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SOME EXAMPLES OF EXTREMAL

TRIPLES OF COMMUTING CONTRACTIONS

EDWARD J. TIMKO

(Communicated by T. Ando)

Abstract. The collection C3 of all triples of commuting contractions forms a family in the sense

of Agler, and so has an “optimal” model ∂C3 generated by its extremal elements. A given

T ∈ C3 is extremal if every X ∈ C3 extending T is an extension by direct sum. We show that

many of the known examples of triples in C3 that fail to have coisometric extensions are in fact

extremal.

1. Introduction

Given n∈N , we denote by Cn the class of all n -tuples of commuting contractions.

Observe that Cn is a family in the sense of Alger [1], which is to say that:

(i) Cn is closed with respect to direct sums. That is, given A( j) ∈ Cn for every j ∈ J ,

we have
(

⊕

j∈J A
( j)
i

)n

i=1
∈ Cn ;

(ii) given A ∈ Cn and a unital ∗ -representation π of the unital C∗ -algebra generated

by A1, . . . ,An , then (π(Ai))
n
i=1 ∈ Cn ; and

(iii) Cn is hereditary. That is, if A ∈ Cn and if M is an invariant subspace of H for

A1, . . . ,An , then (Ai|M )n
i=1 ∈ Cn .

An element T ∈ Cn is said to be extremal if whenever S ∈ Cn is an extension of T ,

then S is an extension by direct sum. That is, if N is invariant for S so T = S|N ,

then N is a reducing subspace for S . We say that S is a trivial extension of T if S is

an extension of T by direct sum.

Let B ⊆ Cn . We say that B is a model for Cn if

(i) B is closed with respect to direct sums and unital ∗ -representations; and

(ii) given T ∈ Cn acting a Hilbert space H , there exists S ∈ B having H as an

invariant subspace so that S|H = T .
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Lastly, the boundary of Cn , denoted by ∂Cn , is the smallest model for Cn . It follows

as a consequence of Proposition 5.9 and 5.10 in [1] that this family always exists and is

generated by the extremal elements of Cn .

In the case that n = 1,2, the boundary ∂Cn consists of all tuples of commuting

coisometries, a consequence of the work of Sz.-Nagy for n = 1 and Andô for n = 2

[11]. For n > 2 this characterization is no longer valid. It may well be the case that no

concrete description of the extremal elements of C3 or ∂C3 is possible. We show that

many of the known examples of triples in C3 that fail to have coisometric extensions

are in fact extremal.

Agler’s theory has seen some application. Dritschel and McCullough show in [4]

that if F denotes the family of contractive hyponormal operators, then ∂F = F . In

the same article, sufficient conditions are given for an n -hyponormal operator to be

extremal. In an article by Curto and Lee [3], it is shown that a weakly subnormal oper-

ator satisfying the conditions of [4] must be normal and so extremal for the collection

of all weakly subnormal operators. Dritschel, McCullough, and Woerdeman [6] give

a collection of equivalent conditions for a ρ -contraction (for ρ 6 2) to be extremal,

ultimately showing for ρ ∈ (0,1)∪ (1,2] that Cρ = ∂Cρ , with Cρ denoting the class

of ρ -contractions. In another article by Dritschel and McCullough [5] it is shown that

a family, in “Agler’s sense”, of representations of either an operator algebra or an op-

erator space has boundary representations, as related to the non-commutative Shilov

boundary. Finally, in [10] Richter and Sundberg apply Agler’s theory to the study of

row contractions and spherical contractions.

Here is an outline of the material found in this paper. In Section 2 we make some

observations that apply to any n -tuple of commuting contractions. While these results

are only applied in Section 5, they are general enough to merit separate exposition. In

Section 3 we study an n -tuple of Parrot [8], finding the n -tuple to be extremal if and

only if a certain subspace is trivial. In Section 4 we prove a triple of Crabb and Davie [9,

p. 23] is extremal in C3 . In Section 5 we examine a triple due to Varopoulos [9, p. 86]

and show that this triple is extremal only for a relatively narrow range of parameters.

We comment on another triple that has appeared in the literature. In [7] Lotto and

Steger find a triple of commuting, diagonalizable contractions that fail to obey the von

Neumann inequality. This triple does not appear to produce extremal elements so its

examination has been omitted from this paper.

Before closing this section, I would like to thank Hari Bercovici for his guidance

and the helpful criticism he provided in the preparation of this paper, and to thank the

referee for his helpful suggestions.

2. Some general remarks

Lacking a complete description of the boundary elements, we develop some tools

to tell us when certain elements are not extremal. For the first lemma, we use the

notation RanT :=
∨

i ranTi and KerT :=
⋂

i kerTi .

LEMMA 2.1. Let T ∈Cn operating on a Hilbert space H . If (Ran T )⊥∩KerT 6=
{0} , then T is not extremal.



SOME EXAMPLES OF EXTREMAL TRIPLES OF COMMUTING CONTRACTIONS 909

Proof. Let E := (Ran T )⊥∩KerT and V : E → H the inclusion map. Define X

on H ⊕E by

Xi :=

(

Ti V

0 0

)

i = 0,1, . . . ,n.

As TiV = 0 for each i , the Xi commute. Since VV ∗ is orthogonal to the range of each

Ti , it follows that TiT
∗

i +VV ∗ 6 1, and therefore each Xi is a contraction. Since E 6= 0,

Xi is a non-trivial extension. �

LEMMA 2.2. If T ∈ Cn satisfies mini ‖Ti‖ < 1 , then T is not extremal.

Proof. Consider the extension

Xi =

(

Ti δiTi

0 ηiTi

)

i = 0,1, . . . ,n

where δi,ηi ∈ [0,1] are to be determined. We want X to be in Cn . Note that

XiX j =

(

TiTj (δ j + δiη j)TiTj

0 ηiη jTiTj

)

.

and therefore XiX j = X jXi when either δ j + δiη j = δi + δ jηi or TiTj = 0 for each i, j .

It suffices to set ηi = 1− δi for each i .

Observe now that

X∗
i Xi =

(

T ∗
i Ti δiT

∗
i Ti

δiT
∗

i Ti (δ 2
i + η2

i )T ∗
i Ti

)

Setting βi := 1 + δ 2
i + η2

i , we easily see

‖Xi‖2 6
1

2

[

βi +
√

β 2
i −4η2

i

]

‖Ti‖2. (2.1)

To conclude the proof, we show that the δi can be chosen so that the right-hand side of

(2.1) is at most 1 for each i . This is equivalent to insisting

βi −‖Ti‖2η2
i 6

1

‖Ti‖2

or equivalently

δ 2
i +(1−‖Ti‖2)(η2

i −1) 6 ‖Ti‖2 +‖Ti‖−2 −2 =

{

1−‖Ti‖2

‖Ti‖

}2

.

Since (1−‖Ti‖2)(η2
i −1) 6 0, fix

δi = min

{

1,
1−‖Ti‖2

‖Ti‖

}

.

As ‖Ti‖ < 1 for some i we have δi > 0. �
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3. Parrot’s example

Parrott provided the first example of a triple of commuting contractions which has

no commuting coisometric extension ([8]; see also [11, p. 23]). Let U1, . . . ,Un be an

arbitrary n -tuple of unitaries operators on a Hilbert space H , and define

Ti :=

(

0 0

Ui 0

)

i = 1,2, . . . ,n (3.1)

acting on H ⊕H . It is easily checked that the Ti are commuting partial isometries,

and so T ∈ Cn . When the Ui do not commute “enough”, then T has no extension to

an n -tuple of commuting coisometries. In particular, if for some i 6= j the commuta-

tor [U−1
n Ui,U

−1
n U j] does not vanish, then T has no coisometric extension (here and

elsewhere [X ,Y ] = XY −YX ). We refer the reader to [11, p. 23] for details in the case

n = 3. A similar criterion determines when T is extremal.

PROPOSITION 3.1. Let T denote the Parrott n-tuple defined by unitaries U1, . . . ,Un

acting on a Hilbert space H . Then T is extremal if and only if

n
⋂

i, j=1

ker[U−1
n Ui,U

−1
n U j] = {0}.

Proof. An extension X of T takes the form

Xi =





0 0 Ai

Ui 0 Bi

0 0 Ci



 , i = 1,2, . . . ,n.

As Xi is contractive,

(

U∗
i

B∗
i

)

is also a contraction, and so Bi = 0 for each i . Therefore

X∗
i Xi =





1 0 0

0 0 0

0 0 A∗
i Ai +C∗

i Ci





and so Xi is a contraction if and only if A∗
i Ai +C∗

i Ci 6 1. Since

XiX j =





0 0 AiC j

UiU j 0 UiA j

0 0 CiC j



 i, j = 1,2, . . .n,

commutivity requires

AiC j = A jCi, UiA j = U jAi, [Ci,C j] = 0

for all i, j . Using the notation Wj = U−1
n U j for j = 1,2, . . . ,n , the second of these

implies A j = WjAn for each j and therefore

[Wi,Wj]An = 0, i, j = 1,2, . . . ,n.
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Define K =
⋂

i, j ker[Wi,Wj] . Thus ranAn ⊆ K . If K = 0, then An = 0 hence Ai = 0

for each i and therefore every extension X is by direct sum; T is extremal.

Conversely, suppose that K 6= {0} . Let An denote the canonical embedding of

K into H . Then

Xi =





0 0 WiAn

Ui 0 0

0 0 0



 , i = 1,2, . . . ,n

defines a non-trivial extension of T in Cn . �

REMARK 3.2. The conditions given by (3.1) seem to unfairly favor Un . The fa-

voritism is in fact superficial. While this can be seen as a corollary of the preceding

proposition, one may also directly show that
⋂n

i, j=1 ker[U−1
n Ui,U

−1
n U j] = {0} if and

only if
⋂n

i, j=1 ker[U−1
k Ui,U

−1
k U j] = {0} for some k = 1, . . . ,n .

REMARK 3.3. It should be noted that the condition in (3.1) can indeed be satisfied

by some tuple of operators. Consider g1,g2 , generators of the free group on two ele-

ments, acting by translation on ℓ2(F2) . Now consider the triple of unitaries (g1,g2,1) .

The intersection in (3.1) reduces to ker[g1,g2] = {0} .

4. The Crabb-Davie example

While Parrot’s example has no coisometric extension in Cn , it nevertheless obeys

the von Neumann inequality. That is, if p is an analytic polynomial in three variables,

then

‖p(T1,T2,T3)‖ 6 sup{|p(z1,z2,z3)| : 0 6 |z1|, |z2|, |z3| < 1}.

However, there are triples in C3 that do not satisfy the von Neumann inequality. A

construction of Crabb and Davie [9, p. 23] provides an example which consists of the

three 8×8-matrices,

Ti =

























0

δi1

δi2

δi3

−δi1 δi3 δi2

δi3 −δi2 δi1

δi2 δi1 −δi3

δi1 δi2 δi3 0

























i = 1,2,3,

where every non-specified entry is 0. These are commuting partial isometries and

TiT
∗

i = diag(0,δi1,δi2,δi3,1,1,1,1).

PROPOSITION 4.1. The Crabb-Davie triple is extremal.
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Proof. Let X ∈ C3 be an extension of T so

Xi =

(

Ti Ai

0 Bi

)

, i = 1,2,3,

where Ai ∈ L (H ,C8) and Bi ∈ L (H ) for some Hilbert space H . In order for Xi

to be a contraction, we need in particular that

TiT
∗

i + AiA
∗
i 6 1, i = 1,2,3.

This implies that ranAi ⊆ ran(1−TiT
∗

i ) . Since

1−TiT
∗

i = diag(1,1− δ1i,1− δ2i,1− δ3i,0,0,0,0),

we can express the Ai as column vectors whose entries linear functionals on H ;

A1 =

























η1

0

φ1

ψ1

0

0

0

0

























, A2 =

























η2

φ2

0

ψ2

0

0

0

0

























, A3 =

























η3

φ3

ψ3

0

0

0

0

0

























.

Notice that

XiX j =

(

TiTj TiA j + AiB j

0 BiB j

)

, i, j = 1,2,3.

Therefore [Xi,X j] = 0 for all i, j if and only if

[Bi,B j] = 0 TiA j + AiB j = TjAi + A jBi

for all i, j . The second series of equations can be expressed as equalities of certain

column vectors;

























η1 ◦B2

η2

φ1 ◦B2

ψ1 ◦B2

−φ2

ψ2

0

0

























=

























η2 ◦B1

φ2 ◦B1

η1

ψ2 ◦B1

ψ1

−φ1

0

0

























,

























η3 ◦B1

φ3 ◦B1

ψ3 ◦B1

η1

φ1

0

−ψ1

0

























=

























η1 ◦B3

η3

φ1 ◦B3

ψ1 ◦B3

−φ3

0

ψ3

0

























,

























η2 ◦B3

φ2 ◦B3

η3

ψ2 ◦B3

0

−ψ3

φ3

0

























=

























η3 ◦B2

φ3 ◦B2

ψ3 ◦B2

η2

0

φ2

−ψ2

0

























(4.1)

By stringing together equations from the 5th through 7th rows of (4.1), we find

ψ1 = −φ2 = ψ3 = −ψ1,



SOME EXAMPLES OF EXTREMAL TRIPLES OF COMMUTING CONTRACTIONS 913

ψ2 = −φ1 = φ3 = −ψ2.

Thus ψi = φi = 0 for all i . From the 2nd through 4th rows of (4.1)

η1 = φ1 ◦B2 = 0, η2 = φ2 ◦B1 = 0, η3 = φ3 ◦B1 = 0.

Thus Ai = 0 for each i , and so X is a trivial extension of T . �

REMARK 4.2. We take a moment to show that the Crabb-Davie example does

not satisfy the conditions of Lemma 2.1. Note that RanT = {0}⊕C
⊕7 and KerT =

{0}⊕7⊕C . Therefore (RanT )⊥∩KerT = {0} .

5. The Varopoulos example

We need to establish some notation. Let J be a set, and given α ∈ J and x ∈ ℓ2(J) ,

let x(α) denote the α -component of x . Noting that a linear operator from C to ℓ2(J)
is uniquely determined by its value at 1, we view the elements of ℓ2(J) as bounded

operators C → ℓ2(J) and the linear functionals on ℓ2(J) as bounded operators ℓ2(J)→
C , the operator adjoint x 7→ x∗ mapping between these. Given x,y ∈ ℓ2(J) we may now

write xy∗ for the rank one operator h 7→ 〈h,y〉x , and y∗x = 〈x,y〉 . Another operation

we define on ℓ2(J) is the conjugation

x(α) = x(α), α ∈ J.

Note that x∗y = y∗x .

Another triple that fails to obey the von Neumann inequality is provided by Varopou-

los [9, p. 86]. Define the Hilbert space H = C ⊕ ℓ2(J)⊕C and let x1,x2,x3 be

in the unit ball of ℓ2(J) . The Varopoulos example consists of the three operators

T1,T2,T3 ∈ L (H ) defined by

Ti =





0 0 0

xi 0 0

0 x∗i 0



 , i = 1,2,3. (5.1)

The Ti commute because x∗i x j = x∗jxi for i, j = 1,2,3. The identity

TiT
∗

i = diag(0,xix
∗
i ,‖xi‖2) (5.2)

implies ‖Ti‖ = ‖xi‖ 6 1 for each i , and so T ∈ C3 .

While each J and each triple x1,x2,x3 in the unit ball of ℓ2(J) define a T in C3 ,

only certain choices of J and (x1,x2,x3) produce an extremal triple. Before providing

triples that are extremal, we show that we may limit our attention to certain special

cases. One restriction we immediately make is to limit ourselves to ‖xi‖ = 1 for each

i . Indeed, Lemma 2.2 and (5.2) imply that T cannot be extremal if ‖xi‖ < 1 for some

i . Under this restriction (5.2) shows each Ti is a partial isometry.

Another immediate restriction we make is on the size of ℓ2(J) . Define the sub-

space R ⊆ ℓ2(J) by

R = Span{x1,x2,x3,x1,x2,x3}. (5.3)
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If R is a proper subspace of ℓ2(J) then T cannot be extremal. Indeed,

kerTi = {0}⊕{xi}⊥⊕C and ranTi = {0}⊕Cxi⊕C

for each i , and therefore

(Ran T )⊥∩KerT = {0}⊕R
⊥⊕{0}.

Applying Lemma 2.1 we find that T cannot be extremal if R⊥ 6= {0} . Therefore we

limit our attention to the case R = ℓ2(J) . With r = dimR , we note that R is finite

dimensional and we fix an orthonormal basis e1, . . . ,er ∈ R with the property that

ei = ei for each i .

Any extension X ∈ C3 of T takes the form

Xi =









0 0 0 φi

xi 0 0 Ci

0 x∗i 0 0

0 0 0 Bi









(5.4)

acting on H ⊕M for some Hilbert space M where Ci ∈ L (M ,R) , Bi ∈ L (M ) ,

and φi is a linear functional on M for i = 1,2,3. The third entry of the fourth column

is 0 because ‖Xi‖6 1 and ‖xi‖= 1 for each i . A second consequence of the inequality

‖Xi‖ 6 1 is

CiC
∗
i 6 1− xix

∗
i , i = 1,2,3.

This implies x∗i Ci = 0 for each i . The condition that XiX j = X jXi is equivalent to

requiring

φi ◦B j = φ j ◦Bi, BiB j = B jBi

xiφ j +CiB j = x jφi +C jBi, (5.5)

x∗i C j = x∗jCi (5.6)

for i, j = 1,2,3, where xiφ j denotes the map h 7→ φ j(h)xi . Observe that x∗i Ci = 0

implies C∗
i xi = 0, and that x∗i C j = x∗jCi is equivalent to C∗

j xi = C∗
i x j for all i and j .

Define h
(i)
j = C∗

i e j and write xi = ∑r
ℓ=1 aiℓeℓ for i = 1,2,3 and j = 1,2, . . . ,r .

Then C∗
i xi = 0 ( i = 1,2,3) and (5.6) become a homogeneous system of linear equations

in the vectors h
(i)
ℓ .

ai1h
(i)
1 + . . .+ airh

(i)
r = 0 (i = 1,2,3)

ai1h
( j)
1 + . . .+ airh

( j)
r = a j1h

(i)
1 + . . .+ a jrh

(i)
r (i, j = 1,2,3)

(5.7)

Let Λ denote the 6×3r scalar matrix representing this linear system;

Λ =

















a11 · · · a1r

a21 . . . a2r

a31 . . . a3r

a21 . . . a2r −a11 . . . −a1r

a31 . . . a3r −a11 . . . −a1r

a31 . . . a3r −a21 . . . −a2r

















where every non-specified entry is 0.
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LEMMA 5.1. If Λ has a non-trivial kernel, then T is not extremal.

Proof. Assume that Λ has non-trivial kernel and set M = C , φi = 0, Bi = 0 for

i = 1,2,3. Then the commutivity of X is determined entirely by (5.6) and contractivity

entirely by CiC
∗
i +xix

∗
i 6 1 for each i . As Λ has a non-trivial kernel and M = C , there

is a non-zero solution to (5.7). Thus Ci = ∑r
j=1 e jh

(i)∗
j is non-zero. Since the kernel of

Λ is linear, we may assume ‖Ci‖ 6 1. �

PROPOSITION 5.2. The Varopoulos triple T is extremal if and only if dimR = 2

and kerΛ = {0} .

Proof. Suppose first that T is extremal. Then Lemma 5.1 implies kerΛ = {0} .

Since r > 2, or rather 3r > 6, implies that Λ has a non-trivial kernel, it follows that

r 6 2. In the case that r = 1, there are ci ∈ C with |ci| = 1 so that xi = cix1 for

i = 1,2,3. Setting M = C and Bi = 0,Ci = 0, φi = ci in (5.4) for each i yields a

non-trivial extension.

Conversely, suppose r = 2 and kerΛ = {0} , in which case

Λ =

















a11 a12

a21 a22

a31 a32

a21 a22 −a11 −a12

a31 a32 −a11 −a12

a31 a32 −a21 −a22

















(5.8)

where every non-specified entry is 0. We have detΛ 6= 0 and this easily implies

dimSpan{x1,x2,x3} > 1. Suppose X ∈ C3 is an extension of T , written as in (5.4).

Since detΛ 6= 0 it follows that (5.7) has only the trivial solution, so that C∗
i e j = h

(i)
j = 0

for all i, j and therefore C1 = C2 = C3 = 0. Then (5.5) yields xiφ j = x jφi for each i, j .

The set {x1,x2,x3} does not generate a space of dimension 1, and therefore φi = 0 for

i = 1,2,3. We conclude that X is trivial and thus T is extremal. �

REMARK 5.3. We demonstrate that the condition kerΛ = {0} is not automati-

cally satisfied when r = 2. Using the matrix representation of Λ given in (5.8), one

finds that detΛ = 1 for the vectors (1,0) , (1/
√

2,1/
√

2) , (0,1) . On the other hand,

when the vectors x1,x2,x3 are instead (1,0) , (1,0) , (0,1) , one finds detΛ = 0.
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