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Abstract. Let E be a Banach lattice with order continuous norm, and let A and B be positive
compact operators such that the commutator AB−BA is also positive. We prove that if A and
B are ideal-triangularizable, then they are simultaneously ideal-triangularizable, or equivalently,
the sum A + B is ideal-triangularizable. We then show several related results for operators of
constant sign (an operator T on E is of constant sign if either T or −T is positive). In particular,
we consider ideal-triangularizability for Lie sets of compact operators of constant sign (a set of
operators is a Lie set whenever it is closed under taking commutators).

1. Introduction and preliminaries

As an application of Lomonosov’s theorem [17] we can show that every commu-
tative family of compact operators on a Banach space is triangularizable [20, Theorem
7.2.1]. We start this paper with Banach lattice analogs of this well-known result. The
finite-dimensional setting has been already studied in [5]. For example, it was shown
there that a commutative family of nonnegative matrices is ideal-triangularizable when-
ever every matrix in the family is ideal-triangularizable. This theorem follows easily
from the first result in [5] asserting that ideal-triangularizable nonnegative matrices A
and B are simultaneously ideal-triangularizable whenever the commutator AB−BA is
also a nonnegative matrix. In this paper we consider the infinite-dimensional setting.
Section 2 is devoted to ideal-triangularizability of families of power-compact operators
of constant sign, while Section 3 slightly improves a recent result [8, Theorem 4.5] for
semigroups of positive compact operators. In Section 4 we restrict ourselves to Lie sets
of compact operators. Although Lie algebras of compact operators were already con-
sidered by Wojtyński, Shulman, Turovskii, Kennedy, Radjavi and others in [25], [13],
[15], [22], [23] and [14], it seems that Lie sets of compact operators were not consid-
ered so far in greater detail. In the rest of this section we recall some definitions and
basic facts.

Let E be a Riesz space, and let E+ denote the set of all positive vectors in E . The
band

Ad := {x ∈ E : |x| ∧ |a|= 0 for all a ∈ A}
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is called the disjoint complement of a set A in E . A band B of E is said to be a projec-
tion band if E = B⊕Bd. The corresponding band projection onto B is denoted by PB.
It is well-known that every band of a Dedekind complete Riesz space is a projection
band. A Banach lattice E is said to have an order continuous norm whenever every
decreasing net {xα}α with infimum 0 of vectors in E+ converges to 0 in norm. It
is well-known that every Banach lattice with order continuous norm is Dedekind com-
plete, and that its closed ideals are bands.

An operator T on a Riesz space E is said to be of constant sign if either T or −T
is a positive operator. An operator T on E is said to be a regular operator if it can
be written as a finite linear combination of positive operators. The vector space of all
regular operators on E is denoted by Lr(E). It is well-known that Lr(E) is Dedekind
complete whenever E is. Assume that E is a Banach lattice. It is well-known that
every regular operator on E is necessarily bounded. A bounded operator T on E is
power-compact if there exists a positive integer k such that Tk is a compact operator.

A nonzero vector a ∈ E+ is an atom in a normed Riesz space E if 0 � x,y � a
and x∧y = 0 imply either x = 0 or y = 0, or equivalently, if 0 � x � a implies x = λa
for some λ � 0, i.e., the principal ideal Ba generated by a is one-dimensional. It turns
out that Ba is a projection band [18]. The decomposition E = Ba⊕Bd

a implies that for
an arbitrary (positive) vector x ∈ E there exist a (positive) scalar λx and a (positive)
vector yx ∈ Bd

a such that x = λxa+ yx. The linear functional ϕa : E → R associated to
the atom a is defined by ϕa(x) = λx . It is called a coordinate functional associated
with the atom a .

Let E be a Dedekind complete Banach lattice. The centre Z (E) is the principal
ideal in Lr(E) generated by the identity I , i.e.,

Z (E) = {T ∈ Lr(E) : |T | � λ I for some λ � 0}.
Since Z (E) is also a band in a Dedekind complete Riesz space Lr(E) , we have the
following order direct sum decomposition Lr(E) = Z (E)⊕Z (E)d . Let P be the
band projection onto Z (E). The atomic diagonal (or just the diagonal) of a regular
operator T on a Dedekind complete Banach lattice is the operator D(T ) := PAP(T ) ,
where A denotes the band in E generated by all atoms of E . Let A be a maximal
set of pairwise disjoint atoms in A . In [12], the second named author obtained the
following description of the atomic diagonal of a positive operator T :

D(T ) = ∑
a∈A

PaTPa,

where the sum is the order limit of the net of operators ∑a∈F PaTPa taken over all
finite subsets F of A . If a ∈ A is an arbitrary atom, then PaTPa = ϕa(Ta)Pa where
Pa denotes the band projection onto the projection band Ba. Hence, we obtain the
following identity that holds for a positive operator T :

D(T ) = ∑
a∈A

ϕa(Ta)Pa. (1)

For the terminology and details not explained about Banach lattices and operators
on them we refer the reader to [2] and [21].
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We say that a chain C of closed subspaces of a Banach space X is a complete
chain if it contains arbitrary intersections and closed linear spans of its members. If a
closed subspace M is in a complete chain C , then the predecessor M− of M in C is
defined as the closed linear span of all proper subspaces of M belonging to C . Every
maximal chain C of closed subspaces of X is complete and, for each subspace M in
C , the dimension of the space quotient space M /M− is at most one.

A family F of operators on a Banach space X is reducible if there exists a non-
trivial closed subspace of X that is invariant under every operator from F . Otherwise
we say that F is irreducible. If there exists a maximal chain C of closed subspaces
of X such that every subspace from the chain C is invariant under every operator from
F , then F is said to be triangularizable, and C is called a triangularizing chain for
F . A family F of operators on a Banach lattice E is said to be ideal-reducible if
there exists a nontrivial closed ideal of E that is invariant under every operator from
F . Otherwise, we say that F is ideal-irreducible. A family F of operators on a
Banach lattice is said to be ideal-triangularizable if it is triangularizable and at least
one of (possibly many) triangularizing chains of F consists of closed ideals of E .

Let us recall [6, Theorem6.7] that we will use several times. Throughout the paper,
a semigroup of operators is just a family of operators closed under multiplication.

THEOREM 1.1. Let E be a Banach lattice with order continuous norm. A semi-
group S of positive compact operators on E is ideal-triangularizable if and only if
every pair {S,T} of operators in S is ideal-triangularizable.

The preceding theorem does not hold for power-compact operators. In fact, there
exists an irreducible semigroup of positive nilpotent operators on L2[0,1) but its every
finite subset is ideal-triangularizable [9].

Let I and J be closed ideals in a Banach lattice E that are invariant under
every operator from a given family F of operators on E . If I ⊆ J , then F induces

a family F̂ of operators on the quotient Banach lattice J /I as follows. For each T ∈
F , the operator T̂ is defined by T̂ (x+I ) = Tx+I . Any such family F̂ is called a
family of ideal-quotients of a family F . A set P of properties is said to be inherited by
ideal-quotients if every family of ideal-quotients of a family satisfying P also satisfies
the same properties. Among well-known properties like compactness, quasinilpotence,
positivity of operators and others, ideal-triangularizability is also inherited by ideal-
quotients [11]. When J belongs to a complete chain of closed ideals and I = J− ,
we denote the operator T̂ by TJ .

The following lemma is a very important tool in obtaining ideal-triangularizing
chains for families of positive operators on Banach lattices. The proof can be found in
[4].

LEMMA 1.2. (The Ideal-triangularization Lemma) Let P be the set of proper-
ties inherited by ideal-quotients. If every family of operators on a Banach lattice of
dimension greater than one which satisfies P is ideal-reducible, then every such fam-
ily is ideal-triangularizable.

For a more detailed treatment on triangularizability we refer the reader to [20].
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2. Families of operators

In [5] it is proved that ideal-triangularizable nonnegative matrices A and B are
simultaneously ideal-triangularizable whenever the commutator AB−BA is also a non-
negative matrix. An infinite-dimensional generalization of this theorem is the main
result of this section (Theorem 2.3). We start with the following simple lemma.

LEMMA 2.1. Let E be a Banach lattice, and let A and B be positive operators
on E such that the commutator AB−BA is of constant sign. Then the operators A and
B are power-compact if and only if the operator A+B is power-compact.

Proof. If the operator (A+B)k is compact for some positive integer k , then 0 �
A,B � A+B and [2, Theorem 5.13] imply that A3k and B3k are compact operators, so
that the operators A and B are power-compact.

The converse statement follows from [7, Lemma 2.2]. �

The proof of the main result of this section is based on the following proposition.

PROPOSITION 2.2. Let E be a Banach lattice with order continuous norm, and
let A and B be positive power-compact operators on E such that the commutator AB−
BA is of constant sign. Suppose that A is a nonzero ideal-triangularizable operator
and A+B is an ideal-irreducible operator. Then A is a positive multiple of the identity
operator I , i.e., there exists a number λ > 0 such that A = λ I . Consequently, E is a
finite-dimensional Banach lattice and the operator B is ideal-irreducible.

Proof. The operator C =A+B is power-compact by Lemma 2.1. Since C is ideal-
irreducible, it is not quasinilpotent by [7, Theorem 1.3]. Without loss of generality
we may assume r(C) = 1. The Krein-Rutman theorem for positive power-compact
operators (see e.g. [1, Exercise 7.1.9]) implies that there exists a nonzero positive linear
functional ϕ on E such that C∗ϕ = ϕ . From this it follows that the absolute kernel

N(ϕ) = {x ∈ E : ϕ(|x|) = 0}

of the functional ϕ is invariant under C . Since C is ideal-irreducible and ϕ is nonzero,
we conclude that N(ϕ) = {0} , so that ϕ is strictly positive on E . By [21, Theorem
V.5.2], the kernel of the operator I −C is one-dimensional and it is spanned by some
quasi-interior point u ∈ E . Obviously, ϕ(u) > 0. Since C is power-compact, it is
essentially nilpotent, which implies that 1 is not in the essential spectrum of C . By [1,
Theorem 7.44], 1 is a pole of the resolvent of the operator C . Finally, [10, Proposition
2.6] implies that the kernel of the operator I −C∗ is spanned by the functional ϕ .
Observe that

ϕ(Au−CAu) = ϕ(Au)− (C∗ϕ)(Au) = 0.

We now consider only the case when AB � BA , as the other case can be treated
similarly. Since

Au−CAu = (AC−CA)u = (AB−BA)u � 0
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and ϕ is strictly positive, we conclude that CAu = Au . This implies that there exists
λ � 0 such that Au = λu . We necessarily have λ > 0, as A �= 0 and u is a quasi-interior
point. Since the functional

C∗A∗ϕ −A∗ϕ = (C∗A∗ −A∗C∗)ϕ = (AC−CA)∗ϕ = (AB−BA)∗ϕ

is positive and u is a quasi-interior point in E , the equality

(C∗A∗ϕ −A∗ϕ)(u) = ϕ(ACu)−ϕ(Au) = 0

implies A∗ϕ =C∗A∗ϕ . Therefore, there exists μ � 0 such that A∗ϕ = μϕ . In fact, we
have λ = μ , since

μϕ(u) = A∗ϕ(u) = ϕ(Au) = λ ϕ(u),

and ϕ(u) �= 0.
Let C be an ideal-triangularizing chain for the operator A . By [16, Theorem 2.7],

there exists a closed ideal J ∈ C such that dim(J /J−) = 1 and λ is the diagonal
coefficient of the operator A with respect to the chain C corresponding to the subspace
J . It follows that J− is a maximal band in J , and so, by [18, Theorem 26.7],
there exists an atom e ∈ J such that J = J− ⊕Re . It should be noted that e is
an atom in E as well. With respect to the decompositions E = J− ⊕Re⊕J d and
E∗ = J ∗− ⊕Rϕe⊕ (J d)∗ the operators A and A∗ can be decomposed as

A =

⎡
⎣A11 A12 A13

0 λ A23

0 0 A33

⎤
⎦ and A∗ =

⎡
⎣A∗

11 0 0
A∗

12 λ 0
A∗

13 A∗
23 A∗

33

⎤
⎦ ,

respectively. Let us write the vector u as u = [u1,u2,u3]T , where u1 ∈ J− and
u3 ∈ J d are quasi-interior points of J− and J d , respectively, and u2 is a positive
multiple of e . Similarly, we write ϕ = [ϕ1,ϕ2,ϕ3]T , where ϕ1 ∈J ∗− and ϕ3 ∈ (J d)∗
are strictly positive functionals on J ∗− and (J d)∗ , respectively, and ϕ2 is a positive
multiple of ϕe . The equality Au = λu implies⎡

⎣A11u1 +A12u2 +A13u3

λu2 +A23u3

A33u3

⎤
⎦ =

⎡
⎣ λu1

λu2

λu3

⎤
⎦ ,

so that A23u3 = 0. Since u3 is a quasi-interior point of J d , we have A23 = 0. Sim-
ilarly, the equality A∗ϕ = λ ϕ implies that A∗

12ϕ1 + λ ϕ2 = λ ϕ2 , so that A∗
12ϕ1 = 0.

Since the functional ϕ1 is strictly positive on J− , we have A∗
12 = 0 which gives us

A12 = 0. Therefore, with respect to the decomposition E = J−⊕Re⊕J d , the oper-
ator A has the form

A =

⎡
⎣A11 0 A13

0 λ 0
0 0 A33

⎤
⎦ . (2)

Let F be the set of all atoms a of E such that there exists a closed ideal I ∈ C
satisfying I− ⊕Ra = I , and the diagonal coefficient of the operator A with respect
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to the ideal I is λ . Let B be the band generated by all atoms in F . We claim that
B = E . Suppose otherwise. By (2), we have

A =
[

λ I 0
0 Ã

]

with respect to the decomposition E = B ⊕Bd . Let us write the vector u as u =
[v1,v2]T , where v1 ∈ B and v2 ∈ Bd are quasi-interior points of B and Bd , re-
spectively. Similarly, we write ϕ = [φ1,φ2]T , where φ1 ∈ B∗ and φ2 ∈ (Bd)∗ are
strictly positive functionals on B and B∗, respectively. Then we have Ãv2 = λv2 and
Ã∗φ2 = λ φ2 . Now, [11, Proposition 2.3] and its proof imply that the operator Ã is ideal-
triangularizable on Bd , and C ′ = {J ∩Bd : J ∈ C } is an ideal-triangularizing
chain for Ã . By already proved, there exists a closed ideal J ′ ∈ C ′ and an atom
f ∈Bd such that, with respect to the decomposition Bd = J ′−⊕R f ⊕((J ′)d ∩Bd) ,
the operator Ã has the form

Ã =

⎡
⎣ Ã11 0 Ã13

0 λ 0
0 0 Ã33

⎤
⎦ .

This is a contradiction with the definition of the band B . Therefore, B = E and
A = λ I . As A is power-compact, E has to be a finite-dimensional Banach lattice.
Since B = C−λ I , the operator B is ideal-irreducible. �

The following theorem is an infinite-dimensional extension of [5, Theorem 2.1].

THEOREM 2.3. Let E be a Banach lattice with order continuous norm, and let
A and B be positive power-compact operators such that the commutator AB−BA is
of constant sign. If A and B are ideal-triangularizable, then the pair {A,B} is ideal-
triangularizable, or equivalently, the sum A+B is ideal-triangularizable.

Proof. Assume that the sum C = A + B is ideal-irreducible. Then A �= 0, and
so the operator B is ideal-irreducible by Proposition 2.2. This contradicts the ideal-
triangularizability of B . Therefore, C is necessarily ideal-reducible. In view of Lemma
1.2 we now conclude that C is ideal-triangularizable, which is clearly equivalent to the
ideal-triangularizability of the pair {A,B} , as 0 � A,B � C . �

The following example shows that in Theorem 2.3 we cannot omit the assumption
that the operators A and B are power-compact.

EXAMPLE 2.4. Let S and S∗ be the forward and the backward shift on the Ba-
nach lattice l2 , respectively. Obviously each of them is ideal-triangularizable, and their
commutator S∗S− SS∗ is a positive operator of rank one. An easy verification shows
that the pair {S,S∗} is ideal-irreducible.

The following corollary is a generalization of Theorem 2.3 in the case of compact
operators, and it can viewed as an order analog of [22, Corollary 4.16] (see also [24]).

COROLLARY 2.5. Let E be a Banach lattice with order continuous norm, and let
F and G be ideal-triangularizable families of positive compact operators on E . If
[A,B] � 0 for all A ∈ F and B ∈ G , then F ∪G is ideal-triangularizable.
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Proof. Let S be the semigroup generated by the families F and G . It suffices
to prove that every pair of operators from S is ideal-triangularizable, as then we may
apply Theorem 1.1.

Let us now choose operators S and T in S . Then S and T are finite products of
operators from F and G . Suppose that {A1, . . . ,An} ⊆ F and {B1, . . . ,Bm} ⊆ G ap-
pear as factors in S and T . Ideal-triangularizability of F implies ideal-triangularizabi-
lity of A1 + · · ·+An. Similarly, B1 + · · ·+Bm is ideal-triangularizable as well. Theo-
rem 2.3 and the following inequality

n

∑
i=1

Ai

m

∑
j=1

Bj =
n

∑
i=1

m

∑
j=1

AiB j �
n

∑
i=1

m

∑
j=1

BjAi =
m

∑
j=1

Bj

n

∑
i=1

Ai

imply that the family {A1, . . . ,An,B1, . . . ,Bm} is ideal-triangularizable, so that the pair
{S,T} is ideal-triangularizable which was needed to be proved. �

We now turn our attention to commutative families of ideal-triangularizable op-
erators. In the special case of compact operators the following theorem is a simple
consequence of Theorems 2.3 and 1.1.

THEOREM 2.6. Let E be a Banach lattice with order continuous norm. Then ev-
ery commutative family F of ideal-triangularizable power-compact positive operators
on E is ideal-triangularizable.

Proof. Let S be the semigroup generated by the family F . Since F is com-
mutative, S is commutative and it consists of power-compact operators. By Theo-
rem 2.3 and a simple induction argument it is easy to see that every finite subset of
F is ideal-triangularizable. It follows that every pair of operators from S is ideal-
triangularizable.

We claim that S is ideal-reducible. If S = {0} , then there is nothing to prove.
Otherwise, there exists a nonzero power-compact positive operator A in S . If A is
nilpotent, then the absolute kernel N(A) = {x ∈ E : A|x| = 0} is a nonzero closed ideal
invariant under S . So we may assume that A is not nilpotent. Hence, there exists
a nonzero positive compact operator T in S . Let J be the semigroup ideal in S
generated by the operator T . Then J is ideal-triangularizable by Theorem 1.1, so that
S is ideal-reducible by [6, Proposition 2.1].

Now, we apply the Ideal-triangularization Lemma to complete the proof. �
COROLLARY 2.7. Let E be a Banach lattice with order continuous norm, and

let F and G be commutative families of ideal-triangularizable power-compact pos-
itive operators on E . If [A,B] � 0 for all A ∈ F and B ∈ G , then F ∪G is ideal-
triangularizable.

Proof. By Theorem 2.6, F and G are ideal-triangularizable. Clearly, we may
assume that F �= {0} and G �= {0} . Let S be the semigroup generated by the families
F and G . As in the proof of Corollary 2.5 we show that every pair of operators from S
is ideal-triangularizable; we also need the fact that a finite sum of commuting power-
compact operators is power-compact as well. Let us prove that the family F ∪G is
ideal-reducible.
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If G has a nonzero nilpotent operator B , then the absolute kernel N(B) of B is
a nontrivial closed ideal that is clearly invariant under every member of G , and it is
also invariant under any operator A ∈ F , as 0 � B|Ax| � BA|x| � AB|x| = 0 for all
x∈ N(B) . In a similar manner we show that if F contains a nonzero nilpotent operator
A , then the closed ideal generated by the range of A is a nontrivial ideal that is invariant
under every member of F ∪G .

Assume now that F ∪G contains no nonzero nilpotent operator. Then the semi-
group S contains a nonzero compact operator K . The semigroup ideal J of S
generated by K is ideal-reducible by Theorem 1.1, and so the whole semigroup S is
also ideal-reducible by [6, Proposition 2.1].

Finally, an application of the Ideal-triangularization Lemma completes the proof.
�

3. Semigroups of operators

Let F be a family of ideal-triangularizable nonnegative matrices. If F is ideal-
triangularizable, then the diagonals of all commutators of matrices from F are zero.
The converse statement does not hold, as it was shown in [8, Example 4.7]. However,
if the given family is considered to be a semigroup, then the converse statement holds,
as it was proved in [8, Corollary 4.6]. This is just a special case of a more general result
[8, Theorem 4.5] which we recall here.

THEOREM 3.1. Let E be a Banach lattice with order continuous norm, and let
S be a semigroup of ideal-triangularizable positive compact operators. If D(AB) =
D(BA) for all A,B in S , then S is ideal-triangularizable.

In this section we slightly extend the preceding theorem to semigroups of ideal-
triangularizable compact operators of constant sign with the property that the diagonals
of commutators of the operators from the semigroup are also of constant sign. We need
some facts on diagonals.

If T is a power-compact operator on a Banach space X , then, by the classical
spectral theory, for each nonzero complex number λ the operator λ − T has finite
ascent k , i.e., k is the smallest positive integer such that ker((λ − T )k) = ker((λ −
T )k+1) . In this case the (algebraic) multiplicity m(T,λ ) of λ is the dimension of the
subspace ker((λ −T)k) .

PROPOSITION 3.2. Let A and B be positive power-compact ideal-triangulariz-
able operators on a Banach lattice with order continuous norm. Suppose that D(B) �
D(A). If m(A,λ ) = m(B,λ ) for every nonzero λ ∈ C , then D(A) = D(B).

Proof. The equality σ(A)\{0} = σ(B)\{0} implies that A and B are both either
quasinilpotent or non-quasinilpotent. In the first case we have D(A) = D(B) = 0, by
(1) and [8, Theorem 4.2].

Assume now that A and B are not quasinilpotent and D(A) �= D(B). Then there
is an atom e ∈ E such that ϕe(Ae) > ϕe(Be). Let

λ = max{ϕe(Ae) : e is an atom of norm one in E and ϕe(Ae) > ϕe(Be)}. (3)
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Note that this maximum actually exists by [8, Theorem 4.2] and the fact that A is a
positive ideal-triangularizable power-compact operator.

Let us denote by A and B the set of all atoms e ∈ E of norm one such that
ϕe(Ae) = λ and ϕe(Be) = λ , respectively. Since m(A,λ ) = m(B,λ ) , the cardinality
of the set A is equal to the cardinality of the set B , and both are finite. From (3) we
obtain A �= B which implies that there exists some atom e of norm one in B\A .
Hence, ϕe(Be) = λ < ϕe(Ae) which is in contradiction with maximality of λ . There-
fore, we have D(A) = D(B) and the proof is finished. �

COROLLARY 3.3. Let E be a Banach lattice with order continuous norm, and let
A and B be positive operators on E such that AB and BA are ideal-triangularizable.
If the diagonal of the commutator AB−BA is of constant sign and one of the operators
AB and BA is power-compact, then D(AB) = D(BA).

Proof. By Pietsch’s principle of related operators [19, 3.3.3], both operators AB
and BA are power-compact, and for every nonzero complex number λ we have that
m(AB,λ ) = m(BA,λ ). Now, Proposition 3.2 implies that D(AB) = D(BA). �

We now slightly extend Theorem 3.1.

THEOREM 3.4. Let E be a Banach lattice with order continuous norm, and let
S be a semigroup of ideal-triangularizable compact operators on E of constant sign.
If the diagonal of the commutator of every pair of operators from S is of constant sign,
then S is ideal-triangularizable.

Proof. Define

S̃ = {A ∈ S : A � 0}∪{−A : A ∈ S , A � 0}.

Then S̃ is a semigroup of positive compact ideal-triangularizable operators, since for
all A,B∈ S̃ we have either AB∈S or −AB∈S . Furthermore, if A and B are in S̃ ,
then D(AB−BA) is of constant sign, and so D(AB) = D(BA) by Corollary 3.3. Now
we apply Theorem 3.1 to conclude that S̃ (and so S ) is ideal-triangularizable. �

4. Lie sets of operators

Let X be a Banach space and let B(X) be the Banach algebra of all continuous
linear operators on X . A Lie set is a subset M of B(X) that is closed under the
commutator [A,B] = AB−BA , i.e., AB−BA is in M whenever A and B are in M .
A Lie algebra L is a Lie set that is also a subspace of B(X) . Every operator A ∈ L
defines a linear operator adL (A) : L → L by adL (A)B = [A,B] . A subspace I of
L is said to be a Lie ideal if [A,B] ∈I for all A ∈I and B ∈L . If for every A ∈L
the operator adL (A) is quasinilpotent, then L is said to be an Engel Lie algebra. An
Engel ideal is a Lie ideal of L that is also an Engel Lie algebra on its own. For a Lie
set M , define the set C (M ) = {[A,B] : A,B ∈M } , and let [M ,M ] denote the linear
span of C (M ) .
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Engel’s theorem states that a Lie algebra of nilpotent endomorphisms on a finite-
dimensional vector space is triangularizable. The assumptions of Engel’s theorem can
be relaxed. Namely, every Lie set M of endomorphisms of a finite-dimensional vector
space is triangularizable if and only if the set C (M ) consists of nilpotent operators
(see [20, Corollary 1.7.8]). Wojtyński [25] posed a problem whether Engel’s result
could be extended to Lie algebras of quasinilpotent operators. He generalized Engel’s
result to Lie algebras of quasinilpotent Schatten operators on Hilbert spaces. Much later
Shulman and Turovskii [22] (see also [23]) extended Wojtyński’s result to Lie algebras
of compact operators on Banach spaces.

THEOREM 4.1. [23, Corollary 4.23] A Lie algebra of compact operators which
contains a nonzero Engel ideal is reducible. In particular, every Engel Lie algebra of
compact operators is triangularizable.

In [5, Theorem 2.6] the authors proved that a collection C of ideal-triangularizable
n× n matrices of constant sign is ideal-triangularizable if the Lie set generated by C
consists of matrices of constant sign. Since a positive commutator of positive matrices
is nilpotent [3], this result can be considered as a finite-dimensional lattice analog of
the strengthened Engel’s result [20, Corollary 1.7.8]. The main purpose of this section
is to obtain an infinite-dimensional extension of [5, Theorem 2.6].

We proceed with the following result which is an extension (in the case of trace
class operators) of [20, Theorem 7.3.4] to Lie sets. Let B1(H ) be the Banach space
of all trace-class operators on a Hilbert space H .

THEOREM 4.2. Let H be a Hilbert space and M a Lie set in B1(H ) . The
following statements are equivalent:

(a) M is triangularizable.

(b) Every pair of operators from M is triangularizable.

(c) For all A,B and C in M the operator A(BC−CB) is quasinilpotent.

Proof. It is obvious that (a) implies (b). Let us now assume that (b) holds. Let
A,B and C be arbitrary operators in M . Since the pair {B,C} is triangularizable, the
operator BC−CB is a quasinilpotent operator by [20, Theorem 7.2.6]. The operators
A and BC −CB are simultaneously triangularizable as well, since BC −CB ∈ M .
Therefore, the operator A(BC−CB) is quasinilpotent operator by [20, Theorem 7.2.6]
again, so that (c) holds.

For the proof that (c) implies (a) we start with the following observation. Since
the properties of operators in the theorem are inherited by quotients, we will prove that
M is reducible, as we may apply the Triangularization lemma [20, Lemma 7.1.11].

By Lidskii’s theorem we have

tr(ABC)− tr(ACB) = tr(A(BC−CB)) = 0

for all operators A,B and C from M . Let L be the Lie algebra generated by the set
M . It should be noted that L is just the linear span of M . Linearity of the trace
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implies that for all A,B and C from L we have

tr(ABC) = tr(ACB). (4)

Let L1 be the closure of L in B1(H ) in the trace norm. Since the trace is continuous
on B1(H ) , we obtain that the equality (4) holds for all A,B and C from L1. If L1

is an Engel Lie algebra, then L1 is reducible by Theorem 4.1. Otherwise, [13, Lemma
4.2] implies that there exists a nonzero finite rank operator in L1. Let F1 be the Lie
ideal of all finite rank operators in L1 .

If the Lie ideal F1 of L1 satisfies [F1,F1] = 0, then F1 is a nonzero Engel
ideal of L1 , so that L1 is reducible by Theorem 4.1. Therefore we may assume that
the Lie ideal [F1,F1] of L1 is nonzero.

If the Lie ideal [[F1,F1], [F1,F1]] of L1 is a zero ideal, then [F1,F1] is a
nonzero Engel ideal of L1 , so that again L1 is reducible by Theorem 4.1. Finally we
may assume that [[F1,F1], [F1,F1]] is nonzero in L1.

Since the equality (4) holds for all A,B and C from L1 , we now conclude that
tr(AB) = 0 for all operators A ∈ F1 and B ∈ [F1,F1] . Since [F1,F1] ⊆ F1 , we
therefore have tr(AB) = 0 for all A,B∈ [F1,F1]. [13, Theorem 4.6] implies that every
operator in [[F1,F1], [F1,F1]] is nilpotent, so that [[F1,F1], [F1,F1]] is a nonzero
Engel ideal of L1. Reducibility of L1 follows again from Theorem 4.1. �

It should be noted that Shulman and Turovskii [23, Corollary 5.17] proved that
a Lie algebra L of compact operators is triangularizable if and only if every pair of
operators from L is triangularizable. The preceding theorem relaxes the assumption
that L is a Lie algebra and at the same time it requires more, namely, every operator
needs to be a trace class operator.

COROLLARY 4.3. Let E be a Banach lattice with order continuous norm and M
a Lie set of compact operators on E of constant sign. Then M is triangularizable in
both of the following cases:

(a) C (M ) consists of finite rank operators.

(b) E is a Hilbert lattice and M ⊆ B1(E) .

If, in addition, every member of M is ideal-triangularizable, then M is ideal-triangu-
larizable.

Proof. Assume that (a) holds. Let A and B be arbitrary operators in M . Since
A,B and AB−BA are of constant sign, [3, Theorem 2.2] easily implies that the operator
AB−BA is quasinilpotent. Let L be the Lie algebra generated by M , that is, L is
the linear span of M . It suffices to show that L is triangularizable.

The set C (M ) is a Lie subset of finite rank nilpotent operators in M . Suppose
that A is an arbitrary operator in C (M ) . Since A is nilpotent, the operator ad(A) is a
nilpotent operator on B(E) which implies that the restriction adL (A) of ad(A) to the
Lie algebra L is nilpotent as well. [15, Lemma 4.1] implies that the Lie ideal [L ,L ]
of L consists of nilpotent finite rank operators. We conclude from [15, Theorem
4.7(8)] that L is triangularizable.
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Assume now that (b) holds. Let A and B be arbitrary operators in M . Without
any loss of generality we may assume that A , B and [A,B] are positive operators on E .
By Zorn’s lemma there exists a maximal chain C of closed ideals invariant under the
operator A+B . It should be clear that every ideal in C is invariant under both A and
B . The maximality of the chain C implies that the operator (A+B)J = AJ +BJ

on J /J− is ideal-irreducible. Since we have [AJ ,(A+B)J ] = [AJ ,BJ ] � 0, [3,
Theorem 2.2] implies [AJ ,BJ ] = 0.

Let p be an arbitrary polynomial in two non-commuting variables. We claim
that the operator p(A,B)(AB−BA) is quasinilpotent. The block triangular form of
Ringrose’s theorem [20, Theorem 7.2.7] implies that σ(p(A,B)(AB− BA))∪ {0} is
equal to the union ⋃

J ∈C ,J �=J−
σ(p(AJ ,BJ )(AJ BJ −BJ AJ ))∪{0},

so that we actually have σ(p(A,B)(AB−BA)) = {0} , since AJ and BJ commute
on J /J−. An infinite-dimensional version of McCoy’s theorem [20, Theorem 7.3.3]
implies that A and B are simultaneously triangularizable. An application of Theorem
4.2 implies that M is triangularizable.

It remains to show that M is even ideal-triangularizable if every member of M
is ideal-triangularizable. If M is commutative, then M is ideal-triangularizable by
Theorem 2.6. So, we may assume that M is not commutative. Then M contains a
nonzero positive commutator C of operators from M . Let S be the semigroup gener-
ated by the set of all positive operators in M . Triangularizability of M implies that S
is triangularizable as well (and every triangularizing chain for M is a triangularizing
chain for S ). Let J be the semigroup ideal in S generated by C . Triangularizabil-
ity of S and [20, Theorem 7.2.6] imply that J consists of quasinilpotent operators.
Now, [4, Theorem 4.5] implies that J is ideal-reducible, so that S is ideal-reducible
by [6, Proposition 2.1]. We finish the proof by applying the Ideal-triangularization
lemma. �

We do not know whether Theorem 4.2 holds for Lie sets of compact operators. We
conclude the paper by mentioning that Theorem 4.2 and Corollary 4.3 still hold if we
enlarge M by adding multiples of the identity operator to operators in M .
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[25] W. WOJTYŃSKI,Engel’s theorem for nilpotent Lie algebras of Hilbert-Schmidt operators, Bull. Acad.
Polon. Sci. 24 (9) (1976), 797–801.

(Received June 26, 2014) Roman Drnovšek
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