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INEQUALITIES RELATED TO 2 x2 BLOCK PPT MATRICES

MINGHUA LIN

(Communicated by F. Kittaneh)

Abstract. A 2 x 2 block matrix {A* X} is positive partial transpose (PPT) if both L?*

X
B } and

B

"

X B

of matrices. Among others, we show that the Hua matrix, which is PPT, reveals a remarkable
singular value inequality for contractive matrices.

are positive semidefinite. This article presents some inequalities related to this class

1. Introduction

Positive (semidefinite) matrices partitioned into 2 x 2 blocks play an important
role in matrix analysis. A recent monograph [6] contains an excellent exposition of this
point. We start by fixing some notation: Let M, be the set of all m x n complex
matrices and let M, = M, ; the identity matrix of M, is I,. Capital letters are used
to denote the elements in M, . The (conjugate) transpose of A is denoted by A*. If
A is positive, we put A > 0, then it has unique square root A2 which is positive. For
two Hermitian matrices A and B, A > B is understood as A — B > 0. It is well known
that the transpose map is not 2-positive, that is, assuming each block is square,

A X A X*
£0e 170

Motivated by the theory of quantum information (for example, to decide the sepa-
rability of mixed states [1 1, 16]), there is a need to introduce a stronger class of positive
matrices, that is, matrices whose partial transpose are also positive. In 2 x 2 block case,

we say {A* )é] is positive partial transpose (PPT for short) if

A X A X*
[*B]ZO and [X }20.

Thus whenever we say [A* )Bﬂ is PPT, the off diagonal blocks are necessarily square.

In this paper, we present some inequalities related to 2 x 2 block PPT matrices.
Our study follows a natural thought that conclusions drawn under the PPT assumption
should be stronger than those drawn under only the usual positivity assumption. More-
over, we believe the new result presented in this work is of interest in its own right and
may serve for a better understanding of the intrinsic properties of PPT matrices.
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2. Trace inequality

Let A € M],, the trace of A is denoted by trA. In [4], Besenyei formulated the

X} > 0 with X square, then

following remarkable trace inequality: if [A* B

trAB — trX*X < trAtrB — |trX |2, (2.1)

Inequality (2.1) arises from the subadditivity of g-entropies; see [3, Theorem 2] and

references therein for more details.

A X . . .
If x* B} > 0 with X square, then it is clear that trAtrB — |trX|?> > 0, since trace
functional is Liebian; see [17, p. 70]. However, trAB — trX*X may take a negative
value. For example, taking

1001

A X 0000
— =i >
[*B} ooloo| =Y

100 1

then trAB —trX*X = —1.
The following result proposes a condition for the positivity of trAB — trX*X .

A X

THEOREM 2.1. Let [ ‘B

} € M, be PPT. Then

trX*X < trAB. (2.2)

Proof. Without loss of generality, we may assume A to be positive definite. As
[A* )]g] is PPT, we have B> XA~'X* and B > X*A~'X, thus
A1/2BA1/2 2 (Al/2XA—l/2)(Al/2XA—1/2)*

and
A1/2BA1/2 > (A71/2XA1/2)*(A71/2XA1/2).

Taking trace and adding up gives
2UAB > ||AY2XATV?|2 4 || AT 2x A2 12,
where || - || means the Frobenius norm. Thus it suffices to show

JAY2XAT 2 E+|A7V2KAVR > 21X 7 = 207X
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Let A= UDU™ be the spectral decomposition of A with U unitary and D = diag(d,, ...,
dn) a diagonal matrix. Let also Y = [y;;]?;_; = U*XU. Then

1A' XA f+ |AT XAV} = D'y D PR+ | D7 Py D2
- di 1od;
> i+ Y 2
i=1di i di
n(d; d,») ,
—+— ) il
i,§1 (dj di !
< 2
>2 3 lyil
ij=1
= 2||Y|[7 = 21X || = 2uX"X,

lyi;|*

from which (2.2) follows. [

We remark that inequality (2.2) is an extension of [12, Lemma 2.10].

Recall that A € M,,,,, is contractive if I, > A*A and strict contractive if I, — A*A
is further invertible. In studying the theory of functions of several complex variables,
L.-K. Hua [10] discovered an intriguing positive matrix which now carries his name
(e.g., [1, 18]). The Hua matrix is given by

[, —A*A) 7 (1, - B*A) !

H= (I, —A*B)~' (I, —-B*B)"'|’

where A,B € M, are strictly contractive. It was only recently observed that H is
PPT; see [1]. Thus, thanks to Theorem 2.1, we have the following corollary.

COROLLARY 2.2. Let A,B € M, be strictly contractive. Then
tr(l, —A*B) (1, — B*A) "' < tr(I, —A*A) (1, — B*B) L.

A generalization of Theorem 2.1 is given in Section 4.

3. Eigenvalue/singular value inequality

Anorm || || on M, is called unitarily invariant if |[UAV|| = ||A|| for any A € M,
and any unitary matrices U,V € M,. The following result is implicit in [14]:

A X

PROPOSITION 3.1. Let [ “ B

] € My,, be PPT. Then

2 X[l < flA+Bl 3.1

for any unitarily invariant norm.
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Again, the example in Section 2 shows that (3.1) may fail without the PPT as-
sumption.
As the Hua matrix is PPT, Proposition 3.1 entails

COROLLARY 3.2. [14, Theorem 3.3] Let A,B € M,«, be strictly contractive.
Then

2)/(f—A"B) M| < ||l = A"A) " + (I, — BB) || (3.2)
for any unitarily invariant norm.

Under the same assumption as in Proposition 3.1, one may wonder whether a
stronger level inequality (in the sense of Bhatia and Kittaneh [7])

25;(X) <sj(A+B), j=1,...n

is true. Here s;(-) denotes the j-th largest singular value. The answer is no. For
P> +Q% PQ+QP
PO+ QP P2+ Q?
it is known that s;(PQ + QP) < s;(P* + Q?) fails in general; see [7, p. 2182].

Nevertheless, for the Hua matrix the answer is affirmative. This looks surprising.
We remark that a similar inequality was conjectured in [13]. The main result of this
section is as follows.

example, € My, is PPT whenever P,Q € M, are Hermitian. But

THEOREM 3.3. Let A,B € M, «,, be strictly contractive. Thenfor j=1,...,n
2 (L= 4"B)™") <y (L= A"A) " + (L~ B'B)™"). (3.3)

We need some lemmas. The first one is due to Fan and Hoffman and can be found in
[5, p. 73].

LEMMA 3.4. Forevery A € M,, with RA >0,
5i(RA) <s55(A4), j=1,...,n. (3.4)
Here RA = S(A+AY).

With Lemma 3.4, we can present the following result, which can be regarded as a
complement of (3.3).

LEMMA 3.5. Let A,B € M, be contractive. Then for j=1,....n

2s; (1,, —A*B) > ((In —A*A)+ (I, —B*B)). (3.5)
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Proof. Ttis clear that
A*A+B'B > A"B+B'A =2RA"B,
thus
R, —A'B) =1, —RA*'B>1,— %(A*A +B'B) > 0.

Hence by Lemma 3.4, we have

(A B

: ) < s (SR(I,, —A*B))

gsj(ln—A*B>, i=1,....n,
so the required result follows. [

We need to invoke the following powerful tool, which was recently established by
Drury [9] as a solution to the question raised in [7].

LEMMA 3.6. Let A,B € M, be positive. Then for j=1,...,n

2\/s;(AB) <sj(A+B).

Now we are in a position to present

Proof of Theorem 3.3. For any j=1,...,n, by Lemma 3.6, it suffices to show

\/s.,((ln—A*A)l(ln—B*B)l) > s,-<(1,,—A*B)*1),

which is equivalent to

\/s,-<(1n ~BB)(,—A"A)) <s; (L —A"B). (3.6)
1
since s (X*l) = m for every invertible X € M,. Again by Lemma 3.6, (3.6)
n—j

would follow if

I,—B*B I, —A*A
(TP <o)

but this is the content of Lemma 3.5. Therefore, Theorem 3.3 is proved. [l

As a byproduct of our proof, we have the following proposition.
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PROPOSITION 3.7. Let A,B € M« be strictly contractive. Thenfor j=1,....n
(=B (= BA)") <5 (U —a"a) (0, - B°B) ),
or equivalently,
5 ((In —A*B) (I, — B*A)) > s ((In —A*A) (L — B*B)).

To finish this section, we show that Proposition 3.7 implies the following result
of Marcus [15]. If A € M,, we let the eigenvalues of A be so arranged such that
(M(A)] = [A2(A)] = -+ = [An(A)].

PROPOSITION 3.8. Let A,B € M, be contractive. Then for each k satisfying
1<k<n,

>~

HM,, i1l —AB)P = ](1 - ))(1—2;(B*B)).

Jj= j=1

Proof. 1t is well known [5, p. 43, p. 72] that for any X,Y € M, H _155(X) =
H’j‘-zl |A;(X)| and H’j‘: i(X)si(Y) = Hljzlsﬂ (XY) for each k satisfying 1 <k<n—1
with equality at k = n. This implies

k k
Hsn—j+1 H‘ n— j+1
=1

Jj=1

and
k

HSn—j+1(X)Sn—j+1 Hsn —j+1(XY)
=1 j=1

for each k satisfying 1 < k < n. Compute

(Sn j+1(l —A B)>2

:j»

k
[Tyt i —AB)P >
j=1

—

WV
~.
-

su i1 (B —4°4) (1, — B'B) )

~.
I
iR

WV
:»

Su i1 (b — A*A)su— i1 (I — BB)

~.
I
iR

|
:»

i1y~ A"A) 1 (1~ B'B)

~.
I
iR

|
E»

(1=2,(A"A))(1—2;(B"B)),

~.
Il
—

in which Proposition 3.7 plays a role in the second inequality. [
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4. More results

After finishing the first version this paper, J.-C. Bourin informed the author that a
weak log majorization version of Theorem 2.1 is also valid. We thank J.-C. Bourin for
allowing us to include his result.

THEOREM 4.1. (Bourin) Let [)?* };] € My, be PPT. Then

k k
[Ts(X) < HS,,'(AI/zBW), k=1,....n.

Equivalently,

k k
[T4&xXx)<[]*@AB), k=1,...,n.

=1 j=1

~.

Proof. We have X = AY/2CB'/2 for some contraction C € M,,; see [6, p. 13].
Similarly, X* = AY2DB'/2 for some contraction D € M, . Therefore,

(A1/2DB1/2A1/2CB1/2 <Hsj Bl/2Al/2CBl/2A1/2)

:»

k
[TA(xx)

Jj=1 1

~.
Il

— T

—_

(Bl/2A1/2)Sj(Bl/2Al/2) —
1 J

N
:»

Aj(AB),

~.
Il

in which the first inequality is by the fact [5, p. 253] that H’j‘-zl sk(PQ) < H’j‘-zl 5;(OP),
k=1,2,..., whenever PQ is normal. []

In this connection, we shall show that Theorem 4.1 can be self-improved. The
geometric mean of two positive definite matrices A,B € M,, denoted by A#B, is the
positive definite solution of the Ricatti equation XB~'X = A and it has the explicit
expression AfB = B'/2(B~1/2AB~1/2)1/2B1/2  The notion of geometric mean can be
uniquely extended to all A,B > 0 by a limit from above:

AfB = lin(l)(A +ely)i(B+ely).
£ —
For more information about matrix geometric mean, we refer to [0, Chapter 4].

A X

LEMMA 4.2. If[ g

. . |AfB X
] € My, is PPT, then so is [X* AtiB] .

Proof. This follows immediately from [2, Lemma 3.1]. [
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A X

THEOREM 4.3. Let [ N B} € M, be PPT. Then

=~

k k
[1s,X) < [1s;a2B) < [Is;(A'2BY?), k=1,....n.
Jj=1 j=1 j=1

Proof. By Lemma4.2, AlB X AlB X ]

X* AfB is PPT. Now applying Theorem 4.1 to [X* A4B

gives the first inequality. The second inequality is well known and it has various
generalizations; see for example [8, (18)]. It is also apparent that H;Lls j(AttB) <

I s;(A"2B'2). O

We remark that Theorem 4.3 generalizes [2, Theorem 3.3].
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