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DENSE DEFINITENESS AND BOUNDEDNESS OF COMPOSITION
OPERATORS IN L?>-SPACES VIA INDUCTIVE LIMITS

PIOTR BUDZYNSKI AND ARTUR PLANETA

(Communicated by P.-Y. Wu)

Abstract. The questions of dense definiteness and boundedness of composition operators in L? -
spaces are studied by means of inductive limits of operators. Methods based on projective sys-
tems of measure spaces and inductive limits of L?-spaces are developed. Illustrative examples
are presented.

1. Introduction

Bounded composition operators (in L?-spaces) have been extensively studied since
the works of Koopman and von Neumann (see [17, 18]). They played a central role in
ergodic theory and proved to be important objects of investigations in operator theory.
Many properties of these operators were fully characterized (see the monograph [26]
and references therein). Unbounded composition operators attracted attention recently
but they turned out to have very interesting attributes (cf. [4, 7, 8,9, 11, 13, 19]). In
particular, they proved to be a source for surprising examples (cf. [3, 5, 10, 14]).

In this paper we investigate the questions of dense definiteness and boundedness
of composition operators. These properties have characterizations (cf. [6, 11, 24]),
which in more concrete situations seem difficult to apply. For example, this is the case
of a composition operator induced by an infinite matrix in L?(tg), where g is the
gaussian measure on R”. Even in the bounded case in concrete situations the question
of boundedness may be highly non-trivial and may lead to very interesting results (cf.
[12, 21,27, 28]). We show that a technique based on inductive limits might be helpful
when dealing with these problems. We deliver tractable criteria for the above mentioned
properties. This is possible if the L?-space (in which a given composition operator acts)
is an inductive limit of L?-spaces with underlying measure spaces forming a projective
system (see Section 3). In this case we prove that both the dense definiteness and
boundedness can be expressed in terms of asymptotic behaviour of appropriate Radon-
Nikodym derivatives (see Theorems 4.11 and 4.12). We illustrate this with examples.
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2. Preliminaries

2.1. Notation

In all what follows Z stands for the set of integers and N for the set of positive
integers; R denotes the set of real numbers, C denotes the set of complex numbers.
If X is any subset of R, then by X; we understand the set {x € X: x > 0}. Set
R, =R, U{e}. By 610, we denote the symmetric difference (61U )\ (61N 0y)
between sets 0] and o0,. For a topological space X, B(X) stands for the family of
Borel subsets of X. If {X,},cn is a sequence of subsets of a set X, then “X,, /' X as
n — oo” means that X, C X, forall n € N and X = J,,cy X If £ is any family of
subsets of a set X, then by (%) we denote the smallest ¢ -algebra in X containing
AB.

Let .7 be a (complex) Hilbert space and 7' be an operator in .7 (all operators
are assumed to be linear in this paper). By D(T') we denote the domain of T. T stands
for the closure of 7. () denotes the Banach space of all bounded operators on
2 (with the usual supremum norm). If 7 is closable and Z is a subspace of 7Z such
that 7| =T, then .7 is said to be a core of T'.

Let (X,o/,u) be a measure space. By (o), we denote the collection of all
0 € o/ such that (o) <eo. Let 1 < p < eo. The space of all </ -measurable C-
valued functions such that [ |f|? du < e is denoted by LP (i) =LP (X, o/ ,pt); L™ () =
L~(X, <, ) stands for the space of all C-valued and p -essentially bounded functions
on X.

Now, let {U,},en be a sequence of non-negative measures, each [, acting on
a measurable space (X,,<%,). Let {f,: n € N} be a family of functions such that
fn € L' () forevery n € N. Then . ({f,: n € N}) stands for the family composed of
monotonically increasing convex functions G : [0,e0) — [0,00) such that lim;_... G() /¢
=0 and sup,cry [ G(|fu|)dtn < eo.

2.2. Composition operators

Let (X, </, u) be a o-finite measure space and let A: X — X be &/ -measurable.
Define the measure oA~! on &7 by setting uoA~'(c) =u(A~'(0)), c € &. If
oA~! is absolutely continuous with respect to i, then A is said to be nonsingular
transformation of X. If A is nonsingular, then the linear operator

Cat L*() 2D(Ca) — L (1)
given by
D(Ca)={feL*(u): foAeL*(u)} and Cof = foA for f € D(C4),
is well-defined and closed in Lz(u) (cf. [7, Proposition 3.2]). Such an operator is the

composition operator induced by A and A is the symbol of C,. Usually, properties of
C, are written in terms of the Radon-Nikodym derivative

_du oA~!

hA
du
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By the measure transport theorem ([ 1, Theorem 1.6.12]), for every </ -measurable (C-
or R-valued) function g we have

/g~hAdu:/goAd/,L.
X X

In particular, for every f € D(Cy) there is

[ 1rPntan = [ roatau. @.1)
X X
It is known (cf. [7, Proposition 3.2]) that

D(Cy) = L?(u) if and only if h* < o ae. [u]. (2.2)

If h* belongs to L™ (1), then C4 is bounded on L?(u) (and vice versa) and

12

L= ()’ 23)

ICall = W]

Conditional expectation is indispensable when investigating composition operators in
L?-spaces. We collect here some of its properties. Set A~ (/) = {A~!(0): 6 € &/}.
Assume that h* < e ae. [u]. Then the measure I[s-1(e) is o-finite (cf. [7, Propo-

sition 3.2]) and hence for every .o -measurable function f: X — R, there exists a
unique (up to sets of i -measure zero) A~!(.7) -measurable function! E(f): X — R,
such that for every .o/ -measurable function g: X — R,

/goA-fdy:/goA-E(f)d;,L. 2.4)
X X

We call E(f) the conditional expectation of f with respect to A~!(.«) (see [7, 8, 9]
for more information on E(-) in the context of unbounded composition operators and
further references). It is known that if f: X — R is an ./ -measurable function, then
E(f) =goA ae. [u] with an </ -measurable function g: X — R such that g =0 a.e.
[u] on {h? =0}. Set E(f)ocA~! =g ae. [u]. This definition is correct (see [11] and
[7, Appendix B]). Moreover, we have

(E(f)oA ) oA=E(f) ae. [Hly-1(m) 2.5)

It is also known that the map f — E(f) can be extended linearly from {f € L*(u): f >
0} onto the whole L?(u) in a way that E(-) becomes an orthogonal projection acting
on L*(u). This (extended) conditional expectation E(-) satisfies (2.4) and (2.5) with
frgel*(u).

Let u be the Borel measure on R”, n € N, givenby du = p dm,, where p: R" —
(0,00) is a Borel function and m,, is the n-dimensional Lebesgue measure on R”. If A
is an invertible linear transformation of R”, then by the measure transport theorem we
get

hA — 1 poAl,

[detA] p

!For simplicity we do not make the dependence of E(f) on A explicit.
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moreover, if C4 is bounded on Lz(u), then
2 1 ||poA”t
”CA” T |detA] H P ||Lm(p)'
In particular, if p(x1,...,x,) = e 20T+ we have

h (x) = }detA|_1 exp % (||xH2 - ||A’1(x)H2> for m,-a.e. x € R". (2.6)

2.3. Inductive limits

Suppose {7, }hen is a sequence of Hilbert spaces. We say that a Hilbert space
A is the inductive limit of {7, },en if there are isometries Ai c G — 4, k<I,and
Ay : 74, — F such that the following conditions are satisfied:

(I;) A is the identity operator on 7%,
(In) A"=AroAl forall k<1< m,
(I3) Ax=AjoA, forall k<1,

(14) A =Unen M-

We write .77 = LIM.7Z, then.

Assume that 57 = LIMJ7,. For n € N, let C, be an operator in .77;,. Consider
the subspace Do, = Doo({Cy }en) of S given by

D.. = | J{Axf | IM > k: A} f € D(Cp,) forall m > M}
keN

and define the operator 1imC, in JZ by
D(1imC,) = {Arf € Dwo: lim A,,C, A} f exists}
m—oo
(1imGCy)Arf = lim A, CuALf,  Arf € D(1inG,).
Mm—o0

We call 1imC, the inductive limit of {C,} e .
The following lemma is surely folklore. We include the proof for completeness.

LEMMA 2.1. Let 5 = LIMJZ, and let C, € B(5;,), for n € N. Assume that
the operator 1imC,, is densely defined in 7. Then the following assertions hold:

L if sup,en[|Calapgll < oo for all 1 € N, then Up_y Antm C D(1inC,) and
(1imCy)|a, is bounded for all k € N,

2. if sup,en [|Call < oo, then 1imC,, is closable and 1inC, € B(H).



COMPOSITION OPERATORS VIA INDUCTIVE LIMITS 857

Proof. Fix k € N and choose f € . Since D (1imC,) = 5, for any € > 0
there exists [ € N, g € 4 and N € N such that [|[Arf — Ajg|| < € and ||A,,CrA}'g —

Am/Cm/AZq/ gll < € for every m,m’ > N. We may assume that [ > k. Then for all
m,m’ > max{N,l} we have

”AmCmAZlf_Am’Cm’AZ1 flI < ”AmCmAZlf_AmCmA;ng”
+ | AnCnAT'g = A Cur AT g
+ ”Am’Cm’A?1 88— Am’Cm’AZl fH

< 8(1 +2sup||Cn\Ag.%ﬁ(H>~
neN

This implies that {A,,C, A} f}5n_, is a Cauchy sequence and thus, by definition, Ay f €
D(limC,). Since f can be chosen arbitrarily we get the inclusion Ag.54; C D(1imC,).
The fact that (1imCy)|5,.; is bounded follows immediately from sup,,cp [|Ca|az.z | <
o, k € N, and definition of 1imC,.

By (1) we have US_, Anf = D(1nC,) and [15nCaf | < supcy | Gol /] for
all f €U, A, . This and the equality 7 = J,en Andé, imply (2). O

Regarding Lemma 2.1, it is worth noting that condition sup,cy [|Cu|ar.z | < e,
! € N, is not sufficient for 1imC, € % (7). This is shown in the following example.

EXAMPLE 2.2. Let %, = L*([1/n,n],B([1/n,n]),m; |9 {1 /n)) for n € N and
A =L*(Ry,B(Ry),m|gr,)) . For f € 7, we put

., [ f(x) forx € [1/k,k],

<Akf>(X>—{o fgrxe[l/n,l/kw(km s
[ f(x) forx € [1/k,k],

(Aef)(x) = {o fgrxe (0,1/k) U (ko).

It is easily seen that J# = LIM.7Z,. Define ¢(x) = % for x > 0. Let ¢, = @1/, be a
restriction of ¢ to [1/n,n]. Then by the change-of-variable theorem (cf. [25, Theorem
7.26]) we have

ICoMerP= [ 17 dm(o)

2
= [ VO amy<onrp, res ken
[1/k.k] 1t

This implies that sup,,cy [|Cy, | A;h%‘j” <[ for I € N. Observe that 1imCy, = Cy . Indeed,
since Cyp o A, = A, 0Cy, we see that 1imCy, C Cy. On the other hand, if f € D(Cy),
then A, f, — f and 1imCy, (A fin) = Co(Amfin) — Cof as m — e, where f, =
Fljijnm for n € N. This proves that 1imCy, = Cy. Since ||Cyx1/n1)l| =n—1 for
every n € N, we see that 1imCy, does not belong to #(7).
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Below we give an example of a sequence {X, },cn of sets and a sequence { @, },en
of transformations such that the inductive limit 1imCy, of composition operators is not
densely defined.

EXAMPLE 2.3. For n € N, let X, = {1,2,...,n} and let y, be the atomic mea-
sure on X, given by w,({k}) =1, k € X,,. Itis evident that ¢>(N) = LIML?(u,), where
/*(N) denotes the Hilbert space of all square-summable complex sequences enumer-
ated by natural numbers (with the standard inner product). For n € N, we define a
transformation ¢, of X, by ¢(1) =2, ¢(2) =3, ..., ¢(n) = 1. Obviously, Cy,
is a bounded operator on 7, for every n € N. In fact, it is unitary one. However,
Co, X{1} = X{n} forall n € N, which implies that ;) does not belong to D(limC, ).
In particular, this means that limCy, is not densely defined.

REMARK 2.4. Questions whether 1imC,, is densely defined and closable are del-
icate ones. Marchenko type conditions (see [20], also [15]), implying positive answers
to both of them, seem difficult to apply in the context of composition operators.

3. Projective systems of measure spaces

In this section we study inductive limits of composition operators over o -finite
measure spaces endowed with a projective structure.

Suppose that { (X, %, Un) }nen is a sequence of (not necessarily o -finite) mea-
sure spaces. If there exist surjective mappings

Oy Xm — Xy, n<m,
satisfying the following conditions:
(Py) OF is (<, <7,)-measurable for all n < m,
(Py) & =008 forall n <m<k,
(P3) O} is the identity mapping on X,, for all n,

then {(X,, %%, Un) }nen is called a projective system. We say that a measure space
(X,o7,10) is a target space of the projective system {(X,, %, Un)}nen if there are
surjective mappings

0": X —X,, neN,

that satisfy the following conditions:

(Py) 0" is (o, 4,)-measurable for all n,

(Ps) 0" =09k o0d™ forall n < m,

(Ps) o =0({(8") o) : w € o, neN}),

(P7) u((6" Y w)) :égum(((x’,)*l(w)) forall € 7, and n.
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If this is the case, we write (X,.o/, 1) = 1im(X,, %, U,) and call u the target measure

of {.un}neN
Suppose (X, o7, 1) = 1im(Xy, %, Uy). Let k € N. Ttis clear that if (X, <%, Ux)

is o -finite and
du 5k 1
CHoO ) ( ) S

o (5k)71 < My and i

L™ (k) (3.1)

then the operator
Ac: L () > fr— fo 8 € L (u),

is well-defined and bounded. Now, if for every k € N, (X;, %%, L) is o -finite, (3.1)
holds and Ay is an isometry, then we call the target space (X,.o7, 1) isometric and write
(Xa%7u) = LIM(XVHJZ{HMUH)

LEMMA 3.1. Let (X, o/, 1) = 1im (X, %, W) and k € N. If (X, S, W) is O -
finite, condition (3.1) is satisfied and Ay is an isometry on I? (L), then Ay is an isom-
etry on LP () for all 1 < p < e and the measure |l is © -finite.

Proof. First, we observe that A; is an isometry on L? () if and only if the Radon-

ky—1
Nikodym derivative % =1 a.e. []. This follows directly from the fact that, by

the measure transport theorem, for every .«% -measurable non-negative function f we
have

[ = | fostau.
k

Hence A is an isometry on L” (L) for every 1 < p < eo. Now, by o -finiteness of
Uy, there exists {0} | C (&%), such that o, /' X as n — eo. Clearly, if Ay is
isometric, then

1 ((8) X /xcnoc‘ikdu /xcn dux = pp(on), neN.

Hence {(&) '(0,)}>; C (). Since (&) (0,) /X as n— oo, we see that i is
o-finite. O

REMARK 3.2. It is worth noting that if {(X,, %, Un) }nen and (X,.o7, 1) satisfy
all the conditions of the definition of a target space except condition (P7), and all the
operators A, are isometries, then (P7) is automatically satisfied. Indeed, take m > n.
Then, by (Ps) and Lemma 3.1, for every o € (4,),, we have

1((8")71(0)) = k(808" (o)) =1 ((8") 7 ((82) 7 (0)) )
—/IAmxgn oldu = /|X5n o) dtm
= i ((8)7(0)).

This and o -finiteness of ,, prove the claim.
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Let (X,.o/,u) = 1im (X,, %, U,). The sets of the form (Sk)_l(cr) with o € o,
and k € N are called cylinder sets. Assume that (X, <%, L) is o-finite for every
ke N. Set €, = AL*(un), n €N, and € = U,enGn. Members of € are called
cylinder functions. By 2~ we denote the set of all characteristic functions of sets from
(), regarded as a linear subspace of L?(u), while 2 stands for the intersection of
2" and €. Throughout what follows .# denotes the linear span of 2.

REMARK 3.3. Suppose that (X, <7, ) =LIM(X,, %, U,). Clearly, characteristic
functions of sets of finite measure are linearly dense in L?(u). By [, Approximation
Theorem 1.3.11], this and condition (Pg) imply that .7 is linearly dense in L*(u) as
well. In particular, cylinder functions are dense in L?(u).

Now, let (X, o7, 1) = 1im(X,, ,, Un). Let k,I € N be such that k <. Suppose
that (Xy, <, 1) is o -finite,

dpo (8)~!

o(8H '« and
Mo (o) Ui it

€ L™ (). (3.2)
Analogously to operators A, , we may define bounded operators
AL L2 () 3 f e fodf e L2 ().

The projective system setting fits well together with inductive limits of L”-spaces (see
Lemma 3.4 below). We will use this fact when implementing approximation procedure
for a study of composition operators acting in L?-spaces over measure spaces being
isometric target spaces of projective systems.

LEMMA 3.4. Let (X, o/, 1) = LIM(X,, Ay, Un). Then condition (3.2) is satisfied,
operators Ai are isometries for all natural numbers k < | and L*(u) is the inductive
limit of L*(uy,).

Proof. Set Af{ = Ai and Ay = A; for k,1 € N such that £k < [. It is evident then
that conditions (I)-(I4) are satisfied. [

CAUTION. From now on we tacitly assume that if (X,.o7, ) = LIM(X,, %, Uy ),
then L?(u) =LIML?(u,) with respect to the maps A} and Ay as in the proof of Lemma
3.4.

4. Composition operators and inductive limits over projective systems

4.1. Dense definiteness and boundedness of 1imCy,

In this part of the paper we are aiming to supply some quite natural assumptions
which would imply that the inductive limit operator 1imC,, of composition operators
is densely defined or bounded. We begin by describing the domain of 1imCy,, .
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LEMMA 4.1. Let (X, ,u) = LIM(X,, %, n). Suppose that for every 1 € N,
A; is a nonsingular <f;-measurable transformation of X; such that W < e a.e. [1].
Then D(1imCy,) consists of all Arf € Do such that for every € > 0 the following
condition

[En (AN (ML) 0 An)) 0 Ay = AL fll 2 wim apyy S € m=n=M.  (4.1)

is satisfied with sufficiently large M € N.

Proof. Since (X, o/, 1) is an isometric target space of {(X,, <7, Un) }nen, by (2.1)
and (2.5), we have

IAnCan ML = MCa N [y = [ IAT(ALF) o An) = (N ) A At
= [ BN 0AD) 0 Ay = ALSPH ity >k,

for every f € D(Cy,). Hence, the claim follows from the definition of 1imC,,. O

REMARK 4.2. Regarding Lemma 4.1, it is worth pointing out that it may happen
that 1imCy, is densely defined in Lz(,u) but none of the Cy,, [ € N, is densely de-
fined. For example, if 57 = %, = (*(N) and ¢,(x) = min{n,x} for n,x € N, then
D(Cy,) =1lin{ei,...,e,—1}, where {e,};>_, is a standard orthonormal basis of ¢*(N).
Consequently, the assumption h < e a.e. [1] is not satisfied for any / € N (see by
(2.2)). On the other hand, D(1imCy,) = lin{e,: n € N} which is dense in JZ .

Characteristic functions of cylinder sets with finite measure are the most elemen-
tary functions which we expect to belong to the domain of 1imCjy, . The conditions (i)
and (ii) of Proposition 4.3 below turns out to be essential for this to happen.

PROPOSITION 4.3. Let (X, o/, 1) = LIM(X,,, %y, ). Suppose that A,, n € N,
is a nonsingular <, -measurable transformation of X, such that h < o a.e. [U,].
Let ke N and o € (@), . Then Aixe € D(1imCy,) if and only if the following two
conditions are satisfied:

(i) there exists M > k such that X(a}!’c)—l(o.)hA" el! (W) foralln>=M,

(ii) for every € > 0 there exists N > k such that

u ((550Ano 5") " (0) A (8 oAy o 5'")*1(0)) <e, mm>=N.

Proof. Set f = Ayxo. Clearly, f € L*>(u). Since we have

/ |A2xooAn}2dun_un( (<6k> <>))
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we see that (i) is equivalent to A}xs, € D(Ca,) for any n > M. On the other hand, by
(2.1) and (2.5), we have
|Em (AN (A Xo) 0An)) oA, — A Xo 2w dwy)
—yu ((5,5 0Ar08") () A (80 Ano 5'")*1(0)), m=n>k

Therefore, condition (ii) is equivalent to condition (4.1). These two facts, in view of
Lemma 4.1, imply the claim. [J

COROLLARY 4.4. Let (X, o/ ,u) = LIM(X,, %, lUy). Suppose that A,, n € N,
is a nonsingular o7, -measurable transformation of X,. If conditions (i) and (ii) of
Proposition 4.3 are satisfied for all o € (%), and k € N, then F CD(1imCy,).

Clearly, one immediate consequence of the above is that, under assumptions of
Corollary 4.4, the inductive limit 1imCy, is densely defined. The same happens if
all the operators C,,, n € N, are bounded and condition (ii) of Proposition 4.3 holds.
Using similar arguments as in the proof of Proposition 4.3 we can obtain the following
version of Corollary 4.4, which again yields the dense definiteness of 1imCy,, .

COROLLARY 4.5. Let (X, 1) = LIM(Xy, %, ) and let Ay, n € N, be a
nonsingular <, -measurable transformation of X,. Assume there exists a sequence
{Zy}nen of sets such that Z, € () y,, (8™)1(Z,) /' X as n— oo and

{X(5)- 12 A" kon € N} C L ().

Suppose that for every o € (), k € N, and every € > 0 there exists N > k such
that

u((5§oAno5")*1(amzk)A(5,§oAmoam)*l(amzk))<e, nm>N. (42)

Then % C D(1imCy,), where ={xst) 1z [ fE€F kEN}

The question of the boundedness of 1imC,, can be answered in the following
way.

PROPOSITION 4.6. Let (X, o/, 1) = LIM(X,,, %y, Wn). Suppose that A,, n € N,
is a nonsingular <, -measurable transformation of X,,. If the following conditions are
satisfied:

(i) for every k € N, h% € L=(1) (or, equivalently, Ca, € B(L*()) ),
(ii) forall k € N and o € (), , the condition (ii) of Proposition 4.3 holds,

(iii) for every k € N there exist C > 0 and N € N such that

L ((Ako 55 (o)A (85 oAm)_l(G)> <Cu(o), o€ ()y.m=N,
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then € C D(1imCy,) and for every k € N, (1imCy,,)

%, is bounded.

Proof. Clearly, (i) and (ii) imply conditions (i) and (ii) of Proposition 4.3 and thus
F CD(1imCy,). Now, we show that for a fixed k € N we have

sup [|Ca, | am (2 gy | < o (4.3)
neN

By (iii), there exist C > 0 and N € N such that

1AnCa, AL o = MiCaXo P = tin (Ax© 85) " (0)A(8, 0Am) ™! (0)
< Cil(o) = Cun ()~ (0))

holds for all m > N and o € (@), . This together with (Ps), the fact that all A;’s are
isometries and (2.1) imply

/X(a,y)fl(w)hA" dptn = [|Ca, ?v%wHiZ(un)
n n n 2
< (lCa, N30 = AiCay a2y + INSCn Ko 2
2
< (VEIxoll2quy) + a1 202y )
2
= (\/6+\\CAk||> '/%wdllN
2
= <\/E+\\CAk||> '/%(5y)fl(m)dlin

for every n > N and @ = (8%)~!(0), with o € (), - Now, applying standard ap-
proximation argument and the fact that the family {Ys¢)-1(¢): O € (%), } is linearly
dense in A7 (L' (1)) we obtain

2
[ 1Pt < (VE+ICall) Il (44
forevery n > N and every g € A} (L*(uy)). This, if combined with (2.1), yields

2
ICangll® < (VE+ICall) gl >N, g € AL ().
This yields (4.3). Employing Lemma 2.1 (1) we conclude the proof. [

PROPOSITION 4.7. Let (X, o/, 1) = LIM(X,,, %y, ). Suppose that A,, n € N,
is a nonsingular <, -measurable transformation of X,,. If the following conditions are
satisfied:

(i) supgen |0 =) < oo,

(ii) for every k € N and o € (), , the condition (ii) of Proposition 4.3 holds,
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then 1imCy, is closable and 1imCy, € B(L*(1)).

Proof. By (i) and (2.3), Ca, € B(L*(w)) for every k € N. Hence, by Proposition
4.3, F C D(1imCy,) and thus 1imCy, is densely defined. Now, the claim follows
from Lemma 2.1 (2) and the fact that sup,,cy [|Ca, || <o (see (2.3)). O

4.2. Well-definiteness and boundedness of C4

Now we address the question of when the composition operator C4 acting in an
inductive limit of L?-spaces is well-defined and bounded. We do it by relating C4 to
an inductive limit 1imCy,, .

We begin by recalling well-known criteria for *-weak compactness of a family .#
contained in LP(i), 1 < p < oo; the case p = 1 follows directly from the compactness
criterion of Dunford-Pettis theorem (cf. [22, Chapter II, Theorem T23]) combined
with the de la Vallé-Poussin’s theorem (cf. [1, Lemma 6.5.6]) and the case p > 1 is a
consequence of the Banach-Alaoglu theorem.

LEMMA 4.8. Let F CLP(u) be countable and 1 < p < . If one of the following
conditions is satisfied:

(i) p=1, u is a finite measure and M (F) #+ &,
(i) p>1 and F is uniformly bounded in LP (1),
then % is x-weakly compact.

Now, we show that absolute continuity of the measures t, and v, transfers onto
their target measures ( and v.

LEMMA 4.9. Let (X, o/, 1t) =LIM(Xy, Dy, Un) and (X, o7, v) =1im (X, Sy, Vs).
Suppose that v, < Uy, for all n € N. If there exists a sequence {Y, }nen of cylinder sets
such that Y, /"X as n — oo, {)(yk (dv,/du,): ne N} C L'(u) for every k € N and

<{ka (dv,/duy,): nEN}) + & forevery k €N, then v < L.

Proof. For k € N, let o7, stand for the o -algebra {®w € &7: @ C Vi }, let uy, de-
note a restriction of y1 to <%, and let hy,|y,, n € N, be the restriction of A,(dv,/du,) to
Y. By Lemma 4.8 (with p = 1), the sequence {/,,},en has a subsequence {/,,(x 1 fxeN
such that {h, 1|y, }ken converges x-weakly to a function A"t € L'(Yy, <%, , iy, ) . The
same argument implies that {f, )}ren has a subsequence {/,(2)}ren such that
{Mn(k2)v, Jken converges x-weakly to a function W2 € LY (Ya, o, , y,). Clearly, we
have

W2y, =" ae. [u). (4.5)
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If we repeat the argument [ times we get a subsequence {hn(k,l)}keN of a sequence
{Pn(ki—1)tren such that {f,u )y, ren is converging *-weakly to a function h'" con-
tained in Ll(Yh%yl, Uy,) . Moreover, by (4.5) we have

Ry, =% ae. [u], k<L (4.6)

Since U,en Yn = X, we can use (4.6) so as to obtain a function #: X — R, which is
o7 -measurable and satisfies

hly, =h" ae.[u], [€N. 4.7)

Now, for m € N, let 6 € .<7,. Set T = (6’”)71(6). Fix N € N. There exists / € N and
Zy € <7 such that Yy = (6')~!(Zy). Without loss of generality we may assume that
I >m. Define 7y = (8™) ' (6)NYy and @y = (8") ' () NZy. Then, by (4.7), (Ps)
and (P7), we gather that

/ hdp = lim | Angen)hngen) dpt
N —eJ Iy

- /<1i—>n°1<’/An(k’N) (x(éri(k,N))l(wN)h"(ka)> du

= lim ok vy Al (k)

ke (5,5(ka) ) How

= hm dV kN
ey I R

=v(ty).

This, (Pg) and [2, Theorem 10.3] imply that v(7) = [ xchdu for every 7 € o/ which
proves our claim. [J

REMARK 4.10. Regarding Lemma 4.9, we mention the paper [16] where neces-
sary and sufficient conditions for equivalence (in sense of absolute continuity) of tensor
product measures are supplied. Those conditions, however, cannot be applied in our
context (because, in general, measures of the form u oA~ are not tensor products).

Now, suppose A is an o7 -measurable transformation of X . Consider the following
condition:
Forall k € N and o € <7 there is

lim ((55 04, 08" (o)A (8* oA)_l(G)> —0. 4.8)
Next theorem shows that if A can be approximated (in a sense of condition (4.8)) by a
sequence of 7, -measurable transformations A, , then the composition operator C, is
exactly the inductive limit of operators Cy,, .
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THEOREM 4.11. Let (X, <7, ) =LIM(X,, %, Uy,). Let A, be an <7, -measurable
transformation of X, for n € N and let A be an </ -measurable transformation of X
such that condition (4.8) is satisfied. Then the following assertions hold:

(i) (X, o, uoA~Y) =1im(X,, F, Uy 0 A, L),

(ii) if Uy oA, < Wy, for all n € N and there exists a sequence {Y,},en of cylinder
sets such that Y, /' X as n — oo, {)(ykAnhA": ne N} C L'(u) forevery ke N
and ///({xykAnhA": ne N}) #+ & for every k € N, then Cy is densely defined
and closed in L*(1) and Cy = 1imCy,| 7, where F = {yy f: f € F,k € N}.

Proof. (i) Let k,n € N andlet 0 € @7 be such that either t1oA™! ((6%)7!(0)) <o
or t,0A; ' ((85)7!(0)) < . Then we have

oA ((8571(0)) — oA, ((8) ' (0))]
—u((8For08m (@)1 (8" 04) (o).

This and condition (4.8) imply that (X, o, toA~!) = 1im (X, &, u, 0 A, ').

(ii) Using (4.8), the well-known inequality u(o1A0») < U(01A03) +U(03A03),
and Corollary 4.5 we deduce that .# C D(1imCy,).

Lemma 4.9 and (i) imply that g oA~! < u, which implies that C, is well-defined
and closed operator in L?(u). Now we prove that .% C D(C4). Fix N € N. There
exists [ € N and Zy € o such that Yy = (8')~!(Zy). By (i), forall k € N and ¢ € %
we have

uoa™ (8 (@) 1) = lim o' ((8) " (@)N(8) @) 49

Fix k € N and 6 € (), . Let m € N satisfy k,l <m. Set Q = (8%) ' (o) N¥y.
Then we have

o, ((64)7 ()N (&) (@) = [ Anh*du, (4.10)

Let Ge . # ({ AryAah i n € N}) . There exists a non-negative real number 7y such

that {z € [0,00): G(r) >1} = [t9,°). Also, for every m € N, there exist sets Of",04" €
o/ such that X = O"UGY, O NOY = & and A,h™ (x) <to for u-ae. x € O and
Apuh™(x) > 1o for u-ae. x € OF . Hence we have

/ Anh dyt = / Anh dy + / Anh dyt
Q Qney Qney

<tou(Q)+sup [ G(Axh*)dp.
meNJ Yy
This, (4.9) and (4.10) imply that yo oA € L?(u), which means that xXo € D(C,). Since
keN, o € (), and N € N can be arbitrarily chosen, we see that .% C D(Cy). This
and o -finiteness of ¢ imply that C, is densely defined.
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Clearly, by (4.9) we have

1imCy, (xYNf) = CA(%YNf); fe# NeN. 4.11)

To conclude the proof it is sufficient to show that {yy, f: f € #,N € N} is a core
for C4. For this, take f € D(Cs). It causes no loss of generality to assume that f
is non-negative. Since .# is dense in L?>(u) and ¥, / X as n — oo, there exist a
sequence {f,}neny C % and a monotonically increasing mapping a: N — N such that
for p-ae. xeX, (xya(n)f,,)(x) /" f(x) as n — oo. This implies that for y-a.e. x €
X, (X¥yy Jn)(A(x)) /" f(A(x)) as n — 0. By the Lebesgue’s monotone convergence

theorem, {XYa(,l)fn}neN and {(Xv,, fa) ©A}sen converge to f and foA in L*(u),
respectively. Therefore, we obtain C4 C Cy| - This together with the fact that C4 is
closed implies that C4 = C4| » . Using (4.11) we complete the proof. [

Combining Theorem 4.11 and Lemma 2.1 we obtain a criterion for the bounded-
ness of C4 written in terms of composition operators Cy, , n € N.

THEOREM 4.12. Let (X, o/, 1) =LIM(X,, %, lU,). Let A, be an <, -measurable
transformation of X, such that U, oA,' < W, for every n € N. Let A be an < -
measurable transformation of X . If condition (4.8) holds and

sup [0 |y < o, 4.12)

ne

then Cy4 € %(Lz(u)) and Cy =1imCy,,.

Proof. By o -finiteness of y, there exists a sequence {¥; }ren € (&), of cylinder
sets such that ¥; /' X as n — . Clearly, (4.12) implies that for every k € N we have

{xr,Auh: n € N} C L' (u) and ///({xykAnhA": ne N}) +# @. By Theorem 4.11,

the operator C, is densely defined operator in L?(u) and C4 = 1imCy,| 5, where
F ={xvf: f € F,k €N}. Since condition (4.8) yields condition (ii) of Proposition
4.3 with any 0 € o and k € N (see proof of Theorem 4.11(i)), the operator 1imCy,
is bounded due to Proposition 4.7. This concludes the proof. [

5. Examples and Applications

In this part of the paper we demonstrate how inductive techniques of Theorems
4.11 and 4.12 can be used when investigating composition operators in more concrete
situations. We include some illustrative examples.

First, we provide a version of Theorem 4.12 in the context of L?-space with respect
to the gaussian measure on R”. Recall that the gaussian measure U on R is the
tensor product measure g = gdm; ®gdm; ..., where g(x) = \/Lz_n exp(—%) for x €
R. By the n-dimensional gaussian measure, n € N, we understand the measure L,
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1 x%Jr...erﬁ

given by dg, = Ay exp(—=——")dm,. Clearly, if §" and §;' are the projections

from R* and R¥ (respectively) onto R, we have
(R, 9B (R™), tg) = LIM (Rn,%(w),um)
and consequently

L*(Ug) = LIML? (g ).

Let (a;j)i jen be a matrix with real entries. We say that a transformation A of R* is
induced by (a;j); jen if the following condition holds®

Alxy,xp,...) = ( Z ajxj, Z a2~,'xj7...), (x1,%n,...) € R™.
jeN jeN

In an analogical way we define a transformation A of R” induced by a finite dimen-
sional matrix (a;;)} ;_; .

In view of (2.6), Theorem 4.11 can be rewritten in the present context in the fol-
lowing manner. Below, || - || denotes® the Euclidean norm on R”.

COROLLARY 5.1. Let A be a transformation of R™ induced by a matrix (a;j); jen-
Let A, n € N, be the linear transformation of R" induced by the matrix (aij)?jzl. If
the following conditions are satisfied:

(i) forevery n € N, A, is invertible,
(ii) for every j €N thereis K € N such that aj; =0 forall k > K,
(iii) there exists a sequence { Gy }ren of sets o, € B(RF) such that
e 0, xR” /R” as k— oo,
o Kopxrntexpy ([l [7 = 14,1 ()I?) € L (i) for every n >k,
- ///({|detAnw Kozt -0 3 (1117 = 1471 ()I) n>k}) 40,
then Cy is densely defined operator in Lz([,LG) and Cy = limCAn\Jf, where % =
Hoxr=f: f € F ke N}

An example of densely defined composition operator in L (i) is presented below.

EXAMPLE 5.2. Let A: R” — R* be induced by the matrix (a;;); jen given by

1 fori=j,
aij=1{ 270 for j=i+1,
0 otherwise.

2We assume that all the series M JEN AkjXj k € N, are convergent.
3For simplicity we do not make the dependence of |- || on n explicit.
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Let A,: R" — R" be induced by (a;;)! j=1> M€ N. Clearly, the conditions (i) and (ii)
of Corollary 5.1 are satisfied. It is elementary to show that sup, <y [|Ax | z®) < V2.
This implies that there exists a positive real #, such that ||A, Hzﬁ(Rn) < 2 — 21 for every

n € N. Thus we have

/ (e(HXHLHA;leZ)/Z>2HG7n(dX) = (2775)7"/2/ e%HxHZ*HA;leZ mn(dX)

< (@2m)™ / elAn AP 14nP =D . ()

n

n

< (27:)"’/2/ el m (dx)

n

< (2n)"" / e WP m,(dx), neN.

Since detA, = 1 for every n € N, we see that the condition (iii) of Corollary 5.1 is
satisfied (with G(¢) = 2 and o; = R¥). Hence, by Corollary 5.1, C4 is densely defined
in L2(uc) and Cy = 1imCy, | & . It is worth noting that for every n € N the norm of A,
in #(R") is greater than 1, which (in view of [27, Proposition 2.2]) implies that Cy, is
not bounded on L?(Ug ).

Now we supply a tractable criterion for the boundedness of a composition operator
C, in L?-space over an infinite tensor product of arbitrary probability spaces. For this
we consider {(Qy,Z,,P,) }nen. a sequence of probabilistic spaces. Let X, = Q) X ... x
Q,meN,and X =Qy x Qp X .... For m < n,let 6" and §" denote the projections
from X and X, respectively, onto X,,. Let <7, = 0(Z| X ... x %,), m€ N, and &/ =
o({(6™)(o): 0 € F,,meN}). Finally, let tt,, =P ®...® Py, m€ N, and u =
PL@P,®... (cf. [23, Section III-3]). Clearly, we have (X,.<7,u) = LIM(X,, ), Un).
It is well-known that

L (u) ~ L () @ LH(@7_ 1 Py), neN. (5.1)

ER)

(In the display above, ” ~” denotes unitary equivalence.) Under all those circum-
stances, by Theorem 4.12, we get the following criterion.

PROPOSITION 5.3. Let (X, 1) and {(Xu, “, Un)}nen be as above. Let A
be an <f -measurable transformation of X and A,,, m € N, be an <,,-measurable
transformation of X,,,. If the following conditions are satisfied:

(i) for every k € N there is M > k such that 8o A = §FoA, 08" a.e. [u] for all
n>=M,

(ii) forevery ne N, U, OA;l < U,
(iii) supep 10| () < oo,
then Cy € B(L*(1)). Moreover, we have

(iv) HCAH2 = SUPueN HhA" HL""(/J,,)a
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(v) the operator Cy is the limit in the strong operator topology of the sequence
{Ca, ® L} nen, where 1, is the identity operator on L*(®%_, . | Px).

Proof. We infer from (ii), (iii) and (2.3) that for every n € N, Cy, € B(L*(11,))
and

sup [|Ca, || =M < eo. (5.2)
keN

By (5.1), (i) and (5.2), the sequence {C,},en of operators given by
Co=Cy, 1,

is convergent in the strong operator topology to a bounded operator C on L*(u). Since
(1) yields condition (4.8), the operator C, is well-defined by Theorem 4.12. Clearly,
by (i), C4 and C coincide on cylinder functions, which implies that C4 = C. This
completes the proof. [

A nontrivial example of a bounded composition operator acting in an L”-space
over the product of probabilistic measures (different than L?(ug)) is presented below.

EXAMPLE 5.4. Let {0;}ieny C (1,00), {pi: R — (0,00) | i € N}, and {M;};en C
(0,00) satisfy:

@) TIZ o <ee,
(ii) forevery i € N, p;dm; is a Borel probability measure,

(iii) for every i € N, p; is an even piecewise continuous step function such that its
restriction p;|p, to R is decreasing,

(iv) sup{% cxeR, 0<e <M,-} <o
(Such {M;}ien, {i}ien and {p;}ien exist—see Appendix 6.) Consider the measures
U =prdm ®prdm;®...

and

,un:pldm1®...®pndm1, neN.

Suppose {p;: R — [0,M;] | i € N} is a family of differentiable functions such that*
pi(x) =0 forall x<O0 and i € N. Let B: R® — R* be given by

B(x17x27"') = (x17x2+p2(x1)7x3+p3(x2)7"')7 (x17x27'”) S IROQ7

4This feature of p;’s will be used in Example 5.8 below.
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and A: R” — R be the inverse of B. For n € N, let B,: R" — R" be given by

Bn()CI,)CQ,. . ax") = (x1’x2 +p2(x1)?"' 7~xn+p"('x71—l))

and let A,,: R" — R" be its inverse (it exists since the Jacobian determinant of B,
equals 1). Then, by the change-of-variable theorem (cf. [25, Theorem 7.26]), for every
n €N, C,, is well-defined composition operator in L?(u,). Moreover, since

sup 1WA () = su p1(x1)p2(x2 + pa(x1)) -~ Pu(Xn + pu(Xa—1)) < - o,
xe]lgl‘ ()‘ xeﬂgl Pl(xl)"'Pn(xn) E

we see that Cy, € B(L*(l4y)). Clearly, the family {h%"},cy is uniformly bounded in
L~ -norms. Hence, in view of Proposition 5.3, C4 € Z(L*(u)).

In the context of gaussian measure [z on R™ Proposition 5.3 reads as follows.

COROLLARY 5.5. Let A be a transformation of R* induced by a matrix (a;j); jen-
Let A,, n € N, be the linear transformation of R" induced by the matrix (a;;)! =1 If
the following conditions are satisfied:

(i) inf,ey |detA,| >0,
(ii) for every j €N thereis K € N such that aj; =0 forall k > K,
(iii) sup,ey [[An]l < 1,
then C4 € %(Lz(uc)). Moreover, Cy is the limit in the strong operator topology of

{Ca, @ I} nen, where 1, is the identity operator on L*(U¢).

Proof. By [27, Lemma 2.1 and Proposition 2.2], the operator C,, is bounded on
L?(Ue,n) and [|Cy, ||* = |detA,|~" for every n € N. This and (2.3) imply

~1
suplIn™ s =sup|Co, | = ( jnf[dea,]) <
neN (b neN neN
Since condition (ii) of Corollary 5.5 yields condition (i) of Proposition 5.3, we get the
desired conclusion by Proposition 5.3. [

The following example of a bounded composition operator in L* (i) appeared in
[21] and [27] (it was studied by use of different techniques, not applicable for general
matrical symbols).

EXAMPLE 5.6. Let {a,},en be a sequence of real numbers satisfying 0 < |a,| <
1 forall n € N and [],cn \an\’% <oo.Let A: R® — R* be defined by

Axy,x2,...) = (a1x1,a2x2,...), (x1,x2,...) ER™.

By Corollary 5.5, C4 € B(L*(l1g)) and C4 = Coy @Cpp ® ... ..
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Another example of a bounded composition operator in L* (L) is given below.

EXAMPLE 5.7. Let A: R” — R” be induced by the matrix (a;;); jen given by

exp(—1/i?) fori = j,
aij =14 o forj=i+1,
0 otherwise,

where (¢;)en is a sequence of positive real numbers such that (a;;)7;_, is a contrac-
tion in (R") for every n € N. By Corollary 5.5, C4 € Z(L*(uc)) .

As shown below, we can modify the measure y from Example 5.4 so that the
composition operator induced by the transformation A of R™ as in Example 5.4 is
densely defined unbounded (and it does not act in L?(ug)).

EXAMPLE 5.8. Let p;dm; ®pydm; ®... be the measure defined in Example 5.4.
We will add a hump to density function of every third factor (counted from the second)
in the tensor product. For this we consider {as;—1}ien C [0,%0), {b3i—1}ieny C (0,00)
and r > []Z o; such that:

(v) azi—1 < bz forevery i€ N,
(vi) b3j—1 —azi—1 < M3;_; forevery i € N,
(vil) TTiZy (P (baio1 —asio1+2M3i 1)+ 05;_,) <o,

where {M;}ien C (0,00), {0;}ieny C (1,00) are as in Example 5.4 with additional re-
quirement that (v)-(vii) hold (see Appendix 6). Let {¢3;_;: [azi—1,b3i—1] — (0,00) | i €
N} be continuous and satisfy:

(viii) SUPx yelasi_1.b3i-1] g;::ig; >,

(ix) @3i-1(b3i-1) < ¢3i—1(x) for x € [azi—1,b3i-1],
x) f[a3i—17b3i—1] 931 (x) my (dx) = f[a3i—1~,b3i—l] p3i—1(x) mi (dx).
Define

i1 (x) = ¢3i—1(x) for x € [azi—1,b3i-1],
. p3i—1(x) forx & [azi_1,b3i—1].
Now let t =n;dm; ®1M2dm; ®..., where

 (puforn=3k—1withk=123,...
= Pn otherwise.

We may assume that 17; < 1 for i € N (see Appendix 6). If {A,},cn are as in Example

1
5.4, then the family of Radon-Nikodym derivatives {h%"},cy, where h4" = %
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with W, = nydm; ®...® n,dm;, satisfies sup,cy [|h* l12(y,) < - Indeed, first fix
k € N and take n =3k — 1. Then

Ay mE)M e+ pa(x1)) M+ pa(xas1) |
Jintram= [ MM M) )

Rn Rn
A 2 n
o T 1Pi(x3i—1+p3i—l(x3i—2))) 1i(x;) dm,
(H >R[< 15, pi(xsi) E ()
Mi—1(x3i-1 + p3i—1(x3i-2 )))2
<C /( i—1(X3i-1)N3i—2(x3;—2) dmy .
H S F— M3i—1(X3i-1)M3i—2(x3i—2) dmy

For i € {1,...,k}, we can divide R? into two disjoint sets Q; and R?\ Q;, where

Qi = {(»x) € R*x+ p3i1(y) € [azi—1,b3i-1] V x € [azi—1,b3i-1]}

Then the 1M3;—1 ® N3;_» dmy measure of ; is less or equal to b3;—| —az;—| +2M3;_|
and

M3i—1(x+ p3i-1(y))
M3i-1(x)

<, (hx) €Q;.

Hence we obtain

/ (ﬂail (x3i—1 + P3i—1(x3i2

)))2
i—1(X3i— i—2(x3j—2)dm
M3t (3 1) M3i-1(%3i-1) M3i—2(x3i—2) dmy

R2

<rz(bgl;l—a3i71+2M3,;1)+0632i_17 i=1,....k

Consequently, we get

k
/ W31 2dusey < CTT (P (bsio1 — azio1 +2Mai—y) + 05, ).
R3k—1 0
This means that the Radon-Nikodym derivatives {h?"},c are uniformly bounded in
L? as desired. By Theorem 4.11, the operator Cy, where A is as in Example 5.4, is
densely defined and closed.

Now we prove that C4 is unbounded. This follows from the fact that the Radon-
Nikodym derivatives {h%7},cx are not uniformly bounded in L™ norm. Indeed, since
the image of the function R X [ag,bi] 3 (x,y) — y+ pr(x) € R contains the interval
[a,by] forevery k=3i—1,i€7Z,, we see that forevery i € N there are (£3;_2,%3,-1) €
R X [azi—1,b3;—1] such that

M3i—1(X3i-1 + pai-1(£3i-2)) .
N3i—1(£3i-1)
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This and properties of p;’s and p;’s imply that for every fixed x3;,4; € R we have

M3i—1(X3i-1 + p3i—1(X3i—2)) M3i (X3 + P3i(x3i-1))M3it-1 (X301 + P3ig1(x3:))

>r
M3i—1 (£3i-1)M3i (x3) M3i1 (X3041)

for some sufficiently small x3; < O, for every i € N. As a consequence, for every i € N
we have

(M®...®N3i11) OAgi}rl(x)
(M®...@N3i11)(x)
N1 (x1) M2 (2 + pa(x1)) -+ Maiv1 (3141 + paiv1(x3i))
m(x)m2(x2) -+ M3ig1 (X3041)

A .
€8S SUp 31 N3 (x) = ess sup | cpsiti

i
>r

b

= €SS SUP 3t

which proves our claim.

6. Appendix

In this appendix we provide {¢;}ien, {Mi}ien, {pi}ien, {azi-1}ien, {b3i-1}ien
and {@3;_1 }ien satisfying conditions (i)-(x) of Examples 5.4 and 5.8.

Let us begin with a decreasing sequence {@;}ieny C (1,00) such that [Teny i <
eo. Choose {fB3i—1}ien C (0,00) so that [Ticn(B3i—1+ 03;_,) < o. Now, to obtain all
objects required in Example 5.4 we proceed in steps.

Step 1. For i € N, we set M; =27'(1 — ;') and p;(x) = o; " for x € R with
nM; < |x| < (n+1)M;, n€Z,.

It is elementary to verify that {M;};cny and {p;}ien as in Step 1 satisfy require-
ments (i)-(iv) of Example 5.4. Observe that {M;},cy is decreasing. Let r € R satisfy
r>Jlienoi. Fix i e N.

Step 2. If 3r*Ms;_1 > f3;_1 , then we choose k € N such that 3k~ 'r2M3;_| < Bsi_1
and substitute M, by Mk~ forall n>1i, leaving p,’s as they were. If 3r2M3i_ 1 <
Bsi—1, then we skip any substitutions and go directly to the next step.

Step 3. Take azi—1 =0 and any b3;—; € (O,M3i_1). Let ¢3;—1: [a3i_1,b3i_1] —
(0,0) be any continuous function such that ¢3;_1(0) = 1, and ¢3;—;(b3;—;) = r, and
(x) of Example 5.8 holds.

By elementary calculations we verify that {; }ien, {Pi}ien, {Mi}ien, {a@3i-1}ien,
{b3i—1}ien and {03, }ien satisfy conditions (i)-(x) of Examples 5.4 and 5.8.

It is possible that for some i € N, condition 1n3;—; < 1 does not hold (this is possi-
ble if SUpcia, | by ) $3i-1 (x) > 1). If this is the case, then another slight modification
is needed. This may be done in various way. Below we propose one based on the
construction above.

Step 4. If 8 :=SUP,c [y, | by, $3i—1(x) > 1, then there exists xo > 0 such that 1 =
x0+ 87! [ Mai—1(t)my (dr). The modified n3;_1, which satisfies all the requirements,
has the form

6_11‘[3,',1(1‘) fort <O,

Mi—1(t) =< 1 forz € [0,xp],
5717731'_10—)60) fort > xop.
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