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Abstract. Let H be an infinite-dimensional complex Hilbert space and let L (H ) be the al-
gebra of all bounded linear operators on H . For ε > 0 and T ∈ L (H ) , let rε (T ) denote the
ε -pseudo spectral radius of T . We characterize surjective maps φ on L (H ) which satisfy

rε (φ(T )φ(S)φ(T)) = rε (TST )

for all T,S∈L (H ) . As application, mappings from L (X) onto itself that preserve the pseudo
spectrum of Jordan triple product of operators are described. We also obtain analogous results
for the finite-dimensional case, without the surjectivity assumption on φ .

1. Introduction

Throughout this paper, H will denote a Hilbert space over the complex field C

and L (H ) will denote the algebra of all bounded linear operators on H with identity
operator I . For T ∈ L (H ) we write T ∗ for its adjoint, σ(T ) for its spectrum, and
‖T‖ the (spectral) norm of T . For ε > 0, the ε -pseudo spectrum of T , σε(T ) , is
defined by

σε (T ) := ∪{σ(T +E) : E ∈ L (H ),‖E‖ < ε},
and coincides with the set

{z ∈ C : ‖(z−A)−1‖ > ε−1}

with the convention that ‖(z−A)−1‖= ∞ if z ∈ σ(T ) . Unlike the spectrum, which is a
purely algebraic concept, the ε -pseudo spectrum depends on the norm. The ε -pseudo
spectral radius of T , rε (T ) , is given by

rε (T ) := sup{|z| : z ∈ σε(T )}.

Pseudo spectra are a useful tool for analyzing operators, furnishing a lot of infor-
mation about the algebraic and geometric properties of operators and matrices. They
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play a very natural role in numerical computations, especially in those involving spec-
tral perturbations. The book [19] give an extensive account of the pseudo spectra, as
well as investigations and applications in numerous fields.

Recently, general preserver problems with respect to various algebraic operations
on Mn , the algebra of n× n complex matrices, or on operator algebras, attracted a
lot of attention of researchers in the fields; see for instance [1, 2, 3, 4, 5, 6, 10, 14,
15, 16, 18, 21] and the references therein. On the subject focused on the structures of
nonlinear transformations on Mn or on L (H ) that respect the pseudo spectra of cer-
tain algebraic operations, we mention: [8] where the authors studied mappings on Mn

that preserve the pseudo spectrum of different kind of binary operations on matrices,
[11] concerned with the Hilbert space setting, and in [12] general preserver problems
that to do with preservers of pseudo spectra of matrix Lie products are considered, and
investigation of several extensions of these results were obtained. Linear preservers of
pseudo spectrum have also been studied in a recent paper by Kumar and Kulkarni [17].

This paper follows the same path of studies by considering general pseudo spectra
preservers, and characterizes mappings on L (H ) that preserve the ε -pseudo spectra
of triple Jordan product of operators. In the next section, we characterize surjective map
φ on L (H ) that preserves the ε -pseudo spectral radius of triple Jordan products in a
sense that

rε (φ(T )φ(S)φ(T )) = rε (TST ) (T,S ∈ L (H )).

It is shown that such a map φ has a nice structure. Precisely, φ has the form T �→
ξ (T )UTU∗ or T �→ ξ (T )UTU∗ for some unitary or conjugate unitary operator U on
H and a (general) functional ξ from L (H ) into the unit circle T of the field C . We
also give analogous result for the finite-dimensional case, and we classify transforma-
tions on Mn that preserverve the pseudo spectral radius of Jordan triple product of ma-
trices, without sujectivity assumption on them. As a consequence, we describe, in the
last section, mappings on L (H ) or on the matrix spaces that preserve the ε -pseudo
spectrum of Jordan triple product of operators. We prove that such transformations are
of standard forms up a third root of unity. Our study can also be viewed as a pseudo
spectra versions of the study of [6, 21] that have to do with preservers of eigenvalues
of matrices or of peripheral spectrum of operators, and of the main result of [1] where
the author characterized maps φ on Mn preserving the local spectrum of Jordan triple
product of matrices at a fixed nonzero vector. It should be pointed out that our approach
uses some arguments which are influenced by ideas from Cui and Hou [9], Cui et al.
[11], and Dobovišek et al. [13].

2. Pseudo spectral radius preservers

We first fix some notation. The inner product on H will be denoted by 〈., .〉 . For
x, f ∈ H , as usual we denote by x⊗ f the rank at most one operator on H given by
z �→ 〈z, f 〉x , and all at most rank one operators in L (H ) can be written into this form.
For an operator T ∈ L (H ) we will denote by Ttr the transpose of T relative to an
arbitrary but fixed orthogonal basis of H . For a subset σ of C we will denote by σ
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the complex conjugation set of σ , and for ε > 0 and z ∈ C we will denote by D(z,ε)
the open disc of C centered at z and of radius ε .

Before stating the main results of this section, we collect some lemmas needed in
what follows. The first one summarizes some properties of the pseudo spectrum; see
[19].

LEMMA 1. For ε > 0 and T ∈ L (H ) , the following statements hold.

(i) σ(T )+D(0,ε)⊆ σε(T ) .

(ii) For every nonzero c ∈ C , σε(cT ) = cσ ε
|c|

(T ) .

(iii) For every T ∈ L (H ) , σε (Ttr) = σε (T ) and σε (T ∗) = σε(T ) .

(iv) For every unitary operator U ∈ L (H ) , σε(UTU∗) = σε (T ) .

The second lemma, quoted from [11, Proposition 2.5], will be the backbone of
the proof of our main results. It identifies the ε -pseudo spectral radius of rank one
operators.

LEMMA 2. Let ε > 0 and x, f ∈ H be arbitrary. Then

rε(x⊗ f ) =
1
2
(
√
|〈x, f 〉|2 +4ε2 +4ε‖x‖‖ f‖+ |〈x, f 〉|).

The third and fourth lemmas, established in [13], characterizes mappings that pre-
serve zero Jordan triple product of operators or matrices.

LEMMA 3. Let L (X) be the algebra of all bounded linear operator on an infinite-
dimensional complex Banach space X , and let φ be a surjective map from L (X) into
it self. If φ satisfies

φ(T )φ(S)φ(T ) = 0 ⇐⇒ TST = 0 (T,S ∈ L (X)),

then there exists is a functional � : L (H ) → C \ {0} and either there is a bounded
invertible linear or conjugate linear operator A on X such that φ(T ) = �(T )ATA−1 for
all T ∈ L (X) , or X is reflexive and there is a bounded invertible linear or conjugate
linear operator A from X∗ , the dual of X , into X such that φ(T ) = �(T )AT ∗A−1 for
all T ∈ L (X) .

LEMMA 4. Let n � 3 and let φ be a map from Mn into itself. If φ satisfies

φ(T )φ(S)φ(T ) = 0 ⇐⇒ TST = 0 (T,S ∈ Mn),

then there is a functional � : Mn → C\ {0} , an invertible matrix A ∈ Mn , and a field
automorphism η of C such that either φ(T )= �(T )AT ηA−1 or φ(T )= �(T )A(T η)trA−1

for all T ∈ Mn . Here T η denotes the matrix obtained from T by applying η to every
entry of it.

The fifth one characterizes nontrivial projections and self-adjoint operators through
their pseudo spectral properties; see Cui et al. [11, Theorem 2.2 and Corollary 2.3].
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LEMMA 5. Let ε > 0 , T ∈L (H ) , a ∈ C , and t ∈ R . Then the following asser-
tions hold.

(i) eitT is self-adjoint if and only if σε (T ) ⊆ {z ∈ C : |Im(eit z)| < ε} .

(ii) There exists a nontrivial projection P ∈ L (H ) such that T = aP if and only if
σε (T ) = D(0,ε)∪D(a,ε) .

Let us review some more notation that we will need in the sequel. Arbitrarily fix an
orthogonal basis {ei}i∈I of H . For a vector x = ∑i∈I xiei ∈H , a ring homomorphism
η : C → C , and a matrix T = (ti j) ∈ Mn , let x = ∑i∈I xiei , η(x) = ∑i∈I η(xi)ei , and
Tη = (η(ti j)) . Note that there are very large number of automorphisms of C , but the
identity and the conjugation maps are the only continuous automorphisms; see [20].

We now have collected all the necessary ingredients and are therefore in a position
to state and prove the main results of this section. The following theorem is one of the
purposes of this paper. It characterizes nonlinear maps on Mn that preserve the pseudo
spectral radius of Jordan triple product of matrices.

THEOREM 1. Let n � 3 and ε > 0 . A map φ from Mn into itself satisfies

rε (φ(T )φ(S)φ(T )) = rε (TST) (T,S ∈ Mn) (1)

if and only if there exist a functional � : L (H ) → T and a unitary matrix U ∈ Mn

such that φ(T ) = �(T )UT �U∗ for all T ∈ Mn , where T � stands for T , or T tr , or T ∗ ,
or T , the complex conjugation of T .

Proof. Checking the ‘if’ part is straightforward, so we will only deal with the
‘only if’ part. So assume that

rε (φ(T )φ(S)φ(T )) = rε (TST )

for all T,S ∈ L (X) .
First, we claim that the map φ preserves zero Jordan triple product of matrices in

both directions, i.e., for any T,S ∈ Mn , φ(T )φ(S)φ(T ) = 0 if and only if TST = 0.
Indeed, assume that φ(T )φ(S)φ(T ) = 0, and note that rε(TST ) = rε (0) = ε . From
Lemmas 1 and 5, TST is a self-adjoint operator satisfying

D(z,ε) ⊆ σε(TST ) ⊆ D(0,ε)

for every z ∈ σ(TST ) . This yields that σ(TST ) = {0} , and consequently TST = 0;
which proves the necessity condition. The sufficiency condition is dealt with similarly,
and the claim is proved. Therefore, by Lemma 4, there exist is a functional � : Mn →
C \ {0} , an invertible matrix U ∈ Mn , and an automorphism η : C → C such that
either

φ(T ) = �(T )UT ηU−1 or φ(T ) = �(T )U(T η)trU−1

for every T ∈ Mn . Assume firstly that φ(T ) = �(T )UTηU−1 for every T ∈ Mn . We
divide the proof of it into several steps. �
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STEP 1. rε(φ(T )) = rε(T ) for every T ∈ Mn .

Proof. Note that, by the equality (1), we have

1+ ε = rε(I) = rε (φ(I)3) = rε (�(I)3I) = |�(I)|3 + ε.

This implies that |�(I)| = 1, and so by taking into account Lemma 1, we get

rε (T ) = rε (φ(I)φ(T )φ(I))
= rε (�(I)2�(T )UT ηU−1)
= rε (�(T )UTηU−1)
= rε (φ(T ))

for all T ∈ Mn . �
STEP 2. The matrix U can be chosen as a unitary matrix

Proof. Let U =V |U | be the polar decomposition of U , and note that |U |> 0 and
rε(VTV ∗) = rε (T ) for every T ∈ Mn . Replacing φ by the mapping T �→ V ∗φ(T )V ,
we may assume that U > 0. Thus, by taking into account the fact that

(x⊗ f )η = η(x)⊗η( f )

for any vectors x, f ∈ Cn , one gets

φ(x⊗ f ) = �(x⊗ f )U(η(x))⊗U−1(η( f )) (2)

for every rank one matrix x⊗ f ∈ Mn . We shall apply the technique from [9, Proof of
Assertion 1]. To use it, we must prove first that

‖U(η(x))‖‖U−1(η(x))‖ = 1 (3)

for every vector x in Cn .
Note that, for any x, f ∈ Cn , we have

〈U(η(x)),U−1(η( f ))〉 = 〈η(x),η( f )〉 = η(〈x, f 〉),
and in particular

〈U(η(x)),U−1(η( f ))〉 = 0 if and only if 〈x, f 〉 = 0.

Thus, for any orthogonal unit vectors x, f ∈ Cn , the above step together with Lemma 2
allow to get that

ε2 + ε|�(x⊗ f )|‖U(η(x))‖‖U−1(η( f ))‖ = rε(φ(x⊗ f ))2

= rε(x⊗ f )2

= ε2 + ε,
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and so

|�(x⊗ f )| = 1

‖U(η(x))‖‖U−1(η( f ))‖
(4)

for any unit vectors x and f in Cn with 〈x, f 〉 = 0. On the other hand, for any unit
vectors x, f ∈ Cn , we have

rε(φ(x⊗ f )φ( f ⊗ x)φ(x⊗ f )) = rε (x⊗ f ) = rε(φ(x⊗ f )).

This implies that

rε(�(x⊗ f )2�( f ⊗ x)U(η(x))⊗U−1(η( f ))) = rε (�(x⊗ f )U(η(x))⊗U−1(η( f ))),

from which we infer that
|�(x⊗ f )||�( f ⊗ x)| = 1 (5)

for any unit vectors x and f in Cn with 〈x, f 〉 = 0.
By combining (4) and (5) we have, in fact,

‖U(η(x))‖‖U−1(η(x))‖ =
1

‖U(η( f ))‖‖U−1(η( f ))‖
(6)

for any unit vectors x and f in Cn with 〈x, f 〉 = 0.
Now, let us establish that there exits a positive constant c such that

‖U(η(x))‖‖U−1(η(x))‖ = c (7)

for every unit vector x in Cn . To do so, pick arbitrary unit vectors x1 and x2 in Cn ,
and let f ∈ Cn be a unit vector such that 〈x1, f 〉 = 〈x2, f 〉 = 0. By taking into account
(6), we have

‖U(η(x1))‖‖U−1(η(x1))‖ =
1

‖U(η( f ))‖‖U−1(η( f ))‖
= ‖U(η(x2))‖‖U−1(η(x2))‖,

and then, (7) holds true. Moreover, the equation (6) tells us that c = 1, which shows
that the equation (3) hods true, too.

Thus, the same argument than the one used in the end of the proof of [9, Assertion
1] allows to get that U = λ I for some λ > 0. Dividing by λ if necessary, we may
assume that λ = 1, and the required conclusion in the step follows. �

STEP 3. η is either the identity or the conjugation.

Proof. For z∈C , e1 = (1,0,0, ...,0)tr and e2 = (0,1,0, ...,0)tr , let B = e1⊗(e1 +
ze2) and C = e1 ⊗ (e1 + e2) . It easy to check that BCB = B , and so, by Steps 1 and 2,
we have

rε (�(B)Bη) = rε (�(B)2�(C)BηCηBη) = rε (�(B)2�(C)Bη).
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This implies that

rε (�(B)η(e1)⊗ (η(e1)+ η(z)η(e2))) = rε(�(B)2�(C)η(e1)⊗ (η(e1)+ η(z)η(e2)));

which yields that |�(B)2�(C)| = |�(B)| . Thus, |�(B)�(C)| = 1. By similarity, we have

rε(C) = rε (�(C)Cη) = rε (�(C)C),

implying that |�(C)| = 1. Consequently, |�(B)| = 1 for every z ∈ C . Therefore

rε (e1⊗ (e1 + ze2)) = rε (B) = rε(�(B)Bη) = rε(Bη ) = rε (e1⊗ (e1 + η(z)e2)),

and so, by Lemma 2, one gets

‖e1 + η(z)e2)‖ = ‖e1 + ze2‖.
This finally yields that |η(z)| = |z| for all z ∈ C , and consequently η is either the
identity or the conjugation as required. �

STEP 4. The map � can be chosen so that |�(T )| = 1 for every T ∈ Mn .

Proof. First, we assert that

|�(x⊗ f )| = 1 (8)

for any x, f ∈ Cn with 〈x, f 〉 = 0. Indeed, by Steps 1 and 2 together with the equality

(2), we have rε(x⊗ f ) = rε(�(x⊗ f )η(x)⊗η( f )) for all x, f ∈ Cn . Thus, for any
orthogonal vectors x, f ∈ Cn , the above step and Lemma 2 tell us that

‖x‖‖ f‖ = |�(x⊗ f )|‖η(x)‖‖η( f )‖ = |�(x⊗ f )|‖x‖‖ f‖;
which yields that |�(x⊗ f )| = 1 as asserted.

Now, Let T ∈ Mn be an arbitrary matrix. If T is a scalar multiple of the identity,
i.e., there exists a scalar λ such that T = λ I , then the fact that rε(�(λ I)η(λ )I) =
rε(λ I) implies that |�(T )| = |�(λ I)| = 1. If T is not a scalar multiple of the identity,
then there exists a nonzero vector x ∈ Cn such that x and Tx are linearly independent.
Choose a vector f ∈ Cn so that 〈x, f 〉 = 0 and 〈Tx, f 〉 �= 0, and note that by taking into
account (8), we have

rε(〈Tx, f 〉x⊗ f ) = rε((x⊗ f )T (x⊗ f ))
= rε(φ(x⊗ f )φ(T )φ(x⊗ f ))

= rε(�(x⊗ f )2�(T )〈T η (η(x)),η( f )〉η(x)⊗η( f ))

= rε(�(T )〈T η(η(x)),η( f )〉η(x)⊗η( f )).

Using Lemma 2 and Step 3, we infer that

|〈Tx, f 〉|‖x‖‖ f‖ = |�(T )||〈T η (η(x)),η( f )〉|‖η(x)‖‖η( f ))‖
= |�(T )||〈Tx, f 〉|‖x‖‖ f‖.
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This entails that |�(T )| = 1 in this case too, and the step is proved.
Thus, in the case when φ has the first form, the theorem follows from Steps 2 and

4. It remains to consider the case when φ has the form T �→ �(T )U(Tη )trU−1 . Set
χ(T ) := φ(Ttr) and �′(T ) := �(Ttr) for every T ∈ Mn , and note, by Lemma 1, the
map χ satisfies

rε (TST ) = rε(TtrStrT tr) = rε (χ(T )χ(S)χ(T)).

Moreover, upon replacing T by Ttr , we have χ(T ) = �′(T )UTηU−1 for every matrix
T ∈ Mn . So, by what has been shown above, the matrix U can be chosen as a unitary
matrix and |�′(T )| = 1 for every T ∈ Mn ; which yields the desired conclusion in this
case too. The proof of the theorem is therefore complete. �

The next theorem, furnishing the pseudo spectral radius version of [21, Teorem
2.1], extends the above theorem to the infinite-dimensional case but at the price of the
additional assumption that φ is surjective.

THEOREM 2. Let H be an infinite-dimensional complex Hilbert space and ε >
0 . A surjective map φ from L (H ) into itself satisfies

rε(φ(T )φ(S)φ(T )) = rε (TST ) (T,S ∈ L (H ))

if and only if there is a functional � : L (H )→ T and a linear or conjugate linear uni-
tary operator U ∈L (H ) such that either φ(T ) = �(T )UTU∗ or φ(T ) = �(T )UT ∗U∗
for all T ∈ L (H ) . Here T denotes the unit circle of the complex field C .

Proof. As the sufficiency condition is obvious, we only need to prove the neces-
sity. So, assume that

rε (φ(T )φ(S)φ(T )) = rε (TST )

for all T,S ∈ L (X) . Similar argument as in the proof of Theorem 1 allows to get
that the map φ preserves zero Jordan triple product of operators in both directions.
Therefore, from Lemma 3, there exist is a functional � : L (H ) → C \ {0} and a
bounded invertible linear or conjugate linear operator U on H such that either φ(T ) =
�(T )UTU−1 , or φ(T ) = �(T )UT ∗U−1 for all T ∈ L (H ) .

Assume firstly that φ(T ) = �(T )UTU−1 for every T ∈ L (H ) . Arbitrarily fix
an orthogonal basis {ei}i∈I of H , and for x = ∑i∈I xiei let J(x) = ∑i∈I xiei . Clearly,
J2 = J and for any vectors x, f ∈ H , we have

J(x⊗ f )J = J(x)⊗ J( f ) = η(x)⊗η( f )

where η : C → C is the conjugation. If U is conjugate linear, then let V = UJ and
note that V ∈ L (H ) and

φ(x⊗ f ) = �(x⊗ f )VJ(x⊗ f )JV−1 = �(x⊗ f )V (η(x)⊗η( f ))V−1

for all vectors x, f ∈ H . So, in both cases, i.e., U is linear or conjugate linear, φ has
the form

φ(x⊗ f ) = �(x⊗ f )V (η(x)⊗η( f ))V−1
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for every rank one operator x⊗ f ∈ L (H ) , where V is a bounded linear operator on
H and η is either the identity or the conjugation.

Now, by inspecting the proof of Theorem 1, with no extra efforts, one can see that
same approach used there allows to get that the operator V can be chosen as a unitary
operator and |�(T )| = 1 for all T ∈ L (H ) . Consequently, U can be chosen as a
unitary or conjugate unitary operator. The only thing that should be observed is that the
conclusion “U can be chosen as a scalar multiple of the identity” in Step 2 remains true
when using H instead of Cn in (7). This is, in fact, a consequence of [9, Lemma 2.4].
This concludes the proof of the theorem in the case when φ has the first form.

In the remainder case when φ has the form T �→ �(T )UT ∗U−1 , set χ(T ) := φ(T ∗)
and �′(T ) := �(T ∗) for every T ∈ L (H ) , and note the map χ satisfies

rε(TST ) = rε(T ∗S∗T ∗) = rε (χ(T )χ(S)χ(T))

for all T,S∈L (X) . Moreover, upon replacing T by T ∗ , we have χ(T )= �′(T )UTU−1

for every T ∈ L (H ) . Thus, by what has been shown above, U can be chosen as a
unitary or conjugate unitary operator and |�′(T )| = 1 for every T ∈ H ; which yields
the desired conclusion in this case, too. This achieves the proof of the theorem. �

3. Pseudo spectrum preservers

This section is devoted to derive some consequences of the main results of this
paper. Theses consequences concern nonlinear preservers of pseudo spectrum of op-
erators. The first one describes maps from L (H ) onto itself preserving the pseudo
spectrum of Jordan triple product of operators.

THEOREM 3. Let H be an infinite-dimensional complex Hilbert space and ε >
0 . A surjective map φ from L (H ) into itself satisfies

σε(φ(T )φ(S)φ(T )) = σε (TST ) (T,S ∈ L (H )) (9)

if and only if there are a third root of unity c and a unitary operator U ∈ L (H ) such
that either φ(T ) = cUTU∗ or φ(T ) = cUTtrU∗ for all T ∈ L (H ) . Where Ttr is the
transpose of T with respect to an arbitrary but fixed orthogonal basis of H .

Proof. We only need to check the necessity condition. So, assume that φ satisfies
(9), and note that the map φ preserves the the ε -pseudo spectral radius of Jordan triple
product of operators. By Theorem 2, there exist a functional � : L (H ) → T and a
unitary or conjugate unitary operator U ∈ L (H ) such that either φ(T ) = �(T )UTU∗
or φ(T ) = �(T )UT ∗U∗ for all T ∈ L (H ) .

Assume firstly that φ(T ) = �(T )UTU∗ for all T ∈ L (H ) . We claim that there
is a third root of unity c such that

�(x⊗ x) = c
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for every unit vector x ∈ H . Fix an arbitrary unit vector x ∈ H , and suppose that U
is conjugate unitary. Using Lemma 5, one gets

D(0,ε)∪D(1,ε) = σε (x⊗ x)
= σε (�(x⊗ x)3U(x⊗ x)U∗))

= σε (�(x⊗ x)3x⊗ x)
= D(0,ε)∪D(�(x⊗ x)3,ε),

and consequently �(x⊗ x)3 = 1. Now, let x,y ∈ H be arbitrary unit vectors, and let
z ∈ H such that 〈x,z〉 �= 0 �= 〈y,z〉 . We have

σε(|〈x,z〉|2x⊗ x) = σε ((x⊗ x)(z⊗ z)(x⊗ x))
= σε (�(x⊗ x)2�(z⊗ z)U(|〈x,z〉|2x⊗ x)U∗))

= σε (�(x⊗ x)2�(z⊗ z)|〈x,z〉|2x⊗ x),

and so |〈x,z〉|2 = �(x⊗ x)2�(z⊗ z)|〈x,z〉|2 . This implies that �(x⊗ x) = �(z⊗ z) since
�(x⊗ x)3 = 1. Similarly, we have �(y⊗ y) = �(z⊗ z) , and so �(x⊗ x) = �(y⊗ y) = c ,
where c is a positive constant. The case when U is unitary is dealt with similarly, and
the claim is proved.

Next, let us prove that the case when U is conjugate unitary cannot occurs. Sup-
pose on the contrary that U is conjugate unitary. Let T ∈ L (H ) be an arbitrary non
self-adjoint operator, and let x ∈ H be a unit vector so that 〈Tx,x〉 �= 0. The fact that

σε ((x⊗ x)T (x⊗ x)) = σε(�(x⊗ x)2�(T )〈Tx,x〉U(x⊗ x)U∗))

implies that 〈Tx,x〉 = �(x⊗ x)2�(T )〈Tx,x〉 , and so

�(T ) =
c〈Tx,x〉
〈Tx,x〉

since c3 = 1. In particular, for T ∈ L (H ) for which there exit nonzero vectors x and
y in H such that Tx = x and Ty = iy , we have

c =
c〈Tx,x〉
〈Tx,x〉 = �(T ) =

c〈Ty,y〉
〈Ty,y〉 = −c,

a contradiction.
Now, let T ∈ L (H ) be a nonzero operator, and let x ∈ H so that 〈Tx,x〉 �= 0.

Since U is a unitary operator, similar argument as above allows to get that

�(T ) =
c〈Tx,x〉
〈Tx,x〉 = c;

which yields the desired conclusion in the theorem in the case when φ has the first
form.
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In the remainder case when φ has the form T �→ �(T )UT ∗U∗ , similar discussion
just as above allows to get that the case when U is unitary cannot occurs and the map
� can be chosen so that �(T ) = c for all T ∈ L (H ) , where c is a third root of unity.
Consequently, U is conjugate unitary. Arbitrarily fix an orthogonal basis {ei}i∈I of
H , and for x = ∑i∈I xiei let J(x) = ∑i∈I xiei . Clearly, JT ∗J = Ttr , where Ttr is the
transpose of T for an arbitrary but fixed orthogonal basis of H . Let V =UJ , and note
that V is a unitary operator and

φ(T ) = cV (JT ∗J)V ∗ = cVTtrV ∗

for every T ∈ L (H ) . This yields the desired conclusion in this case too, and con-
cludes the proof. �

The second consequence, furnishing a pseudo spectrum version of [6, Theorem
2.1] and the main result of [1], refine the above result in the finite dimensional case. We
do not require the surjective assumption on φ .

THEOREM 4. Let n � 3 and ε > 0 . A map φ from Mn into itself satisfies

σε (φ(T )φ(S)φ(T )) = σε(TST ) (T,S ∈ Mn)

if and only if there are a third root of unity c and a unitary matrix U ∈ Mn such that
either φ(T ) = cUTU∗ or φ(T ) = cUTtrU∗ for all T ∈ Mn .

Proof. Assume that σε(φ(T )φ(S)φ(T )) = σε(TST ) for any T,S ∈ Mn , and note
that the map φ preserves the the ε -pseudo spectral radius of Jordan triple product of
matrices. By Theorem 1, there exist a functional � : L (H ) → T and a unitary matrix
U ∈ L (H ) such that φ(T ) = �(T )UT �U∗ for all T ∈ L (H ) , where T � stands for
T , or Ttr , or T ∗ , or T , the complex conjugation of T . Similar argument as in the proof
of Theorem 3 allows to get that the cases when φ has the forms T �→ �(T )UT ∗U∗ or
T �→ �(T )UTU∗ cannot occur, and in the remainder cases the map � can be chosen
so that �(T ) = c for all T ∈ L (H ) , where c is a third root of unity. This yields the
desired conclusion in the necessity condition.

As the sufficiency condition is clear, the proof is therefore complete. �
We close this paper by the following natural problem which suggests itself.

PROBLEM. Can the Hilbert space H be replaced by a general Banach space in
Theorems 2 and 3 of this paper?
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