→∞

max{‖∏ j−1
k= j−n Ak‖‖∏h+n−1

k=h A−1
k ‖, | j|, |h| � q} = 0.

(3) T satisfies the Codisk-Cyclicity Criterion.

THEOREM 3.5. Let T be a backward bilateral weighted shift on �2(Z,K ) with
weight sequence {An}∞

n=−∞ , where {An} is a uniformly bounded sequence of posi-
tive invertible diagonal operator on K and {A−1

n } is also a uniformly bounded se-
quence.Then the following statements are equivalent:

(1) T is codisk-cyclic.
(2) There is a sequence {nr} ⊂ N , nr → ∞, such that
(a) lim

r→∞
‖∏nr

k=1 A−k‖ = 0;

(b) lim
r→∞

‖∏nr
k=1 A−k‖‖∏nr

k=1 A−1
k ‖ = 0.

4. Disk-cyclicity and codisk-cyclicity of B on L2(β )

Given a sequence of positive numbers {β (n)}∞
n=−∞ with β (0) = 1, the space of

formal Laurent series consists of the sequences f = { f̂ (n)}∞
n=−∞ such that

‖ f‖2 = ‖ f‖2
β =

∞

∑
n=−∞

| f̂ (n)|2β (n)2 < ∞.

We will use the notation f (z) = ∑∞
n=−∞ f̂ (n)zn whether or not the series converges for

any z . These are called formal Laurent series. As we all know, they are called formal
power series and are denoted by H2(β ) , when n ranges on N∪{0} . The space H2(β )
is a Hilbert space under the inner product

〈 f ,g〉 =
∞

∑
n=0

f̂ (n)ĝ(n)β (n)2,

where f (z) = ∑∞
n=0 f̂ (n)zn and g(z) = ∑∞

n=0 ĝ(n)zn.
Let L2(β ) denote a Hilbert space endowed with the inner product

〈 f ,g〉 =
∞

∑
n=−∞

f̂ (n)ĝ(n)β (n)2,



844 Y. X. LIANG AND Z. H. ZHOU

where f (z) = ∑∞
n=−∞ f̂ (n)zn and g(z) = ∑∞

n=−∞ ĝ(n)zn. Moreover, the norm on the
space L2(β ) is ‖.‖β . Let f̂k(n) = δk(n) , then fk(z) = zk and { fk}k∈Z is a basis for
L2(β ) such that ‖ fk‖ = β (k). The shift operator B on L2(β ) is defined by

B f j = f j−1, j ∈ Z.

A straightforward calculation shows that B is bounded if and only if the sequence
{β (k)/β (k+1)}k is bounded. The hereditarily hypercyclicity of B on Lp(β ) ( p � 1)
with respect to the entire sequence was discussed in [17, Theorem 2.7]. Recently, a
companion result for the supercyclic shift operator B on Lp(β ) ( p � 1) was investi-
gated as follows:

THEOREM 4.1. [12, Theorem 4.1] Suppose the shift operator B is bounded on
Lp(β ) . Then B is supercyclic on Lp(β ) if and only if

liminf
n→∞

max{β (k−n)β ( j +n) : | j|, |k| � q} = 0, (4.1)

for all q ∈ N .

Now we proceed to show the disk-cyclicity and codisk-cyclicity of the shift oper-
ator B on L2(β ) . On the one hand, the results below can be proved by Proposition 1.2
and Proposition 3.1 (this method is omitted here). On the other hand, we note that the
shift operator B on L2(β ) is conjugate to the backward bilateral weighted shift T with

sequence
{

βn
βn+1

}
on �2(Z,C) via the mapping φ : �2(Z,C) → L2(β ),(x(n)) →

(
xn
βn

)
as below:

B◦φ(· · · ,x−1, [x0],x1, · · ·)
= B

(
· · · , x−1

β−1
,

[
x0

β0

]
,
x1

β1
, · · ·

)
=

(
· · · , x0

β0
,

[
x1

β1

]
,
x2

β2
, · · ·

)
.

φ ◦T(· · · ,x−1, [x0],x1, · · ·)
= φ

(
· · · , β−1

β0
x0,

[
β0

β1
x1

]
,

β1

β2
x2, · · ·

)
=

(
· · · , x0

β0
,

[
x1

β1

]
,
x2

β2
, · · ·

)
.

Thus B◦φ = φ ◦T. Employing Proposition 1.5 and Theorem 2.5, we introduce a brief
proof for the disk-cyclicity of the shift operator B on L2(β ) .

THEOREM 4.2. Suppose the shift operator B is bounded on L2(β ) . Then the
following statements are equivalent:

(1) B is disk-cyclic.
(2) For all q ∈ N,
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(a) liminf
n→∞

max{β ( j +n) : | j| � q} = 0;

(b) liminf
n→∞

max{β (k−n)β ( j +n) : | j|, |k| � q} = 0.

(3) T satisfies the Disk-Cyclicity Criterion.

Proof. Replacing the weight Ak by βk
βk+1

in (2) of Theorem 2.5, it guarantees that

‘For all q ∈ N,

(a) liminf
n→∞

max{ β ( j+n)
β ( j) : | j| � q} = 0;

(b) liminf
n→∞

max{ β ( j−n)
β ( j)

β (h+n)
β (h) , | j|, |h| � q} = 0.’.

Obviously, the above results are equivalent to

‘For all q ∈ N,

(a) liminf
n→∞

max{β ( j +n) : | j| � q} = 0;

(b) liminf
n→∞

max{β (k−n)β ( j +n) : | j|, |k| � q} = 0.’.

Therefore we derive the results from Theorem 2.5. This completes the proof. �
Next corollary is an application of Theorem 4.2.

COROLLARY 4.3. Suppose the shift operator B is bounded on L2(β ) . If B is
disk-cyclic on L2(β ) , then there is a sequence {nr} ⊂ N such that

(a) lim
r→∞

β (nr) = 0;

(b) lim
r→∞

β (−nr)β (nr) = 0.

The equivalent descriptions for the codisk-cyclicity of B on L2(β ) are also given
below, which can be deduced from Theorem 3.4.

THEOREM 4.4. Suppose the shift operator B is bounded on L2(β ) . Then the
following statements are equivalent:

(1) B is codisk-cyclic.
(2) For all q ∈ N,
(a) liminf

n→∞
max{β (k−n) : |k| � q} = 0;

(b) liminf
n→∞

max{β (k−n)β ( j +n) : | j|, |k| � q} = 0.

(3) T satisfies the Codisk-Cyclicity Criterion.

COROLLARY 4.5. Suppose the shift operator B is bounded on L2(β ) . If B is
codisk-cyclic on L2(β ) , then there is a sequence {nr} ⊂ N such that

(a) lim
r→∞

β (−nr) = 0;

(b) lim
r→∞

β (−nr)β (nr) = 0.
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