MULTIPLIERS OF HILBERT PRO-C* ${ }^{*}$ BIMODULES AND CROSSED PRODUCTS BY HILBERT PRO- C^{*}-BIMODULES

Maria Joiţa, Radu-B. Munteanu and Ioannis Zarakas

(Communicated by H. Bercovici)

Abstract

In this paper we introduce the notion of multiplier of a Hilbert pro- C^{*}-bimodule and we investigate the structure of the multiplier bimodule of a Hilbert pro- C^{*}-bimodule. We also investigate the relationship between the crossed product $A \times_{X} \mathbb{Z}$ of a pro- C^{*}-algebra A by a Hilbert pro- C^{*}-bimodule X over A, the crossed product $M(A) \times_{M(X)} \mathbb{Z}$ of the multiplier algebra $M(A)$ of A by the multiplier bimodule $M(X)$ of X and the multiplier algebra $M\left(A \times_{X} \mathbb{Z}\right)$ of $A \times_{X} \mathbb{Z}$.

1. Introduction

The notion of a Hilbert C^{*}-module is a generalization of that of a Hilbert space in which the inner product takes its values in a C^{*}-algebra rather than in the field of complex numbers, but the theory of Hilbert C^{*}-modules is different from the theory of Hilbert spaces (for example, not every Hilbert C^{*}-submodule is complemented). In 1953, Kaplansky first used Hilbert C^{*}-modules over commutative C^{*}-algebras to prove that derivations of type $I A W^{*}$-algebras are inner. In 1973, the theory was extended independently by Paschke and Rieffel to non-commutative C^{*}-algebras and the latter author used it to construct the theory of "induced representations of C^{*}-algebras". Moreover, Hilbert C^{*}-modules gave the right context for the extension of the notion of Morita equivalence to C^{*}-algebras and have played a crucial role in Kasparov's $K K$-theory. Finally, they may be considered as a generalization of vector bundles to non-commutative $*$-algebras, therefore they play a significant role in non-commutative geometry and, in particular, in C^{*}-algebraic quantum group theory and groupoid C^{*} algebras. The extension of such a rich in results concept, to the case of pro- C^{*}-algebras could not be disregarded.

In [17], Zarakas introduced the notion of a Hilbert pro- C^{*}-bimodule over a pro-C^{*}-algebra and studied its structure. In [8], Joiţa investigated the structure of the multiplier module of a Hilbert pro- C^{*}-module. In this paper we introduce the notion of multiplier of a Hilbert pro- C^{*}-bimodule and we investigate the structure of the multiplier bimodule of a Hilbert pro- C^{*}-bimodule.

In [11], Joiţa and Zarakas extended the construction of Abadie, Eilers and Exel [2] in the context of pro- C^{*}-algebras and associated to a Hilbert pro- C^{*}-bimodule (X, A)

Keywords and phrases: Pro- C^{*}-algebras, pro- C^{*}-bimodules, multipliers, crossed products.
a pro- C^{*}-algebra $A \times_{X} \mathbb{Z}$, called the crossed product of A by X. It is natural to ask what is the relationship between the pro- C^{*}-algebras associated to a Hilbert pro- C^{*} bimodule (X, A) and its multiplier bimodule $(M(X), M(A))$.

The organization of this paper is as follows. In Section 2, we recall some notations and definitions. Section 3 is devoted to investigate multipliers of a Hilbert pro- C^{*} bimodule. Given a Hilbert pro- C^{*}-bimodule X, we show that the Hilbert pro- C^{*} bimodule structure on X extends to a Hilbert pro- C^{*}-bimodule structure on the multiplier bimodule $M(X)$ of X. Also we define the strict topology on $M(X)$ and show that X can be identified with a Hilbert pro- C^{*}-sub-bimodule of $M(X)$ which is dense in $M(X)$ with respect to the strict topology. We introduce the notion of morphism of Hilbert pro- C^{*}-bimodules, and show that a nondegenerate morphism between Hilbert pro- C^{*}-bimodules is continuous with respect to the strict topology and it extends to a unique morphism between the multiplier bimodules. Finally, as in the case of Hilbert C^{*}-bimodules [15], we show that $(M(X), M(A))$ can be regarded as a maximal extension of (X, A). Section 4 is devoted to investigate the relationship between the crossed product $A \times_{X} \mathbb{Z}$ of a pro- C^{*}-algebra A by a Hilbert pro- C^{*}-bimodule X over A, the crossed product $M(A) \times_{M(X)} \mathbb{Z}$ of the multiplier algebra $M(A)$ of A by the multiplier bimodule $M(X)$ of X and the multiplier algebra $M\left(A \times_{X} \mathbb{Z}\right)$ of $A \times_{X} \mathbb{Z}$. We show that the crossed product associated to a full Hilbert pro- C^{*}-bimodule (X, A) can be identified with a pro- C^{*}-subalgebra of the crossed product associated to $(M(X), M(A))$ and the crossed product associated to $(M(X), M(A))$ can be identified with a pro-C^{*}-subalgebra of the multiplier algebra of the crossed product associated to (X, A). Crossed products by Hilbert pro- C^{*}-bimodules are generalizations of crossed products of pro- C^{*}-algebras by inverse limit automorphism [11]. As an application, we prove that given an inverse limit automorphism α of a nonunital pro- C^{*}-algebra A, the crossed product of $M(A)$ by $\bar{\alpha}$, the extension of α to $M(A)$, can be identified with a pro- C^{*}-subalgebra of the multiplier algebra $M\left(A \times_{\alpha} \mathbb{Z}\right)$ of $A \times{ }_{\alpha} \mathbb{Z}$.

2. Preliminaries

A complete Hausdorff topological $*$-algebra A whose topology is given by a directed family of C^{*}-seminorms $\left\{p_{\lambda} ; \lambda \in \Lambda\right\}$ is called a pro- C^{*}-algebra. Other terms used in the literature for pro- C^{*}-algebras are: locally C^{*}-algebras (A. Inoue, M. Fragoulopoulou, A. Mallios, etc.), $L M C^{*}$-algebras (G. Lassner, K. Schmüdgen), b^{*}-algebras (C. Apostol).

Let A be a pro- C^{*}-algebra with the topology given by $\Gamma=\left\{p_{\lambda} ; \lambda \in \Lambda\right\}$ and let B be a pro- C^{*}-algebra with the topology given by $\Gamma^{\prime}=\left\{q_{\delta} ; \delta \in \Delta\right\}$.

An approximate unit of A is a net $\left\{e_{i}\right\}_{i \in I}$ of positive elements in A such that $p_{\lambda}\left(e_{i}\right) \leqslant 1$ for all $i \in I$ and for all $\lambda \in \Lambda$ and the nets $\left\{e_{i} b\right\}_{i \in I}$ and $\left\{b e_{i}\right\}_{i \in I}$ converge to b for all $b \in A$.

A pro- C^{*}-morphism is a continuous $*$-morphism $\varphi: A \rightarrow B$ (that is, φ is linear, $\varphi(a b)=\varphi(a) \varphi(b)$ and $\varphi\left(a^{*}\right)=\varphi(a)^{*}$ for all $a, b \in A$ and for each $q_{\delta} \in \Gamma^{\prime}$, there is $p_{\lambda} \in \Gamma$ such that $q_{\delta}(\varphi(a)) \leqslant p_{\lambda}(a)$ for all $\left.a \in A\right)$. An invertible pro- C^{*}-morphism $\varphi: A \rightarrow B$ is a pro- C^{*}-isomorphism if φ^{-1} is also pro- C^{*}-morphism.
$\left\{\left(A_{\lambda},\|\cdot\|_{A_{\lambda}}\right) ; \pi_{\lambda \mu}\right\}_{\lambda \geqslant \mu, \lambda, \mu \in \Lambda}$ is an inverse system of C^{*}-algebras, then $\lim _{\leftarrow \lambda} A_{\lambda}$ with the topology given by the family of C^{*}-seminorms $\left\{p_{\lambda}\right\}_{\lambda \in \Lambda}$, with $p_{\lambda}\left(\left(a_{\mu}\right)_{\mu \in \Lambda}\right)$ $=\left\|a_{\lambda}\right\|_{A_{\lambda}}$ for all $\lambda \in \Lambda$, is a pro- C^{*}-algebra.

Let A be a pro- C^{*}-algebra with the topology given by $\Gamma=\left\{p_{\lambda} ; \lambda \in \Lambda\right\}$. For $\lambda \in \Lambda$, $\operatorname{ker} p_{\lambda}$ is a closed $*$-bilateral ideal and $A_{\lambda}=A / \operatorname{ker} p_{\lambda}$ is a C^{*}-algebra in the C^{*}-norm $\|\cdot\|_{p_{\lambda}}$ induced by p_{λ} (that is, $\left\|a+\operatorname{ker} p_{\lambda}\right\|_{p_{\lambda}}=p_{\lambda}(a)$, for all $a \in A$). The canonical map from A to A_{λ} is denoted by $\pi_{\lambda}^{A}, \pi_{\lambda}^{A}(a)=a+\operatorname{ker} p_{\lambda}$ for all $a \in A$. For $\lambda, \mu \in \Lambda$ with $\mu \leqslant \lambda$ there is a surjective C^{*}-morphism $\pi_{\lambda \mu}^{A}: A_{\lambda} \rightarrow A_{\mu}$ such that $\pi_{\lambda \mu}^{A}\left(a+\operatorname{ker} p_{\lambda}\right)=a+\operatorname{ker} p_{\mu}$, and then $\left\{A_{\lambda} ; \pi_{\lambda \mu}^{A}\right\}_{\lambda, \mu \in \Lambda}$ is an inverse system of $C^{*}-$ algebras. Moreover, the pro- C^{*}-algebras A and $\lim _{\leftarrow \lambda} A_{\lambda}$ are isomorphic (Arens-Michael decomposition). For further information on pro- C^{*}-algebras we refer the reader to [6, 13, 14].

Here we recall some basic facts from [7] and [17] regarding Hilbert pro- C^{*} modules and Hilbert pro- C^{*}-bimodules respectively.

Let A be a pro- C^{*}-algebra whose topology is given by the family of C^{*}-seminorms $\Gamma=\left\{p_{\lambda} ; \lambda \in \Lambda\right\}$.

A right Hilbert pro- C^{*}-module over A (or just Hilbert A-module), is a linear space X that is also a right A-module equipped with a right A-valued inner product $\langle\cdot, \cdot\rangle_{A}$, that is \mathbb{C} - and A-linear in the second variable and conjugate linear in the first variable, with the following properties:

1. $\langle x, x\rangle_{A} \geqslant 0$ and $\langle x, x\rangle_{A}=0$ if and only if $x=0$;
2. $\left(\langle x, y\rangle_{A}\right)^{*}=\langle y, x\rangle_{A}$
and which is complete with respect to the topology given by the family of seminorms $\left\{p_{\lambda}^{A}\right\}_{\lambda \in \Lambda}$, with $p_{\lambda}^{A}(x)=p_{\lambda}\left(\langle x, x\rangle_{A}\right)^{\frac{1}{2}}, x \in X$. A Hilbert A-module X is full if the pro- C^{*} - subalgebra of A generated by $\left\{\langle x, y\rangle_{A} ; x, y \in X\right\}$ coincides with A.

A left Hilbert pro- C^{*}-module X over a pro- C^{*}-algebra A is defined in the same way, where for instance the completeness is requested with respect to the family of seminorms $\left\{{ }^{A} p_{\lambda}\right\}_{\lambda \in \Lambda}$, where ${ }^{A} p_{\lambda}(x)=p_{\lambda}\left({ }_{A}\langle x, x\rangle\right)^{\frac{1}{2}}, x \in X$.

In the case X is a left Hilbert pro- C^{*}-module over $\left(A,\left\{p_{\lambda}\right\}_{\lambda \in \Lambda}\right)$ and a right Hilbert pro- C^{*}-module over $\left(B,\left\{q_{\lambda}\right\}_{\lambda \in \Lambda}\right)$, such that the following relations hold:

- ${ }_{A}\langle x, y\rangle z=x\langle y, z\rangle_{B}$ for all $x, y, z \in X$,
- $q_{\lambda}^{B}(a x) \leqslant p_{\lambda}(a) q_{\lambda}^{B}(x)$ and ${ }^{A} p_{\lambda}(x b) \leqslant q_{\lambda}(b)^{A} p_{\lambda}(x)$ for all $x \in X, a \in A, b \in B$ and for all $\lambda \in \Lambda$,
then we say that X is a Hilbert $A-B$ pro- C^{*}-bimodule.
A Hilbert $A-B$ pro- C^{*}-bimodule X is full if it is full as a right and as a left Hilbert pro- C^{*}-module. Throughout the paper we use the notation (X, A) to denote a Hilbert $A-A$ (pro-) C^{*}-bimodule X.

Let Λ be an upward directed set and $\left\{A_{\lambda} ; B_{\lambda} ; X_{\lambda} ; \pi_{\lambda \mu} ; \chi_{\lambda \mu} ; \sigma_{\lambda \mu} ; \lambda, \mu \in \Lambda, \lambda \geqslant \mu\right\}$ an inverse system of Hilbert C^{*}-bimodules, that is:

- $\left\{A_{\lambda} ; \pi_{\lambda \mu} ; \lambda, \mu \in \Lambda, \lambda \geqslant \mu\right\}$ and $\left\{B_{\lambda} ; \chi_{\lambda \mu} ; \lambda, \mu \in \Lambda, \lambda \geqslant \mu\right\}$ are inverse systems of C^{*}-algebras;
- $\left\{X_{\lambda} ; \sigma_{\lambda \mu} ; \lambda, \mu \in \Lambda, \lambda \geqslant \mu\right\}$ is an inverse system of Banach spaces;
- for each $\lambda \in \Lambda, X_{\lambda}$ is a Hilbert $A_{\lambda}-B_{\lambda} C^{*}$-bimodule;
- $\left\langle\sigma_{\lambda \mu}(x), \sigma_{\lambda \mu}(y)\right\rangle_{B_{\mu}}=\chi_{\lambda \mu}\left(\langle x, y\rangle_{B_{\lambda}}\right)$ and $_{A_{\mu}}\left\langle\sigma_{\lambda \mu}(x), \sigma_{\lambda \mu}(y)\right\rangle=\pi_{\lambda \mu}\left(A_{\lambda}\langle x, y\rangle\right)$ for all $x, y \in X_{\lambda}$ and for all $\lambda, \mu \in \Lambda$ with $\lambda \geqslant \mu$.
- $\sigma_{\lambda \mu}(x) \chi_{\lambda \mu}(b)=\sigma_{\lambda \mu}(x b), \pi_{\lambda \mu}(a) \sigma_{\lambda \mu}(x)=\sigma_{\lambda \mu}(a x)$ for all $x \in X_{\lambda}, a \in A_{\lambda}, b \in$ B_{λ} and for all $\lambda, \mu \in \Lambda$ with $\lambda \geqslant \mu$.

Let $A=\lim _{\leftarrow \lambda} A_{\lambda}, B=\lim _{\leftarrow \lambda} B_{\lambda}$ and $X=\lim _{\leftarrow \lambda} X_{\lambda}$. Then X has a structure of a Hilbert $A-B$ pro- C^{*}-bimodule with

$$
\begin{aligned}
& \left(x_{\lambda}\right)_{\lambda \in \Lambda}\left(b_{\lambda}\right)_{\lambda \in \Lambda}=\left(x_{\lambda} b_{\lambda}\right)_{\lambda \in \Lambda} \text { and }\left\langle\left(x_{\lambda}\right)_{\lambda \in \Lambda},\left(y_{\lambda}\right)_{\lambda \in \Lambda}\right\rangle_{B}=\left(\left\langle x_{\lambda}, y_{\lambda}\right\rangle_{B_{\lambda}}\right)_{\lambda \in \Lambda} \\
& \quad \text { and } \\
& \left(a_{\lambda}\right)_{\lambda \in \Lambda}\left(x_{\lambda}\right)_{\lambda \in \Lambda}=\left(a_{\lambda} x_{\lambda}\right)_{\lambda \in \Lambda} \text { and }{ }_{A}\left\langle\left(x_{\lambda}\right)_{\lambda \in \Lambda},\left(y_{\lambda}\right)_{\lambda \in \Lambda}\right\rangle=\left(A_{\lambda}\left\langle x_{\lambda}, y_{\lambda}\right\rangle\right)_{\lambda \in \Lambda} .
\end{aligned}
$$

Let X be a Hilbert $A-B$ pro- C^{*}-bimodule. Then, for each $\lambda \in \Lambda,{ }^{A} p_{\lambda}(x)=$ $q_{\lambda}^{B}(x)$ for all $x \in X$, and the normed space $X_{\lambda}=X / N_{\lambda}^{B}$, where $N_{\lambda}^{B}=\left\{x \in X ; q_{\lambda}^{B}(x)=\right.$ $0\}$, is complete in the norm $\left\|x+N_{\lambda}^{B}\right\|_{X_{\lambda}}=q_{\lambda}^{B}(x), x \in X$. Moreover, X_{λ} has a canonical structure of a Hilbert $A_{\lambda}-B_{\lambda} C^{*}$-bimodule with $\left\langle x+N_{\lambda}^{B}, y+N_{\lambda}^{B}\right\rangle_{B_{\lambda}}=\langle x, y\rangle_{B}+$ $\operatorname{ker} q_{\lambda}$ and $A_{\lambda}\left\langle x+N_{\lambda}^{B}, y+N_{\lambda}^{B}\right\rangle={ }_{A}\langle x, y\rangle+\operatorname{ker} p_{\lambda}$ for all $x, y \in X$. The canonical surjection from X to X_{λ} is denoted by σ_{λ}^{X}. For $\lambda, \mu \in \Lambda$ with $\lambda \geqslant \mu$, there is a canonical surjective linear map $\sigma_{\lambda \mu}^{X}: X_{\lambda} \rightarrow X_{\mu}$ such that $\sigma_{\lambda \mu}^{X}\left(x+N_{\lambda}^{B}\right)=x+N_{\mu}^{B}$ for all $x \in X$. Then $\left\{A_{\lambda} ; B_{\lambda} ; X_{\lambda} ; \pi_{\lambda \mu}^{A} ; \pi_{\lambda \mu}^{B} ; \sigma_{\lambda \mu}^{X} ; \lambda, \mu \in \Lambda, \lambda \geqslant \mu\right\}$ is an inverse system of Hilbert C^{*} bimodules in the above sense.

Let X and Y be Hilbert pro- C^{*}-modules over B. A morphism $T: X \rightarrow Y$ of right modules is adjointable if there is another morphism of modules $T^{*}: Y \rightarrow X$ such that $\langle T x, y\rangle_{B}=\left\langle x, T^{*} y\right\rangle_{B}$ for all $x \in X, y \in Y$. The vector space $L_{B}(X, Y)$ of all adjointable module morphisms from X to Y has a structure of locally convex space under the topology given by the family of seminorms $\left\{q_{\lambda, L_{B}(X, Y)}\right\}_{\lambda \in \Lambda}$, where $q_{\lambda, L_{B}(X, Y)}(T)=$ $\sup \left\{q_{\lambda}^{B}(T x) ; x \in X, q_{\lambda}^{B}(x) \leqslant 1\right\}$. Moreover, $\left\{L_{B_{\lambda}}\left(X_{\lambda}, Y_{\lambda}\right) ; \chi_{\lambda \mu}^{L_{B}(X, Y)} ; \lambda, \mu \in \Lambda, \lambda \geqslant \mu\right\}$ where $\chi_{\lambda \mu}^{L_{B}(X, Y)}: L_{B_{\lambda}}\left(X_{\lambda}, Y_{\lambda}\right) \rightarrow L_{B_{\mu}}\left(X_{\mu}, Y_{\mu}\right)$ is given by $\chi_{\lambda \mu}^{L_{B}(X, Y)}(T)\left(\sigma_{\mu}^{X}(x)\right)=$ $\sigma_{\lambda \mu}^{Y}\left(T\left(\sigma_{\lambda}^{X}(x)\right)\right)$, is an inverse system of Banach spaces and $L_{B}(X, Y)=\lim _{\leftarrow \lambda} L_{B_{\lambda}}\left(X_{\lambda}, Y_{\lambda}\right)$ up to an isomorphism of locally convex spaces. The canonical projections $\chi_{\lambda}^{L_{B}(X, Y)}$: $L_{B}(X, Y) \rightarrow L_{B_{\lambda}}\left(X_{\lambda}, Y_{\lambda}\right), \lambda \in \Lambda$ are given by $\chi_{\lambda}^{L_{B}(X, Y)}(T)\left(\sigma_{\lambda}^{X}(x)\right)=\sigma_{\lambda}^{Y}(T(x))$ for all $x \in X$. For $x \in X$ and $y \in Y$, the map $\theta_{y, x}: X \rightarrow Y$ given by $\theta_{y, x}(z)=y\langle x, z\rangle_{B}$ is an adjointable module morphism and the closed subspace of $L_{B}(X, Y)$ generated by $\left\{\theta_{y, x} ; x \in X\right.$ and $\left.y \in Y\right\}$ is denoted by $K_{B}(X, Y)$, whose elements are usually called compact operators. For $Y=X, L_{B}(X)=L_{B}(X, X)$ is a pro- C^{*}-algebra with $\left(L_{B}(X)\right)_{\lambda}=$
$L_{B_{\lambda}}\left(X_{\lambda}\right)$ for each $\lambda \in \Lambda$, and $K_{B}(X)=K_{B}(X, X)$ is a closed two-sided $*$-ideal of $L_{B}(X)$ with $\left(K_{B}(X)\right)_{\lambda}=K_{B_{\lambda}}\left(X_{\lambda}\right)$ for each $\lambda \in \Lambda$.

A pro- C^{*}-algebra A has a natural structure of Hilbert pro- C^{*}-module, and the multiplier algebra $M(A)$ has a structure of pro- C^{*}-algebra which is isomorphic to $L_{A}(A)$ [14]. Moreover, pro- C^{*}-algebras A and $K_{A}(A)$ are isomorphic and A is a closed bilateral ideal of $M(A)$ which is dense in $M(A)$ with respect to the strict topology. The strict topology on $M(A)$ is given by the family of seminorms $\left\{p_{(\lambda, a)}\right\}_{(\lambda, a) \in \Lambda \times A}$, where $p_{(\lambda, a)}(b)=p_{\lambda}(a b)+p_{\lambda}(b a)$ for all $b \in M(A)$.

A pro- C^{*}-morphism $\varphi: A \rightarrow M(B)$ is nondegenerate if $[\varphi(A) B]=B$, where $[\varphi(A) B]$ denotes the closed subspace of B generated by $\{\varphi(a) b ; a \in A, b \in B\}$. A nondegenerate pro- C^{*}-morphism $\varphi: A \rightarrow M(B)$ extends to a unique pro- C^{*}-morphism $\bar{\varphi}: M(A) \rightarrow M(B)$ which is strictly continuous on bounded sets.

Throughout this paper, A and B will denote two pro- C^{*}-algebras whose topologies are given by the families of C^{*}-seminorms $\Gamma=\left\{p_{\lambda} ; \lambda \in \Lambda\right\}$, respectively $\Gamma^{\prime}=$ $\left\{q_{\delta} ; \delta \in \Delta\right\}$.

3. Multipliers of Hilbert pro- C^{*}-bimodules

Let X and Y be two Hilbert pro- C^{*}-modules over A.
Proposition 3.1. The vector space $L_{A}(X, Y)$ of all adjointable module maps from X to Y has a natural structure of Hilbert $L_{A}(Y)-L_{A}(X)$ pro- C^{*}-bimodule with the bimodule structure given by

$$
S \cdot T=S \circ T \text { and } T \cdot R=T \circ R
$$

for all $T \in L_{A}(X, Y), S \in L_{A}(Y)$ and $R \in L_{A}(X)$ and the inner products given by

$$
L_{A}(Y)\left\langle T_{1}, T_{2}\right\rangle=T_{1} \circ T_{2}^{*} \text { and }\left\langle T_{1}, T_{2}\right\rangle_{L_{A}(X)}=T_{1}^{*} \circ T_{2}
$$

for all $T_{1}, T_{2} \in L_{A}(X, Y)$.
Proof. It is a simple calculation to verify that $L_{A}(X, Y)$ has a structure of pre-right Hilbert $L_{A}(X)$-pro- C^{*}-module with

$$
T \cdot R=T \circ R \text { and }\left\langle T_{1}, T_{2}\right\rangle_{L_{A}(X)}=T_{1}^{*} \circ T_{2}
$$

and $L_{A}(X, Y)$ has a structure of pre-left Hilbert $L_{A}(Y)$-pro- C^{*}-module with

$$
S \cdot T=S \circ T \text { and }_{L_{A}(Y)}\left\langle T_{1}, T_{2}\right\rangle=T_{1} \circ T_{2}^{*}
$$

Moreover,

$$
\begin{aligned}
p_{\lambda}^{L_{A}(X)}(T)^{2} & =p_{\lambda, L_{A}(X)}\left(\langle T, T\rangle_{L_{A}(X)}\right)=p_{\lambda, L_{A}(X)}\left(T^{*} \circ T\right) \\
& =\left\|\chi_{\lambda}^{L_{A}(X, Y)}(T)^{*} \chi_{\lambda}^{L_{A}(X, Y)}(T)\right\|_{L_{A_{\lambda}}\left(X_{\lambda}\right)}
\end{aligned}
$$

(see, for example, the proof of Proposition 1.10 [5])

$$
=\left\|\chi_{\lambda}^{L_{A}(X, Y)}(T)\right\|_{L_{A_{\lambda}}\left(X_{\lambda}, Y_{\lambda}\right)}^{2}=p_{\lambda . L_{A}(X, Y)}(T)^{2}
$$

and

$$
\begin{aligned}
{ }^{L_{A}(Y)} p_{\lambda}(T)^{2} & =p_{\lambda, L_{A}(Y)}\left(L_{A}(Y)\right. \\
& =\left\|\chi_{\lambda}^{L_{A}(X, Y)}(T) \chi_{\lambda}^{L_{A}(X, Y)}(T)^{*}\right\|_{L_{A_{\lambda}}\left(Y_{\lambda}\right)} \\
& =\left\|\chi_{\lambda}^{L_{A}(X, Y)}(T)^{*}\right\|_{L_{A_{\lambda}}\left(Y_{\lambda}, X_{\lambda}\right)}^{2}
\end{aligned}
$$

(see, for example, the proof of Proposition 1.10 [5])

$$
=\left\|\chi_{\lambda}^{L_{A}(X, Y)}(T)\right\|_{L_{A_{\lambda}}\left(X_{\lambda}, Y_{\lambda}\right)}^{2}=p_{\lambda . L_{A}(X, Y)}(T)^{2}
$$

for all $T \in L_{A}(X, Y)$ and for all $\lambda \in \Lambda$. Therefore, $L_{A}(X, Y)$ is a left Hilbert $L_{A}(Y)-$ module and a right Hilbert $L_{A}(X)$-module.

Also it is easy to check that ${ }_{L_{A}(Y)}\left\langle T_{1}, T_{2}\right\rangle \cdot T_{3}=T_{1} \cdot\left\langle T_{2}, T_{3}\right\rangle_{L_{A}(X)}$ for all $T_{1}, T_{2}, T_{3} \in$ $L_{A}(X, Y)$, and since $p_{\lambda}^{L_{A}(X)}(T)={ }^{L_{A}(Y)} p_{\lambda}(T)=p_{\lambda . L_{A}(X, Y)}(T)$ for all $T \in L_{A}(X, Y)$ and for all $\lambda \in \Lambda, L_{A}(X, Y)$ has a structure of Hilbert $L_{A}(Y)-L_{A}(X)$ pro- C^{*}-bimodule.

Remark 3.2. Suppose that (X, A) is a full Hilbert pro- C^{*}-bimodule. Then there is a pro- C^{*}-isomorphism $\Phi_{A}: A \rightarrow K_{A}(X)$ given by $\Phi_{A}(a)(x)=a \cdot x$ which extends to a pro- C^{*}-isomorphism $\overline{\Phi_{A}}: M(A) \rightarrow L_{A}(X)$. Moreover, $p_{\lambda, L_{A}(X)}\left(\Phi_{A}(a)\right)=p_{\lambda}(a)$ for all $a \in A$ and $\lambda \in \Lambda$. Identifying $M(A)$ with $L_{A}(A)$ and using Proposition 3.1 and [15, Proposition 2.5], we obtain a natural structure of Hilbert $M(A)-M(A)$ pro- C^{*} bimodule on $L_{A}(A, X)$ with

$$
m \cdot T=\overline{\Phi_{A}}(m) \circ T \operatorname{and}_{M(A)}\left\langle T_{1}, T_{2}\right\rangle=\overline{\Phi_{A}^{-1}}\left(T_{1} \circ T_{2}^{*}\right)
$$

and

$$
T \cdot m=T \circ m \text { and }\left\langle T_{1}, T_{2}\right\rangle_{M(A)}=T_{1}^{*} \circ T_{2}
$$

for all $T, T_{1}, T_{2} \in L_{A}(A, X)$ and $m \in M(A)$.

Definition 3.3. Let (X, A) be a full Hilbert pro- C^{*}-bimodule. The Hilbert $M(A)-M(A)$ pro- C^{*}-bimodule $L_{A}(A, X)$ is called the multiplier bimodule of X and it is denoted by $M(X)$.

The following definition is a generalization of [5, Definition 1.25].

DEFINITION 3.4. The strict topology on $M(X)$ is given by the family of seminorms $\left\{p_{(\lambda, a)}\right\}_{(\lambda, a) \in \Lambda \times A}$, where $p_{(\lambda, a)}(T)=p_{\lambda}^{M(A)}(T \cdot a)+p_{\lambda}^{M(A)}(a \cdot T)$ for all $T \in$ $M(X)$ and $a \in A$.

REMARK 3.5. Let $\left\{T_{n}\right\}_{n}$ be a sequence in $M(X)$.

1. If $\left\{T_{n}\right\}_{n}$ is strictly convergent, then it is bounded. Indeed, if $\left\{T_{n}\right\}_{n}$ converges strictly to $T \in M(X)$, then for each $\lambda \in \Lambda$, since

$$
\begin{aligned}
\left\|\chi_{\lambda}^{M(X)}\left(T_{n}\right) \pi_{\lambda}^{A}(a)-\chi_{\lambda}^{M(X)}(T) \pi_{\lambda}^{A}(a)\right\|_{X_{\lambda}} & =p_{\lambda}^{A}\left(T_{n}(a)-T(a)\right) \\
& =p_{\lambda}^{M(A)}\left(T_{n} \cdot a-T \cdot a\right),
\end{aligned}
$$

the sequence $\left\{\chi_{\lambda}^{M(X)}\left(T_{n}\right) \pi_{\lambda}^{A}(a)\right\}_{n}$ converges to $\chi_{\lambda}^{M(X)}(T) \pi_{\lambda}^{A}(a)$ for all $a \in A$ and by the Banach-Steinhaus theorem there is $M_{\lambda}>0$ such that

$$
p_{\lambda}^{M(A)}\left(T_{n}\right)=p_{\lambda, L_{A}(A, X)}\left(T_{n}\right)=\left\|\chi_{\lambda}^{M(X)}\left(T_{n}\right)\right\|_{L_{A_{\lambda}}\left(A_{\lambda}, X_{\lambda}\right)} \leqslant M_{\lambda}
$$

for all $n \in \mathbb{N}$.
2. If $\left\{T_{n}\right\}_{n}$ converges strictly to 0 , then the sequences $\left\{\left\langle T_{n}, T_{n}\right\rangle_{M(A)}\right\}_{n}$ and $\left\{_{M(A)}\left\langle T_{n}, T_{n}\right\rangle\right\}_{n}$ are strictly convergent to 0 in $M(A)$.

Suppose that X is a Hilbert pro- C^{*}-module over A. In [8, Definition 3.2], the strict topology on $L_{A}(A, X)$ is given by the family of seminorms $\left\{p_{(\lambda, a, x)}\right\}_{(\lambda, a, x) \in \Lambda \times A \times X}$, where $p_{(\lambda, a, x)}(T)=p_{\lambda}^{A}(T(a))+p_{\lambda}\left(T^{*}(x)\right)$. We will show that this definition coincides with the above definition of the strict topology on $M(X)$ on bounded subsets when X is a full Hilbert $A-A$ pro- C^{*}-bimodule. To show this, we will use the following result.

Lemma 3.6. Let X be a Hilbert pro- C^{*}-module over A. For each x in X there is a unique element y in X such that $x=y\langle y, y\rangle_{A}$.

Proof. Let $x \in X$. For each $\lambda \in \Lambda$, there is a unique element $y_{\lambda} \in X_{\lambda}$ such that $\sigma_{\lambda}^{X}(x)=y_{\lambda}\left\langle y_{\lambda}, y_{\lambda}\right\rangle_{A_{\lambda}}$ (see, for example, [16, Proposition 2.31]). Let $\lambda, \mu \in \Lambda$ with $\lambda \geqslant \mu$. From

$$
\sigma_{\mu}^{X}(x)=\sigma_{\lambda \mu}^{X}\left(\sigma_{\lambda}^{X}(x)\right)=\sigma_{\lambda \mu}^{X}\left(y_{\lambda}\right)\left\langle\sigma_{\lambda \mu}^{X}\left(y_{\lambda}\right), \sigma_{\lambda \mu}^{X}\left(y_{\lambda}\right)\right\rangle_{A_{\mu}}
$$

and [16, Proposition 2.31], we deduce that $\sigma_{\lambda \mu}^{X}\left(y_{\lambda}\right)=y_{\mu}$. Therefore, there exists $y \in X$ such that $\sigma_{\lambda}^{X}(y)=y_{\lambda}$ for all $\lambda \in \Lambda$ and $x=y\langle y, y\rangle_{A}$. Moreover, y is unique with this property.

Proposition 3.7. Let (X, A) be a full Hilbert pro-C*-bimodule and $\left\{T_{i}\right\}_{i \in I}$ a net in $M(X)$.

1. If $\left\{T_{i}\right\}_{i \in I}$ converges strictly to 0 , then $\left\{p_{(\lambda, a, x)}\left(T_{i}\right)\right\}_{i \in I}$ converges to 0 for all $a \in A$, for all $x \in X$ and for all $\lambda \in \Lambda$.
2. If $\left\{T_{i}\right\}_{i \in I}$ is bounded and $\left\{p_{(\lambda, a, x)}\left(T_{i}\right)\right\}_{i \in I}$ converges to 0 for all $a \in A$, for all $x \in X$ and for all $\lambda \in \Lambda$, then $\left\{T_{i}\right\}_{i \in I}$ converges strictly to 0 .

Proof. (1) If the net $\left\{T_{i}\right\}_{i \in I}$ converges strictly to 0 , then $\left\{p_{\lambda}^{A}\left(T_{i}(a)\right)\right\}_{i \in I}$ converges to 0 for all $a \in A$ and $\lambda \in \Lambda$. Let $x \in X$ and $\lambda \in \Lambda$. Then, by Lemma 3.6, there is $y \in X$ such that $x=y\langle y, y\rangle_{A}=\theta_{y, y}(y)$. From

$$
\begin{aligned}
p_{\lambda}\left(T_{i}^{*}(x)\right) & =p_{\lambda}\left(T_{i}^{*}\left(\theta_{y, y}(y)\right)\right) \leqslant p_{\lambda, L_{A}(X, A)}\left(T_{i}^{*} \circ \theta_{y, y}\right) p_{\lambda}^{A}(y) \\
& =p_{\lambda, L_{A}(A, X)}\left(\theta_{y, y} \circ T_{i}\right) p_{\lambda}^{A}(y)=p_{\lambda}^{M(A)}\left(\theta_{y, y} \circ T_{i}\right) p_{\lambda}^{A}(y)
\end{aligned}
$$

we deduce that the net $\left\{p_{\lambda}\left(T_{i}^{*}(x)\right)\right\}_{i \in I}$ converges to 0 .
(2) If $\left\{p_{(\lambda, a, x)}\left(T_{i}\right)\right\}_{i \in I}$ converges to 0 for all $a \in A, x \in X$ and $\lambda \in \Lambda$, then $\left\{p_{\lambda}^{A}\left(T_{i}(a)\right)\right\}_{i \in I}$ converges to 0 for all $a \in A$ and $\lambda \in \Lambda$. Let $S \in K_{A}(X), \lambda \in \Lambda$ and $\varepsilon>0$. Then there is $\sum_{k=1}^{n} \theta_{x_{k}, y_{k}}$ such that $p_{\lambda, L_{A}(X)}\left(S-\sum_{k=1}^{n} \theta_{x_{k}, y_{k}}\right)<\varepsilon$, and since $\left\{T_{i}\right\}_{i \in I}$ is bounded, there is $M_{\lambda}>0$ such that $p_{\lambda}^{M(A)}\left(T_{i}\right) \leqslant M_{\lambda}$ for all $i \in I$. From

$$
\begin{aligned}
p_{\lambda}^{M(A)}\left(S \circ T_{i}\right) & \leqslant p_{\lambda, L_{A}(X)}\left(S-\sum_{k=1}^{n} \theta_{x_{k}, y_{k}}\right) p_{\lambda}^{M(A)}\left(T_{i}\right)+p_{\lambda}^{M(A)}\left(\sum_{k=1}^{n} \theta_{x_{k}, y_{k}} \circ T_{i}\right) \\
& \leqslant \varepsilon M_{\lambda}+p_{\lambda, L_{A}(A, X)}\left(\sum_{k=1}^{n} \theta_{x_{k}, T_{i}^{*}\left(y_{k}\right)}\right) \\
& \leqslant \varepsilon M_{\lambda}+\sum_{k=1}^{n} p_{\lambda}^{A}\left(x_{k}\right) p_{\lambda}\left(T_{i}^{*}\left(y_{k}\right)\right)
\end{aligned}
$$

we deduce that $\left\{p_{\lambda}^{M(A)}\left(S \circ T_{i}\right)\right\}_{i \in I}$ converges to 0 .
Let (X, A) and (Y, B) be two Hilbert pro- C^{*}-bimodules.
DEFINITION 3.8. A morphism of Hilbert pro- C^{*}-bimodules from (X, A) to (Y, B) is a pair (Φ, φ) consisting of a pro- C^{*}-morphism $\varphi: A \rightarrow B$ and a map $\Phi: X \rightarrow Y$ such that:

1. $\Phi(x a)=\Phi(x) \varphi(a)$ for all $x \in X$ and for all $a \in A$;
2. $\Phi(a x)=\varphi(a) \Phi(x)$ for all $x \in X$ and for all $a \in A$;
3. $\langle\Phi(x), \Phi(y)\rangle_{B}=\varphi\left(\langle x, y\rangle_{A}\right)$ for all $x, y \in X$;
4. ${ }_{B}\langle\Phi(x), \Phi(y)\rangle=\varphi\left(_{A}\langle x, y\rangle\right)$ for all $x, y \in X$.

The relation (3) implies the relation (1) and the relation (4) implies (2).
If $(\Phi, \varphi):(X, A) \rightarrow(Y, B)$ is a morphism of Hilbert pro- C^{*}-bimodules, then Φ is continuous, since for each $\delta \in \Delta$, there is $\lambda \in \Lambda$ such that

$$
q_{\delta}^{B}(\Phi(x))^{2}=q_{\delta}\left(\langle\Phi(x), \Phi(x)\rangle_{B}\right)=q_{\delta}\left(\varphi\left(\langle x, x\rangle_{A}\right)\right) \leqslant p_{\lambda}\left(\langle x, x\rangle_{A}\right)=p_{\lambda}^{A}(x)^{2}
$$

for all $x \in X$. It is easy to check that if φ is injective, then Φ is injective, and if (X, A) is full and Φ is injective, then φ is injective.

DEFINITION 3.9. An isomorphism of Hilbert pro- C^{*}-bimodules is a morphism of Hilbert pro- C^{*}-bimodules (Φ, φ) such that φ is a pro- C^{*}-isomorphism and the map Φ is bijective.

The Hilbert pro- C^{*}-bimodules (X, A) and (Y, B) are isomorphic if there is an isomorphism of Hilbert pro- C^{*}-bimodules $(\Phi, \varphi):(X, A) \rightarrow(Y, B)$.

DEFINITION 3.10. A morphism of Hilbert pro-C*-bimodules $(\Phi, \varphi):(X, A) \rightarrow$ $(M(Y), M(B))$ is nondegenerate if φ is nondegenerate and $[\Phi(X) B]=Y$.

REMARK 3.11. If $(\Phi, \varphi):(X, A) \rightarrow(M(Y), M(B))$ is nondegenerate and (X, A) is full, then (Φ, φ) is nondegenerate in the sense of [9, Definition 3.1], since

$$
\begin{aligned}
{\left[\Phi(X)^{*} Y\right] } & =\left[\Phi(X)^{*} \Phi(X) B\right]=\left[\langle\Phi(X), \Phi(X)\rangle_{M(B)} B\right] \\
& =\left[\varphi\left(\langle X, X\rangle_{A}\right) B\right]=[\varphi(A) B]=B .
\end{aligned}
$$

Lemma 3.12. Let (X, A) be a full Hilbert pro- C^{*}-bimodule. Then the maps

$$
\left(\chi_{\lambda}^{L_{A}(A, X)}, \pi_{\lambda}^{M(A)}\right):(M(X), M(A)) \rightarrow\left(M\left(X_{\lambda}\right), M\left(A_{\lambda}\right)\right), \lambda \in \Lambda,
$$

where $\pi_{\lambda}^{M(A)}=\chi_{\lambda}^{L_{A}(A)}$, and

$$
\left(\chi_{\lambda \mu}^{L_{A}(A, X)}, \pi_{\lambda \mu}^{M(A)}\right):\left(M\left(X_{\lambda}\right), M\left(A_{\lambda}\right)\right) \rightarrow\left(M\left(X_{\mu}\right), M\left(A_{\mu}\right)\right), \lambda, \mu \in \Lambda \text { with } \lambda \geqslant \mu
$$

where $\pi_{\lambda \mu}^{M(A)}=\chi_{\lambda \mu}^{L_{A}(A)}$, are all strictly continuous morphisms of Hilbert bimodules.
Proof. Let $\lambda, \mu \in \Lambda$ with $\lambda \geqslant \mu$. For $T_{1}, T_{2} \in M\left(X_{\lambda}\right)$ we have

$$
\begin{aligned}
\left\langle\chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{1}\right), \chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{2}\right)\right\rangle_{M\left(A_{\mu}\right)} & =\chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{1}\right)^{*} \circ \chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{2}\right) \\
& =\chi_{\lambda \mu}^{L_{A}(X, A)}\left(T_{1}^{*}\right) \circ \chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{2}\right) \\
& =\chi_{\lambda \mu}^{L_{A}(A)}\left(T_{1}^{*} \circ T_{2}\right)=\pi_{\lambda \mu}^{M(A)}\left(\left\langle T_{1}, T_{2}\right\rangle_{M\left(A_{\lambda}\right)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
M\left(A_{\mu}\right)\left\langle\chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{1}\right), \chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{2}\right)\right\rangle & =\overline{\Phi_{A_{\mu}}^{-1}}\left(\chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{1}\right) \circ \chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{2}\right)^{*}\right) \\
& =\overline{\Phi_{A_{\mu}}^{-1}}\left(\chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{1}\right) \circ \chi_{\lambda \mu}^{L_{A}(X, A)}\left(T_{2}^{*}\right)\right) \\
& =\overline{\Phi_{A_{\mu}}^{-1}}\left(\chi_{\lambda \mu}^{L_{A}(X)}\left(T_{1} \circ T_{2}^{*}\right)\right) \\
& =\chi_{\lambda \mu}^{L_{A}(A)}\left(\overline{\Phi_{A_{\lambda}}^{-1}}\left(T_{1} \circ T_{2}^{*}\right)\right) \\
& =\pi_{\lambda \mu}^{M(A)}\left(M\left(A_{\lambda}\right)\left\langle T_{1}, T_{2}\right\rangle\right) .
\end{aligned}
$$

Therefore, $\left(\chi_{\lambda \mu}^{L_{A}(A, X)}, \pi_{\lambda \mu}^{M(A)}\right)$ is a morphism of Hilbert C^{*}-bimodules.
Let $\left\{T_{i}\right\}_{i \in I}$ be a net in $M\left(X_{\lambda}\right)$ which converges strictly to 0 . From

$$
\begin{aligned}
\left\|\chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{i}\right) \pi_{\mu}^{A}(a)\right\|_{X_{\mu}} & =\left\|\chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{i}\right) \pi_{\lambda \mu}^{M(A)}\left(\pi_{\lambda}^{A}(a)\right)\right\|_{X_{\mu}} \\
& =\left\|\sigma_{\lambda \mu}^{X}\left(T_{i}\left(\pi_{\lambda}^{A}(a)\right)\right)\right\|_{X_{\mu}} \leqslant\left\|T_{i}\left(\pi_{\lambda}^{A}(a)\right)\right\|_{X_{\lambda}}
\end{aligned}
$$

for all $a \in A$, and

$$
\begin{aligned}
\left\|\chi_{\mu}^{L_{A}(X)}(S) \circ \chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{i}\right)\right\|_{M\left(X_{\mu}\right)} & =\left\|\chi_{\lambda \mu}^{L_{A}(X)}\left(\chi_{\lambda}^{L_{A}(X)}(S)\right) \circ \chi_{\lambda \mu}^{L_{A}(A, X)}\left(T_{i}\right)\right\|_{L_{A \mu}\left(A_{\mu}, X_{\mu}\right)} \\
& =\left\|\chi_{\lambda \mu}^{L_{A}(A, X)}\left(\chi_{\lambda}^{L_{A}(X)}(S) \circ T_{i}\right)\right\|_{L_{A \mu}\left(A_{\mu}, X_{\mu}\right)} \\
& \leqslant\left\|\chi_{\lambda}^{L_{A}(X)}(S) \circ T_{i}\right\|_{L_{A_{\lambda}}\left(A_{\lambda}, X_{\lambda}\right)}
\end{aligned}
$$

for all $S \in K_{A}(X)$, and taking into account that $K_{A_{\mu}}\left(X_{\mu}\right)=\chi_{\mu}^{L_{A}(X)}\left(K_{A}(X)\right)$, we deduce that the net $\left\{\chi_{\lambda \mu}^{M(X)}\left(T_{i}\right)\right\}_{i \in I}$ converges strictly to 0 .

In a similar way, we show that the maps $\left(\chi_{\lambda}^{L_{A}(A, X)}, \pi_{\lambda}^{M(A)}\right):(M(X), M(A)) \rightarrow$ $\left(M\left(X_{\lambda}\right), M\left(A_{\lambda}\right)\right), \lambda \in \Lambda$ are all strictly continuous morphisms of Hilbert bimodules.

THEOREM 3.13. Let (X, A) be a full Hilbert pro- C^{*}-bimodule.

1. $M(X)$ is complete with respect to the strict topology;
2. $\left(l_{X}, l_{A}\right):(X, A) \rightarrow(M(X), M(A))$, where $l_{X}(x)(a)=x a$ and $l_{A}(b)(a)=b a$ for all $x \in X$ and $a, b \in A$, is a nondegenerate morphism of Hilbert pro- C^{*} bimodules;
3. X can be identified with a closed $M(A)-M(A)$ pro- C^{*}-sub-bimodule of $M(X)$ which is dense in $M(X)$ with respect to the strict topology.

Proof. (1) For each $\lambda \in \Lambda, M\left(X_{\lambda}\right)$ has a structure of Hilbert $M\left(A_{\lambda}\right)-M\left(A_{\lambda}\right) C^{*}-$ bimodule (see, [5, Proposition 1.10]). It is easy to check that

$$
\left\{M\left(A_{\lambda}\right) ; M\left(X_{\lambda}\right) ; \pi_{\lambda \mu}^{M(A)} ; \chi_{\lambda \mu}^{M(X)} ; \lambda, \mu \in \Lambda, \lambda \geqslant \mu\right\}
$$

where $\chi_{\lambda \mu}^{M(X)}=\chi_{\lambda \mu}^{L_{A}(A, X)}$ for all $\lambda, \mu \in \Lambda$ with $\lambda \geqslant \mu$, is an inverse system of Hilbert C^{*}-bimodules. Then $\lim _{\leftarrow \lambda} M\left(X_{\lambda}\right)$ has a structure of Hilbert $\lim _{\leftarrow \lambda} M\left(A_{\lambda}\right)-\lim _{\leftarrow \lambda} M\left(A_{\lambda}\right)$ pro- C^{*}-bimodule. Moreover, by Lemma 3.12 the maps $\chi_{\lambda \mu}^{M(X)}: M\left(X_{\lambda}\right) \rightarrow M\left(X_{\mu}\right)$, $\lambda, \mu \in \Lambda, \lambda \geqslant \mu$ are all strictly continuous.

Consider, the maps:

$$
\Phi: M(X) \rightarrow \lim _{\leftarrow \lambda} M\left(X_{\lambda}\right), \Phi(T)=\left(\chi_{\lambda}^{M(X)}(T)\right)_{\lambda}
$$

and

$$
\varphi: M(A) \rightarrow \lim _{\leftarrow \lambda} M\left(A_{\lambda}\right), \varphi(m)=\left(\pi_{\lambda}^{M(A)}(m)\right)_{\lambda}
$$

It is easy to check that (Φ, φ) is a morphism of Hilbert pro- C^{*}-bimodules. Moreover, Φ is bijective, and since φ is a pro- C^{*}-isomorphism, (Φ, φ) is an isomorphism of Hilbert pro- C^{*}-bimodules. Clearly, a net $\left\{T_{i}\right\}_{i \in I}$ in $M(X)$ converges strictly to 0 in $M(X)$ if and only if the net $\left\{\Phi\left(T_{i}\right)\right\}_{i \in I}$ converges strictly to 0 in $\lim _{\leftarrow \lambda} M\left(X_{\lambda}\right)$. Therefore, the strict topology on $M(X)$ can be identified with the inverse limit of the strict topologies on $M\left(X_{\lambda}\right), \lambda \in \Lambda$, and since $M\left(X_{\lambda}\right), \lambda \in \Lambda$, are complete with respect to the strict topology [5, Proposition 1.27], $M(X)$ is complete with respect to the strict topology.
(2) Let $\lambda \in \Lambda$. By [5], $\left(l_{X_{\lambda}}, l_{A_{\lambda}}\right):\left(X_{\lambda}, A_{\lambda}\right) \rightarrow\left(M\left(X_{\lambda}\right), M\left(A_{\lambda}\right)\right)$, where $l_{X_{\lambda}}\left(\sigma_{\lambda}^{X}(x)\right)$ $\left(\pi_{\lambda}^{A}(a)\right)=\sigma_{\lambda}^{X}(x a)$ and ${t_{A_{\lambda}}}\left(\pi_{\lambda}^{A}(b)\right) \pi_{\lambda}^{A}(a)=\pi_{\lambda}^{A}(b a)$ for all $x \in X$ and $a, b \in A$, is a morphism of Hilbert C^{*}-bimodules. Since

$$
\chi_{\lambda \mu}^{M(X)} \circ \imath_{X_{\lambda}}=\imath_{X_{\mu}} \circ \sigma_{\lambda \mu}^{X} \text { and } \pi_{\lambda \mu}^{M(A)} \circ \imath_{A_{\lambda}}=l_{A_{\mu}} \circ \pi_{\lambda \mu}^{A}
$$

for all $\lambda, \mu \in \Lambda$ with $\lambda \geqslant \mu$, there is a morphism of Hilbert pro- C^{*}-bimodules

$$
\left(\lim _{\leftarrow \lambda} v_{X_{\lambda}}, \lim _{\leftarrow \lambda} v_{A_{\lambda}}\right):\left(\lim _{\leftarrow \lambda} X_{\lambda}, \lim _{\leftarrow \lambda} A_{\lambda}\right) \rightarrow\left(\lim _{\leftarrow \lambda} M\left(X_{\lambda}\right), \lim _{\leftarrow \lambda} M\left(A_{\lambda}\right)\right) .
$$

Identifying X with $\lim _{\leftarrow \lambda} X_{\lambda}$ and A with $\lim _{\leftarrow \lambda} A_{\lambda}$, and using (1), we obtain a morphism of Hilbert pro- C^{*}-bimodules $\left(\iota_{X}, l_{A}\right):(X, A) \rightarrow(M(X), M(A))$, where $\imath_{X}(x)(a)=x a$ and $\iota_{A}(b)(a)=b a$ for all $x \in X$ and $a, b \in A$. We know that t_{A} is nondegenerate and $X A$ is dense in X, therefore $\left(l_{X}, l_{A}\right)$ is nondegenerate.
(3) Since, for each $\lambda \in \Lambda$,

$$
p_{\lambda}^{M(A)}\left(l_{X}(x)\right)=\left\|l_{X_{\lambda}}\left(\sigma_{\lambda}^{X}(x)\right)\right\|_{M\left(X_{\lambda}\right)}=\left\|\sigma_{\lambda}^{X}(x)\right\|_{X_{\lambda}}=p_{\lambda}^{A}(x)
$$

for all $x \in X, X$ can be identified with a closed $M(A)-M(A)$ pro- C^{*}-sub-bimodule of $M(X)$. Using (1) - (2) and [13, Chapter III, Theorem 3.1], we have

$$
\begin{aligned}
{\overline{l_{X}(X)}}^{s t r} & =\lim _{\leftarrow \lambda}{\overline{\chi_{\lambda}^{M(X)}\left(l_{X}(X)\right)}}^{s t r}=\lim _{\leftarrow \lambda}{\overline{l_{X_{\lambda}}\left(\sigma_{\lambda}^{X}(X)\right)}}^{s t r}=\lim _{\leftarrow \lambda}{\overline{l_{X_{\lambda}}\left(X_{\lambda}\right)}}^{s t r} \\
& =\lim _{\leftarrow \lambda} M\left(X_{\lambda}\right)=M(X),
\end{aligned}
$$

where $\bar{Z}^{s t r}$ denotes the closure with respect to the strict topology of the Hilbert subbimodule Z of a Hilbert bimodule Y. Therefore, X can be identified with a closed $M(A)-M(A)$ pro- C^{*}-sub-bimodule of $M(X)$ which is dense in $M(X)$ with respect to the strict topology.

Remark 3.14. Let (X, A) be a full Hilbert pro- C^{*}-bimodule.

1. A net $\left\{x_{i}\right\}_{i \in I}$ in X converges strictly to 0 if and only if the nets $\left\{p_{\lambda}^{A}\left(x_{i} a\right)\right\}_{i \in I}$ and $\left\{p_{\lambda}^{A}\left(a x_{i}\right)\right\}_{i \in I}$ converge to 0 for all $a \in A$ and $\lambda \in \Lambda$.
2. The morphism of Hilbert pro- C^{*}-bimodules $\left(l_{X}, l_{A}\right):(X, A) \rightarrow(M(X), M(A))$ is strictly continuous.

Lemma 3.15. Let (X, A) be a full Hilbert pro- C^{*}-bimodule, let $\left\{e_{i}\right\}_{i \in I}$ be an approximate unit for A and $T \in M(X)$. Then the net $\left\{T \cdot e_{i}\right\}_{i \in I}$ converges strictly to T.

Proof. The net $\left\{T \cdot e_{i}\right\}_{i \in I}$ is bounded, since

$$
p_{\lambda}^{M(A)}\left(T \cdot e_{i}\right) \leqslant p_{\lambda}^{M(A)}(T) p_{\lambda, L_{A}(A)}\left(e_{i}\right)=p_{\lambda}^{M(A)}(T) p_{\lambda}\left(e_{i}\right) \leqslant p_{\lambda}^{M(A)}(T)
$$

for all $i \in I$ and for all $\lambda \in \Lambda$. Moreover, we have that

$$
p_{\lambda}^{M(A)}\left(\left(T \cdot e_{i}-T\right)(a)\right)=p_{\lambda}^{A}\left(T\left(e_{i} a-a\right)\right) \leqslant p_{\lambda, L_{A}(A, X)}(T) p_{\lambda}\left(e_{i} a-a\right)
$$

for all $a \in A, i \in I, \lambda \in \Lambda$, and

$$
p_{\lambda}\left(\left(\left(T \cdot e_{i}\right)^{*}-T^{*}\right)(x)\right)=p_{\lambda}\left(e_{i} T^{*}(x)-T^{*}(x)\right)
$$

for all $x \in X, i \in I, \lambda \in \Lambda$. Based on Proposition 3.7, and taking into account that $\left\{e_{i}\right\}_{i \in I}$ is an approximate unit for A, we conclude that $\left\{T \cdot e_{i}\right\}_{i \in I}$ converges strictly to T.

In the following theorem we show that any nondegenerate morphism of pro- $C^{*}-$ bimodules is strictly continuous.

THEOREM 3.16. Let (X, A) and (Y, B) be two full Hilbert pro- C^{*}-bimodules and let (Φ, φ) be a nondegenerate morphism of Hilbert pro- C^{*}-bimodules from (X, A) to $(M(Y), M(B))$. Then (Φ, φ) extends to a unique nondegenerate morphism of Hilbert pro- C^{*}-bimodules $(\bar{\Phi}, \bar{\varphi})$ from $(M(X), M(A))$ to $(M(Y), M(B))$. Moreover, $\bar{\Phi}$ is strictly continuous.

Proof. For each $\delta \in \Delta$, there is $\lambda \in \Lambda$ such that $q_{\delta, M(B)}(\varphi(a)) \leqslant p_{\lambda}(a)$ for all $a \in A$ and $q_{\delta}^{M(B)}(\Phi(x)) \leqslant p_{\lambda}^{A}(x)$ for all $x \in X$. So there exists a C^{*}-morphism $\varphi_{(\lambda, \delta)}: A_{\lambda} \rightarrow M\left(B_{\delta}\right)$ such that $\varphi_{(\lambda, \delta)} \circ \pi_{\lambda}^{A}=\pi_{\delta}^{M(B)} \circ \varphi$ and a linear map $\Phi_{(\lambda, \delta)}: X_{\lambda} \rightarrow$ $M\left(Y_{\delta}\right)$ such that $\Phi_{(\lambda, \delta)} \circ \sigma_{\lambda}^{X}=\chi_{\delta}^{M(Y)} \circ \Phi$. It is easy to check that $\left(\Phi_{(\lambda, \delta)}, \varphi_{(\lambda, \delta)}\right)$ is a morphism of Hilbert C^{*}-bimodules from $\left(X_{\lambda}, A_{\lambda}\right)$ to $\left(M\left(Y_{\delta}\right), M\left(B_{\delta}\right)\right)$. Moreover, $\left(\Phi_{(\lambda, \delta)}, \varphi_{(\lambda, \delta)}\right)$ is nondegenerate, since

$$
\left[\varphi_{(\lambda, \delta)}\left(A_{\lambda}\right) B_{\delta}\right]=\left[\varphi_{(\lambda, \delta)}\left(\pi_{\lambda}^{A}(A)\right) B_{\delta}\right]=\left[\pi_{\delta}^{M(B)}(\varphi(A) B)\right]=\left[\pi_{\delta}^{M(B)}(B)\right]=B_{\delta}
$$

and

$$
\begin{aligned}
{\left[\Phi_{(\lambda, \delta)}\left(X_{\lambda}\right) B_{\delta}\right] } & =\left[\Phi_{(\lambda, \delta)}\left(\sigma_{\lambda}^{X}(X)\right) \pi_{\delta}^{M(B)}(B)\right]=\left[\chi_{\delta}^{M(Y)}(\Phi(X) B)\right] \\
& =\left[\sigma_{\delta}^{Y}(Y)\right]=Y_{\delta}
\end{aligned}
$$

Then, by [5, Theorem 1.30], $\Phi_{(\lambda, \delta)}$ is strictly continuous and $\left(\Phi_{(\lambda, \delta)}, \varphi_{(\lambda, \delta)}\right)$ extends to a unique nondegenerate morphism of Hilbert C^{*}-modules $\left(\overline{\Phi_{(\lambda, \delta)}}, \overline{\varphi_{(\lambda, \delta)}}\right)$ from $\left(M\left(X_{\lambda}\right), M\left(A_{\lambda}\right)\right)$ to $\left(M\left(Y_{\delta}\right), M\left(B_{\delta}\right)\right)$. Let $\overline{\Phi_{\delta}}=\overline{\Phi_{(\lambda, \delta)}} \circ \chi_{\lambda}^{M(X)}$ and $\overline{\varphi_{\delta}}=\overline{\varphi_{(\lambda, \delta)}} \circ$ $\pi_{\lambda}^{M(A)}$. Clearly, $\left(\overline{\Phi_{\delta}}, \overline{\varphi_{\delta}}\right)$ is a morphism of pro- C^{*}-bimodules from $(M(X), M(A))$ to $\left(M\left(Y_{\delta}\right), M\left(B_{\delta}\right)\right)$. Moreover, $\overline{\Phi_{\delta}}$ is strictly continuous, since $\chi_{\lambda}^{M(X)}$ is strictly continuos (see Lemma 3.12).

Let $\delta_{1}, \delta_{2} \in \Delta$ with $\delta_{1} \geqslant \delta_{2}$. We have

$$
\begin{aligned}
\overline{\Phi_{\delta_{1}}}\left(l_{X}(x)\right) & =\left(\overline{\Phi_{\left(\lambda_{1}, \delta_{1}\right)}} \circ \chi_{\lambda_{1}}^{M(X)}\right)\left(l_{X}(x)\right)=\overline{\Phi_{\left(\lambda_{1}, \delta_{1}\right)}}\left(l_{X_{\lambda_{1}}}\left(\sigma_{\lambda_{1}}^{X}(x)\right)\right) \\
& =\Phi_{\left(\lambda_{1}, \delta_{1}\right)}\left(\sigma_{\lambda_{1}}^{X}(x)\right)=\chi_{\delta_{1}}^{M(Y)}(\Phi(x))
\end{aligned}
$$

for some $\lambda_{1} \in \Lambda$ and for all $x \in X$. Then

$$
\left(\chi_{\delta_{1} \delta_{2}}^{M(Y)} \circ \overline{\Phi_{\delta_{1}}}\right)\left(\imath_{X}(x)\right)=\chi_{\delta_{1} \delta_{2}}^{M(Y)}\left(\chi_{\delta_{1}}^{M(Y)}(\Phi(x))\right)=\chi_{\delta_{2}}^{M(Y)}(\Phi(x))=\overline{\Phi_{\delta_{2}}}\left(\imath_{X}(x)\right)
$$

for all $x \in X$. From these relations and taking into account that $\chi_{\delta_{1} \delta_{2}}^{M(Y)}, \overline{\Phi_{\delta_{1}}}, \overline{\Phi_{\delta_{2}}}$ are strictly continuous and X is dense in $M(X)$ with respect to the strict topology, we conclude that $\chi_{\delta_{1} \delta_{2}}^{M(Y)} \circ \overline{\Phi_{\delta_{1}}}=\overline{\Phi_{\delta_{2}}}$. Therefore there is a strictly continuous linear map $\bar{\Phi}: M(X) \rightarrow M(Y)$ such that $\chi_{\delta}^{M(Y)} \circ \bar{\Phi}=\overline{\Phi_{\delta}}$ for all $\delta \in \Delta$, and $\bar{\Phi} \circ \imath_{X}=\Phi$.

By [14, Proposition 3.15], there is a pro- C^{*}-morphism $\bar{\varphi}: M(A) \rightarrow M(B)$ such that $\pi_{\delta}^{M(B)} \circ \bar{\varphi}=\overline{\varphi_{\delta}}$ for all $\delta \in \Delta$ and $\bar{\varphi} \circ \imath_{A}=\varphi$.

It is easy to check that $(\bar{\Phi}, \bar{\varphi})$ is a morphism of Hilbert pro- C^{*}-bimodules. Since $\bar{\varphi}$ is nondegenerate [7, Proposition 6.1.4] and

$$
\begin{aligned}
{[\bar{\Phi}(M(X)) B] } & =[\bar{\Phi}(M(X)) \varphi(A) B]=[\bar{\Phi}(M(X) A)) B] \\
& =[\Phi(X)) B]=Y
\end{aligned}
$$

the morphism of Hilbert pro- C^{*}-bimodule $(\bar{\Phi}, \bar{\varphi})$ is nondegenerate.
Suppose that there is another morphism of Hilbert pro- C^{*}-bimodules $\left(\Phi_{1}, \varphi_{1}\right)$: $(M(X), M(A)) \rightarrow(M(Y), M(B))$ such that $\Phi_{1}\left(l_{X}(x)\right)=\Phi(x)$ for all $x \in X$ and $\varphi_{1}\left(l_{A}(a)\right)=\varphi(a)$ for all $a \in A$. Let $\left\{e_{i}\right\}_{i \in I}$ be a approximate unit for A. Then, by Lemma 3.15 for each $T \in M(X)$ and $m \in M(A)$, the nets $\left\{T \cdot e_{i}\right\}_{i \in I}$ and $\left\{m \cdot e_{i}\right\}_{i \in I}$ are strictly convergent to T respectively m. Thus we have

$$
\Phi_{1}(T)=\operatorname{str}-\lim _{i} \Phi_{1}\left(T \cdot e_{i}\right)=\operatorname{str}-\lim _{i} \Phi\left(T \cdot e_{i}\right)=\bar{\Phi}(T)
$$

for all $T \in M(X)$ and

$$
\varphi_{1}(m)=\operatorname{str}-\lim _{i} \varphi_{1}\left(m \cdot e_{i}\right)=\operatorname{str}-\lim _{i} \varphi\left(m \cdot e_{i}\right)=\bar{\varphi}(m)
$$

for all $m \in M(A)$.
Let X be a Hilbert $A-A$ pro- C^{*}-bimodule. For a closed two sided ideal \mathscr{I} of A we put $\mathscr{I} X=\operatorname{span}\{a x / a \in \mathscr{I}, x \in X\}$ and $X \mathscr{I}=\operatorname{span}\{x a / a \in \mathscr{I}, x \in X\}$. By [12, Lemma 3.7], $\mathscr{I} X$ and $X \mathscr{I}$ are closed Hilbert pro- C^{*}-sub-bimodules of X.

Definition 3.17. Let (X, A) and (Y, C) be two Hilbert pro- C^{*}-bimodules. We say that (Y, C) is an extension of (X, A) if the following conditions are satisfied:

1. C contains A as an ideal;
2. there exists a morphism $\left(\varphi_{X}, \varphi_{A}\right)$ of Hilbert pro- C^{*}-bimodules from (X, A) to (Y, C), such that $\varphi_{A}: A \rightarrow C$ is just the inclusion map;
3. $\varphi_{X}(X)=\varphi_{A}(A) Y=Y \varphi_{A}(A)$.

REMARK 3.18. If (Y, C) is an extension of (X, A), and if the topology on C is given by the family of C^{*}-seminorms $\left\{p_{\lambda} ; \lambda \in \Lambda\right\}$, then the topology on A is given by $\left\{\left.p_{\lambda}\right|_{A} ; \lambda \in \Lambda\right\}$, and $p_{\lambda}\left(\varphi_{A}(a)\right)=p_{\lambda}(a)$ for all $a \in A$ and for all $\lambda \in \Lambda$. Therefore, $p_{\lambda}^{C}\left(\varphi_{X}(x)\right)=p_{\lambda}^{A}(x)$ for all $x \in X$ and for all $\lambda \in \Lambda$, and so, for each $\lambda \in \Lambda$, there is a linear map $\varphi_{X_{\lambda}}: X_{\lambda} \rightarrow Y_{\lambda}$ such that $\sigma_{\lambda}^{Y} \circ \varphi_{X}=\varphi_{X_{\lambda}} \circ \sigma_{\lambda}^{X}$. Then $\varphi_{X}=\lim _{\leftarrow \lambda} \varphi_{X_{\lambda}}$, and for each $\lambda \in \Lambda,\left(Y_{\lambda}, C_{\lambda}\right)$ is an extension of $\left(X_{\lambda}, A_{\lambda}\right)$ via the morphism $\left(\varphi_{X_{\lambda}}, \varphi_{A_{\lambda}}\right)$, where $\varphi_{A_{\lambda}}$ is the inclusion of A_{λ} into C_{λ}.

In the following proposition, we show that $(M(X), M(A))$ is a maximal extension of (X, A) in the sense that if (Y, C) is another extension of (X, A) via a morphism $\left(\psi_{X}, \psi_{A}\right)$, then there is a morphism of Hilbert pro- C^{*}-bimodules $\left(\vartheta_{Y}, \vartheta_{C}\right):(Y, C) \rightarrow$ $(M(X), M(A))$ such that $\vartheta_{Y} \circ \psi_{X}=\imath_{X}$ and $\vartheta_{C} \circ \psi_{A}=l_{A}$ (for the case of Hilbert C^{*} modules, see $[3,4])$.

Proposition 3.19. Let X be a full Hilbert pro-C*-bimodule over A. Then $(M(X), M(A))$ is a maximal extension of (X, A).

Proof. Let $\left(l_{X}, l_{A}\right)$ be the morphism of Theorem 3.13(2) between (X, A) and $(M(X), M(A))$, where $l_{X}(x)(a)=x a, l_{A}(a)(b)=a b$, for $x \in X, a, b \in A$. From [15, Corollary 3.3] we have that for every $\lambda \in \Lambda, M\left(X_{\lambda}\right) l_{A_{\lambda}}\left(A_{\lambda}\right)=l_{X_{\lambda}}\left(X_{\lambda}\right)=l_{A_{\lambda}}\left(A_{\lambda}\right) M\left(X_{\lambda}\right)$. Therefore, since from Theorem 3.13, we have that $M(X)=\lim _{\leftarrow \lambda} M\left(X_{\lambda}\right), \imath_{X}=\lim _{\leftarrow \lambda} \imath_{X_{\lambda}}$, $v_{A}=\lim _{\leftarrow \lambda} t_{A_{\lambda}}$, and since both $\imath_{A}(A) M(X), M(X) \imath_{A}(A)$ and $\iota_{X}(X)$ are closed submodules of $M(X)$, we deduce that $\imath_{A}(A) M(X)=\imath_{X}(X)=M(X) \imath_{A}(A)$. Hence $(M(X), M(A))$ is an extension of (X, A).

To show that $(M(X), M(A))$ is a maximal extension, let (Y, C) be another extension of (X, A) via a morphism $\left(\psi_{X}, \psi_{A}\right)$. Then, by Remark 3.18, $\psi_{X}=\lim _{\leftarrow \lambda} \psi_{X_{\lambda}}, \psi_{A}=$ $\lim _{\leftarrow \lambda} \psi_{A_{\lambda}}$, and for each $\lambda \in \Lambda,\left(Y_{\lambda}, C_{\lambda}\right)$ is an extension of $\left(X_{\lambda}, A_{\lambda}\right)$ via the morphism $\left(\psi_{X_{\lambda}}, \psi_{A_{\lambda}}\right)$. By [15, Proposition 3.4], there exists a unique morphism $\left(\vartheta_{Y_{\lambda}}, \vartheta_{C_{\lambda}}\right)$: $\left(Y_{\lambda}, C_{\lambda}\right) \rightarrow\left(M\left(X_{\lambda}\right), M\left(A_{\lambda}\right)\right)$ such that $\vartheta_{Y_{\lambda}} \circ \psi_{X_{\lambda}}=l_{X_{\lambda}}$ and $\vartheta_{C_{\lambda}} \circ \psi_{A_{\lambda}}=l_{A_{\lambda}}$. Moreover,

$$
\vartheta_{Y_{\lambda}}\left(\sigma_{\lambda}^{Y}(y)\right)\left(\pi_{\lambda}^{A}(a)\right)=\psi_{X_{\lambda}}^{-1}\left(\sigma_{\lambda}^{Y}(y) \psi_{A_{\lambda}}\left(\pi_{\lambda}^{A}(a)\right)\right)
$$

and

$$
\vartheta_{C_{\lambda}}\left(\pi_{\lambda}^{C}(c)\right)\left(\pi_{\lambda}^{A}(a)\right)=\psi_{A_{\lambda}}^{-1}\left(\pi_{\lambda}^{C}(c) \psi_{A_{\lambda}}\left(\pi_{\lambda}^{A}(a)\right)\right)
$$

for all $a \in A$, for all $c \in C$ and for all $y \in Y$. It is easy to check that $\left(\vartheta_{Y_{\lambda}}\right)_{\lambda}$ is an inverse system of linear maps, $\left(\vartheta_{C_{\lambda}}\right)_{\lambda}$ is an inverse system of C^{*}-morphisms, and $\left(\vartheta_{Y}, \vartheta_{C}\right)$: $(Y, C) \rightarrow(M(X), M(A))$, where $\vartheta_{Y}=\lim _{\leftarrow \lambda} \vartheta_{Y_{\lambda}}$ and $\vartheta_{C}=\lim _{\leftarrow \lambda} \vartheta_{C_{\lambda}}$, is a morphism of Hilbert pro- C^{*}-bimodules such that $\vartheta_{Y} \circ \psi_{X}=\imath_{X}$ and $\vartheta_{C} \circ \psi_{A}=\imath_{A}$.

4. Crossed products by Hilbert pro- C^{*}-modules

A covariant representation of a Hilbert pro- C^{*}-bimodule (X, A) on a pro- C^{*} algebra B is a morphism of Hilbert pro- C^{*}-bimodules from (X, A) to the Hilbert pro-C^{*}-bimodule (B, B).

The crossed product of A by a Hilbert pro- C^{*}-bimodule (X, A) is a pro- C^{*} algebra, denoted by $A \times_{X} \mathbb{Z}$, and a covariant representation $\left(i_{X}, i_{A}\right)$ of (X, A) on $A \times_{X} \mathbb{Z}$ with the property that for any covariant representation $\left(\varphi_{X}, \varphi_{A}\right)$ of (X, A) on a pro- C^{*} algebra B, there is a unique pro- C^{*}-morphism $\Phi: A \times_{X} \mathbb{Z} \rightarrow B$ such that $\Phi \circ i_{X}=\varphi_{X}$ and $\Phi \circ i_{A}=\varphi_{A}$ [11, Definition 3.3].

REMARK 4.1. If (Φ, φ) is a morphism of Hilbert pro- C^{*}-bimodules from (X, A) to (Y, B), then $\left(i_{Y} \circ \Phi, i_{B} \circ \varphi\right)$ is a covariant representation of X on $B \times_{Y} \mathbb{Z}$ and by the universal property of $A \times_{X} \mathbb{Z}$ there is a unique pro- C^{*}-morphism $\Phi \times \varphi$ from $A \times_{X} \mathbb{Z}$ to $B \times_{Y} \mathbb{Z}$ such that $(\Phi \times \varphi) \circ i_{A}=i_{B} \circ \varphi$ and $(\Phi \times \varphi) \circ i_{X}=i_{Y} \circ \Phi$.

LEMMA 4.2. Let (Φ, φ) be a a morphism of Hilbert pro- C^{*}-bimodules from (X, A) to (Y, B). If Γ and Γ^{\prime} have the same index set and $\varphi=\lim _{\leftarrow \lambda} \varphi_{\lambda}$, then $\Phi=\lim _{\leftarrow \lambda} \Phi_{\lambda}$, for each $\lambda \in \Lambda,\left(\Phi_{\lambda}, \varphi_{\lambda}\right)$ is a morphism of Hilbert C^{*}-bimodules, $\left(\Phi_{\lambda} \times \varphi_{\lambda}\right)_{\lambda}$ is an inverse system of C^{*}-morphisms and $\Phi \times \varphi=\lim _{\leftarrow \lambda} \Phi_{\lambda} \times \varphi_{\lambda}$. Moreover, if (Φ, φ) is an isomorphism of Hilbert pro-C*-bimodules and $\varphi_{\lambda}, \lambda \in \Lambda$ are C^{*}-isomorphisms, then $\left(\Phi_{\lambda}, \varphi_{\lambda}\right), \lambda \in \Lambda$ are isomorphisms of Hilbert C^{*}-bimodules.

Proof. Let $\lambda \in \Lambda$. From

$$
q_{\lambda}^{B}(\Phi(x))^{2}=q_{\lambda}(\varphi(\langle x, x\rangle)) \leqslant p_{\lambda}(\langle x, x\rangle)=p_{\lambda}^{A}(x)^{2}
$$

for all $x \in X$, we deduce that there is a linear map $\Phi_{\lambda}: X_{\lambda} \rightarrow Y_{\lambda}$ such that $\Phi_{\lambda} \circ \sigma_{\lambda}^{X}=$ $\sigma_{\lambda}^{Y} \circ \Phi$. It is easy to verify that $\left(\Phi_{\lambda}\right)_{\lambda}$ is an inverse system of linear maps and $\Phi=$ $\lim _{\leftarrow} \Phi_{\lambda}$. Moreover, for each $\lambda \in \Lambda,\left(\Phi_{\lambda}, \varphi_{\lambda}\right)$ is a morphism of Hilbert C^{*}-bimodules. Let $\Phi_{\lambda} \times \varphi_{\lambda}$ be the C^{*}-morphism from $A_{\lambda} \times_{X_{\lambda}} \mathbb{Z}$ to $B_{\lambda} \times_{Y_{\lambda}} \mathbb{Z}$ induced by $\left(\Phi_{\lambda}, \varphi_{\lambda}\right)$. From

$$
\begin{aligned}
\pi_{\lambda \mu}^{B \times Y_{Y} \mathbb{Z}} \circ\left(\Phi_{\lambda} \times \varphi_{\lambda}\right) \circ i_{A_{\lambda}} & =\pi_{\lambda \mu}^{B \times Y_{Y} \mathbb{Z}} \circ i_{B_{\lambda}} \circ \varphi_{\lambda}=i_{B_{\mu}} \circ \pi_{\lambda \mu}^{B} \circ \varphi_{\lambda} \\
& =i_{B_{\mu}} \circ \varphi_{\mu} \circ \pi_{\lambda \mu}^{A}=\left(\Phi_{\mu} \times \varphi_{\mu}\right) \circ \pi_{\lambda \mu}^{A \times \mathbb{X}^{\mathbb{Z}}} \circ i_{A_{\lambda}}
\end{aligned}
$$

and

$$
\pi_{\lambda \mu}^{B \times{ }_{Y} \mathbb{Z}} \circ\left(\Phi_{\lambda} \times \varphi_{\lambda}\right) \circ i_{X_{\lambda}}=\left(\Phi_{\mu} \times \varphi_{\mu}\right) \circ \pi_{\lambda \mu}^{A \times X_{X} \mathbb{Z}} \circ i_{X_{\lambda}}
$$

for all $\lambda, \mu \in \Lambda$ with $\lambda \geqslant \mu$ and taking into account that $i_{A_{\lambda}}\left(A_{\lambda}\right)$ and $i_{X_{\lambda}}\left(X_{\lambda}\right)$ generate $A_{\lambda} \times_{X_{\lambda}} \mathbb{Z}$, we deduce that $\left(\Phi_{\lambda} \times \varphi_{\lambda}\right)_{\lambda}$ is an inverse system of C^{*}-morphisms. Moreover, since

$$
\lim _{\leftarrow \lambda}\left(\Phi_{\lambda} \times \varphi_{\lambda}\right) \circ \lim _{\leftarrow \lambda} i_{A_{\lambda}}=\lim _{\leftarrow \lambda}\left(\Phi_{\lambda} \times \varphi_{\lambda}\right) \circ i_{A_{\lambda}}=\lim _{\leftarrow \lambda} i_{B_{\lambda}} \circ \varphi_{\lambda}=\lim _{\leftarrow \lambda} i_{B_{\lambda}} \circ \lim _{\leftarrow \lambda} \varphi_{\lambda}
$$

and

$$
\lim _{\leftarrow \lambda}\left(\Phi_{\lambda} \times \varphi_{\lambda}\right) \circ \lim _{\leftarrow \lambda} i_{X_{\lambda}}=\lim _{\leftarrow \lambda}\left(\Phi_{\lambda} \times \varphi_{\lambda}\right) \circ i_{X_{\lambda}}=\lim _{\leftarrow \lambda} i_{Y_{\lambda}} \circ \Phi_{\lambda}=\lim _{\leftarrow \lambda} i_{Y_{\lambda}} \circ \lim _{\leftarrow \lambda} \Phi_{\lambda},
$$

we obtain $\Phi \times \varphi=\lim _{\leftarrow \lambda} \Phi_{\lambda} \times \varphi_{\lambda}$.
Suppose that (Φ, φ) is an isomorphism of Hilbert pro- C^{*}-bimodules and $\varphi_{\lambda}, \lambda \in$ Λ are C^{*}-isomorphisms. Then, since $\varphi^{-1}=\lim _{\leftarrow \lambda} \varphi_{\lambda}^{-1}$, by the first part of the proof, $\Phi^{-1}=\lim _{\leftarrow \lambda} \psi_{\lambda}$ and $\left(\psi_{\lambda}, \varphi_{\lambda}^{-1}\right)$ is a morphism of Hilbert C^{*}-bimodules for all $\lambda \in \Lambda$. Let $\lambda \in \Lambda$. From

$$
\psi_{\lambda} \circ \Phi_{\lambda} \circ \sigma_{\lambda}^{X}=\psi_{\lambda} \circ \sigma_{\lambda}^{Y} \circ \Phi=\sigma_{\lambda}^{X} \circ \Phi^{-1} \circ \Phi=\sigma_{\lambda}^{X}
$$

and

$$
\Phi_{\lambda} \circ \psi_{\lambda} \circ \sigma_{\lambda}^{Y}=\Phi_{\lambda} \circ \sigma_{\lambda}^{X} \circ \Phi^{-1}=\sigma_{\lambda}^{Y} \circ \Phi \circ \Phi^{-1}=\sigma_{\lambda}^{Y}
$$

and taking into account that σ_{λ}^{X} and σ_{λ}^{Y} are surjective, we deduce that $\psi_{\lambda}=\Phi_{\lambda}^{-1}$.
The following proposition gives the relation between the crossed product of A by X and the crossed product of $M(A)$ by $M(X)$.

Proposition 4.3. Let (X, A) be full Hilbert pro- C^{*}-bimodule. Then $A \times_{X} \mathbb{Z}$ can be embedded into $M(A) \times_{M(X)} \mathbb{Z}$.

Proof. Let t_{A} be the embedding of A in $M(A)$ and l_{X} the embedding of X in $M(X)$. Then $\left(\imath_{X}, l_{A}\right)$ is a morphism of Hilbert pro- C^{*}-bimodules, and since $l_{A}=$ $\lim _{\leftarrow \lambda} v_{A_{\lambda}}$, by Lemma 4.2, $\imath_{X} \times v_{A}=\lim _{\leftarrow \lambda} v_{X_{\lambda}} \times v_{A_{\lambda}}$ is a pro- C^{*}-morphism from $A \times{ }_{X} \mathbb{Z}$ to $M(A) \times_{M(X)} \mathbb{Z}$. Moreover, since

$$
\begin{aligned}
p_{\lambda, M(A) \times_{M(X)} \mathbb{Z}}\left(l_{X} \times l_{A}(c)\right)= & \left\|l_{X_{\lambda}} \times l_{A_{\lambda}}\left(\pi_{\lambda}^{A \times_{X} \mathbb{Z}}(c)\right)\right\|_{\left.M\left(A_{\lambda}\right) \times_{M\left(X_{\lambda}\right)}\right)^{\mathbb{Z}}} \\
& {[1, \operatorname{Remark} 2.2] } \\
= & \left\|\pi_{\lambda}^{A \times_{X} \mathbb{Z}}(c)\right\|_{A_{\lambda} \times_{\lambda} \mathbb{Z}}=p_{\lambda, A \times{ }_{X} \mathbb{Z}}(c)
\end{aligned}
$$

for all $c \in A \times_{X} \mathbb{Z}$ and for all $\lambda \in \Lambda, A \times_{X} \mathbb{Z}$ can be identified with a pro- C^{*}-subalgebra of $M(A) \times_{M(X)} \mathbb{Z}$.

The following proposition is a generalization of [15, Proposition 4.7].

Proposition 4.4. Let (X, A) be a full Hilbert pro- C^{*}-bimodule. Then $M(A) \times_{M(X)}$ \mathbb{Z} can be identified with a pro- C^{*}-subalgebra of $M\left(A \times_{X} \mathbb{Z}\right)$.

Proof. Since X is full, $\left(i_{X}, i_{A}\right)$ is nondegenerate and $i_{A}=\lim _{\leftarrow \lambda} i_{A_{\lambda}}$ and $i_{X}=\lim _{\leftarrow \lambda} i_{X_{\lambda}}$ [11, Propositions 3.4 and 3.5]. Then, by Theorem 3.16, $\left(i_{X}, i_{A}\right)$ extends to a covariant representation $\left(\overline{i_{X}}, \overline{i_{A}}\right)$ of $(M(X), M(A))$ on $M\left(A \times_{X} \mathbb{Z}\right)$, and moreover, $\overline{i_{A}}=$ $\lim _{\leftarrow \lambda} \overline{i_{A_{\lambda}}}$ and $\overline{i_{X}}=\lim _{\leftarrow \lambda} \overline{i_{X_{\lambda}}}$. It is easy to check $\left(\overline{i_{X_{\lambda}}}, \overline{i_{A_{\lambda}}}\right)$ is a covariant representation of $\left(M\left(X_{\lambda}\right), M\left(A_{\lambda}\right)\right)$ on $M\left(A_{\lambda} \times_{X_{\lambda}} \mathbb{Z}\right)$ for each $\lambda \in \Lambda$. By [15, Proposition 4.7], for each $\lambda \in \Lambda$, there is an injective C^{*}-morphism $\Phi_{\lambda}: M\left(A_{\lambda}\right) \times_{M\left(X_{\lambda}\right)} \mathbb{Z} \rightarrow M\left(A_{\lambda} \times_{X_{\lambda}} \mathbb{Z}\right)$ such that $\Phi_{\lambda} \circ i_{M\left(X_{\lambda}\right)}=\overline{i_{X_{\lambda}}}$ and $\Phi_{\lambda} \circ i_{M\left(A_{\lambda}\right)}=\overline{i_{A_{\lambda}}}$. From

$$
\begin{aligned}
\pi_{\lambda \mu}^{M\left(A \times_{X} \mathbb{Z}\right)} \circ \Phi_{\lambda} \circ i_{M\left(X_{\lambda}\right)} & =\pi_{\lambda \mu}^{M\left(A \times_{X} \mathbb{Z}\right)} \circ \overline{i_{X_{\lambda}}}=\overline{i_{X_{\mu}}} \circ \chi_{\lambda \mu}^{M(X)} \\
& =\Phi_{\mu} \circ i_{M\left(X_{\mu}\right)} \circ \chi_{\lambda \mu}^{M(X)}=\Phi_{\mu} \circ \pi_{\lambda \mu}^{M\left(A \times_{X} \mathbb{Z}\right)} \circ i_{M\left(X_{\lambda}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
\pi_{\lambda \mu}^{M\left(A \times_{X} \mathbb{Z}\right)} \circ \Phi_{\lambda} \circ i_{M\left(A_{\lambda}\right)} & =\pi_{\lambda \mu}^{M\left(A \times_{X} \mathbb{Z}\right)} \circ \overline{i_{A_{\lambda}}}=\overline{i_{A_{\mu}}} \circ \pi_{\lambda \mu}^{M(A)} \\
& =\Phi_{\mu} \circ i_{M\left(A_{\mu}\right)} \circ \pi_{\lambda \mu}^{M(A)}=\Phi_{\mu} \circ \pi_{\lambda \mu}^{M\left(A \times_{X} \mathbb{Z}\right)} \circ i_{M\left(A_{\lambda}\right)}
\end{aligned}
$$

for all $\lambda, \mu \in \Lambda$, with $\lambda \geqslant \mu$, and taking into account that $i_{M\left(X_{\lambda}\right)}\left(M\left(X_{\lambda}\right)\right)$ and $i_{M\left(A_{\lambda}\right)}\left(M\left(A_{\lambda}\right)\right)$ generate $M\left(A_{\lambda}\right) \times_{M\left(X_{\lambda}\right)} \mathbb{Z}$, we deduce that $\left(\Phi_{\lambda}\right)_{\lambda}$ is an inverse system of isometric C^{*}-morphisms. Hence $\Phi=\lim _{\leftarrow \lambda} \Phi_{\lambda}$ is an injective pro- C^{*}-morphism from $\lim _{\leftarrow \lambda} M\left(A_{\lambda}\right) \quad \times_{M\left(X_{\lambda}\right)} \mathbb{Z} \quad$ to $\lim _{\leftarrow \lambda} M\left(A_{\lambda} \times_{X_{\lambda}} \mathbb{Z}\right) \quad$ such that $\quad p_{\lambda, M\left(A \times_{X} \mathbb{Z}\right)}(\Phi(c))=$ $p_{\lambda, M(A) \times_{M(X)} \mathbb{Z}}(c)$ for all $c \in M(A) \times_{M(X)} \mathbb{Z}$ and for all $\lambda \in \Lambda$. Therefore, $M(A) \times_{M(X)} \mathbb{Z}$ can be identified with a pro- C^{*}-subalgebra of $M\left(A \times_{X} \mathbb{Z}\right)$.

An automorphism α of a pro- C^{*}-algebra A such that $p_{\lambda}(\alpha(a))=p_{\lambda}(a)$ for all $a \in A$ and $\lambda \in \Lambda^{\prime}$, where Λ^{\prime} is a cofinal subset of Λ, is called an inverse limit automorphism. If α is an inverse limit automorphism of the pro- C^{*}-algebra A, then $X_{\alpha}=\left\{\xi_{x} ; x \in A\right\}$ is a Hilbert $A-A$ pro- C^{*}-bimodule with the bimodule structure defined as $\xi_{x} a=\xi_{x a}$, respectively $a \xi_{x}=\xi_{\alpha^{-1}(a) x}$, and the inner products are defined as $\left\langle\xi_{x}, \xi_{y}\right\rangle_{A}=x^{*} y$, respectively ${ }_{A}\left\langle\xi_{x}, \xi_{y}\right\rangle=\alpha\left(x y^{*}\right)$. The crossed product $A \times{ }_{\alpha} \mathbb{Z}$ of A by α is isomorphic to the crossed product of A by X_{α} [11].

Corollary 4.5. If α is an inverse limit automorphism of a non unital pro- C^{*} algebra A, then $M(A) \times \bar{\alpha} \mathbb{Z}$ can be identified with a pro- C^{*}-subalgebra of $M\left(A \times{ }_{\alpha} \mathbb{Z}\right)$.

Acknowledgements. The first author was partially supported by the grants of the Romanian Ministry of Education, CNCS - UEFISCDI, project number PN-II-RU-PD-2012-3-0533 and project number PN-II-ID-PCE-2012-4-0201. The second author was supported by a grant of the Romanian Ministry of Education, CNCS - UEFISCDI, project number PN-II-RU-PD-2012-3-0533.

REFERENCES

[1] B. ABADIE, Takai duality for crossed products by Hilbert C^{*}-modules, J. Operator Theory, 64 (2010), 1, 19-34.
[2] B. Abadie, S. Eilers, R. Exel, Morita equivalence for crossed products by Hilbert C*-bimodules, Trans. Amer. Math. Soc. 350 (1998), 8, 3043-3054.
[3] D. BAKIĆ, B. GULJAŠ, On a class of module maps of Hilbert C C^{*}-modules, Math. Commun. 7 (2002), 2, 177-192.
[4] D. Bakić, B. Guljaš, Extensions of Hilbert C^{*}-modules, Houston J. Math., 30 (2004), 2, 537-558.
[5] S. Echterhoff, S. KALISEZEWSki, J. Quigg, I. RAEburn, A categorial Approach to Imprimitivity Theorems for C^{*}-Dynamical Systems, arXiv:math/0205322v2 [math.OA] 11 Feb 2005.
[6] M. Fragoulopoulou, Topological algebras with involution, North-Holland Mathematics Studies, 200. Elsevier Science B.V., Amsterdam, 2005. xvi+495 pp. ISBN: 0-444-52025-2
[7] M. Joiţa, Hilbert modules over locally C^{*}-algebras, Bucharest University Press, Bucharest 2006.
[8] M. Joiţa, On multiplier modules of Hilbert modules over locally C^{*}-algebras, Studia Math. 185 (2008), 3, 263-277.
[9] M. JoiţA, Covariant representations of Hilbert C^{*}-modules, Expo. Math. 30 (2012) 209-220.
[10] M. JoiţA, Crossed products of locally C^{*}-algebras, Editura Academiei Române, Bucharest, 2007, 115+Xii pp., ISBN 978-973-27-1600-7.
[11] M. Joiţa, I. Zarakas, Crossed products by Hilbert pro-C ${ }^{*}$-bimodules, Studia Math. 215 (2013), 2, 139-156.
[12] M. Joiţa, I. ZARAKAS, A construction of pro- C^{*}-algebras from pro- C^{*}-correspondence, To appear in J. Operator Theory.
[13] A. Mallios, Topological Algebras. Selected Topics, North-Holland, 1986.
[14] N. C. Phillips, Inverse limit of C^{*}-algebras, J. Operator Theory, 19 (1988), 159-195.
[15] D. Robertson, Extensions of Hilbert bimodules and associated Cuntz-Pimsner algebras, arXiv:1105.1615v1 [math.OA] 9 May 2011.
[16] I. RAEbURN, D. P. Williams, Morita equivalence and continuous trace C^{*}-algebras, Mathematical surveys and monographs, Vol. 60.
[17] I. Zarakas, Hilbert pro-C*-bimodules and applications, Rev. Roum. Math. Pures Appl., LVII (2012), no. 3, 289-310.
[18] D. P. Williams, Crossed products of C^{*}-algebras, Mathematical Surveys and Monographs, Vol. 134, AMS 2007.
(Received May 26, 2014)

> Maria Joiţa
> Department of Mathematics, Faculty of Applied Sciences
> University Politehnica of Bucharest 313 Spl. Independentei Street, 060042, Bucharest, Romania and
> Simion Stoilow Institute of Mathematics of the Roumanian Academy 21 Calea Grivitei Street, 010702, Bucharest, Romania e-mail: joita@fmi.unibuc.ro http: //sites. google.com/a/g. unibuc. ro/maria-joital

Radu-B. Munteanu Department of Mathematics, University of Bucharest 14 Academiei St., 010014, Bucharest, Romania
e-mail: radu-bogdan.munteanu@g.unibuc.ro
Ioannis Zarakas
Department of Mathematics, University of Athens
Panepistimiopolis, Athens 15784, Greece
e-mail: gzarak@math.uoa.gr

