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A SUBNORMAL TOEPLITZ COMPLETION
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Abstract. In this paper we deal with a subnormal Toeplitz completion problem: Complete the
unspecified Toeplitz operators of the partial block Toeplitz matrix

G :=
[
U∗p ?
? U∗q

]
(p,q = 1,2, · · ·)

to make G subnormal, where U is the shift on the Hardy space H2(T) of the unit circle T .

1. Introduction

Given a partially specified operator matrix with some known entries, the problem
of finding suitable operators to complete the given partial operator matrix so that the
resulting matrix satisfies certain given properties is called a completion problem. Di-
lation problems are special cases of completion problems: in other words, the dilation
of T is a completion of the partial operator matrix

[
T ?
? ?

]
. A partial block Toeplitz

matrix is simply an n× n matrix some of whose entries are specified Toeplitz opera-
tors and whose remaining entries are unspecified. A subnormal completion of a partial
operator matrix is a particular specification of the unspecified entries resulting in a sub-
normal operator. A subnormal Toeplitz completion of a partial block Toeplitz matrix is
a subnormal completion whose unspecified entries are Toeplitz operators.

In [6], the following subnormal Toeplitz completion problem was considered:

PROBLEM A. Let U be the unilateral shift on H2 . Complete the unspecified
Toeplitz entries of the partial block Toeplitz matrix A :=

[
U∗ ?
? U∗

]
to make A subnor-

mal.
In this paper we are interested in the following problem which is a more general

version of Problem A:
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PROBLEM B. Complete the unspecified Toeplitz operators of the partial block
Toeplitz matrix

G :=
[
U∗p ?
? U∗q

]
(p,q = 1,2, · · ·) (1)

to make G subnormal.
The case p = q = 1 of (1) has been considered in [6]. In this paper we answer

Problem B for the cases that the unknown entries are rational Toeplitz operators.
Throughout this paper, let H denote a separable complex Hilbert space and

B(H ) denote the set of all bounded linear operators acting on H . For an opera-
tor T ∈ B(H ) , T ∗ denotes the adjoint of T . An operator T ∈ B(H ) is said to
be normal if T ∗T = TT ∗ , hyponormal if its self-commutator [T ∗,T ] ≡ T ∗T −TT ∗ is
positive semi-definite, and subnormal if there exists a Hilbert space K containing H
and a normal operator N on K such that NH ⊆ H and T = N|H .

On the other hand, in 1970, P.R. Halmos addressed a problem on the subnormality
of Toeplitz operators Tϕ on the Hardy space H2 ≡ H2(T) of the unit circle T in the
complex plane C . This is the so-called Halmos’ Problem 5, presented in his lectures,
Ten problems in Hilbert space [12], [13]:

HALMOS’ PROBLEM 5. Is every subnormal Toeplitz operator either normal or
analytic ?

In 1984, Halmos’ Problem 5 was answered in the negative by C. Cowen and J.
Long [4]. However, until now researchers have been unable to characterize subnormal
Toeplitz operators Tϕ in terms of their symbols ϕ . Thus we may ask:

Which subnormal Toeplitz operators are normal or analytic ? (2)

A function ϕ ∈ L∞ is said to be of bounded type if there are analytic functions ψ1,ψ2 ∈
H∞ such that ϕ(z) = ψ1(z)

ψ2(z)
for almost all z ∈ T . Evidently, rational functions are

of bounded type. In 1976, M.B. Abrahamse has shown that the answer to Halmos’
question is affirmative for Toeplitz operators with bounded type symbols ([1]):

ABRAHAMSE’S THEOREM. ([1, Theorem]) Let ϕ ∈ L∞ be such that ϕ or ϕ is
of bounded type. If

(i) Tϕ is hyponormal;

(ii) ker [T ∗
ϕ ,Tϕ ] is invariant for Tϕ ,

then Tϕ is normal or analytic.

Consequently, since ker [T ∗,T ] is invariant for every subnormal operator T , it
follows that if ϕ ∈ L∞ is such that ϕ or ϕ is of bounded type, then every subnormal
Toeplitz operator Tϕ must be either normal or analytic.

We now review a few essential facts for (block) Toeplitz operators and (block)
Hankel operators, and for that we will use [2], [8], [9], [15], and [16]. For X a Hilbert
space, let L2

X ≡ L2
X (T) be the Hilbert space of X -valued norm square-integrable
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measurable functions on T , and let H2
X ≡ H2

X (T) and H∞
X ≡ H∞

X (T) be the corre-
sponding Hardy spaces. Let Mm×n ≡ Mm×n(C) denote the set of m×n complex ma-
trices and write Mn := Mn×n(C) . If Φ is a matrix-valued function in L∞

Mn
≡ L∞

Mn
(T) ,

then the (block) Toeplitz operator TΦ and the (block) Hankel operator HΦ on H2
Cn are

defined by
TΦ f := P(Φ f ) and HΦ f := JP⊥(Φ f ) ( f ∈ H2

Cn), (3)

where P and P⊥ denote the orthogonal projections that map L2
Cn onto H2

Cn and
(
H2

Cn

)⊥
,

respectively, and J denotes the unitary operator from L2
Cn to L2

Cn given by (Jg)(z) :=
zIng(z) for g ∈ L2

Cn ( In := the n×n identity matrix). For Φ ∈ L∞
Mm×n

, write

Φ̃(z) := Φ∗(z). (4)

A matrix function Θ ∈ H∞
Mm×n

is called an inner function if Θ is isometric a.e. on
T . The following basic relations can be easily derived from the definition:

T ∗
Φ = TΦ∗ , H∗

Φ = HΦ̃ (Φ ∈ L∞
Mn

); (5)

TΦΨ −TΦTΨ = H∗
Φ∗HΨ (Φ,Ψ ∈ L∞

Mn
); (6)

HΦTΨ = HΦΨ, HΨΦ = T ∗
Ψ̃HΦ (Φ ∈ L∞

Mn
,Ψ ∈ H∞

Mn
). (7)

For a matrix-valued function Φ = [φi j] ∈ L∞
Mn

, we say that Φ is of bounded type if
each entry φi j is of bounded type and that Φ is rational if each entry φi j is a rational
function. For a matrix-valued function Φ∈H2

Mn×r
, we say that Δ∈H2

Mn×m
is a left inner

divisor of Φ if Δ is an inner matrix function such that Φ = ΔA for some A ∈ H2
Mm×r

(m � n ). We also say that two matrix functions Φ ∈ H2
Mn×r

and Ψ ∈ H2
Mn×m

are left
coprime if the only common left inner divisor of both Φ and Ψ is a unitary constant
and that Φ ∈ H2

Mn×r
and Ψ ∈ H2

Mm×r
are right coprime if Φ̃ and Ψ̃ are left coprime.

Two matrix functions Φ and Ψ in H2
Mn

are said to be coprime if they are both left and
right coprime. We would remark that if Φ ∈ H2

Mn
is such that detΦ �= 0, then any left

inner divisor Δ of Φ is square, i.e., Δ ∈ H2
Mn

. If Φ ∈ H2
Mn

is such that detΦ �= 0 then

we say that Δ ∈ H2
Mn

is a right inner divisor of Φ if Δ̃ is a left inner divisor of Φ̃ (cf.
[10]).

In 1988, the hyponormality of Toeplitz operators Tϕ was completely characterized
in terms of their symbols ϕ via an elegant theorem of C. Cowen [3].

COWEN’S THEOREM. ([3], [14]) If ϕ ∈ L∞ , then Tϕ is hyponormal if and only
if there exists a function k ∈ H∞ such that ||k||∞ � 1 and ϕ − kϕ ∈ H∞ .

In 2006, Gu, Hendricks and Rutherford [11] extended Cowen’s Theorem to block
Toeplitz operators. For a matrix-valued function Φ = [φi j] ∈ L∞

Mn
, we say that Φ is

normal if Φ is normal a.e. on T . Then we have:

LEMMA 1.1. (Hyponormality of Block Toeplitz Operators) [11] For each Φ ∈
L∞

Mn
, let

E (Φ) :=
{

K ∈ H∞
Mn

: ||K||∞ � 1 and Φ−KΦ∗ ∈ H∞
Mn

}
.
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Then TΦ is hyponormal if and only if Φ is normal and E (Φ) is nonempty.

On the other hand, we note that by (7), the kernel of a block Hankel operator HΦ
is an invariant subspace of the shift operator TzIn on H2

Cn . Thus if kerHΦ �= {0} then
by the Beurling-Lax-Halmos Theorem, kerHΦ = ΘH2

Cm for some inner matrix function
Θ . In general, Θ need not be a square matrix function. We nevertheless have:

LEMMA 1.2. ([11]) For Φ ∈ L∞
Mn

, the following statements are equivalent:

1. Φ is of bounded type;

2. kerHΦ = ΘH2
Cn for some square inner matrix function Θ;

3. Φ = AΘ∗ , where A ∈ H∞
Mn

and A and Θ are right coprime.

For an inner matrix function Θ ∈ H2
Mn

, we write

HΘ := H2
Cn �ΘH2

Cn .

For Φ ∈ L∞
Mn

we write

Φ+ := Pn(Φ) ∈ H2
Mn

and Φ− :=
(
P⊥

n (Φ)
)∗ ∈ H2

Mn
,

where Pn and P⊥
n denote the orthogonal projections from L2

Mn
onto H2

Mn
and (H2

Mn
)⊥ ,

respectively. Thus, we can write Φ = Φ∗− +Φ+ . In view of Lemma 1.2, if Φ ∈ L∞
Mn

is
such that Φ and Φ∗ are of bounded type then Φ+ and Φ− can be written in the form

Φ+ = Θ1A
∗ and Φ− = Θ2B

∗, (8)

where Θ1 and Θ2 are inner, A,B ∈ H2
Mn

, Θ1 and A are right coprime, and Θ2 and B
are right coprime. In (8), Θ1A∗ and Θ2B∗ will be called right coprime factorizations
of Φ+ and Φ− , respectively.

Recently, Abrahamse’s Theorem for matrix-valued rational symbols was obtained
in [5]. We shall say that an inner matrix function Θ ∈ H∞

Mn
is nonconstant diagonal-

constant if Θ is of the form θ In , where θ is a nonconstant inner function. We then
have:

THEOREM 1.3. (Abrahamse’s Theorem for matrix-valued rational symbols) [5]
Let Φ ≡ Φ∗−+Φ+ ∈ L∞

Mn
be a matrix-valued rational function. Thus in view of (8), we

may write
Φ− = ΘB∗ (right coprime factorization).

Assume that Θ has a nonconstant diagonal-constant inner divisor. If

(i) TΦ is hyponormal;

(ii) ker [T ∗
Φ,TΦ] is invariant for TΦ ,

then TΦ is normal. Hence in particular, if TΦ is subnormal then TΦ is normal.

In this paper we answer Problem B by the aid of Theorem 1.3. Section 2 devotes
the proof of the main result.
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2. A subnormal Toeplitz completion problem

In this section we give an answer to Problem B.
We begin with:

LEMMA 2.1. Let

Φ :=
[
zp ϕ
ψ zq

]
(ϕ ,ψ ∈ L∞; p,q = 1,2, · · ·)

be such that TΦ is hyponormal. Then p = q.

Proof. If TΦ is hyponormal then by Lemma 1.1, Φ is normal, i.e., Φ∗Φ = ΦΦ∗ ,
which implies

(zp− zq)ϕ = (zp− zq)ψ , so that (zp − zq)(ϕ + zp+qψ) = 0;

thus, either either ϕ + zp+qψ = 0 or zp = zq , i.e., p = q . Assume to the contrary that
p �= q . Thus

ϕ = −zp+qψ . (9)

By Lemma 1.1, there exists a matrix function K ≡
[

k1 k2
k3 k4

]
∈ E (Φ) , so that[

zp ϕ
ψ zq

]
−

[
k1 k2

k3 k4

] [
zp ψ
ϕ zq

]
∈ H2

M2
, (10)

which implies

ϕ − k1ψ − k2z
q ∈ H2 and zq− k3ψ − k4z

q ∈ H2. (11)

From the second statement of (11), we can see that ψ+ �= 0. Also from the first
statement of (11) together with (9), we have (zp+q + k1)ψ ∈ H2 , so that zp+qψ− +
zp+qψ+ + k1ψ+ ∈ H2 , which gives

P⊥(
zp+qψ−

)
+ zp+qψ+ = −P⊥(

k1ψ+
)
. (12)

We next show that
P⊥(

zp+qψ−
) �= 0. (13)

To prove (13), we assume to the contrary that P⊥(
zp+qψ−

)
= 0. Then, by (12),

zp+qψ+ = −P⊥(
k1ψ+

)
. Thus since ||K||∞ � 1, and hence ||k1||∞ � 1, we have

||ψ+||2 = ||zp+qψ+||2 = ||P⊥(
k1ψ+

)||2 � ||k1ψ+||2 � ||ψ+||2,

which implies ||k1ψ+||2 = ||ψ+||2 , i.e.,∫
|k1ψ+|2 dθ

2π
=

∫
|ψ+|2 dθ

2π
, and hence

∫
(1−|k1|2)|ψ+|2 dθ

2π
= 0.
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But since ψ+ �= 0, it follows that |k1| = 1 a.e. on T . Since ||K||∞ � 1, we must have
k3 = 0. Then by the second statement of (11), we have zq ∈ H2 , a contradiction. This
proves (13). Now, since P⊥(

zp+qψ−
) ⊥ zp+qψ+ , it follows from (12) and (13) that

||ψ+||2 = ||zp+qψ+||2 < ||P⊥(
zp+qψ−

)
+ zp+qψ+||2 = ||P⊥(

k1ψ+
)||2 � ||ψ+||2,

a contradiction. Therefore we must have p = q . �
In view of Lemma 2.1, in Problem B it suffices to consider the case

Φ :=
[
zp ϕ
ψ zp

]
(ϕ ,ψ ∈ L∞ are rational; p = 1,2, · · ·).

On the other hand, in view of the scalar-valued version of (8), a rational function ϕ ≡
ϕ− + ϕ+ has the following coprime factorizations:

ϕ− = θ0a and ϕ+ = θ2c,

where the θi are inner functions (in fact, finite Blaschke products), a ∈ Hθ0 and c ∈
Hzθ2 . Thus if ϕ and ψ are rational functions, then we can write

ϕ− = θ0a and ψ− = θ1b (coprime factorizations).

Let m and n be the multiplicities of zeros of a and b at the origin, respectively. Then
ϕ− and ψ− have the following coprime factorizations:

ϕ− ≡ θ0a = zmθ ′
0a and ψ− ≡ θ1b = znθ ′

1b (coprime factorizations), (14)

where θ ′
0 and θ ′

1 are finite Blaschke products and (θ ′
0θ ′

1)(0) �= 0.

LEMMA 2.2. Let Φ ≡ Φ∗− + Φ+ ∈ L∞
Mn

be a matrix-valued rational function.
Then in view of (14), we may write

Φ− :=
[

zp znθ ′
1b

zmθ ′
0a zp

]
( p = 1,2, · · · ),

where θ ′
0 and θ ′

1 are finite Blaschke products and (θ ′
0θ ′

1)(0) �= 0 . If

Φ− = ΘB∗ (right coprime factorization),

then Θ has an inner divisor of the form zI2 , except in the following two cases:

(i) m+n = 2p and (ab)(0) = (θ ′
0θ ′

1)(0);

(ii) m+n � 2p and mn = 0 .

Proof. By Lemma 1.2, kerHΦ∗− = ΘH2
C2 . We observe that for f ,g ∈ H2 ,

Φ∗
−

[
f
g

]
∈ H2

C2 ⇐⇒
[

zp zmθ ′
0a

znθ ′
1b zp

][
f
g

]
∈ H2

C2 ,
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which implies that if

[
f
g

]
∈ kerHΦ∗− , then

zp f + zmθ ′
0ag ∈ H2 and znθ ′

1b f + zpg ∈ H2. (15)

We split the proof into three cases.

Case 1 (0 � m+n < 2p ): In this case, n < p or m < p . Suppose m < p . If[
f
g

]
∈ kerHΦ∗− , then by the first statement of (15), we have zp−mθ ′

0 f ≡ h ∈ H2 . Thus

θ ′
0 f = zp−mh a.e. on T and hence θ ′

0 f = zp−mh . Since θ ′
0(0) �= 0, we have f = zp−m f1

for some f1 ∈ H2 . In turn, by the second statement of (15), zm+n−pθ ′
1b f1 + zpg ∈ H2 .

Thus if m+n− p � 0, then g = zpg1 for some g1 ∈H2 ; if instead, m+n− p > 0, then
z2p−m−nθ ′

1g ∈ H2 , and hence g = z2p−m−ng2 for some g2 ∈ H2 . We thus have

ΘH2
C2 = kerHΦ∗− ⊆

[
zp−m 0

0 zp

]
H2

C2

⋂ [
zp−m 0

0 z2p−m−n

]
H2

C2 ⊆ (zI2)H2
C2 ,

which implies that zI2 is an inner divisor of Θ (cf. [10, Corollary IX.2.2]).
If instead n < p , then the same argument shows that zI2 is an inner divisor of Θ .

Case 2 (m+n = 2p , mn �= 0 and (ab)(0) �= (θ ′
0θ ′

1)(0)):
(a) Suppose m = n . Then

Φ− = zpθ ′
0θ ′

1

[
θ ′

0θ ′
1 θ ′

1a
θ ′

0b θ ′
0θ ′

1

]∗
≡ Θ1B

∗
1 = ΘB∗.

Since by assumption, detB1(0) =
[
θ ′

0θ ′
1(θ

′
0θ ′

1 − ab)
]
(0) �= 0, and hence B1(0) is in-

vertible, it follows (cf. [7, Lemma 3.3]) that Θ has an inner divisor zI2 .
(b) Suppose m �= n . Since m + n = 2p and mn �= 0, it follows that 0 < n < p

or 0 < m < p . Suppose 0 < n < p . If

[
f
g

]
∈ kerHΦ∗− , then by the second statement

of (15), we have zp−nθ ′
1b f ∈ H2 , and hence f = θ ′

1 f1 for some f1 ∈ H2 . In turn,
znb f1 + zpg ∈ H2 , so that g = zp−ng1 for some g1 ∈ H2 . We claim that

f1(0) = 0, so that f = zθ ′
1 f2 for some f2 ∈ H2. (16)

By the first statement of (15), we have

zpθ ′
1 f1 + zpθ ′

0ag1 ∈ H2, so that g1 = θ ′
0g2 for some g2 ∈ H2.

In turn, zpθ ′
1 f1 + zpag2 ∈ H2 , so that θ ′

1(0) f1(0)+a(0)g2(0) = 0, which gives

g2(0) = −θ ′
1(0)
a(0)

f1(0). (17)

Also, by the second statement of (15), znb f1 + znθ ′
0g2 ∈ H2 , so that b(0) f1(0) +

θ ′
0(0)g2(0) = 0, which gives

g2(0) = − b(0)
θ ′

0(0)
f1(0). (18)
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If f1(0) �= 0, then by (17) and (18), we have (ab)(0) = (θ ′
0θ ′

1)(0) , which contradicts
the case assumption. This proves (16). We thus have

ΘH2
C2 = kerHΦ∗− ⊆

[
z 0
0 zp−n

]
H2

C2 ,

which implies that zI2 is an inner divisor of Θ since p−n � 1.
If instead 0 < m < p , then the same argument gives that zI2 is an inner divisor of

Θ .

Case 3 (m+n > 2p , mn �= 0):

(a) Suppose m � p + 1. If

[
f
g

]
∈ kerHΦ∗− , then by the first statement of (15),

we have g = zm−pθ ′
0g1 for some g1 ∈ H2 . In turn, by the second statement of (15),

znθ ′
1b f + z2p−m θ ′

0g1 ∈H2 . Thus if m � 2p , then f = znθ ′
1 f1 for some f1 ∈H2 , and if

instead m < 2p , then zn+m−2p θ ′
1b f ∈ H2 , so that f = zn+m−2p θ ′

1 f2 for some f2 ∈H2 .
We thus have

ΘH2
C2 = kerHΦ∗− ⊆

[
zn 0
0 zm−p

]
H2

C2

⋂ [
zn+m−2p 0

0 zm−p

]
H2

C2 ⊆ (zI2)H2
C2

which implies that zI2 is an inner divisor of Θ .
(b) Suppose m < p+1. Then n � p+1 and the same argument as in Case 3(a)

gives that zI2 is an inner divisor of Θ .
This completes the proof. �

We need two auxiliary lemmas for the proof of the main result.

LEMMA 2.3. (Normality of Block Toeplitz Operators) [11, Theorem 4.3] Let
Φ ≡ Φ+ + Φ∗− ∈ L∞

Mn
be normal. If detΦ+ �= 0 , then

TΦ is normal⇐⇒ Φ+ −Φ+(0) = Φ−U for some constant unitary matrix U. (19)

LEMMA 2.4. Let Φ ≡ Φ∗− + Φ+ ∈ L∞
Mn

be a matrix-valued rational function of
the form

Φ+ = A∗Δ0Δ and Φ− = B∗Δ,

where Δ0Δ = θ In with an inner function θ , and B and Δ are left coprime. If K ∈
E (Φ) , then

cl ranHAΔ∗ ⊆ ker(I−TK̃T ∗
K̃
).

Proof. This follows from a careful analysis for the proof of [7, STEP 1 and (16) in
STEP 2 of the proof of Theorem 3.5], which shows that the proof does not employ the
diagonal-constant-ness of Δ , but uses only the diagonal-constant-ness of Δ0Δ . �

We are ready for:
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THEOREM 2.5. Let ϕ ,ψ ∈ L∞ be rational and consider

Φ :=
[
zp ϕ
ψ zq

]
( p,q = 1,2, · · ·).

In view of (14), we may write

Φ− :=
[

zp znθ ′
1b

zmθ ′
0a zq

]
( p,q = 1,2, · · ·),

where θ ′
0 and θ ′

1 are finite Blaschke products and (θ ′
0θ ′

1)(0) �= 0 . Then the following
statements are equivalent.

1. TΦ is normal;

2. TΦ is subnormal;

3. p = q and one of the following conditions holds:

(i) ϕ = eiθ zp + ζ and ψ = eiω ϕ (ζ ∈ C ; θ ,ω ∈ [0,2π));

(ii) ϕ = azp + eiθ
√

1+ |a|2 zp + ζ and ψ = − a
a ϕ (a,ζ ∈ C , a �= 0 , |a| �= 1 ,

θ ∈ [0,2π)),

except the case m+n = 2p, mn �= 0 and (ab)(0) = (θ ′
0θ ′

1)(0) .

Proof. Clearly (1) ⇒ (2). Moreover, (3) ⇒ (1) follows from a straightforward
calculation.

(2) ⇒ (3): By Lemma 2.1, we have p = q . Thus we may write

Φ ≡
[
zp ϕ
ψ zp

]
≡ Φ∗

− + Φ+ =
[

zp ψ−
ϕ− zp

]∗
+

[
0 ϕ+

ψ+ 0

]
and assume that TΦ is subnormal. Since by Lemma 1.1, Φ is normal, we have

|ϕ | = |ψ |. (20)

and also there exists a function K ≡
[

k1 k2
k3 k4

]
∈ H∞

M2
such that Φ∗− −KΦ∗

+ ∈ H∞
M2

, i.e.,[
zp ϕ−
ψ− zp

]
−

[
k1 k2

k3 k4

] [
0 ψ+

ϕ+ 0

]
∈ H2

M2
, (21)

which implies that ϕ+ �= 0 and ψ+ �= 0, and hence detΦ+ �= 0. We write

ϕ− ≡ θ0a = zmθ ′
0a and ψ− ≡ θ1b = znθ ′

1b (coprime factorizations)

(m,n = 0,1, · · · and (θ ′
0θ ′

1)(0) �= 0).
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Note that if TΦ is normal, then since detΦ+ �= 0, it follows from Lemma 2.3 that
Φ+ −Φ−U = Φ+(0) for some constant unitary matrix U ≡ [ c1 c2

c3 c4 ] so that we have

Φ+−Φ−U = Φ+(0) ⇐⇒
[

0 ϕ+
ψ+ 0

]
−

[
zp θ1b

θ0a zp

][
c1 c2

c3 c4

]
=

[
0 ϕ+(0)

ψ+(0) 0

]

=⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1zp + c3θ1b = 0

c4zp + c2θ0a = 0

ϕ+ = c2zp + c4θ1b+ ξ1

ψ+ = c3zp + c1θ0a+ ξ2

(ξ1,ξ2 ∈ C) .

(22)

We split the proof into four cases.

Case 1 (m = n = 0): In this case, by Lemma 2.2 and Theorem 1.3 we can con-
clude that TΦ is normal. Observe that if h ∈ H∞ has a coprime factorization h ≡ θd ,
then for any nonzero β1,β2 ∈ C ,

β1Hzp = β2Hh =⇒ θ = zp .

Thus by (22), we have c1 = c4 = 0. But since U is unitary, it follows that |c2|= |c3|=
1, and hence θ1b and θ0a are constants and hence zeros. Thus again by (22), we have

ϕ = ϕ+ = eiω1zp + ξ1 and ψ = ψ+ = eiω2zp + ξ2.

But since |ϕ | = |ψ | , it follows that

ϕ = eiθ zp + ζ and ψ = eiω ϕ ( ζ ∈ C ; θ ,ω ∈ [0,2π)).

Case 2
(
m = n = p and (ab)(0) �= (θ ′

0θ ′
1)(0)

)
: In this case, by Lemma 2.2 and

Theorem 1.3 we can conclude that TΦ is normal. Again by (22), we have

a,b ∈ C (a �= 0, b �= 0) and θ0 = θ1 = zp (i.e., θ ′
0 = θ ′

1 = 1) ,

so that
ϕ+ = αzp + β1 and ψ+ = γzp + β2 (α,β1,β2,γ ∈ C).

Since TΦ is normal, and hence H∗
Φ∗

+
HΦ∗

+
= H∗

Φ∗−
HΦ∗− (by (6)), we have[|α|2H2

zp 0
0 |γ|2H2

zp

]
=

[
(1+ |b|2)H2

zp (a+b)H2
zp

(a+b)H2
zp (1+ |a|2)H2

zp

]
,

which implies that {
b = −a

|α|2 = 1+ |b|2 = 1+ |a|2 = |γ|2. (23)

Since ab �= (θ ′
0θ ′

1)(0) , we have 1 �= |ab|= |a|2 , i.e., |a| �= 1. We thus have

ϕ+ = eiθ1

√
1+ |a|2 zp + β1 and ψ+ = eiθ2

√
1+ |a|2 zp + β2 (|a| �= 0),
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which implies that

ϕ = azp + eiθ1

√
1+ |a|2 zp + β1 and ψ = −azp + eiθ2

√
1+ |a|2 zp + β2.

Since |ϕ | = |ψ | , a straightforward calculation shows that

ϕ = azp + eiθ
√

1+ |a|2 zp + ζ and ψ = −a
a

ϕ , (24)

where a,ζ ∈ C,a �= 0, |a| �= 1, and θ ∈ [0,2π) .

Case 3 ((i) 0 < m + n < 2p ; or (ii) m + n > 2p (mn �= 0); or (iii) m + n = 2p
(m �= n , mn �= 0) and (ab)(0) �=(θ ′

0θ ′
1)(0)): In this case, by Lemma 2.2 and Theorem

1.3 we can conclude that TΦ is normal. Observe that each sub-case implies that

{m �= p or n �= p} and {m �= 0 or n �= 0} .

Thus by the first and the second equations of (22), we have
(a) m �= 0, p =⇒ c2 = c4 = 0;
(b) n �= 0, p =⇒ c1 = c3 = 0.
In each case we obtain a contradiction with the fact that U is unitary.
(c) m �= p , n �= 0 (in view of (a) we may assume m = 0 and n �= 0) =⇒ c4 = 0

and c1 �= 0;
(d) m �= 0, n �= p (in view of (b) we may assume m �= 0 and n = 0) =⇒ c1 = 0

and c4 �= 0.
Therefore, in this case we get

{c1 = 0, c4 �= 0} or {c1 �= 0, c4 = 0} .

In each case we obtain a contradiction with the fact that U is unitary. Thus Case 3
cannot occur.

Case 4 (m + n � 2p and mn = 0): Since mn = 0, we may, without loss of
generality, assume that n = 0. Then we can write

ϕ− := θ0a ≡ zmθ ′
0a and ψ− := θ1b (coprime factorizations),

where θ ′
0 and θ1 are finite Blaschke products with θ ′

0(0) �= 0 and θ1(0) �= 0. From
(21), we can see that which implies that{

zp− k2ϕ+ ∈ H2, θ 1b− k4ϕ+ ∈ H2

zp− k3ψ+ ∈ H2, θ 0a− k1ψ+ ∈ H2.
(25)

Thus the following Toeplitz operators are all hyponormal (by Cowen’s Theorem):

Tzp+ϕ+ , Tθ1b+ϕ+
, Tzp+ψ+ , Tθ0a+ψ+

. (26)

By (26) and [7, Lemma 3.2], we can see that

ϕ+ = zpθ1θ3d and ψ+ = θ0θ2c (coprime factorizations) ,
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where θ2 and θ3 are finite Blaschke products. A straightforward calculation together
with (25) shows that

k3(0) = 0 and k4(0) = 0. (27)

Write
θ2 = zq2θ ′

2 and θ3 = zq3θ ′
3 (θ ′

2(0) �= 0, θ ′
3(0) �= 0).

Then

Φ+ =
[

0 zpθ1θ3d
θ0θ2c 0

]
=

[
0 zp+q3θ1θ ′

3d
zm+q2θ ′

0θ ′
2c 0

]
.

Note that

Φ̃− =

[
zp θ̃0ã

θ̃1b̃ zp

]
.

Write
Φ̃∗− = B̃Δ̃∗ (right coprime factorization).

We observe that for f ,g ∈ H2 ,[
f
g

]
∈ kerHΦ̃∗−

=⇒
[

zp θ̃ 1b̃

θ̃ 0ã zp

][
f
g

]
∈ H2

C2

=⇒
{

zp f + θ̃1b̃g ∈ H2

zpg+ zmθ̃ ′
0ã f ∈ H2

=⇒
{

f = zm−pθ̃ ′
0 f1, g = θ̃1g1 ( f1,g1 ∈ H2)

zpθ̃1g1 + zpã f1 ∈ H2 .

(28)

Thus if

[
f
g

]
∈ kerHΦ̃∗−

, then

f = zm−pθ̃ ′
0 f1, g = θ̃1g1 ( f1,g1 ∈ H2) and θ̃1g1 + zpã f1 ∈ zH2. (29)

Put

Θ̃2 :=
1√

|α|2 +1

[
zm−p+1θ̃ ′

0 αzm−pθ̃ ′
0

αzθ̃1 −θ̃1

] (
α :=

θ1(0)
a(0)

)
.

A straightforward calculation gives that

Θ̃2H
2
C2 =

{[
f
g

]
: f = zm−pθ̃ ′

0 f1, g = θ̃1g1 ( f1,g1 ∈ H2) and θ̃1g1 + zpã f1 ∈ zH2
}

.

Thus we have

kerHΦ̃∗−
≡ Δ̃H2

C2 ⊆ Θ̃2H
2
C2 ⊆

[
zm−pθ̃ ′

0 0
0 θ̃1

]
H2

C2 ≡ Θ̃3H
2
C2 , (30)
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which says that Θ̃2 and Θ̃3 are left inner divisors of Δ̃ and hence Θ2 and Θ3 are right
inner divisors of Δ . It thus follows from Lemma 2.4 that

cl ranHAΘ∗
k
⊆ cl ranHAΔ∗ ⊆ ker(I−TK̃T ∗

K̃
) (k = 2,3). (31)

Now we will show that m + q2 > p + q3 . If r := p + q3 −m− q2 � 0, then we can
write

Φ+ =
[

0 zp+q3θ1θ ′
3d

zm+q2θ ′
0θ ′

2c 0

]
= zp+q3θ ′

0θ1θ ′
2θ ′

3

[
0 zrθ1θ ′

3c
θ ′

0θ ′
2d 0

]∗
.

By (31), we have [
0
1

]
∈ cl ranHAΘ∗

3
⊆ cl ranHAΔ∗ ∈ ker(I−TK̃T ∗

K̃
).

Thus it follows from (27) that[
0
1

]
= TK̃T ∗

K̃

[
0
1

]
=

[
T̃k1

T̃k3

T̃k2
T̃k4

][
T̃
k1

T̃
k2

T̃
k3

T̃
k4

][
0
1

]
=

[
k̃1k2(0)
k̃2k2(0)

]
,

which implies that k1 = 0 and, by (25), θ0a0 ∈H2 , a contradiction. Therefore m+q2 >
p+q3 and we can write

Φ+ =
[

0 zp+q3θ1θ ′
3d

zm+q2θ ′
0θ ′

2c 0

]
= zm+q2θ ′

0θ1θ ′
2θ ′

3

[
0 θ1θ ′

3c
zrθ ′

0θ ′
2d 0

]∗
,

where r := m+q2− p−q3 > 0. Thus we have

AΘ2 =
[

z(αθ ′
3c) θ ′

3c
zm−p−r+1(θ ′

2d) zm−p−r(αθ ′
2d)

]
.

If m− p− r+1 � 0, then it follows from (31) that[
1
0

]
∈ cl ranHAΘ∗

2
⊆ cl ranHAΔ∗ ∈ ker(I−TK̃T ∗

K̃
).

Thus it follows from (27) that[
1
0

]
= TK̃T ∗

K̃

[
1
0

]
=

[
T̃k1

T̃k3

T̃k2
T̃k4

][
T̃
k1

T̃
k2

T̃
k3

T̃
k4

][
1
0

]
=

[
k̃1k1(0)
k̃2k1(0)

]
,

which implies that k2 = 0 and, by (25), zp ∈H2 , a contradiction. Thus m− p−r+1>
0 and hence it follows from (31) that[

β
1

]
∈ cl ranHAΘ∗

2
⊆ cl ranHAΔ∗ ∈ ker(I−TK̃T ∗

K̃
) for some β ∈ C .
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It thus follows from (27) that[
β
1

]
= TK̃T ∗

K̃

[
β
1

]
=

[
T̃k1

T̃k3

T̃k2
T̃k4

][
T̃
k1

T̃
k2

T̃
k3

T̃
k4

][
β
1

]

=

[
T̃k1

T̃k3

T̃k2
T̃k4

][
(βk1(0)+ k2(0))

0

]

=

[
k̃1(βk1(0)+ k2(0))
k̃2(βk1(0)+ k2(0))

]
,

which implies that k1 is a constant and k2 is a nonzero constant. Again by (25),

zp− k2ϕ+ ∈ H2 =⇒ zpϕ+ ∈ H2 =⇒ θ1θ3d ∈ H2 ,

which implies that θ1θ3 is a constant. Without loss of generality we may assume
θ1θ3 = 1, and hence ψ− = 0. Similarly, from (25), θ0a− k1ψ+ ∈ H2 , i.e., θ0a−
k1θ0θ2c ∈ H2 implies k1 �= 0 and θ2 = 1. By (20), |ϕ | = |ψ | , so we have

|zpd + θ0a| = |ϕ+ + ϕ−| = |ψ+| = |θ0c| (where zpd , θ0a and θ0c are in H2 ) ,

which implies zpθ0(zpd + θ0a)(zpd + θ0a) = zpθ0cc , so that

ad = z
(
(θ0c)zp−1c− (θ0d)zp−1d− (θ0a)(θ0d)z2p−1− (θ0a)zp−1a

)
. (32)

But since m � 2p , it follows that θ0d = zmdθ ′
0 = (zpd)zm−pθ ′

0 ∈H2 . Thus (32) implies
that ad = zh for some h∈H2 , and hence (ad)(0)= 0, a contradiction. Therefore Case
4 cannot occur.

This completes the proof. �
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