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INEQUALITIES RELATED TO 2× 2 BLOCK PPT MATRICES

MINGHUA LIN

(Communicated by F. Kittaneh)

Abstract. A 2×2 block matrix

[
A X
X∗ B

]
is positive partial transpose (PPT) if both

[
A X
X∗ B

]
and[

A X∗
X B

]
are positive semidefinite. This article presents some inequalities related to this class

of matrices. Among others, we show that the Hua matrix, which is PPT, reveals a remarkable
singular value inequality for contractive matrices.

1. Introduction

Positive (semidefinite) matrices partitioned into 2× 2 blocks play an important
role in matrix analysis. A recent monograph [6] contains an excellent exposition of this
point. We start by fixing some notation: Let Mm×n be the set of all m× n complex
matrices and let Mn = Mn×n ; the identity matrix of Mn is In . Capital letters are used
to denote the elements in Mm×n . The (conjugate) transpose of A is denoted by A∗ . If
A is positive, we put A � 0, then it has unique square root A1/2 which is positive. For
two Hermitian matrices A and B , A � B is understood as A−B � 0. It is well known
that the transpose map is not 2-positive, that is, assuming each block is square,[

A X
X∗ B

]
� 0 �

[
A X∗
X B

]
� 0.

Motivated by the theory of quantum information (for example, to decide the sepa-
rability of mixed states [11, 16]), there is a need to introduce a stronger class of positive
matrices, that is, matrices whose partial transpose are also positive. In 2×2 block case,

we say

[
A X
X∗ B

]
is positive partial transpose (PPT for short) if

[
A X
X∗ B

]
� 0 and

[
A X∗
X B

]
� 0.

Thus whenever we say

[
A X
X∗ B

]
is PPT, the off diagonal blocks are necessarily square.

In this paper, we present some inequalities related to 2× 2 block PPT matrices.
Our study follows a natural thought that conclusions drawn under the PPT assumption
should be stronger than those drawn under only the usual positivity assumption. More-
over, we believe the new result presented in this work is of interest in its own right and
may serve for a better understanding of the intrinsic properties of PPT matrices.
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2. Trace inequality

Let A ∈ Mn , the trace of A is denoted by trA . In [4], Besenyei formulated the

following remarkable trace inequality: if

[
A X
X∗ B

]
� 0 with X square, then

trAB− trX∗X � trAtrB−|trX |2. (2.1)

Inequality (2.1) arises from the subadditivity of q -entropies; see [3, Theorem 2] and
references therein for more details.

If

[
A X
X∗ B

]
� 0 with X square, then it is clear that trAtrB−|trX |2 � 0, since trace

functional is Liebian; see [17, p. 70]. However, trAB− trX∗X may take a negative
value. For example, taking

[
A X
X∗ B

]
=

⎡
⎢⎢⎣

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎤
⎥⎥⎦ � 0,

then trAB− trX∗X = −1.
The following result proposes a condition for the positivity of trAB− trX∗X .

THEOREM 2.1. Let

[
A X
X∗ B

]
∈ M2n be PPT. Then

trX∗X � trAB. (2.2)

Proof. Without loss of generality, we may assume A to be positive definite. As[
A X
X∗ B

]
is PPT, we have B � XA−1X∗ and B � X∗A−1X , thus

A1/2BA1/2 � (A1/2XA−1/2)(A1/2XA−1/2)∗

and

A1/2BA1/2 � (A−1/2XA1/2)∗(A−1/2XA1/2).

Taking trace and adding up gives

2trAB � ‖A1/2XA−1/2‖2
F +‖A−1/2XA1/2‖2

F ,

where ‖ · ‖F means the Frobenius norm. Thus it suffices to show

‖A1/2XA−1/2‖2
F +‖A−1/2XA1/2‖2

F � 2‖X‖2
F = 2trX∗X .
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Let A =UDU∗ be the spectral decomposition of A with U unitary and D = diag(d1, . . . ,
dn) a diagonal matrix. Let also Y = [yi j]ni, j=1 = U∗XU . Then

‖A1/2XA−1/2‖2
F +‖A−1/2XA1/2‖2

F = ‖D1/2YD−1/2‖2
F +‖D−1/2YD1/2‖2

F

=
n

∑
i, j=1

di

d j
|yi j|2 +

n

∑
i, j=1

d j

di
|yi j|2

=
n

∑
i, j=1

(
di

d j
+

d j

di

)
|yi j|2

� 2
n

∑
i, j=1

|yi j|2

= 2‖Y‖2
F = 2‖X‖2

F = 2trX∗X ,

from which (2.2) follows. �

We remark that inequality (2.2) is an extension of [12, Lemma 2.10].
Recall that A ∈ Mm×n is contractive if In � A∗A and strict contractive if In−A∗A

is further invertible. In studying the theory of functions of several complex variables,
L.-K. Hua [10] discovered an intriguing positive matrix which now carries his name
(e.g., [1, 18]). The Hua matrix is given by

H =
[
(In−A∗A)−1 (In−B∗A)−1

(In−A∗B)−1 (In−B∗B)−1

]
,

where A,B ∈ Mm×n are strictly contractive. It was only recently observed that H is
PPT; see [1]. Thus, thanks to Theorem 2.1, we have the following corollary.

COROLLARY 2.2. Let A,B ∈ Mm×n be strictly contractive. Then

tr(In−A∗B)−1(In −B∗A)−1 � tr(In−A∗A)−1(In−B∗B)−1.

A generalization of Theorem 2.1 is given in Section 4.

3. Eigenvalue/singular value inequality

A norm ‖ ·‖ on Mn is called unitarily invariant if ‖UAV‖ = ‖A‖ for any A ∈ Mn

and any unitary matrices U,V ∈ Mn . The following result is implicit in [14]:

PROPOSITION 3.1. Let

[
A X
X∗ B

]
∈ M2n be PPT. Then

2‖X‖� ‖A+B‖ (3.1)

for any unitarily invariant norm.
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Again, the example in Section 2 shows that (3.1) may fail without the PPT as-
sumption.

As the Hua matrix is PPT, Proposition 3.1 entails

COROLLARY 3.2. [14, Theorem 3.3] Let A,B ∈ Mm×n be strictly contractive.
Then

2‖(In−A∗B)−1‖ � ‖(In−A∗A)−1 +(In−B∗B)−1‖ (3.2)

for any unitarily invariant norm.

Under the same assumption as in Proposition 3.1, one may wonder whether a
stronger level inequality (in the sense of Bhatia and Kittaneh [7])

2s j(X) � s j(A+B), j = 1, . . . ,n

is true. Here s j(·) denotes the j -th largest singular value. The answer is no. For

example,

[
P2 +Q2 PQ+QP
PQ+QP P2 +Q2

]
∈M2n is PPT whenever P,Q∈Mn are Hermitian. But

it is known that s j(PQ+QP) � s j(P2 +Q2) fails in general; see [7, p. 2182].
Nevertheless, for the Hua matrix the answer is affirmative. This looks surprising.

We remark that a similar inequality was conjectured in [13]. The main result of this
section is as follows.

THEOREM 3.3. Let A,B ∈ Mm×n be strictly contractive. Then for j = 1, . . . ,n

2s j

(
(In−A∗B)−1

)
� s j

(
(In −A∗A)−1 +(In−B∗B)−1

)
. (3.3)

We need some lemmas. The first one is due to Fan and Hoffman and can be found in
[5, p. 73].

LEMMA 3.4. For every A ∈ Mn with ℜA � 0 ,

s j(ℜA) � s j(A), j = 1, . . . ,n. (3.4)

Here ℜA = 1
2 (A+A∗) .

With Lemma 3.4, we can present the following result, which can be regarded as a
complement of (3.3).

LEMMA 3.5. Let A,B ∈ Mm×n be contractive. Then for j = 1, . . . ,n

2s j

(
In−A∗B

)
� s j

(
(In −A∗A)+ (In−B∗B)

)
. (3.5)
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Proof. It is clear that

A∗A+B∗B � A∗B+B∗A = 2ℜA∗B,

thus

ℜ(In −A∗B) = In−ℜA∗B � In− 1
2
(A∗A+B∗B) � 0.

Hence by Lemma 3.4, we have

s j

((In−A∗A)+ (In−B∗B)
2

)
� s j

(
ℜ(In−A∗B)

)

� s j

(
In−A∗B

)
, j = 1, . . . ,n,

so the required result follows. �

We need to invoke the following powerful tool, which was recently established by
Drury [9] as a solution to the question raised in [7].

LEMMA 3.6. Let A,B ∈ Mn be positive. Then for j = 1, . . . ,n

2
√

s j(AB) � s j(A+B).

Now we are in a position to present

Proof of Theorem 3.3. For any j = 1, . . . ,n , by Lemma 3.6, it suffices to show

√
s j

(
(In−A∗A)−1(In−B∗B)−1

)
� s j

(
(In−A∗B)−1

)
,

which is equivalent to

√
s j

(
(In−B∗B)(In−A∗A)

)
� s j

(
In−A∗B

)
, (3.6)

since s j(X−1) =
1

sn− j+1(X)
for every invertible X ∈ Mn . Again by Lemma 3.6, (3.6)

would follow if

s j

((In −B∗B)+ (In−A∗A)
2

)
� s j

(
In−A∗B

)
,

but this is the content of Lemma 3.5. Therefore, Theorem 3.3 is proved. �

As a byproduct of our proof, we have the following proposition.



922 M. LIN

PROPOSITION 3.7. Let A,B∈Mm×n be strictly contractive. Then for j = 1, . . . ,n

s j

(
(In−A∗B)−1(In−B∗A)−1

)
� s j

(
(In−A∗A)−1(In−B∗B)−1

)
,

or equivalently,

s j

(
(In−A∗B)(In−B∗A)

)
� s j

(
(In−A∗A)(In−B∗B)

)
.

To finish this section, we show that Proposition 3.7 implies the following result
of Marcus [15]. If A ∈ Mn , we let the eigenvalues of A be so arranged such that
|λ1(A)| � |λ2(A)| � · · · � |λn(A)| .

PROPOSITION 3.8. Let A,B ∈ Mm×n be contractive. Then for each k satisfying
1 � k � n,

k

∏
j=1

|λn− j+1(In−A∗B)|2 �
k

∏
j=1

(1−λ j(A∗A))(1−λ j(B∗B)).

Proof. It is well known [5, p. 43, p. 72] that for any X ,Y ∈ Mn , ∏k
j=1 s j(X) �

∏k
j=1 |λ j(X)| and ∏k

j=1 s j(X)s j(Y ) � ∏k
j=1 s j(XY ) for each k satisfying 1 � k � n−1

with equality at k = n . This implies

k

∏
j=1

sn− j+1(X) �
k

∏
j=1

|λn− j+1(X)|

and
k

∏
j=1

sn− j+1(X)sn− j+1(Y ) �
k

∏
j=1

sn− j+1(XY )

for each k satisfying 1 � k � n . Compute

k

∏
j=1

|λn− j+1(In−A∗B)|2 �
k

∏
j=1

(
sn− j+1(In−A∗B)

)2

�
k

∏
j=1

sn− j+1

(
(In−A∗A)(In−B∗B)

)

�
k

∏
j=1

sn− j+1(In−A∗A)sn− j+1(In−B∗B)

=
k

∏
j=1

λn− j+1(In−A∗A)λn− j+1(In−B∗B)

=
k

∏
j=1

(1−λ j(A∗A))(1−λ j(B∗B)),

in which Proposition 3.7 plays a role in the second inequality. �
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4. More results

After finishing the first version this paper, J.-C. Bourin informed the author that a
weak log majorization version of Theorem 2.1 is also valid. We thank J.-C. Bourin for
allowing us to include his result.

THEOREM 4.1. (Bourin) Let

[
A X
X∗ B

]
∈ M2n be PPT. Then

k

∏
j=1

s j(X) �
k

∏
j=1

s j(A1/2B1/2), k = 1, . . . ,n.

Equivalently,

k

∏
j=1

λ j(X∗X) �
k

∏
j=1

λ j(AB), k = 1, . . . ,n.

Proof. We have X = A1/2CB1/2 for some contraction C ∈ Mn ; see [6, p. 13].
Similarly, X∗ = A1/2DB1/2 for some contraction D ∈ Mn . Therefore,

k

∏
j=1

λ j(X∗X) =
k

∏
j=1

s j(A1/2DB1/2A1/2CB1/2) �
k

∏
j=1

s j(DB1/2A1/2CB1/2A1/2)

�
k

∏
j=1

s j(B1/2A1/2)s j(B1/2A1/2) =
k

∏
j=1

λ j(AB),

in which the first inequality is by the fact [5, p. 253] that ∏k
j=1 sk(PQ) � ∏k

j=1 s j(QP) ,
k = 1,2, . . . , whenever PQ is normal. �

In this connection, we shall show that Theorem 4.1 can be self-improved. The
geometric mean of two positive definite matrices A,B ∈ Mn , denoted by A�B , is the
positive definite solution of the Ricatti equation XB−1X = A and it has the explicit
expression A�B = B1/2(B−1/2AB−1/2)1/2B1/2 . The notion of geometric mean can be
uniquely extended to all A,B � 0 by a limit from above:

A�B := lim
ε→0

(A+ εIn)�(B+ εIn).

For more information about matrix geometric mean, we refer to [6, Chapter 4].

LEMMA 4.2. If

[
A X
X∗ B

]
∈ M2n is PPT, then so is

[
A�B X
X∗ A�B

]
.

Proof. This follows immediately from [2, Lemma 3.1]. �
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THEOREM 4.3. Let

[
A X
X∗ B

]
∈ M2n be PPT. Then

k

∏
j=1

s j(X) �
k

∏
j=1

s j(A�B) �
k

∏
j=1

s j(A1/2B1/2), k = 1, . . . ,n.

Proof. By Lemma 4.2,

[
A�B X
X∗ A�B

]
is PPT. Now applying Theorem4.1 to

[
A�B X
X∗ A�B

]

gives the first inequality. The second inequality is well known and it has various
generalizations; see for example [8, (18)]. It is also apparent that ∏n

j=1 s j(A�B) �
∏n

j=1 s j(A1/2B1/2) . �
We remark that Theorem 4.3 generalizes [2, Theorem 3.3].
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publication.
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