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Abstract. The questions of dense definiteness and boundedness of composition operators in L2 -
spaces are studied by means of inductive limits of operators. Methods based on projective sys-
tems of measure spaces and inductive limits of L2 -spaces are developed. Illustrative examples
are presented.

1. Introduction

Bounded composition operators (in L2 -spaces) have been extensively studied since
the works of Koopman and von Neumann (see [17, 18]). They played a central role in
ergodic theory and proved to be important objects of investigations in operator theory.
Many properties of these operators were fully characterized (see the monograph [26]
and references therein). Unbounded composition operators attracted attention recently
but they turned out to have very interesting attributes (cf. [4, 7, 8, 9, 11, 13, 19]). In
particular, they proved to be a source for surprising examples (cf. [3, 5, 10, 14]).

In this paper we investigate the questions of dense definiteness and boundedness
of composition operators. These properties have characterizations (cf. [6, 11, 24]),
which in more concrete situations seem difficult to apply. For example, this is the case
of a composition operator induced by an infinite matrix in L2(μG) , where μG is the
gaussian measure on R∞ . Even in the bounded case in concrete situations the question
of boundedness may be highly non-trivial and may lead to very interesting results (cf.
[12, 21, 27, 28]). We show that a technique based on inductive limits might be helpful
when dealing with these problems. We deliver tractable criteria for the above mentioned
properties. This is possible if the L2 -space (in which a given composition operator acts)
is an inductive limit of L2 -spaces with underlying measure spaces forming a projective
system (see Section 3). In this case we prove that both the dense definiteness and
boundedness can be expressed in terms of asymptotic behaviour of appropriate Radon-
Nikodym derivatives (see Theorems 4.11 and 4.12). We illustrate this with examples.

Mathematics subject classification (2010): Primary 47B33, 47B37; Secondary 47A05, 28C20.
Keywords and phrases: Composition operator in L2 -space, inductive limits of Hilbert spaces, induc-

tive limits of operators, gaussian measure.
The research of the first author was partially supported by the NCN (National Science Center) grant DEC-

2011/01/D/ST1/05805.

c© � � , Zagreb
Paper OaM-09-50

853

http://dx.doi.org/10.7153/oam-09-50
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2. Preliminaries

2.1. Notation

In all what follows Z stands for the set of integers and N for the set of positive
integers; R denotes the set of real numbers, C denotes the set of complex numbers.
If X is any subset of R , then by X+ we understand the set {x ∈ X : x � 0} . Set
R+ = R+∪{∞} . By σ1�σ2 we denote the symmetric difference (σ1∪σ2)\ (σ1∩σ2)
between sets σ1 and σ2 . For a topological space X , B(X) stands for the family of
Borel subsets of X . If {Xn}n∈N is a sequence of subsets of a set X , then “Xn ↗ X as
n → ∞” means that Xn ⊆ Xn+1 for all n ∈ N and X =

⋃
n∈N Xn . If B is any family of

subsets of a set X , then by σ(B) we denote the smallest σ -algebra in X containing
B .

Let H be a (complex) Hilbert space and T be an operator in H (all operators
are assumed to be linear in this paper). By D(T ) we denote the domain of T . T stands
for the closure of T . B(H ) denotes the Banach space of all bounded operators on
H (with the usual supremum norm). If T is closable and F is a subspace of H such
that T |F = T , then F is said to be a core of T .

Let (X ,A ,μ) be a measure space. By (A )μ we denote the collection of all
σ ∈ A such that μ(σ) < ∞ . Let 1 � p < ∞ . The space of all A -measurable C-
valued functions such that

∫ | f |p dμ < ∞ is denoted by Lp(μ)= Lp(X ,A ,μ) ; L∞(μ) =
L∞(X ,A ,μ) stands for the space of all C-valued and μ -essentially bounded functions
on X .

Now, let {μn}n∈N be a sequence of non-negative measures, each μn acting on
a measurable space (Xn,An) . Let { fn : n ∈ N} be a family of functions such that
fn ∈L1(μn) for every n∈N . Then M

({ fn : n∈N}) stands for the family composed of
monotonically increasing convex functions G : [0,∞)→ [0,∞) such that limt→∞ G(t)/t
= ∞ and supn∈N

∫
G(| fn|)dμn < ∞ .

2.2. Composition operators

Let (X ,A ,μ) be a σ -finite measure space and let A : X → X be A -measurable.
Define the measure μ ◦A−1 on A by setting μ ◦A−1(σ) = μ(A−1(σ)) , σ ∈ A . If
μ ◦A−1 is absolutely continuous with respect to μ , then A is said to be nonsingular
transformation of X . If A is nonsingular, then the linear operator

CA : L2(μ) ⊇ D(CA) → L2(μ)

given by

D(CA) = { f ∈ L2(μ) : f ◦A ∈ L2(μ)} and CA f = f ◦A for f ∈ D(CA),

is well-defined and closed in L2(μ) (cf. [7, Proposition 3.2]). Such an operator is the
composition operator induced by A and A is the symbol of CA . Usually, properties of
CA are written in terms of the Radon-Nikodym derivative

hA =
dμ ◦A−1

dμ
.
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By the measure transport theorem ([1, Theorem 1.6.12]), for every A -measurable (C-
or R-valued) function g we have∫

X
g ·hAdμ =

∫
X

g ◦Adμ .

In particular, for every f ∈ D(CA) there is
∫

X
| f |2hA dμ =

∫
X
| f ◦A|2 dμ . (2.1)

It is known (cf. [7, Proposition 3.2]) that

D(CA) = L2(μ) if and only if hA < ∞ a.e. [μ ]. (2.2)

If hA belongs to L∞(μ) , then CA is bounded on L2(μ) (and vice versa) and

‖CA‖ = ‖hA‖1/2
L∞(μ). (2.3)

Conditional expectation is indispensable when investigating composition operators in
L2 -spaces. We collect here some of its properties. Set A−1(A ) = {A−1(σ) : σ ∈ A } .
Assume that hA < ∞ a.e. [μ ] . Then the measure μ |A−1(A ) is σ -finite (cf. [7, Propo-

sition 3.2]) and hence for every A -measurable function f : X → R+ there exists a
unique (up to sets of μ -measure zero) A−1(A )-measurable function1 E( f ) : X → R+
such that for every A -measurable function g : X → R+ ,

∫
X

g ◦A · f dμ =
∫

X
g ◦A ·E( f )dμ . (2.4)

We call E( f ) the conditional expectation of f with respect to A−1(A ) (see [7, 8, 9]
for more information on E(·) in the context of unbounded composition operators and
further references). It is known that if f : X → R+ is an A -measurable function, then
E( f ) = g◦A a.e. [μ ] with an A -measurable function g : X → R+ such that g = 0 a.e.
[μ ] on {hA = 0} . Set E( f )◦A−1 = g a.e. [μ ] . This definition is correct (see [11] and
[7, Appendix B]). Moreover, we have

(E( f )◦A−1)◦A = E( f ) a.e. [μ |A−1(A )]. (2.5)

It is also known that the map f �→ E( f ) can be extended linearly from { f ∈ L2(μ) : f �
0} onto the whole L2(μ) in a way that E(·) becomes an orthogonal projection acting
on L2(μ) . This (extended) conditional expectation E(·) satisfies (2.4) and (2.5) with
f ,g ∈ L2(μ ).

Let μ be the Borel measure on Rn , n∈N , given by dμ = ρ dmn , where ρ : Rn →
(0,∞) is a Borel function and mn is the n -dimensional Lebesgue measure on Rn . If A
is an invertible linear transformation of Rn , then by the measure transport theorem we
get

hA = 1
|detA|

ρ◦A−1

ρ ;

1For simplicity we do not make the dependence of E( f ) on A explicit.
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moreover, if CA is bounded on L2(μ) , then

‖CA‖2 = 1
|detA|

∥∥ρ◦A−1

ρ
∥∥

L∞(μ).

In particular, if ρ(x1, . . . ,xn) = e−
1
2 (x2

1+···+x2
n) , we have

hA(x) =
∣∣detA

∣∣−1
exp 1

2

(
‖x‖2−‖A−1(x)‖2

)
for mn-a.e. x ∈ R

n. (2.6)

2.3. Inductive limits

Suppose {Hn}n∈N is a sequence of Hilbert spaces. We say that a Hilbert space
H is the inductive limit of {Hn}n∈N if there are isometries Λl

k : Hk →Hl , k � l , and
Λk : Hk → H such that the following conditions are satisfied:

(I1 ) Λk
k is the identity operator on Hk ,

(I2 ) Λm
k = Λm

l ◦Λl
k for all k � l � m ,

(I3 ) Λk = Λl ◦Λl
k for all k � l ,

(I4 ) H =
⋃

n∈N ΛnHn .

We write H = LIMHn then.
Assume that H = LIMHn . For n ∈ N , let Cn be an operator in Hn . Consider

the subspace D∞ = D∞({Cn}n∈N) of H given by

D∞ =
⋃
k∈N

{Λk f | ∃M � k : Λm
k f ∈ D(Cm) for all m � M}

and define the operator limCn in H by

D(limCn) = {Λk f ∈ D∞ : lim
m→∞

ΛmCmΛm
k f exists}

(limCn)Λk f = lim
m→∞

ΛmCmΛm
k f , Λk f ∈ D(limCn).

We call limCn the inductive limit of {Cn}n∈N .
The following lemma is surely folklore. We include the proof for completeness.

LEMMA 2.1. Let H = LIMHn and let Cn ∈ B(Hn) , for n ∈ N . Assume that
the operator limCn is densely defined in H . Then the following assertions hold :

1. if supn∈N ‖Cn|Λn
l Hl

‖ < ∞ for all l ∈ N , then
⋃∞

m=1 ΛmHm ⊆ D(limCn) and
(limCn)|ΛkHk is bounded for all k ∈ N ,

2. if supn∈N ‖Cn‖ < ∞ , then limCn is closable and limCn ∈ B(H ) .
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Proof. Fix k ∈ N and choose f ∈ Hk . Since D
(
limCn

)
= H , for any ε > 0

there exists l ∈ N , g ∈ Hl and N ∈ N such that ‖Λk f −Λlg‖ � ε and ‖ΛmCmΛm
k g−

Λm′Cm′Λm′
k g‖ � ε for every m,m′ � N . We may assume that l � k . Then for all

m,m′ � max{N, l} we have

‖ΛmCmΛm
k f −Λm′Cm′Λm′

k f‖ � ‖ΛmCmΛm
k f −ΛmCmΛm

l g‖
+‖ΛmCmΛm

l g−Λm′Cm′Λm′
l g‖

+‖Λm′Cm′Λm′
l g−Λm′Cm′Λm′

k f‖
� ε

(
1+2sup

n∈N

‖Cn|Λn
kHk

‖
)
.

This implies that {ΛmCmΛm
k f}∞

m=1 is a Cauchy sequence and thus, by definition, Λk f ∈
D(limCn) . Since f can be chosen arbitrarily we get the inclusion ΛkHk ⊆ D(limCn) .
The fact that (limCn)|ΛkHk is bounded follows immediately from supn∈N ‖Cn|Λn

kHk
‖<

∞ , k ∈ N , and definition of limCn .
By (1) we have

⋃∞
n=1 ΛnHn = D(limCn) and ‖limCn f‖ � supn∈N ‖Cn‖‖ f‖ for

all f ∈ ⋃∞
n=1 ΛnHn . This and the equality H =

⋃
n∈N ΛnHn imply (2). �

Regarding Lemma 2.1, it is worth noting that condition supn∈N ‖Cn|Λn
l Hl

‖ < ∞ ,

l ∈ N , is not sufficient for limCn ∈ B(H ) . This is shown in the following example.

EXAMPLE 2.2. Let Hn = L2
(
[1/n,n],B([1/n,n]),m1 |B([1/n,n])

)
for n ∈ N and

H = L2
(
R+,B(R+),m1 |B(R+)

)
. For f ∈ Hk , we put

(Λn
k f )(x) =

{
f (x) for x ∈ [1/k,k],
0 for x ∈ [1/n,1/k)∪ (k,n], k � n,

(Λk f )(x) =
{

f (x) for x ∈ [1/k,k],
0 for x ∈ (0,1/k)∪ (k,∞).

It is easily seen that H = LIMHn . Define φ(x) = 1
x for x > 0. Let φn = φ |[1/n,n] be a

restriction of φ to [1/n,n] . Then by the change-of-variable theorem (cf. [25, Theorem
7.26]) we have

‖CφnΛn
k f‖2 =

∫
[1/k,k]

∣∣ f ( 1
t

)∣∣2 dm(t)

=
∫

[1/k,k]

| f (t)|2
t2

dm(t) � k2‖ f‖2, f ∈ Hk, k ∈ N.

This implies that supn∈N ‖Cφn |Λn
l Hl

‖� l for l ∈N . Observe that limCφn =Cφ . Indeed,
since Cφ ◦Λn = Λn ◦Cφn we see that limCφn ⊆Cφ . On the other hand, if f ∈ D(Cφ ) ,
then Λm fm → f and limCφn(Λm fm) = Cφ (Λm fm) → Cφ f as m → ∞ , where fn =
f |[1/n,n] for n ∈ N . This proves that limCφn = Cφ . Since ‖Cφ χ[1/n,1]‖ = n− 1 for
every n ∈ N , we see that limCφn does not belong to B(H ) .
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Below we give an example of a sequence {Xn}n∈N of sets and a sequence {φn}n∈N

of transformations such that the inductive limit limCφn of composition operators is not
densely defined.

EXAMPLE 2.3. For n ∈ N , let Xn = {1,2, . . . ,n} and let μn be the atomic mea-
sure on Xn given by μn({k}) = 1, k ∈ Xn . It is evident that �2(N) = LIML2(μn) , where
�2(N) denotes the Hilbert space of all square-summable complex sequences enumer-
ated by natural numbers (with the standard inner product). For n ∈ N , we define a
transformation φn of Xn by φ(1) = 2, φ(2) = 3, . . . , φ(n) = 1. Obviously, Cφn

is a bounded operator on Hn for every n ∈ N . In fact, it is unitary one. However,
Cφn χ{1} = χ{n} for all n ∈ N , which implies that χ{1} does not belong to D(limCφn) .
In particular, this means that limCφn is not densely defined.

REMARK 2.4. Questions whether limCn is densely defined and closable are del-
icate ones. Marchenko type conditions (see [20], also [15]), implying positive answers
to both of them, seem difficult to apply in the context of composition operators.

3. Projective systems of measure spaces

In this section we study inductive limits of composition operators over σ -finite
measure spaces endowed with a projective structure.

Suppose that {(Xn,An,μn)}n∈N is a sequence of (not necessarily σ -finite) mea-
sure spaces. If there exist surjective mappings

δ n
m : Xm → Xn, n � m,

satisfying the following conditions:

(P1 ) δ n
m is (Am,An)-measurable for all n � m ,

(P2 ) δ n
k = δ n

m ◦ δm
k for all n � m � k ,

(P3 ) δ n
n is the identity mapping on Xn for all n ,

then {(Xn,An,μn)}n∈N is called a projective system. We say that a measure space
(X ,A ,μ) is a target space of the projective system {(Xn,An,μn)}n∈N if there are
surjective mappings

δ n : X → Xn, n ∈ N,

that satisfy the following conditions:

(P4 ) δ n is (A ,An)-measurable for all n ,

(P5 ) δ n = δ n
m ◦ δm for all n � m ,

(P6 ) A = σ({(δ n)−1(ω) : ω ∈ An, n ∈ N}) ,
(P7 ) μ((δ n)−1(ω)) = lim

m→∞
μm((δ n

m)−1(ω)) for all ω ∈ An and n .
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If this is the case, we write (X ,A ,μ) = lim(Xn,An,μn) and call μ the target measure
of {μn}n∈N .

Suppose (X ,A ,μ) = lim(Xn,An,μn) . Let k ∈ N . It is clear that if (Xk,Ak,μk)
is σ -finite and

μ ◦ (δ k)−1 � μk and
dμ ◦ (δ k)−1

dμk
∈ L∞(μk), (3.1)

then the operator

Δk : L2(μk) � f �→ f ◦ δ k ∈ L2(μ),

is well-defined and bounded. Now, if for every k ∈ N , (Xk,Ak,μk) is σ -finite, (3.1)
holds and Δk is an isometry, then we call the target space (X ,A ,μ) isometric and write
(X ,A ,μ) = LIM(Xn,An,μn) .

LEMMA 3.1. Let (X ,A ,μ) = lim(Xn,An,μn) and k ∈ N . If (Xk,Ak,μk) is σ -
finite, condition (3.1) is satisfied and Δk is an isometry on L2(μk) , then Δk is an isom-
etry on Lp(μk) for all 1 � p < ∞ and the measure μ is σ -finite.

Proof. First, we observe that Δk is an isometry on Lp(μk) if and only if the Radon-

Nikodym derivative dμ◦(δ k)−1

dμk
= 1 a.e. [μk] . This follows directly from the fact that, by

the measure transport theorem, for every Ak -measurable non-negative function f we
have ∫

Xk

dμ◦(δ k)−1

dμk
f dμk =

∫
X

f ◦ δ k dμ .

Hence Δk is an isometry on Lp(μk) for every 1 � p < ∞ . Now, by σ -finiteness of
μk , there exists {σn}∞

n=1 ⊆ (Ak)μk such that σn ↗ Xk as n → ∞ . Clearly, if Δk is
isometric, then

μ
(
(δk)−1(σn)

)
=

∫
X

χσn ◦ δk dμ =
∫

Xk

χσn dμk = μk(σn), n ∈ N.

Hence {(δk)−1(σn)}∞
n=1 ⊆ (A )μ . Since (δk)−1(σn) ↗ X as n → ∞ , we see that μ is

σ -finite. �

REMARK 3.2. It is worth noting that if {(Xn,An,μn)}n∈N and (X ,A ,μ) satisfy
all the conditions of the definition of a target space except condition (P7) , and all the
operators Δk are isometries, then (P7) is automatically satisfied. Indeed, take m � n .
Then, by (P5) and Lemma 3.1, for every σ ∈ (An)μn we have

μ
(
(δ n)−1(σ)

)
= μ

(
(δ n

m ◦ δm)−1(σ)
)

= μ
(
(δm)−1((δ n

m)−1(σ)
))

=
∫

X
|Δmχ(δ n

m)−1(σ)|dμ =
∫

Xm

|χ(δ n
m)−1(σ)|dμm

= μm
(
(δ n

m)−1(σ)
)
.

This and σ -finiteness of μm prove the claim.
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Let (X ,A ,μ) = lim(Xn,An,μn) . The sets of the form
(
δk

)−1(σ) with σ ∈ Ak

and k ∈ N are called cylinder sets. Assume that (Xk,Ak,μk) is σ -finite for every
k ∈ N . Set Cn = ΔnL2(μn) , n ∈ N , and C =

⋃
n∈N Cn . Members of C are called

cylinder functions. By X we denote the set of all characteristic functions of sets from
(A )μ , regarded as a linear subspace of L2(μ) , while Xc stands for the intersection of
X and C . Throughout what follows F denotes the linear span of Xc .

REMARK 3.3. Suppose that (X ,A ,μ) = LIM(Xn,An,μn) . Clearly, characteristic
functions of sets of finite measure are linearly dense in L2(μ) . By [1, Approximation
Theorem 1.3.11], this and condition (P6) imply that F is linearly dense in L2(μ) as
well. In particular, cylinder functions are dense in L2(μ) .

Now, let (X ,A ,μ) = lim(Xn,An,μn) . Let k, l ∈ N be such that k � l . Suppose
that (Xk,Ak,μk) is σ -finite,

μl ◦ (δ k
l )−1 � μk and

dμl ◦ (δ k
l )−1

dμk
∈ L∞(μk). (3.2)

Analogously to operators Δn , we may define bounded operators

Δl
k : L2(μk) � f �→ f ◦ δ k

l ∈ L2(μl).

The projective system setting fits well together with inductive limits of L2 -spaces (see
Lemma 3.4 below). We will use this fact when implementing approximation procedure
for a study of composition operators acting in L2 -spaces over measure spaces being
isometric target spaces of projective systems.

LEMMA 3.4. Let (X ,A ,μ) = LIM(Xn,An,μn). Then condition (3.2) is satisfied,
operators Δl

k are isometries for all natural numbers k � l and L2(μ) is the inductive
limit of L2(μn) .

Proof. Set Λl
k = Δl

k and Λk = Δk for k, l ∈ N such that k � l . It is evident then
that conditions (I1 )-(I4 ) are satisfied. �

CAUTION. From now on we tacitly assume that if (X ,A ,μ) = LIM(Xn,An,μn) ,
then L2(μ) = LIML2(μn) with respect to the maps Λl

k and Λk as in the proof of Lemma
3.4.

4. Composition operators and inductive limits over projective systems

4.1. Dense definiteness and boundedness of limCAn

In this part of the paper we are aiming to supply some quite natural assumptions
which would imply that the inductive limit operator limCAn of composition operators
is densely defined or bounded. We begin by describing the domain of limCAn .
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LEMMA 4.1. Let (X ,A ,μ) = LIM(Xn,An,μn) . Suppose that for every l ∈ N ,
Al is a nonsingular Al -measurable transformation of Xl such that hAl < ∞ a.e. [μl] .
Then D(limCAn) consists of all Λk f ∈ D∞ such that for every ε > 0 the following
condition

‖Em
(
Λm

n ((Λn
k f )◦An)

)◦A−1
m −Λm

k f‖L2(hAm dμm) � ε, m � n � M. (4.1)

is satisfied with sufficiently large M ∈ N .

Proof. Since (X ,A ,μ) is an isometric target space of {(Xn,An,μn)}n∈N , by (2.1)
and (2.5), we have

‖ΛmCAmΛm
k f −ΛnCAnΛn

k f‖2
L2(μ) =

∫
Xm

|Λm
n

(
(Λn

k f )◦An
)− (Λm

k f )◦Am|2 dμm

=
∫

Xm

|Em
(
Λm

n ((Λn
k f )◦An)

)◦A−1
m −Λm

k f |2hAm dμm, m � n � k,

for every f ∈ D(CAk) . Hence, the claim follows from the definition of limCAn . �

REMARK 4.2. Regarding Lemma 4.1, it is worth pointing out that it may happen
that limCAn is densely defined in L2(μ) but none of the CAl , l ∈ N , is densely de-
fined. For example, if H = Hn = �2(N) and φn(x) = min{n,x} for n,x ∈ N , then
D(Cφn) = lin{e1, . . . ,en−1} , where {en}∞

n=1 is a standard orthonormal basis of �2(N) .
Consequently, the assumption hAl < ∞ a.e. [μl] is not satisfied for any l ∈ N (see by
(2.2)). On the other hand, D(limCφn) = lin{en : n ∈ N} which is dense in H .

Characteristic functions of cylinder sets with finite measure are the most elemen-
tary functions which we expect to belong to the domain of limCAn . The conditions (i)
and (ii) of Proposition 4.3 below turns out to be essential for this to happen.

PROPOSITION 4.3. Let (X ,A ,μ) = LIM(Xn,An,μn) . Suppose that An , n ∈ N ,
is a nonsingular An -measurable transformation of Xn such that hAn < ∞ a.e. [μn] .
Let k ∈ N and σ ∈ (Ak)μk . Then Δkχσ ∈ D(limCAn) if and only if the following two
conditions are satisfied :

(i) there exists M � k such that χ(δ k
n )−1(σ)h

An ∈ L1(μn) for all n � M,

(ii) for every ε > 0 there exists N � k such that

μ
((

δ k
n ◦An ◦ δ n)−1(σ)�(

δ k
m ◦Am ◦ δm)−1(σ)

)
� ε, n,m � N.

Proof. Set f = Δkχσ . Clearly, f ∈ L2(μ) . Since we have
∫ ∣∣Δn

kχσ ◦An
∣∣2 dμn = μn

(
A−1

n

(
(δ k

n )−1(σ)
))

=
∫

χ(δ k
n )−1(σ)h

An dμn, n � k,



862 P. BUDZYŃSKI AND A. PŁANETA

we see that (i) is equivalent to Δn
kχσk ∈ D(CAn) for any n � M . On the other hand, by

(2.1) and (2.5), we have

‖Em
(
Λm

n ((Λn
kχσ )◦An)

)◦A−1
m −Λm

k χσ‖L2(hAm dμm)

= μ
((

δ k
n ◦An ◦ δ n)−1(σ)�(

δ k
m ◦Am ◦ δm)−1(σ)

)
, m � n � k.

Therefore, condition (ii) is equivalent to condition (4.1). These two facts, in view of
Lemma 4.1, imply the claim. �

COROLLARY 4.4. Let (X ,A ,μ) = LIM(Xn,An,μn) . Suppose that An , n ∈ N ,
is a nonsingular An -measurable transformation of Xn . If conditions (i) and (ii) of
Proposition 4.3 are satisfied for all σ ∈ (Ak)μk and k ∈ N , then F ⊆ D(limCAn) .

Clearly, one immediate consequence of the above is that, under assumptions of
Corollary 4.4, the inductive limit limCAn is densely defined. The same happens if
all the operators CAn , n ∈ N , are bounded and condition (ii) of Proposition 4.3 holds.
Using similar arguments as in the proof of Proposition 4.3 we can obtain the following
version of Corollary 4.4, which again yields the dense definiteness of limCAn .

COROLLARY 4.5. Let (X ,A ,μ) = LIM(Xn,An,μn) and let An , n ∈ N , be a
nonsingular An -measurable transformation of Xn . Assume there exists a sequence
{Zn}n∈N of sets such that Zn ∈ (An)μn , (δ n)−1(Zn) ↗ X as n → ∞ and

{
χ(δ k)−1(Zk)Δnh

An : k,n ∈ N
} ⊆ L1(μ).

Suppose that for every σ ∈ (Ak)μk , k ∈ N , and every ε > 0 there exists N � k such
that

μ
((

δ k
n ◦An ◦ δ n)−1(σ ∩Zk)�

(
δ k

m ◦Am ◦ δm)−1(σ ∩Zk)
)

� ε, n,m � N. (4.2)

Then F̃ ⊆ D(limCAn) , where F̃ = {χ(δ k)−1(Zk) f : f ∈ F ,k ∈ N} .

The question of the boundedness of limCAn can be answered in the following
way.

PROPOSITION 4.6. Let (X ,A ,μ) = LIM(Xn,An,μn) . Suppose that An , n ∈ N ,
is a nonsingular An -measurable transformation of Xn . If the following conditions are
satisfied :

(i) for every k ∈ N , hAk ∈ L∞(μk) (or, equivalently, CAk ∈ B(L2(μk)) ) ,

(ii) for all k ∈ N and σ ∈ (Ak)μk , the condition (ii) of Proposition 4.3 holds,

(iii) for every k ∈ N there exist C > 0 and N ∈ N such that

μm

((
Ak ◦ δ k

m

)−1(σ)�(
δ k

m ◦Am
)−1(σ)

)
� Cμk(σ), σ ∈ (Ak)μk ,m � N,
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then C ⊆ D(limCAn) and for every k ∈ N , (limCAn)|Ck is bounded.

Proof. Clearly, (i) and (ii) imply conditions (i) and (ii) of Proposition 4.3 and thus
F ⊆ D(limCAn) . Now, we show that for a fixed k ∈ N we have

sup
n∈N

‖CAn |Λn
k(L

2(μk))‖ < ∞. (4.3)

By (iii), there exist C > 0 and N ∈ N such that

‖ΛmCAmΛm
k χσ −ΛkCAk χσ‖2 = μm

(
(Ak ◦ δ k

m)−1(σ)�(δ k
m ◦Am)−1(σ)

)
� Cμk(σ) = CμN((Λk

N)−1(σ))

holds for all m � N and σ ∈ (Ak)μk . This together with (P5 ), the fact that all Λl ’s are
isometries and (2.1) imply

∫
χ(δN

n )−1(ω)h
An dμn = ‖CAnΛn

Nχω‖2
L2(μn)

�
(
‖CAnΛn

Nχω −Λn
kCAk χσ‖L2(μn) +‖Λn

kCAk χσ‖L2(μn)

)2

�
(√

C‖χω‖L2(μN) +‖CAk‖‖χω‖L2(μN )

)2

=
(√

C+‖CAk‖
)2 ·

∫
χω dμN

=
(√

C+‖CAk‖
)2 ·

∫
χ(δN

n )−1(ω) dμn

for every n � N and ω = (δ k
N)−1(σ) , with σ ∈ (Ak)μk . Now, applying standard ap-

proximation argument and the fact that the family {χ(δ k
n )−1(σ) : σ ∈ (Ak)μk} is linearly

dense in Λn
k

(
L1(μk)

)
we obtain

∫
|g|2hAn dμn �

(√
C+‖CAk‖

)2 · ‖g‖2 (4.4)

for every n � N and every g ∈ Λn
k(L

2(μk)) . This, if combined with (2.1), yields

‖CAng‖2 �
(√

C+‖CAk‖
)2‖g‖2, n � N, g ∈ Λn

k(L
2(μk)).

This yields (4.3). Employing Lemma 2.1 (1) we conclude the proof. �

PROPOSITION 4.7. Let (X ,A ,μ) = LIM(Xn,An,μn) . Suppose that An , n ∈ N ,
is a nonsingular An -measurable transformation of Xn . If the following conditions are
satisfied :

(i) supk∈N ‖hAk‖L∞(μk) < ∞ ,

(ii) for every k ∈ N and σ ∈ (Ak)μk , the condition ( ii) of Proposition 4.3 holds,
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then limCAn is closable and limCAn ∈ B(L2(μ)) .

Proof. By (i) and (2.3), CAk ∈B(L2(μk)) for every k ∈ N . Hence, by Proposition
4.3, F ⊆ D(limCAn) and thus limCAn is densely defined. Now, the claim follows
from Lemma 2.1 (2) and the fact that supn∈N ‖CAn‖ < ∞ (see (2.3)). �

4.2. Well-definiteness and boundedness of CA

Now we address the question of when the composition operator CA acting in an
inductive limit of L2 -spaces is well-defined and bounded. We do it by relating CA to
an inductive limit limCAn .

We begin by recalling well-known criteria for ∗ -weak compactness of a family F
contained in Lp(μ) , 1 � p < ∞ ; the case p = 1 follows directly from the compactness
criterion of Dunford-Pettis theorem (cf. [22, Chapter II, Theorem T23]) combined
with the de la Vallé-Poussin’s theorem (cf. [1, Lemma 6.5.6]) and the case p > 1 is a
consequence of the Banach-Alaoglu theorem.

LEMMA 4.8. Let F ⊆Lp(μ) be countable and 1 � p < ∞ . If one of the following
conditions is satisfied :

(i) p = 1 , μ is a finite measure and M (F ) �= ∅ ,

(ii) p > 1 and F is uniformly bounded in Lp(μ) ,

then F is ∗ -weakly compact.

Now, we show that absolute continuity of the measures μn and νn transfers onto
their target measures μ and ν .

LEMMA 4.9. Let (X ,A ,μ)= LIM(Xn,An,μn) and (X ,A ,ν)= lim(Xn,An,νn) .
Suppose that νn � μn for all n∈ N . If there exists a sequence {Yn}n∈N of cylinder sets
such that Yn ↗ X as n → ∞ ,

{
χYkΔn(dνn/dμn) : n ∈ N

} ⊆ L1(μ) for every k ∈ N and

M
({

χYkΔn(dνn/dμn) : n ∈ N
})

�= ∅ for every k ∈ N , then ν � μ .

Proof. For k ∈ N , let AYk stand for the σ -algebra {ω ∈A : ω ⊆Yk} , let μYk de-
note a restriction of μ to AYk and let hn|Yk , n∈N , be the restriction of Δn(dνn/dμn) to
Yk . By Lemma 4.8 (with p = 1), the sequence {hn}n∈N has a subsequence {hn(k,1)}k∈N

such that {hn(k,1)|Y1}k∈N converges ∗ -weakly to a function hY1 ∈ L1(Y1,AY1 ,μY1) . The
same argument implies that {hn(k,1)}k∈N has a subsequence {hn(k,2)}k∈N such that
{hn(k,2)|Y2}k∈N converges ∗ -weakly to a function hY2 ∈ L1(Y2,AY2 ,μY2) . Clearly, we
have

hY2 |Y1 = hY1 a.e. [μ ]. (4.5)
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If we repeat the argument l times we get a subsequence {hn(k,l)}k∈N of a sequence
{hn(k,l−1)}k∈N such that {hn(k,l)|Yl}k∈N is converging ∗ -weakly to a function hYl con-
tained in L1(Yl ,AYl ,μYl ) . Moreover, by (4.5) we have

hYl |Yk = hYk a.e. [μ ], k � l. (4.6)

Since
⋃

n∈NYn = X , we can use (4.6) so as to obtain a function h : X → R+ which is
A -measurable and satisfies

h|Yl = hYl a.e. [μ ], l ∈ N. (4.7)

Now, for m ∈ N , let σ ∈ Am . Set τ =
(
δm

)−1(σ) . Fix N ∈ N . There exists l ∈ N and
ZN ∈ Al such that YN = (δ l)−1(ZN) . Without loss of generality we may assume that

l � m . Define τN =
(
δm

)−1(σ)∩YN and ωN =
(
δm

l

)−1(σ)∩ZN . Then, by (4.7), (P5 )
and (P7 ), we gather that

∫
τN

hdμ = lim
k→∞

∫
τN

Δn(k,N)hn(k,N) dμ

= lim
k→∞

∫
Δn(k,N)

(
χ(δ l

n(k,N))
−1(ωN)hn(k,N)

)
dμ

= lim
k→∞

∫
(δ l

n(k,N))
−1(ωN )

hn(k,N) dμn(k,N)

= lim
k→∞

∫
(δ l

n(k,N))
−1(ωN )

dνn(k,N)

= ν(τN).

This, (P6 ) and [2, Theorem 10.3] imply that ν(τ) =
∫

χτhdμ for every τ ∈ A which
proves our claim. �

REMARK 4.10. Regarding Lemma 4.9, we mention the paper [16] where neces-
sary and sufficient conditions for equivalence (in sense of absolute continuity) of tensor
product measures are supplied. Those conditions, however, cannot be applied in our
context (because, in general, measures of the form μ ◦A−1 are not tensor products).

Now, suppose A is an A -measurable transformation of X . Consider the following
condition:

For all k ∈ N and σ ∈ Ak there is

lim
n→∞

μ
(
(δ k

n ◦An ◦ δ n)−1(σ)�(
δ k ◦A

)−1(σ)
)

= 0. (4.8)

Next theorem shows that if A can be approximated (in a sense of condition (4.8)) by a
sequence of An -measurable transformations An , then the composition operator CA is
exactly the inductive limit of operators CAn .
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THEOREM 4.11. Let (X ,A ,μ)= LIM(Xn,An,μn) . Let An be an An -measurable
transformation of Xn for n ∈ N and let A be an A -measurable transformation of X
such that condition (4.8) is satisfied. Then the following assertions hold :

(i) (X ,A ,μ ◦A−1) = lim(Xn,An,μn ◦A−1
n ) ,

(ii) if μn ◦A−1
n � μn for all n ∈ N and there exists a sequence {Yn}n∈N of cylinder

sets such that Yn ↗ X as n → ∞ ,
{

χYkΔnh
An : n ∈ N

} ⊆ L1(μ) for every k ∈ N

and M
({

χYkΔnh
An : n ∈ N

})
�= ∅ for every k ∈ N , then CA is densely defined

and closed in L2(μ) and CA = limCAn |F̃ , where F̃ = {χYk f : f ∈ F ,k ∈ N} .

Proof. (i) Let k,n∈N and let σ ∈Ak be such that either μ ◦A−1
(
(δ k)−1(σ)

)
< ∞

or μn ◦A−1
n

(
(δ k

n )−1(σ)
)

< ∞ . Then we have

|μ ◦A−1((δ k)−1(σ)
)− μn ◦A−1

n

(
(δ k

n )−1(σ)
)|

= μ
(
(δ k

n ◦An ◦ δ n)−1(σ)�(
δ k ◦A

)−1(σ)
)
.

This and condition (4.8) imply that (X ,A ,μ ◦A−1) = lim(Xn,A ,μn ◦A−1
n ) .

(ii) Using (4.8), the well-known inequality μ(σ1�σ2) � μ(σ1�σ3)+μ(σ3�σ2) ,
and Corollary 4.5 we deduce that F̃ ⊆ D(limCAn) .

Lemma 4.9 and (i) imply that μ ◦A−1 � μ , which implies that CA is well-defined
and closed operator in L2(μ) . Now we prove that F̃ ⊆ D(CA) . Fix N ∈ N . There
exists l ∈ N and ZN ∈Al such that YN = (δ l)−1(ZN) . By (i), for all k ∈ N and σ ∈Ak

we have

μ ◦A−1
((

δ k)−1(σ)∩YN

)
= lim

m→∞
μm ◦A−1

m

((
δ k

m

)−1(σ)∩ (δ l
m)−1(ZN)

)
. (4.9)

Fix k ∈ N and σ ∈ (Ak)μk . Let m ∈ N satisfy k, l � m . Set Ω =
(
δ k

)−1(σ)∩YN .
Then we have

μm ◦A−1
m

((
δ k

m

)−1(σ)∩ (δ l
m)−1(ZN)

)
=

∫
Ω

ΔmhAm dμ . (4.10)

Let G ∈ M
({

χYN Δnh
An : n ∈ N

})
. There exists a non-negative real number t0 such

that
{
t ∈ [0,∞) : G(t) � t

}
= [t0,∞) . Also, for every m ∈ N , there exist sets Θm

1 ,Θm
2 ∈

A such that X = Θm
1 ∪Θm

2 , Θm
1 ∩Θm

2 = ∅ and ΔmhAm(x) � t0 for μ -a.e. x ∈Θm
1 and

ΔmhAm(x) � t0 for μ -a.e. x ∈Θm
2 . Hence we have

∫
Ω

ΔmhAm dμ =
∫

Ω∩Θm
1

ΔmhAm dμ +
∫

Ω∩Θm
2

ΔmhAm dμ

� t0μ(Ω)+ sup
m∈N

∫
YN

G
(
ΔmhAm

)
dμ .

This, (4.9) and (4.10) imply that χΩ ◦A∈ L2(μ) , which means that χΩ ∈D(CA) . Since
k ∈ N , σ ∈ (Ak)μk and N ∈ N can be arbitrarily chosen, we see that F̃ ⊆D(CA) . This
and σ -finiteness of μ imply that CA is densely defined.
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Clearly, by (4.9) we have

limCAn(χYN f ) = CA(χYN f ), f ∈ F , N ∈ N. (4.11)

To conclude the proof it is sufficient to show that {χYN f : f ∈ F ,N ∈ N} is a core
for CA . For this, take f ∈ D(CA) . It causes no loss of generality to assume that f
is non-negative. Since F is dense in L2(μ) and Yn ↗ X as n → ∞ , there exist a
sequence { fn}n∈N ⊆ F and a monotonically increasing mapping α : N → N such that
for μ -a.e. x ∈ X , (χYα(n) fn)(x) ↗ f (x) as n → ∞ . This implies that for μ -a.e. x ∈
X , (χYα(n) fn)(A(x)) ↗ f (A(x)) as n → ∞ . By the Lebesgue’s monotone convergence

theorem, {χYα(n) fn}n∈N and {(χYα(n) fn) ◦A}n∈N converge to f and f ◦ A in L2(μ) ,

respectively. Therefore, we obtain CA ⊆CA|F̃ . This together with the fact that CA is
closed implies that CA = CA|F̃ . Using (4.11) we complete the proof. �

Combining Theorem 4.11 and Lemma 2.1 we obtain a criterion for the bounded-
ness of CA written in terms of composition operators CAn , n ∈ N .

THEOREM 4.12. Let (X ,A ,μ)= LIM(Xn,An,μn) . Let An be an An -measurable
transformation of Xn such that μn ◦ A−1

n � μn for every n ∈ N . Let A be an A -
measurable transformation of X . If condition (4.8) holds and

sup
n∈N

‖hAn‖L∞(μn) < ∞, (4.12)

then CA ∈ B
(
L2(μ)

)
and CA = limCAn .

Proof. By σ -finiteness of μ , there exists a sequence {Yk}k∈N ⊆ (A )μ of cylinder
sets such that Yk ↗ X as n → ∞ . Clearly, (4.12) implies that for every k ∈ N we have{

χYkΔnh
An : n ∈ N

} ⊆ L1(μ) and M
({

χYkΔnh
An : n ∈ N

})
�= ∅ . By Theorem 4.11,

the operator CA is densely defined operator in L2(μ) and CA = limCAn |F̃ , where
F̃ = {χYk f : f ∈ F ,k ∈ N} . Since condition (4.8) yields condition (ii) of Proposition
4.3 with any σ ∈ Ak and k ∈ N (see proof of Theorem 4.11(i)), the operator limCAn

is bounded due to Proposition 4.7. This concludes the proof. �

5. Examples and Applications

In this part of the paper we demonstrate how inductive techniques of Theorems
4.11 and 4.12 can be used when investigating composition operators in more concrete
situations. We include some illustrative examples.

First, we provide a version of Theorem 4.12 in the context of L2 -space with respect
to the gaussian measure on R∞ . Recall that the gaussian measure μG on R∞ is the
tensor product measure μG = gdm1⊗gdm1⊗ . . . , where g(x) = 1√

2π exp(− x2

2 ) for x ∈
R . By the n -dimensional gaussian measure, n ∈ N , we understand the measure μG,n
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given by dμG,n = 1
(
√

2π)n
exp(− x2

1+...+x2
n

2 )dmn . Clearly, if δ n and δ n
k are the projections

from R∞ and Rk (respectively) onto Rn , we have

(
R

∞,B(R∞),μG

)
= LIM

(
R

n,B(Rn),μG,n

)

and consequently

L2(μG) = LIML2(μG,n).

Let (ai j)i, j∈N be a matrix with real entries. We say that a transformation A of R∞ is
induced by (ai j)i, j∈N if the following condition holds2

A(x1,x2, . . .) =
(

∑
j∈N

a1 j x j, ∑
j∈N

a2 j x j, . . .
)
, (x1,xn, . . .) ∈ R

∞.

In an analogical way we define a transformation A of Rn induced by a finite dimen-
sional matrix (ai j)n

i, j=1 .
In view of (2.6), Theorem 4.11 can be rewritten in the present context in the fol-

lowing manner. Below, ‖ · ‖ denotes3 the Euclidean norm on Rn .

COROLLARY 5.1. Let A be a transformation of R
∞ induced by a matrix (ai j)i, j∈N .

Let An , n ∈ N , be the linear transformation of Rn induced by the matrix (ai j)n
i, j=1 . If

the following conditions are satisfied:

(i) for every n ∈ N , An is invertible,

(ii) for every j ∈ N there is K ∈ N such that a j,k = 0 for all k � K ,

(iii) there exists a sequence {σk}k∈N of sets σk ∈ B(Rk) such that

• σk ×R∞ ↗ R∞ as k → ∞ ,

• χσk×Rn−k · exp 1
2

(‖ · ‖2−‖A−1
n (·)‖2

) ∈ L1(μG,n) for every n � k ,

• M

({∣∣detA−1
n

∣∣ · χσk×Rn−k · exp 1
2

(‖ · ‖2−‖A−1
n (·)‖2

)
: n � k

})
�= ∅ ,

then CA is densely defined operator in L2(μG) and CA = limCAn |F̃ , where F̃ =
{χσk×R∞ f : f ∈ F ,k ∈ N} .

An example of densely defined composition operator in L2(μG) is presented below.

EXAMPLE 5.2. Let A : R∞ → R∞ be induced by the matrix (ai j)i, j∈N given by

ai j =

⎧⎨
⎩

1 for i = j,
2−(i+ j) for j = i+1,
0 otherwise.

2We assume that all the series ∑ j∈N ak j x j , k ∈ N , are convergent.
3For simplicity we do not make the dependence of ‖ ·‖ on n explicit.
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Let An : Rn → Rn be induced by (ai j)n
i, j=1 , n ∈ N . Clearly, the conditions (i) and (ii)

of Corollary 5.1 are satisfied. It is elementary to show that supn∈N ‖An‖B(Rn) <
√

2.
This implies that there exists a positive real t0 such that ‖An‖2

B(Rn) � 2−2t0 for every
n ∈ N . Thus we have

∫
Rn

(
e(‖x‖2−‖A−1

n x‖2)/2
)2

μG,n(dx) = (2π)−n/2
∫

Rn
e

1
2 ‖x‖2−‖A−1

n x‖2
mn(dx)

� (2π)−n/2

∫
Rn

e‖A
−1
n x‖2( 1

2 ‖An‖2−1) mn(dx)

� (2π)−n/2

∫
Rn

e−t0‖A−1
n x‖2

mn(dx)

� (2π)−n/2
∫

Rn
e−

t0
2 ‖x‖2

mn(dx), n ∈ N.

Since detAn = 1 for every n ∈ N , we see that the condition (iii) of Corollary 5.1 is
satisfied (with G(t) = t2 and σk = Rk ). Hence, by Corollary 5.1, CA is densely defined
in L2(μG) and CA = limCAn |F . It is worth noting that for every n ∈ N the norm of An

in B(Rn) is greater than 1, which (in view of [27, Proposition 2.2]) implies that CAn is
not bounded on L2(μG,n) .

Now we supply a tractable criterion for the boundedness of a composition operator
CA in L2 -space over an infinite tensor product of arbitrary probability spaces. For this
we consider {(Ωn,Σn,Pn)}n∈N , a sequence of probabilistic spaces. Let Xm = Ω1× . . .×
Ωm , m ∈ N , and X = Ω1×Ω2× . . . . For m � n , let δ n and δm

n denote the projections
from X and Xn , respectively, onto Xm . Let Am = σ(Σ1× . . .×Σm) , m ∈ N , and A =
σ

({(δm)−1(σ) : σ ∈ Am, m ∈ N}) . Finally, let μm = P1 ⊗ . . .⊗Pm , m ∈ N , and μ =
P1 ⊗P2⊗ . . . (cf. [23, Section III-3]). Clearly, we have (X ,A ,μ) = LIM(Xn,An,μn) .
It is well-known that

L2(μ) � L2(μn)⊗L2(⊗∞
k=n+1Pk), n ∈ N. (5.1)

(In the display above, ” � ” denotes unitary equivalence.) Under all those circum-
stances, by Theorem 4.12, we get the following criterion.

PROPOSITION 5.3. Let (X ,A ,μ) and {(Xn,An,μn)}n∈N be as above. Let A
be an A -measurable transformation of X and Am , m ∈ N , be an Am -measurable
transformation of Xm . If the following conditions are satisfied :

(i) for every k ∈ N there is M � k such that δ k ◦A = δ k
n ◦An ◦ δ n a.e. [μ ] for all

n � M,

(ii) for every n ∈ N , μn ◦A−1
n � μn ,

(iii) supn∈N ‖hAn‖L∞(μn) < ∞ ,

then CA ∈ B
(
L2(μ)

)
. Moreover, we have

(iv) ‖CA‖2 = supn∈N ‖hAn‖L∞(μn),
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(v) the operator CA is the limit in the strong operator topology of the sequence
{CAn ⊗ In}n∈N , where In is the identity operator on L2(⊗∞

k=n+1Pk) .

Proof. We infer from (ii), (iii) and (2.3) that for every n ∈ N , CAn ∈ B
(
L2(μn)

)
and

sup
k∈N

‖CAk‖ = M < ∞. (5.2)

By (5.1), (i) and (5.2), the sequence {Cn}n∈N of operators given by

Cn = CAn ⊗ In,

is convergent in the strong operator topology to a bounded operator C on L2(μ) . Since
(i) yields condition (4.8), the operator CA is well-defined by Theorem 4.12. Clearly,
by (i), CA and C coincide on cylinder functions, which implies that CA = C . This
completes the proof. �

A nontrivial example of a bounded composition operator acting in an L2 -space
over the product of probabilistic measures (different than L2(μG)) is presented below.

EXAMPLE 5.4. Let {αi}i∈N ⊆ (1,∞) , {ρi : R → (0,∞) | i ∈ N} , and {Mi}i∈N ⊆
(0,∞) satisfy:

(i) ∏∞
i=1 αi < ∞ ,

(ii) for every i ∈ N , ρi dm1 is a Borel probability measure,

(iii) for every i ∈ N , ρi is an even piecewise continuous step function such that its
restriction ρi|R+ to R+ is decreasing,

(iv) sup
{

ρi(x+ε)
ρi(x)

: x ∈ R, 0 � ε � Mi

}
� αi.

(Such {Mi}i∈N , {αi}i∈N and {ρi}i∈N exist – see Appendix 6.) Consider the measures

μ = ρ1 dm1⊗ρ2 dm1⊗ . . .

and

μn = ρ1 dm1⊗ . . .⊗ρn dm1, n ∈ N.

Suppose {pi : R → [0,Mi] | i ∈ N} is a family of differentiable functions such that4

pi(x) = 0 for all x � 0 and i ∈ N . Let B : R∞ → R∞ be given by

B(x1,x2, . . .) = (x1,x2 + p2(x1),x3 + p3(x2), . . .), (x1,x2, . . .) ∈ R
∞,

4This feature of pi ’s will be used in Example 5.8 below.
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and A : R∞ → R∞ be the inverse of B . For n ∈ N , let Bn : Rn → Rn be given by

Bn(x1,x2, . . . ,xn) = (x1,x2 + p2(x1), . . . ,xn + pn(xn−1))

and let An : Rn → Rn be its inverse (it exists since the Jacobian determinant of Bn

equals 1). Then, by the change-of-variable theorem (cf. [25, Theorem 7.26]), for every
n ∈ N , CAn is well-defined composition operator in L2(μn) . Moreover, since

sup
x∈Rn

|hAn(x)| = sup
x∈Rn

ρ1(x1)ρ2(x2 + p2(x1)) · · ·ρn(xn + pn(xn−1))
ρ1(x1) · · ·ρn(xn)

�
∞

∏
i=1

αi,

we see that CAn ∈ B
(
L2(μn)

)
. Clearly, the family {hAn}n∈N is uniformly bounded in

L∞ -norms. Hence, in view of Proposition 5.3, CA ∈ B
(
L2(μ)

)
.

In the context of gaussian measure μG on R
∞ Proposition 5.3 reads as follows.

COROLLARY 5.5. Let A be a transformation of R∞ induced by a matrix (ai j)i, j∈N .
Let An , n ∈ N , be the linear transformation of Rn induced by the matrix (ai j)n

i, j=1 . If
the following conditions are satisfied:

(i) infn∈N |detAn| > 0 ,

(ii) for every j ∈ N there is K ∈ N such that a j,k = 0 for all k � K ,

(iii) supn∈N ‖An‖ � 1 ,

then CA ∈ B
(
L2(μG)

)
. Moreover, CA is the limit in the strong operator topology of

{CAn ⊗ In}n∈N , where In is the identity operator on L2(μG) .

Proof. By [27, Lemma 2.1 and Proposition 2.2], the operator CAn is bounded on
L2

(
μG,n

)
and ‖CAn‖2 = |detAn|−1 for every n ∈ N . This and (2.3) imply

sup
n∈N

‖hAn‖L∞(μn) = sup
n∈N

‖CAn‖2 =
(

inf
n∈N

|detAn|
)−1

< ∞.

Since condition (ii) of Corollary 5.5 yields condition (i) of Proposition 5.3, we get the
desired conclusion by Proposition 5.3. �

The following example of a bounded composition operator in L2(μG) appeared in
[21] and [27] (it was studied by use of different techniques, not applicable for general
matrical symbols).

EXAMPLE 5.6. Let {an}n∈N be a sequence of real numbers satisfying 0 < |an|�
1 for all n ∈ N and ∏n∈N |an|− 1

2 < ∞ . Let A : R∞ → R∞ be defined by

A(x1,x2, . . .) = (a1x1,a2x2, . . .), (x1,x2, . . .) ∈ R
∞.

By Corollary 5.5, CA ∈ B
(
L2(μG)

)
and CA = Ca1 ⊗Ca2 ⊗ . . . .
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Another example of a bounded composition operator in L2(μG) is given below.

EXAMPLE 5.7. Let A : R∞ → R∞ be induced by the matrix (ai j)i, j∈N given by

ai j =

⎧⎨
⎩

exp(−1/i2) for i = j,
αi for j = i+1,
0 otherwise,

where (αi)i∈N is a sequence of positive real numbers such that (ai j)n
i, j=1 is a contrac-

tion in B(Rn) for every n ∈ N . By Corollary 5.5, CA ∈ B
(
L2(μG)

)
.

As shown below, we can modify the measure μ from Example 5.4 so that the
composition operator induced by the transformation A of R∞ as in Example 5.4 is
densely defined unbounded (and it does not act in L2(μG)).

EXAMPLE 5.8. Let ρ1 dm1⊗ρ2 dm1⊗ . . . be the measure defined in Example 5.4.
We will add a hump to density function of every third factor (counted from the second)
in the tensor product. For this we consider {a3i−1}i∈N ⊆ [0,∞) , {b3i−1}i∈N ⊆ (0,∞)
and r > ∏∞

i=1 αi such that:

(v) a3i−1 < b3i−1 for every i ∈ N ,

(vi) b3i−1−a3i−1 < M3i−1 for every i ∈ N ,

(vii) ∏∞
i=1

(
r2(b3i−1−a3i−1 +2M3i−1)+ α2

3i−1

)
< ∞ ,

where {Mi}i∈N ⊆ (0,∞) , {αi}i∈N ⊆ (1,∞) are as in Example 5.4 with additional re-
quirement that (v)-(vii) hold (see Appendix 6). Let {φ3i−1 : [a3i−1,b3i−1] → (0,∞) | i ∈
N} be continuous and satisfy:

(viii) supx,y∈[a3i−1,b3i−1]
φ3i−1(y)
φ3i−1(x)

� r ,

(ix) φ3i−1(b3i−1) � φ3i−1(x) for x ∈ [a3i−1,b3i−1] ,

(x)
∫
[a3i−1,b3i−1] φ3i−1(x)m1(dx) =

∫
[a3i−1,b3i−1] ρ3i−1(x)m1(dx) .

Define

ρ̂3i−1(x) =
{

φ3i−1(x) for x ∈ [a3i−1,b3i−1],
ρ3i−1(x) for x /∈ [a3i−1,b3i−1].

Now let μ = η1 dm1⊗η2 dm1⊗ . . . , where

ηn =
{

ρ̂n for n = 3k−1 with k = 1,2,3, . . .
ρn otherwise.

We may assume that ηi � 1 for i ∈ N (see Appendix 6). If {An}n∈N are as in Example

5.4, then the family of Radon-Nikodym derivatives {hAn}n∈N , where hAn = dμn◦A−1
n

dμn
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with μn = η1 dm1⊗ . . .⊗ηn dm1 , satisfies supn∈N ‖hAn‖L2(μn) < ∞ . Indeed, first fix
k ∈ N and take n = 3k−1. Then

∫
Rn

(hAn)2 dμn =
∫
Rn

(
η1(x1)η2(x2 + p2(x1)) · · ·ηn(xn + pn(xn−1))

η1(x1)η2(x2) · · ·ηn(xn)

)2

dμn

�
( n

∏
i=1

α2
i

)∫
Rn

(
∏k

i=1 ρ̂i(x3i−1 + p3i−1(x3i−2))

∏k
i=1 ρ̂i(x3i−1)

)2 n

∏
i=1

ηi(xi)dmn

� C
k

∏
i=1

∫

R2

(
η3i−1(x3i−1 + p3i−1(x3i−2))

η3i−1(x3i−1)

)2

η3i−1(x3i−1)η3i−2(x3i−2)dm2 .

For i ∈ {1, . . . ,k} , we can divide R2 into two disjoint sets Ωi and R2 \Ωi , where

Ωi = {(y,x) ∈ R
2|x+ p3i−1(y) ∈ [a3i−1,b3i−1] ∨ x ∈ [a3i−1,b3i−1]}.

Then the η3i−1 ⊗η3i−2 dm2 measure of Ωi is less or equal to b3i−1 − a3i−1 + 2M3i−1

and

η3i−1(x+ p3i−1(y))
η3i−1(x)

� r, (y,x) ∈ Ωi.

Hence we obtain

∫

R2

(
η3i−1(x3i−1 + p3i−1(x3i−2))

η3i−1(x3i−1)

)2

η3i−1(x3i−1)η3i−2(x3i−2)dm2

� r2(b3i−1−a3i−1 +2M3i−1)+ α2
3i−1, i = 1, . . . ,k.

Consequently, we get

∫
R3k−1

|hA3k−1 |2dμ3k−1 � C
k

∏
i=0

(
r2(b3i−1−a3i−1 +2M3i−1)+ α2

3i−1

)
.

This means that the Radon-Nikodym derivatives {hAn}n∈N are uniformly bounded in
L2 as desired. By Theorem 4.11, the operator CA , where A is as in Example 5.4, is
densely defined and closed.

Now we prove that CA is unbounded. This follows from the fact that the Radon-
Nikodym derivatives {hAn}n∈N are not uniformly bounded in L∞ norm. Indeed, since
the image of the function R× [ak,bk] � (x,y) → y + pk(x) ∈ R contains the interval
[ak,bk] for every k = 3i−1, i∈Z+ , we see that for every i∈N there are (x̂3i−2, x̂3i−1)∈
R× [a3i−1,b3i−1] such that

η3i−1(x̂3i−1 + p3i−1(x̂3i−2))
η3i−1(x̂3i−1)

� r, i ∈ N.
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This and properties of ρi ’s and pi ’s imply that for every fixed x3i+1 ∈ R we have

η3i−1(x̂3i−1 + p3i−1(x̂3i−2))η3i(x3i + p3i(x3i−1))η3i+1(x3i+1 + p3i+1(x3i))
η3i−1(x̂3i−1)η3i(x3i)η3i+1(x3i+1)

� r

for some sufficiently small x3i < 0, for every i ∈ N . As a consequence, for every i ∈ N

we have

ess sup x∈R3i+1 hA3i+1(x) = ess sup x∈R3i+1
(η1 ⊗ . . .⊗η3i+1)◦A−1

3i+1(x)
(η1⊗ . . .⊗η3i+1)(x)

= ess sup x∈R3i+1
η1(x1)η2(x2 + p2(x1)) · · ·η3i+1(x3i+1 + p3i+1(x3i))

η1(x1)η2(x2) · · ·η3i+1(x3i+1)
� ri,

which proves our claim.

6. Appendix

In this appendix we provide {αi}i∈N , {Mi}i∈N , {ρi}i∈N , {a3i−1}i∈N , {b3i−1}i∈N

and {φ3i−1}i∈N satisfying conditions (i)-(x) of Examples 5.4 and 5.8.
Let us begin with a decreasing sequence {αi}i∈N ⊆ (1,∞) such that ∏i∈N αi <

∞ . Choose {β3i−1}i∈N ⊆ (0,∞) so that ∏i∈N(β3i−1 + α2
3i−1) < ∞ . Now, to obtain all

objects required in Example 5.4 we proceed in steps.
Step 1. For i ∈ N , we set Mi = 2−1(1−α−1

i ) and ρi(x) = α−n
i for x ∈ R with

nMi � |x| < (n+1)Mi , n ∈ Z+ .
It is elementary to verify that {Mi}i∈N and {ρi}i∈N as in Step 1 satisfy require-

ments (i)-(iv) of Example 5.4. Observe that {Mi}i∈N is decreasing. Let r ∈ R satisfy
r > ∏i∈N αi . Fix i ∈ N .

Step 2. If 3r2M3i−1 > β3i−1 , then we choose k∈N such that 3k−1r2M3i−1 < β3i−1

and substitute Mn by Mnk−1 for all n � i , leaving ρn ’s as they were. If 3r2M3i−1 <
β3i−1 , then we skip any substitutions and go directly to the next step.

Step 3. Take a3i−1 = 0 and any b3i−1 ∈ (0,M3i−1) . Let φ3i−1 : [a3i−1,b3i−1] →
(0,∞) be any continuous function such that φ3i−1(0) = 1, and φ3i−1(b3i−1) = r , and
(x) of Example 5.8 holds.

By elementary calculations we verify that {αi}i∈N , {ρ̂i}i∈N , {Mi}i∈N , {a3i−1}i∈N ,
{b3i−1}i∈N and {φ3i−1}i∈N satisfy conditions (i)-(x) of Examples 5.4 and 5.8.

It is possible that for some i ∈ N , condition η3i−1 � 1 does not hold (this is possi-
ble if supx∈[a3i−1,b3i−1] φ3i−1(x) > 1). If this is the case, then another slight modification
is needed. This may be done in various way. Below we propose one based on the
construction above.

Step 4. If δ := supx∈[a3i−1,b3i−1] φ3i−1(x) > 1, then there exists x0 > 0 such that 1 =
x0 + δ−1 ∫

R
η3i−1(t)m1(dt) . The modified η3i−1 , which satisfies all the requirements,

has the form

η3i−1(t) =

⎧⎨
⎩

δ−1η3i−1(t) for t � 0,
1 for t ∈ [0,x0],
δ−1η3i−1(t − x0) for t � x0.
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[9] P. BUDZYŃSKI, Z. J. JABŁOŃSKI, I. B. JUNG, J. STOCHEL, Unbounded weighted composition op-
erators in L2 -spaces, in preparation, http://arxiv.org/abs/1310.3542.
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