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Abstract. The Sturm-Liouville (S-L) problems with coupled boundary conditions and transmis-
sion conditions are investigated. By defining a new Hilbert space which is related to the trans-
mission conditions, the self-adjointness of the S-L problems in this associated Hilbert space is
proved, and the asymptotic behavior of eigenvalues and eigenfunctions of the problem are de-
scribed. We also give the condition for λ being the eigenvalue of the S-L problems with coupled
boundary conditions.

1. Introduction

Sturm-Liouville (S-L) problems with transmission conditions, i.e. S-L operators
with discontinuity conditions inside the interval appear in mathematics, mechanics,
physics and in some other applications. These problems have been considered in many
publications [3, 4, 5, 6, 7, 12, 16], however, these publications are only restricted in the
separated boundary conditions. The self-adjointness of the S-L problems with coupled
boundary conditions, as the special two-interval problems, are studied in [10]. Hence
in this paper, we consider not only the self-adjointness of the S-L problems with cou-
pled boundary conditions, but some other problems of the S-L problems with coupled
boundary conditions and transmission conditions. We discuss the asymptotic behavior
of eigenvalues and eigenfunctions of the S-L problem with coupled boundary condi-
tions and transmission conditions, and give the condition for λ being the eigenvalue of
the S-L problems with coupled boundary conditions.

Consider the differential equation

ly := −y′′ +q(x)y = λy, x ∈ J = [−1,0)∪ (0,1], (1.1)

with the coupled boundary conditions

AY (−1)+Y(1) = 0, Y (±1) =
(

y(±1)
y′(±1)

)
, (1.2)
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and the transmission conditions

KY (0−)+Y(0+) = 0, Y (0±) =
(

y(0±)
y′(0±)

)
, (1.3)

where λ is complex eigenparameter, 0 is the inner discontinuity point; A,K are 2×2
matrices

A = eiγ
(

α1 α2

α3 α4

)
, K =

(
k11 k12

k21 k22

)
, (1.4)

with −π � γ � π , α1α4 −α2α3 > 0, k11k22 − k12k21 > 0; and the matrices (A,−I) ,
(K,−I) have full ranks, I is the 2× 2 identity matrix; q ∈ L(J,R). Note that the
conditions are minimal in the sense that it is necessary and sufficient for all initial value
problems of the equation (1.1) to have unique solutions on J ([9, 18]); α j ( j = 1,2,3,4)
and kmj (m, j = 1,2) are real numbers.

The organization of this paper is as follows: After the Introduction in Section 1, we
prove the self-adjointness of the S-L problems with the coupled boundary conditions
and transmission conditions in Section 2. In Section 3, we discuss the fundamental
solutions of the differential equation (1.1) with the transmission conditions, and give
the condition for λ being the eigenvalue of the S-L problems with coupled boundary
conditions. Finally, the asymptotic formulas for eigenvalues and eigenfunctions of the
S-L problems (1.1)–(1.4) are obtained in Section 4.

2. The self-adjoint operator

Let h = detK, where K is the coefficient matrix in the transmission conditions
(1.3), (1.4). Define a new inner product in L2(J) as follows:

〈 f ,g〉 = h
∫ 0

−1
f1g1dx+

∫ 1

0
f2g2dx, for f ,g ∈ L2(J), (2.1)

where f1 = f (x) |[−1,0), f2 = f (x) |(0,1] . It is easy to verify that (L2(J),〈·, ·〉) is a Hilbert
space. For simplicity, we denote it by H, and the norm induced by the inner product
is denoted by ‖ ·‖H . Now we consider the Sturm-Liouville problems (1.1)–(1.4) in the
associated Hilbert space H .

The operator LM related to the Sturm-Liouville problems (1.1)–(1.4) is defined by

D(LM) = {y ∈ H|y1,y
′
1 ∈ ACloc[−1,0),y2,y

′
2 ∈ ACloc(0,1], ly ∈ H

and KY (0−)+Y(0+) = 0},

LMy = ly,y ∈ D(LM),

where ACloc[−1,0) and ACloc(0,1] denote the set of complex-valued absolutely con-
tinuous functions on whole compact subintervals of [−1,0) and (0,1], respectively.
The operator L0 related to the Sturm-Liouville problems (1.1)–(1.4) is defined by

D(L0) = { y ∈ D(LM)|y(−1) = y′(−1) = y(1) = y′(1) = 0},
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L0y = ly, y ∈ D(L0).

The S-L operator L is defined by

D(L) = { y ∈ D(LM)|AY (−1)+Y(1) = 0},
Ly = ly, y ∈ D(L).

LEMMA 2.1. D(L) is dense in H.

Proof. Let C̃∞
0 be the set of all functions defined by

ϕ(x) =

{
ϕ1(x) x ∈ [−1,0),
ϕ2(x) x ∈ (0,1],

(2.2)

where ϕ1(x) ∈C∞
0 [−1,0), ϕ2(x) ∈C∞

0 (0,1]. Obviously C̃∞
0 ⊂ D(L).

Next, for proving D(L) is dense in H, we show that C̃∞
0 is dense in H. Let f be

a function in L2(J) with f (x) = f1(x) , x ∈ [−1,0), and f (x) = f2(x) , x ∈ (0,1]. Since
C∞

0 [−1,0) is dense in L2[−1,0) as Theorem 2.19 in [1], for f1 ∈ L2[−1,0), there exists
a function g1 ∈C∞

0 [−1,0) such that

h
∫ 0

−1
| f1(x)−g1(x)|2dx <

ε
2
.

Similarly, for f2 ∈ L2(0,1], there exists a function g2 ∈C∞
0 (0,1] such that

∫ 1

0
| f2(x)−g2(x)|2dx <

ε
2
.

Then for any f ∈ H and ε > 0, there exists g ∈ C̃∞
0 with

g(x) =

{
g1(x) x ∈ [−1,0),
g2(x) x ∈ (0,1],

such that

‖ f −g‖2
H = h

∫ 0

−1
| f1(x)−g1(x)|2dx+

∫ 1

0
| f2(x)−g2(x)|2dx < ε,

where h = detK. Thus, C̃∞
0 is dense in H. Therefore D(L) is dense in H. �

The next theorem shows that the operator L defined by the S-L problems (1.1)–
(1.4) is self-adjoint.

THEOREM 2.2. If the matrices A and K satisfy

AEA∗ = hE, KEK∗ = hE,

with E =
(

0 −1
1 0

)
, then the operator L is self-adjoint.
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Proof. Firstly, we prove the operator L is symmetric. For any f ,g ∈ D(L), by
twice partial integrating

〈l f ,g〉 =h
∫ 0

−1
(l f )gdx+

∫ 1

0
(l f )gdx (2.3)

=〈 f , lg〉+hW( f ,g,0−)−hW( f ,g,−1)−W( f ,g,0+)+W( f ,g,1),

where W ( f ,g,x) = f (x)g′(x)− f ′(x)g(x). Since the matrices A,K satisfy AEA∗ = hE,
KEK∗ = hE, it follows that

α1α4 −α2α3 = h, k11k22− k12k21 = h.

From the transmission conditions (1.3), we get

W ( f ,g,0+) = f (0+)g′(0+)− f ′(0+)g(0+) (2.4)

= (k11 f (0−)+ k12 f ′(0−))(k21g(0−)+ k22g′(0−))

− (k21 f (0−)+ k22 f ′(0−))(k11g(0−)+ k12g′(0−))

= (k11k22− k12k21)( f (0−)g′(0−)− f ′(0−)g(0−)) = hW ( f ,g,0−).

And from the boundary conditions (1.2), we get

W ( f ,g,1) =(α1e
iγ f (−1)+ α2e

iγ f ′(−1))(α3e
−iγg(−1)+ α4e

−iγg′(−1)) (2.5)

+(α3e
iγ f (−1)+ α4e

iγ f ′(−1))(α1e
−iγg(−1)+ α2e

−iγg′(−1))

=(α1α4 −α2α3)( f (−1)g′(−1)− f ′(−1)g(−1))
=hW( f ,g,−1).

By using (2.4), (2.5), the equation (2.3) becomes

〈l f ,g〉 = 〈 f , lg〉. (2.6)

This means that the operator L is symmetric. Next we prove the operator L is self-
adjoint.

We show that if 〈l f ,g〉 = 〈 f ,w〉 for f ∈ D(L), then g ∈ D(L) and lg = w. Since
〈l f ,g〉 = 〈 f ,w〉 for f ∈ C̃∞

0 ⊂ D(L), by the classical S-L theory there exist g1,g′1 ∈
ACloc[−1,0) and g2,g′2 ∈ ACloc(0,1] such that lg∈H and w = lg, where g(x) = g1(x)
for x ∈ [−1,0), and g(x) = g2(x) for x ∈ (0,1]. In the following we will prove that g
satisfy the boundary conditions (1.2) and the transmission conditions (1.3).

Since 〈l f ,g〉 = 〈 f ,w〉, we have

〈l f ,g〉 =h
∫ 0

−1
f lgdx+

∫ 1

0
f lgdx.

And by the integration by parts, we have

〈l f ,g〉 =h
∫ 0

−1
f lgdx+

∫ 1

0
f lgdx+hW( f ,g,0−)−hW( f ,g,−1)

−W( f ,g,0+)+W( f ,g,1).
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Hence

hW ( f ,g,0−)−hW( f ,g,−1)−W( f ,g,0+)+W( f ,g,1) = 0. (2.7)

By the Naimark-Patching Lemma, there exists a function f ∈ D(L) such that
f (0−) = f ′(0−) = f (0+) = f ′(0+) = 0, and f (−1) = α2e−iγ , f ′(−1) = −α1e−iγ ,
f (1) = 0, f ′(1) = −h. Substituting above into (2.7), we have

α1e
iγg(−1)+ α2e

iγg′(−1)−g(1) = 0.

If f (−1)= α4e−iγ , f ′(−1)=−α3e−iγ , f (1) = h , f ′(1)= 0, then from (2.7) we obtain

α3e
iγg(−1)+ α4e

iγg′(−1)−g′(1) = 0.

Hence the function g satisfies the boundary conditions (1.2).
Similarly, choosing a function f ∈ D(L) with f (−1) = f ′(−1) = f (1) = f ′(1) =

0, and f (0−) = k12 , f ′(0−) = −k11 , f (0+) = 0, f ′(0+) = −h, then (2.7) becomes

k11g(0−)+ k12g
′(0−)−g(0+) = 0.

By choosing f (0−) = k22 , f ′(0−) = −k21 , f (0+) = h , f ′(0+) = 0, we obtain

k21g(0−)+ k22g
′(0−)−g(0+) = 0.

Hence g satisfies the transmission conditions (1.3). The proof is completed. �

3. The basic solutions and their asymptotic approximations

Below, we consider the S-L problems (1.1)–(1.4) with the conditions

AEA∗ = hE, KEK∗ = hE.

That is, the S-L operator L generated by the S-L problems (1.1)–(1.4) is self-adjoint.
Define the fundamental solution

φ(x,λ ) =
{

φ1(x,λ ), x ∈ [−1,0),
φ2(x,λ ), x ∈ (0,1],

of the differential equation (1.1), which satisfies

y(−1) = 1, y′(−1) = 0,

and the transmission conditions (1.3). By virtue of Theorem 1.5 in [14], there is a
unique solution φ1(x,λ ) for each λ ∈ C, which is an entire function of λ for each
fixed x ∈ [−1,0).

Define the other fundamental solution

χ(x,λ ) =
{

χ1(x,λ ), x ∈ [−1,0),
χ2(x,λ ), x ∈ (0,1],
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of the differential equation (1.1), which satisfies

y(−1) = 0, y′(−1) = 1,

and the transmission conditions (1.3). Similarly, there is a unique solution χ1(x,λ )
which is an entire function of λ for each fixed x ∈ [−1,0).

It is well known, from the ordinary linear differential equation theory, the Wron-
skian W (φ j(x,λ ), χ j(x,λ )) is independent of the variable x. Let

ω j(λ ) := W (φ j(x,λ ),χ j(x,λ )) =
∣∣∣∣ φ j(x,λ ) χ j(x,λ )
φ ′

j(x,λ ) χ ′
j(x,λ )

∣∣∣∣ ,
then we have

ω1(λ ) = ω1(λ )|x=−1 = 1,

ω2(λ ) = ω2(λ )|x=0+ =
∣∣∣∣ φ2(0+,λ ) χ2(0+,λ )
φ ′

2(0+,λ ) χ ′
2(0+,λ )

∣∣∣∣
=

∣∣∣∣ k11φ1(0−,λ )+ k12φ ′
1(0−,λ ) k11χ1(0−,λ )+ k12χ ′

1(0−,λ )
k21φ1(0−,λ )+ k22φ ′

1(0−,λ ) k21χ1(0−,λ )+ k22χ ′
1(0−,λ )

∣∣∣∣ = hω1(λ ) = h.

LEMMA 3.1. Let

y(x,λ ) =
{

y1(x,λ ), x ∈ [−1,0),
y2(x,λ ), x ∈ (0,1],

be a solution of the equation (1.1), then the solution can be expressed in the following
form

y(x,λ ) =
{

c1φ1(x,λ )+ c2χ1(x,λ ), x ∈ [−1,0),
d1φ2(x,λ )+d2χ2(x,λ ), x ∈ (0,1]. (3.1)

If y(x,λ ) satisfies the transmission conditions (1.3), then c1 = d1,c2 = d2.

Proof. Since y(x,λ ) satisfies the transmission conditions (1.3), i.e.

k11(c1φ1(0−,λ )+ c2χ1(0−,λ ))+ k12(c1φ ′
1(0−,λ )+ c2χ ′

1(0−,λ ))
− (d1φ2(0+,λ )+d2χ2(0+,λ )) = 0,

k21(c1φ1(0−,λ )+ c2χ1(0−,λ ))+ k22(c1φ ′
1(0−,λ )+ c2χ ′

1(0−,λ ))
− (d1φ ′

2(0+,λ )+d2χ ′
2(0+,λ )) = 0.

Since φ ,χ satisfy the transmission conditions, the last equation system becomes{
(c1 −d1)φ2(0+,λ )+ (c2−d2)χ2(0+,λ ) = 0,
(c1 −d1)φ ′

2(0+,λ )+ (c2−d2)χ ′
2(0+,λ ) = 0.

Since the determinant of the coefficient matrix of the equation system is∣∣∣∣φ2(0+,λ ) χ2(0+,λ )
φ ′

2(0+,λ ) χ ′
2(0+,λ )

∣∣∣∣ = ω2(λ ) 
= 0,
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we get c1 = d1,c2 = d2. �
Let

Φ j(x,λ ) =
(

φ j(x,λ ) χ j(x,λ )
φ ′

j(x,λ ) χ ′
j(x,λ )

)
, j = 1,2,

and let

Φ(x,λ ) =
{

Φ1(x,λ ), x ∈ [−1,0),
Φ2(x,λ ), x ∈ (0,1]. (3.2)

Then we have the following theorem.

THEOREM 3.2. Let λ0 ∈ C. Then λ0 is the eigenvalue of the S-L problems (1.1)–
(1.4) if and only if

Δ(λ0) := det(A−Φ(1,λ0)) = 0,

where A = eiγ
(

α1 α2

α3 α4

)
.

Proof. Let λ0 be an eigenvalue of the S-L problems (1.1)–(1.4) and y(x,λ0) the
corresponding eigenfunction. From Lemma 3.1, there exist c1,c2 such that

y(x,λ0) =
{

c1φ1(x,λ0)+ c2χ1(x,λ0), x ∈ [−1,0),
c1φ2(x,λ0)+ c2χ2(x,λ0), x ∈ (0,1], (3.3)

where at least one of the constants c1,c2 is not zero. Substituting (3.3) into the bound-
ary conditions (1.2) we obtain

eiγ
(

α1 α2

α3 α4

)(
c1φ1(−1,λ0)+ c2χ1(−1,λ0)
c1φ ′

1(−1,λ0)+ c2χ ′
1(−1,λ0)

)
−

(
c1φ2(1,λ0)+ c2χ2(1,λ0)
c1φ ′

2(1,λ0)+ c2χ ′
2(1,λ0)

)
= 0,

that is, [
eiγ

(
α1 α2

α3 α4

)
−

(
φ2(1,λ0) χ2(1,λ0)
φ ′

2(1,λ0) χ ′
2(1,λ0)

)](
c1

c2

)
= 0.

Since at least one of the constants c1 , c2 is not zero, we obtain

Δ(λ0) = det(A−Φ(1,λ0)) = 0, (3.4)

where A = eiγ
(

α1 α2

α3 α4

)
with −π < γ � π and α1α4 −α2α3 > 0.

Conversely, if det(A−Φ(1,λ0)) = 0, then the equation

(A−Φ(1,λ0))
(

d1

d2

)
= 0,

has a nonzero solution (c′1,c
′
2). Let

y(x,λ0) =
{

c′1φ1(x,λ0)+ c′2χ1(x,λ0), x ∈ [−1,0),
c′1φ2(x,λ0)+ c′2χ2(x,λ0), x ∈ (0,1]. (3.5)
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Then y(x,λ0) is a nonzero solution of the equation (1.1) and satisfies both boundary
and transmission conditions (1.2), (1.3). Hence λ0 is an eigenvalue of the S-L problems
(1.1)–(1.4), and y(x,λ0) is the corresponding eigenfunction. �

In order to give the asymptotic formulas for eigenvalues and eigenfuntions, we
consider the asymptotic approximations of the solutions of φ and χ .

LEMMA 3.3. Let λ = s2 with s = σ + it, then the following asymptotic formulas
for φ1 , χ1 hold as |λ | → ∞ :

dm

dxm φ1(x,λ ) =
dm

dxm coss(x+1)+O(|s|m−1e|t|(x+1)), (3.6)

dm

dxm χ1(x,λ ) =
1
s

dm

dxm sins(x+1)+O(|s|m−2e|t|(x+1)), m = 0,1. (3.7)

Proof. The asymptotic formulas for φ1(x,λ ) , χ1(x,λ ) follow immediately from
the similar formulas of Lemma 1.7 in [14], hence is omitted here. �

Next, we give the asymptotic formulas for φ2(x,λ ) and χ2(x,λ ) which read as
the following lemmas.

LEMMA 3.4. Let λ = s2 with s = σ + it, then φ2(x,λ ) has the following asymp-
totic formulas:

1. If k12 
= 0, then

dm

dxm φ2(x,λ ) = −k12ssin s
dm

dxm cossx+O(|s|me|t|x), (3.8)

2. if k12 = 0, then

dm

dxm φ2(x,λ ) = k11 coss
dm

dxm cossx− k22 sin s
dm

dxm sin sx+O(|s|m−1e|t|x), (3.9)

as |λ | → ∞, m = 0,1.

Proof. Let λ = s2 with s = σ + it. Then

φ2(x,λ ) = (k11φ1(0−,λ )+ k12φ ′
1(0−,λ ))cossx+

1
s
(k21φ1(0−,λ ) (3.10)

+ k22φ ′
1(0−,λ ))sinsx+

1
s

∫ x

0
sin[s(x− z)]q2(z)φ2(z,λ )dz.

For m = 0, substituting (3.6) into (3.10), we have

φ2(x,λ ) = −k12ssin scossx+
(
k11 cosscossx− k22 sinssinsx

)
(3.11)

+
1
s
k21 cosssinsx+

1
s

∫ x

0
sin[s(x− z)]q2(z)φ2(z,λ )dz+O

(
1
|s|2 e|t|(x+1)

)
.



ASYMPTOTIC BEHAVIOR OF EIGENVALUES AND EIGENFUNCTIONS OF S-L PROBLEMS 885

Multiplying (3.11) by |s|−1e−|t|x and by denoting F2(x,λ ) = |s|−1e−|t|xφ2(x,λ ), (3.11)
becomes

F2(x,λ ) = −k12e
−|t|x sinscossx+

1
|s|e

−|t|x
(
k11 cosscossx− k22 sinssinsx

)
(3.12)

+
1
|s|2 k21e

−|t|x cosssinsx+
1
|s|2

∫ x

0
sin[s(x− z)]q2(z)F2(z,λ )e−|t|(x−z)dz

+O

(
1
|s|3 e|t|

)
.

Let μ(λ ) = max
0<x�1

|F2(x,λ )|, then

μ(λ ) � |k12|+ 1
|s| (|k11|+ |k22|)+

M0

|s|2 , (3.13)

for some M0 > 0. Consequently, μ(λ ) = O(1) as |λ | → ∞ for k12 
= 0. Therefore

φ2(x,λ ) = O(|s|e|t|x), (3.14)

as |λ | → ∞. Substituting the asymptotic equality (3.14) into (3.11) gives (3.8) for m =
0.

Differentiating (3.11) and by the similar calculation, we obtain (3.8) for m = 1.

If k12 = 0, then μ(λ ) = O( 1
|s| ) as |λ | → ∞ from (3.13). Then φ2(x,λ ) = O(e|t|x)

as |λ | → ∞. Substituting the asymptotic equality into (3.11) gives (3.9) for m = 0.
Similarly, we can obtain the formula for the case m = 1. �

LEMMA 3.5. Let λ = s2 with s = σ + it, then χ2(x,λ ) has the following asymp-
totic formulas:

1. If k12 
= 0, then

dm

dxm χ2(x,λ ) = k12 coss
dm

dxm cossx+O(|s|m−1e|t|x), (3.15)

2. if k12 = 0, then

dm

dxm χ2(x,λ ) =
1
s

(
k11 sins

dm

dxm cossx+ k22 coss
dm

dxm sinsx
)

+O(|s|m−2e|t|x),

(3.16)

as |λ | → ∞, m = 0,1.

Proof. The proof is similar to the one of Lemma 3.4, hence it is omitted. �
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4. The asymptotic formulas for eigenvalues and eigenfunctions

The eigenvalues of the separated boundary value problems with transmission con-
ditions at an interior point of the interval are studied in [17]. Some other authors also
considered the eigenvalues and eigenfunctions of the S-L problems with transmission
conditions, however, the boundary conditions are not coupled ([15]).

In this section, we will obtain the asymptotic formulas for eigenvalues and eigen-
functions of the S-L problems (1.1)–(1.4) by using the asymptotic expressions of the
fundamental solutions.

The asymptotic formulas of φ2(x,λ ) and χ2(x,λ ) are obtained in Lemmas 3.4
and 3.5. Substituting the asymptotic formulas of the solutions into the representation of
Δ(λ ) we can establish the following theorem.

THEOREM 4.1. Let λ = s2 with s = σ + it, then Δ(λ ) has the following asymp-
totic formulas:

1. If k12 
= 0 , α2 
= 0, then

Δ(λ ) = α2k12s
2eiγ sin2 s+O(|s|e|t|).

2. If k12 
= 0 , α2 = 0, then

Δ(λ ) =
1
2
k12se

iγ (α1 + α4)sin2s+O(e|t|).

3. If k12 = 0 , α2 
= 0, then

Δ(λ ) = −1
2

α2se
iγ (k11 + k22)sin2s+O(e(|t|).

4. If k12 = 0 , α2 = 0, then

Δ(λ ) =α1e
iγ [k22 cosscoss− k11 sinssin s]−α4e

iγ [k11 cosscoss− k22 sinssins]

+O(|s|−1e|t|).

Proof. Substituting the asymptotic formulas of φ2(x,λ ) and χ2(x,λ ) which are
given as in Lemmas 3.4, 3.5 into Δ(λ ) = det(A−Φ(1,λ0)), we have

Δ(λ ) = α2k12s
2eiγ sin2 s+

1
2
k12se

iγ(α1 + α4)sin2s+O(e|t|),

for k12 
= 0 and

Δ(λ ) =− 1
2

α2se
iγ(k11 + k22)sin2s−α1e

iγ [k22 cosscoss− k11 sinssin s]

−α4e
iγ [k11 cosscoss− k22 sinssin s]+O(|s|−1e|t|),
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for k12 = 0. By some calculations similar to the proof of Lemma 3.4, we obtain four
distinct kinds of asymptotic formulas of Δ(λ ), which are classified according to k12

and α2. �
Now we can obtain the asymptotic approximation formulas for eigenvalues of the

operator L defined by S-L problems (1.1)–(1.4). Since the eigenvalues of the operator
are zeros of the function Δ(λ ), we can find the asymptotic formulas for the eigenvalues
using the asymptotic formulas of Δ(λ ) and the well known Rouche’s theorem. Further-
more, the asymptotic formulas of the corresponding eigenfunctions can be obtained by
using the asymptotic formulas of eigenvalues.

THEOREM 4.2. Let λ = s2 with s = σ + it, then the following asymptotic for-
mulas hold for eigenvalues and eigenfunctions of the operator L defined by the S-L
problems (1.1)–(1.4):

1. If k12 
= 0 , α2 
= 0, then

√
λn = sn = (n−1)π +O

(
1
n

)
,

and

u(x,λn) =

{
α4k12sn cossn(x+1)+heiγ sin sn(x+1)+O( 1

n), x ∈ [−1,0),

(−1)n−1k12snheiγ cossnx+O( 1
n), x ∈ (0,1].

2. If k12 
= 0 , α2 = 0, then for α1 = α4,√
λn = sn =

n−1
2

π +O

(
1
n

)
.

And if n is even,

u(x,λn) =

{
heiγ cossn(x+1)+ α1k12sn sin sn(x+1)+O( 1

n), x ∈ [−1,0),

O(1), x ∈ (0,1];

if n is odd,

u(x,λn) =

{−k12 cossn(x+1)+ α1eiγ sinsn(x+1)+O( 1
n), x ∈ [−1,0),

(−1)
n−1
2 α1k12sneiγ cossnx+O( 1

n), x ∈ (0,1].

3. If k12 = 0 , α2 
= 0, then for k11 = k22√
λn = sn =

n−1
2

π +O

(
1
n

)
.

And if n is even,

u(x,λn)=

{
α2k11sn cossn(x+1)+(heiγ+α4k11)sin sn(x+1)+O( 1

n ), x ∈ [−1,0),

−α2k2
11sn sinsnx, x ∈ (0,1];
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if n is odd,

u(x,λn)=

{
α2k11sn cossn(x+1)+(heiγ−α4k11)sin sn(x+1)+O( 1

n ), x ∈ [−1,0),

(−1)
n−1
2 α2k2

11sn cossnx+O( 1
n), x ∈ (0,1].

4. If k12 = 0 , α2 = 0, then for α1 = α4

√
λn = sn =

2n−1
4

π +O

(
1
n

)
,

and

u(x,λn)=

{
(−1)nk11sn cossn(x+1)+ α1eiγ sinsn(x+1)+O( 1

n), x ∈ [−1,0),

(−1)nk2
11 cossn(x+1)+ α1k11eiγ sinsn(x+1)+O( 1

n), x ∈ (0,1].

Proof. Let λ = s2 with s = σ + it. We will use a similar method mentioned in
[2, 8, 11]. From Theorem 4.1, for k12 
= 0, α2 
= 0,

Δ(λ ) = α2k12s
2eiγ sin2 s+O(|s|e|t|).

Denote Δ∗(λ ) = α2k12s2eiγ sin2 s. Let

Γ′
n =

{
λ = s2 = (σ + it)2 | |σ | =

(
n+

1
2

)
π , 0 < t <

(
n+

1
2

)
π
}

,

Γ′′
n =

{
λ = s2 = (σ + it)2 | |σ | �

(
n+

1
2

)
π , t =

(
n+

1
2

)
π
}

.

By applying the Rouche’s Theorem in [13] and some calculations, we can get that Δ(λ )
and Δ∗(λ ) have the same zeros interior of Γn = Γ′

n ∪Γ′′
n . Yet Δ∗(λ ) has the zeros

02,π2,(2π)2, · · · ,(nπ)2,

interior of Γn. Therefore Δ(λ ) has a sequence of zeros:

√
λn = sn = (n−1)π +O

(
1
n

)
.

Let

u(x,λn) =
{

cn,1φ1(x,λn)+ cn,2χ1(x,λn), x ∈ [−1,0),
cn,1φ2(x,λn)+ cn,2χ2(x,λn), x ∈ (0,1], (4.1)

where at least one of the constants cn,1 , cn,2 is not zero. Then u(x,λn) is the eigen-
function of the S-L problems (1.1)–(1.4) corresponding to the eigenvalue λn. φ1 and
χ1 satisfy the conditions

y(−1) = 1, y′(−1) = 0 and y(−1) = 0, y′(−1) = 1,
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respectively. Substituting (4.1) into the boundary condition (1.2), we have{
cn,1(α1eiγ −φ2(1,λn))+ cn,2(α2eiγ − χ2(1,λn)) = 0,
cn,1(α3eiγ −φ ′

2(1,λn))+ cn,2(α4eiγ − χ ′
2(1,λn)) = 0.

Since the determinant of the coefficients Δ(λ ) = 0, the equation system at least
have a non-zero solution (cn,1,cn,2). And from the values of φ2 , χ2, we have{

cn,1α1eiγ + cn,2(α2eiγ − k12) = 0,
cn,1α3eiγ + cn,2α4eiγ = 0.

Multiplying the first and second equation by α4 and −α2 respectively, and then adding
these new two equations together, we obtain

cn,1heiγ + cn,2α4k12 = 0

Let cn,2 = heiγsn, then cn,1 = α4k12sn. Hence (4.1) becomes

u(x,λn) =

{
α4k12sn cossn(x+1)+heiγ sinsn(x+1)+O( 1

n), x ∈ [−1,0),

(−1)n−1k12snheiγ cossnx+O( 1
n), x ∈ (0,1].

The other cases can be proved in the same way. �

Acknowledgement. The authors thank the reviewers for their careful reading of
the paper and for the constructive comments which have led to the improvement of
the presentation of the paper. This work is supported by the National Natural Science
Foundation of China (11161030, 11301259, 11401325) and the Doctoral Science Foun-
dation of Hubei University for Nationalities (4148009).

RE F ER EN C ES

[1] R. A. ADAMS AND J. J. F. FOURNIER, Sobolev Spaces, Volume 140, Second Edition (Pure and
Applied Mathematics), 2003.

[2] N. ALTINISIK, M. KADAKAL, O. SH. MUKHTAROV, Eigenvalues and eigenfunctions of discontinu-
ous Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Acta Mathemat-
ica Hungarica, 102 (2004), 159–193.

[3] N. ALTINISIK, O. SH. MUKHTAROV, M. KADAKAL, Asymptotic formulas for eigenfunctions of the
Sturm-Liouville problems with eigenvalue parameter in the boundary conditions, Kuwait J. Sci. 39
(1A) (2012), 1–17.

[4] R. KH. AMIROV, Eigenvalues and normalized eigenfunctions of discontinuous Sturm-Liouville prob-
lem with transmission conditions, J. Math. Anal. Appl., 317 (1) (2006), 163–176.

[5] K. AYDEMIR, O. SH. MUKHTAROV, Green’s function method for self-adjoint realization of
boundary-value problems with interior singularities, Abstract and Applied Analysis, (2013), Article
ID 503267, 7 pages.

[6] K. AYDEMIR, Boundary value problems with eigenvalue-dependent boundary and transmission con-
ditions, Boundary value problems, 1 (2014), 131.

[7] E. BAIRAMOV, E. UGURLU, The determinants of dissipative Sturm-Liouville operators with trans-
mission conditions, Mathematical and Computer Modelling, 53 (2011), 805–813.
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