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Abstract. First we study the spectral singularity at infinity and investigate the connections of
the spectral singularities and the spectrality of the Hill operator. Then we consider the spectral
expansion when there is not the spectral singularity at infinity.

1. Introduction

In this paper we investigate the one dimensional Schrödinger operator L(q) gen-
erated in L2(−∞,∞) by the differential expression

l(y) = −y
′′
(x)+q(x)y(x), (1)

where q is 1-periodic, Lebesgue integrable on [0,1] and complex-valued potential.
Without loss of generality, we assume that the integral of q over [0,1] is 0. It is well-
known [1,5-9] that the spectrum σ(L) of the operator L is the union of the spectra
σ(Lt) of the operators Lt(q) for t ∈ (−π ,π ] generated in L2[0,1] by (1) and the bound-
ary conditions

y(1) = eit y(0), y
′
(1) = eit y

′
(0). (2)

The eigenvalues of Lt are the roots of the characteristic equation

F(λ ) = 2cost, (3)

where F(λ ) =: ϕ ′
(1,λ )+θ (1,λ ) is the Hill discriminant θ (x, λ ) and ϕ(x,λ ) are the

solutions of the equation l(y) = λy satisfying the following initial conditions

θ (0,λ ) = ϕ
′
(0,λ ) = 1, θ

′
(0,λ ) = ϕ(0,λ ) = 0.

In this paper we study the spectral singularity of L(q) at infinity, investigate the
connections of the spectral singularities and the spectrality of L(q) and consider the
spectral expansion of L(q) when there is not the spectral singularity at infinity. Note
that the spectral singularities of the operator L(q) are the points of its spectrum in
neighborhoods of which the projections of L(q) are not uniformly bounded (see [9] and
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[10]). McGarvey [6] proved that L(q) is a spectral operator if and only if the projections
of the operators Lt(q) are bounded uniformly with respect to t in (−π ,π ] . Tkachenko
proved in [9] that the non-self-adjoint operator L can be reduced to triangular form if all
eigenvalues of the operators Lt for t ∈ (−π ,π ] are simple. Gesztezy and Tkachenko
[3,4] proved two versions of a criterion for the Hill operator L(q) with q ∈ L2[0,1]
to be a spectral operator of scalar type, in sense of Dunford, one analytic and one
geometric. The analytic version was stated in term of the solutions of Hill’s equation.
The geometric version of the criterion uses algebraic and geometric properties of the
spectra of periodic/antiperiodic and Dirichlet boundary value problems. In paper [12,
13] we found the conditions on the potential q such that L(q) has no spectral singularity
at infinity and it is an asymptotically spectral operator.

Now let us recall the precise definition of the spectral singularities and asymp-
totic spectrality of L(q). Following [4, 10], we define the projections and the spectral
singularities of L as follows. By Definition 2.4 of [4], a closed arc

γ =: {z ∈ C : z = λ (t),t ∈ [α,β ]} (4)

with λ (t) analytic in an open neighborhood of [α,β ] and F(λ (t)) = 2cost,

∂F(λ (t))
∂λ

�= 0, ∀t ∈ [α,β ], λ
′
(t) �= 0, ∀t ∈ (α,β )

is called a regular spectral arc of L(q). The projection P(γ) corresponding to the regu-
lar spectral arc γ is defined by

P(γ) f =
1
2π
∫
γ
(Φ+(x,λ )F−(λ , f )+ Φ−(x,λ )F+(λ , f ))

ϕ(1,λ )
p(λ )

dλ , (5)

where
Φ±(x,λ ) = θ (x,λ )+ (ϕ(1,λ ))−1(e±it −θ (1,λ ))ϕ(x,λ )

are the Floquet solution and

F±(λ , f ) =
∫

R

f (x)Φ±(x,λ )dx, p(λ ) =
√

4−F2(λ ).

DEFINITION 1. We say that λ ∈σ(L(q)) is a spectral singularity of L(q) if for all
ε > 0 there exists a sequence {γn} of the regular spectral arcs γn ⊂{z∈C :| z−λ |< ε}
such that

lim
n→∞

‖ P(γn) ‖= ∞. (6)

In the similar way, we defined in [12] the spectral singularity at infinity.

DEFINITION 2. We say that the operator L has a spectral singularity at infinity
if there exists a sequence {γn} of the regular spectral arcs such that d(0,γn) → ∞ as
n → ∞ and (6) holds, where d(0,γn) is the distance from the point (0,0) to the arc γn.
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The asymptotic spectrality of the operator L(q) was defined in [12] as follows.
Let e(t,γ) be the spectral projection defined by contour integration of the resolvent of
Lt(q) , where γ ∈ R and R is the ring consisting of all sets which are the finite union
of the half closed rectangles. In [6] it was proved Theorem 3.5 (for the differential
operators of arbitrary order with periodic coefficients rather than for L(q)) which can
be written in the form:

L(q) is a spectral operator if and only if

sup
γ∈R

(ess sup
t∈(−π ,π ]

‖ e(t,γ) ‖) < ∞, (7)

where esssup (essential supremum) is the infimum of the essential upper bounds, and
an essential upper bound of f is a number A such that f (t) � A for almost all t ∈
(−π ,π ] . According to this theorem, in [12] we gave the following definition of the
asymptotic spectrality.

DEFINITION 3. The operator L(q) is said to be an asymptotically spectral opera-
tor if there exists a positive constant C such that

sup
γ∈R(C)

(ess sup
t∈(−π ,π ]

‖ e(t,γ) ‖) < ∞,

where R(C) is the ring consisting of all sets which are the finite union of the half closed
rectangles lying in {λ ∈ C :| λ |> C}.

In [12] and [13] we obtained the following results about asymptotic spectrality
under the following conditions.

CONDITION 1. Let q ∈ W p
1 [0,1] , q(k)(0) = q(k)(1), for k = 0,1, ...,s− 1 and

q(s)(0) �= q(s)(1) for some s � p. Suppose that qn ∼ q−n, | qn |> cn−s−1 and at least
one of the following inequalities

Reqnq−n � 0, | Imqnq−n |� ε | qnq−n |
hold for some c > 0 and ε > 0 and for large values of n, where qn is the Fourier
coefficient of the potential q and qn ∼ q−n means that qn = O(q−n) and q−n = O(qn)
as n → ∞ .

CONDITION 2. Suppose that

q(x) = ae−i2πx +bei2πx, (8)

| a |=| b |, inf
q,p∈N

{| qα − (2p−1) |} �= 0, (9)

where a and b are the complex numbers and α = π−1 arg(ab).

In [12] we proved that if Condition 1 holds then L(q) is an asymptotically spectral
operator and has no spectral singularity at infinity. It was proven in [13] that the operator
L(q) with the potential (8) is an asymptotically spectral operator and has no spectral
singularity at infinity if and only if (9) holds.
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2. Spectrum, spectral singularity and spectrality

First, let us discuss the spectrum of L(q) by using some results of [11, 12] about
the uniform with respect to t in (−π ,π ] asymptotic formulae for eigenvalues of the
operator Lt(q) . Note that, the formula f (k,t) = O(h(k)) as k→∞ is said to be uniform
with respect to t in a set I if there exist positive constants M and N, independent of t,
such that

| f (k,t)) |< M | h(k) |
for all t ∈ I and | k |� N.

In the case q = 0 the eigenvalues and eigenfunctions of Lt(q) are (2πn+ t)2 and
ei(2πn+t)x for n ∈ Z respectively. In [11] we proved that the large eigenvalues of the
operator Lt(q) for t �= 0,π consist of the sequence {λn(t) :| n |
 1} satisfying

λn(t) = (2πn+ t)2 +O

(
ln |n|

n

)
(10)

as n → ∞. For any fixed ρ ∈ (0, π
2 ) , asymptotic formula (10) is uniform with respect

to t in [ρ ,π −ρ ] . There exists a positive number N(ρ), independent of t, such that
the eigenvalues λn(t) for t ∈ [ρ ,π −ρ ] and | n |> N(ρ) are simple and hence are the
analytic function in some neighborhood of [ρ ,π −ρ ] .

In the paper [12] we proved that there exists a positive integer N(0) such that the
disk

U(n,t,ρ) =: {λ ∈ C :
∣∣λ − (2πn+ t)2

∣∣� 15πnρ} (11)

for t ∈ [0,ρ ], where 15πρ < 1, and n > N(0) contains two eigenvalues (counting
with multiplicities) denoted by λn,1(t) and λn,2(t) and these eigenvalues can be chosen
as continuous functions of t on the interval [0,ρ ]. In addition to these eigenvalues,
the operator Lt(q) for t ∈ [0,ρ ] has only 2N(0) + 1 eigenvalues denoted by λk(t)
for k = 0,±1,±2, ...,±N (see Remark 2.1 of [12]). Similarly, there exists a positive
integer N(π) such that the disk U(n,t,ρ) for t ∈ [π−ρ ,π ] and n > N(π) contains two
eigenvalues (counting with multiplicities) denoted again by λn,1(t) and λn,2(t) that are
continuous functions of t on the interval [π−ρ ,π ]. In addition to these eigenvalues, the
operator Lt(q) for t ∈ [π −ρ ,π ] has only 2N(π) eigenvalues. Thus for n > N, where
N = max{N(ρ),N(0),N(π)} , the eigenvalues λn,1(t) and λn,2(t) are continuous on
[0,ρ ]∪ [π − ρ ,π ] . Moreover, for | n |> N the eigenvalue λn(t), defined by (10), is
analytic function in the neighborhood of [ρ ,π −ρ ]. On the other hand, by (10) there
exist only two eigenvalues λ−n(ρ) and λn(ρ) of the operator Lρ(q) lying in the disk
U(n,ρ ,ρ). Therefore these 2 eigenvalues coincides with the eigenvalues λn,1(ρ) and
λn,2(ρ). By (10) Re(λ−n(ρ)) < Re(λn(ρ)). Let λn,2(ρ) be the eigenvalue whose real
part is larger. Then

λn,1(ρ) = λ−n(ρ), λn,2(t) = λn(ρ), ∀n > N. (12)

In the same way we obtain that

λn,1(π −ρ) = λn(π −ρ), λn,2(π −ρ) = λ−(n+1)(π −ρ), ∀n > N (13)
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if λn,2(π −ρ)) is the eigenvalue whose real part is larger. Let Γ−n be the union of the
following continuous curves {λn−1,2(t) : t ∈ [π −ρ ,π ]} , {λ−n(t) : t ∈ [ρ ,π −ρ ]} and
{λn,1(t) : t ∈ [0,ρ ]} . By (12) and (13) these curves are connected and Γ−n is a continu-
ous curve. Similarly, the curve Γn which is the union of the curves {λn,2(t) : t ∈ [0,ρ ]} ,
{λn(t) : t ∈ [ρ ,π −ρ ]} and {λn,1(t) : t ∈ [π −ρ ,π ]} is a continuous curve. For t ∈
[0,ρ ] redenote λn,1(t) by λ−n(t) and λn,2(t) by λn(t), where n > N. In the same way
we put λn(t) =: λn,1(t), λ−(n+1)(t) =: λn,2(t) for t ∈ [π − ρ ,π ] and n > N. In this
notation we have

Γn = {λn(t) : t ∈ [0,π ]} . (14)

The eigenvalues of L−t(q) coincides with the eigenvalues of Lt(q), because they
are roots of equation (3) and cos(−t) = cost. We define the eigenvalue λn(−t) of
L−t(q) by λn(−t) = λn(t) for all t ∈ (0,π). Then λn(t) for | n |> N is an continuous
function on (−π ,π ] , Γn = {λn(t) : t ∈ (−π ,π ]} and

σ(L(q)) =
⋃

t∈(−π ,π ]
σ(Lt (q)) ⊃ ⋃

|n|>N
Γn.

Thus the spectrum σ(L) of the operator L contains the continuous curves Γn for
| n |> N. The remaining part of σ(L) consist of finite simple analytic arcs γ1,γ2, ...,γm

whose endpoints are the eigenvalues of L0(q) and Lπ(q) and the roots of the equations
dF(λ )

dλ = 0 lying in the spectrum (see [9]). On the other hand, the above arguments show
that γ1 ∪ γ2 ∪ ...∪ γm is the union of 2N + 1 eigenvalues (counting multiplicity and
denoted by λn(t) for n = 0,±1, ...,±N) of Lt(q) for t ∈ (−π ,π ] . Moreover, if λn(t)
is a root of (3) of multiplicity k, then it is the end point of k curves γn1 ,γn2 , ...,γnk , that
is, these k curves are joined by λn(t). Therefore one can numerate the eigenvalues so
that

γ1 ∪ γ2∪ ...∪ γm = ∪|n|�NΓn (15)

where Γn = {λn(t) : t ∈ (−π ,π ]} for | n |� N are continuous curves. Thus we have

σ(L(q)) =
⋃

n∈Z

Γn. (16)

Using (10), (11) and the definition of λn(t) one can readily see that∣∣λn(t)− (2πk± t)2
∣∣� |(n− k)| |n+ k| (17)

for k �=±n,±(n+1) and t ∈ (−π ,π ], where |n|> N . In [11], [12] to write the asymp-
totic formulas for the eigenfunction Ψn,t(x) corresponding to the eigenvalue λn(t) we
used the following relations

(λn(t)− (2πk+ t)2)(Ψn,t ,e
i(2πk+t)x) = (qΨn,t ,e

i(2πk+t)x), (18)∣∣∣(qΨn,t ,e
i(2πk+t)x)

∣∣∣< 3M (19)

for t ∈ (−π ,π ], |n| > N and k ∈ Z, where

M = sup
n∈Z

|qn| , qn =
∫ 1

0
q(x)e−i2πnxdx.
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From (17)–(19) we obtain the following, uniform with respect to t in (−π ,π ], asymp-
totic formulas

∑
k∈Z\{±n,±(n+1)}

∣∣∣(Ψn,t ,e
i(2πk+t)x)

∣∣∣2 = O(n−2)

and

∑
k∈Z\{±n,±(n+1)}

∣∣∣(Ψn,t ,e
i(2πk+t)x)

∣∣∣= O

(
lnn
n

)

Therefore Ψn,t(x) has an expansion of the form

Ψn,t(x) = ∑
k∈{±n,±(n+1)}

un,k(t)ei(2πk+t)x +hn,t(x), (20)

where

‖hn,t‖ = O(n−1), sup
x∈[0,1], t∈(−π ,π ]

| hn,t(x) |= O

(
ln |n|

n

)
, (hn,t ,e

i(2πk+t)x) = 0 (21)

for k ∈ {±n,±(n+1)} and

un,k(t) = (Ψn,t ,e
i(2πk+t)x). (22)

Let {χn,t : n ∈ Z} be biorthogonal to {Ψn,t : n ∈ Z} and Ψ∗
n,t(x) be the normalized

eigenfunction of (Lt (q))∗ corresponding to λn(t). Since the boundary condition (2) is
self-adjoint we have (Lt(q))∗ = Lt(q). Therefore, we have

Ψ∗
n,t(x) = ∑

k∈{±n,±(n+1)}
u∗n,k(t)e

i(2πk+t)x +h∗n,t(x), (23)

where u∗n,k(t) = (Ψ∗
n,t ,e

i(2πk+t)x) and

∥∥h∗n,t

∥∥= O(n−1), sup
x∈[0,1], t∈(−π ,π ]

| h∗n,t(x) |= O

(
ln |n|

n

)
, (h∗n,t ,e

i(2πk+t)x) = 0 (24)

for k ∈ {±n,±(n+1)}. Formulas (21) and (24) are uniform with respect to t in
(−π ,π ].

Introduce the functions

αn(t) = (Ψn,t ,Ψ∗
n,t)(0,1), χn,t(x) =

1

αn(t)
Ψ∗

n,t(x), (25)

where (., .)(a,b) denotes the inner product in L2(a,b). One can easily verify that

Ψn,t(x) =
Φ+(x,λn(t))
‖Φ+(·,λn(t))‖ , χn,t(x)) =

1

αn(t)
Φ−(x,λn(t))∥∥∥Φ−(·,λn(t))

∥∥∥ , (26)

Ψn,t(x+1) = eitΨn,t(x), Ψ∗
n,t(x+1) = eitΨ∗

n,t(x), χn,t(x+1) = eit χn,t(x), (27)
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where Φ+ and Φ− are defined in (5). Using these formulas and the equalities

dλ = −p(λ )
(

dF
dλ

)−1

dt,
dF(λn(t))

dλ
= −ϕ(1,λn(t))(Φ+(·,λn(t)),Φ−(·,λn(t)))

(28)
and changing the variable λ to the variable t in the integral (5) we get

P(γ) f =
1
2π
∫
δ
( f ,χn,t )RΨn,t dt, (29)

where δ = {t ∈ (−π ,π ] : λn(t) ∈ γ} and γ ⊂ Γn.

It is very natural that the projection of the operator L(q) is connected with the
projection

e(t,C) =: Pt(λn(t)) f =
1

2π i

∫
C
(Lt −λ I)−1 f dt (30)

of the operator Lt(q), where C is a closed contour enclosing λn(t) but no other eigen-
values of Lt(q) . In this paper we use the following proposition which was proved in
[10].

PROPOSITION 1. Let γ ⊂ Γn be regular spectral arc and δ = {t : λn(t) ∈ γ}.
Then the operators P(γ) and Pt(λn(t)) for t ∈ δ are projections and

‖ Pt(λn(t)) ‖=| αn(t) |−1, (31)

‖ P(γ) ‖= sup
t∈δ

‖ Pt(λn(t)) ‖= sup
t∈δ

| αn(t) |−1 . (32)

Let us give the brief proof of (31) and (32). Using the well-known equality
Pt(λn(t)) = ( f ,χn,t )Ψn,t and (25) we obtain that Pt is a projection and

‖ Pt(λn(t)) f ‖�| αn(t) |−1 ‖ f‖ & ‖ Pt(λn(t))Ψn,t ‖=| αn(t) |−1

which yield (31) and show that the operators Pt for t ∈ δ are uniformly bounded, since
|αn| is continuous and nonzero in the compact δ . Moreover, one can easily verify that

P(γ) f = lim
Ni→∞

N2

∑
j=−N1

N4

∑
k=−N3

1
2π

T ∗
j

2π∫
0

ei( j−k)tPtTk f dt,

where Pt = 0 for t /∈ δ , Tk f (x) = f (x+ k) if x ∈ [0,1) and Tk f (x) = 0 if x /∈ [0,1).
Therefore it follows from Theorem 5.13 of [5] that P(γ) is a projection and (32) holds.

PROPOSITION 2. A number λ ∈ σ(Lt(q)) for t ∈ (0,π) is a spectral singularity
of L(q) if and only if it is a multiple eigenvalue of Lt(q) . Moreover, Γn does not contain
the spectral singularities if and only if there exists β > 0 such that | αn(t) |−1< β for
all t ∈ (0,π).
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Proof. It is well-known [1] that for t �= 0,π the operator Lt cannot have two eigen-
functions corresponding to one eigenvalue λ . Therefore λn(t) is a multiple eigenvalue
of Lt(q) if and only if there exists an associated function corresponding to Ψn,t that
occurs if and only if αn(t) = 0. On the other hand, one can readily see that |αn(t)| is
continuous on (0,π). Thus the proof follows from (32) and Definition 1. �

Now we are ready to prove the main results of this chapter.

THEOREM 1. The following statements are equivalent
(a) The operator L(q) has no spectral singularity at infinity.
(b) L(q) is an asymptotically spectral operator.
(c) There exists N such that the following are satisfied: (i) The operator L(q)

has no spectral singularity on Γn for | n |> N and hence L(q) may have at most finitely
many spectral singularities. (ii) For |n| > N and t ∈ (0,π) the eigenvalues λn(t) are
simple. (iii) The algebraic multiplicity of λn(0) and λn(π) for |n| > N are equal to
their geometric multiplicities, that is, there are not associated functions corresponding
to those eigenvalues. (iiii) There exists a constant d such that

| αn(t) |−1< d (33)

for all | n |> N and t ∈ (−π ,0)∪ (0,π).

Proof. First let us show that (c) implies (a). From (32) and (33) it follows that
‖ P(γ) ‖< d for all regular spectral arcs γ ∈ Γn whenever | n |> N . Therefore, by
Definition 2, (a) holds.

Now we prove that (a) implies (c). Suppose that (a) holds. If (i) does not
hold then there exist a sequence of pairs {(nk,tk)} such that |nk| → ∞ and λnk(tk) for
k = 1,2, ..., are spectral singulatities of L(q). Then by Definition 1 one can choose a
sequence of regular arc γnk ⊂ Γnk such that

‖ P(γnk) ‖> k (34)

which contradicts (a) (see Definition 2). To complete the proof of (i) it remains to
note that the spectral singularities of L(q) are contained in the set

{
λ :

dF(λ )
dλ

= 0, λ ∈ σ(L(q))
}

(35)

and the entire function dF(λ )
dλ has at most finite number of roots on the compact set

∪|n|�NΓn.

If (ii) does not hold then there exist a sequence of pairs {(nk,tk)} such that tk ∈
(0,π) and λnk(tk) is a multiple eigenvalue. Then by Proposition 2 the numbers λnk(tk)
for k = 1,2, ..., are spectral singulatities of L(q) which contradicts (i).

Since for |n| > N the multiplicity of the eigenvalue λn is not greater than 2, if
(iii) does not hold then there exist infinitely many eigenvalues to which corresponds
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one eigenfunction and one associated function. Therefore arguing as in the proof of
the Proposition 2 we obtain that there exist infinitely many spectral singulatities which
again contradicts (i).

If (iiii) does not hold then there exist a sequence of pairs {(nk,tk)} , where |nk| →
∞ and tk ∈ (−π ,0)∪ (0,π), such that

∣∣αnk(tk)
∣∣−1

> k.

Moreover, by (ii) the eigenvalues λnk(tk) for |nk| > N are simple. Therefore using the
continuity of |αnk(t)| at tk and (32) we obtain that there exists a sequence of regular
arc γnk ⊂ Γnk such that ‖ P(γnk) ‖→ ∞ which contradicts (a) (see Definition 2).

Now we prove that (a) and (b) are equivalent. If (a) does not hold then it is
clear that (b) also does not holds. Suppose that (a) holds. Then (33) holds too. Let
C be a positive constant such that if λn(t) ∈ {λ ∈ C :| λ |> C}, then | n |> N for all
t ∈ (−π ,π ], where N is defined in (c) . If γ ∈ R(C), then γ encloses finite number
of the simple eigenvalues of Lt(q) for t ∈ (0,π) . Thus, there exists a finite subset
J(t,γ) of {n ∈ Z : | n |> N} such that the eigenvalue λk(t) lies inside γ if and only
if k ∈ J(t,γ). It is well-known that the simple eigenvalues are the simple poles of the
Green function of Lt(q) and the projection e(t,γ) has the form

e(t,γ) f = ∑
n∈J(t,γ)

1
αn(t)

( f ,Ψ∗
n,t )(0,1)Ψn,t . (36)

Therefore the proof of the theorem follows from the following lemma �

LEMMA 1. If (33) holds then there exists a positive constant D such that

‖ ∑
n∈J

1
αn(t)

( f ,Ψ∗
n,t )Ψn,t ‖2< D ‖ f ‖2 (37)

for all t ∈ (−π ,0)∪ (0,π) and for all subset J of {n ∈ Z :| n |> N} .

Proof. First let us prove that there exists a positive constant c such that

‖ ∑
n∈J

1
αn(t)

( f ,Ψ∗
n,t )Ψn,t ‖2< c ∑

n:|n|>N

| ( f ,Ψ∗
n,t ) |2 (38)

for all t ∈ (−π ,0)∪ (0,π). By (20) we have

‖ ∑
n∈J

1
αn(t)

( f ,Ψ∗
n,t )Ψn,t ‖2� 2S1 +2S2

2 (39)

where

S1 =‖ ∑
n∈J

1
αn(t)

( f ,Ψ∗
n,t )( ∑

k∈{±n,±(n+1)}
un,k(t)ei(2πk+t)x) ‖2,
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S2 =‖ ∑
n∈J

1
αn(t)

( f ,Ψ∗
n,t )hn,t ‖

Since
{

ei(2πn+t)x : n ∈ Z

}
is an orthonormal basis and

∣∣un,k(t)
∣∣ � 1 (see (22)) using

(33) and the Bessel inequality one can easily verify that

S1 � 16d2 ∑
n:|n|>N

| ( f ,Ψ∗
n,t ) |2 (40)

It follows from (33) and (21) that

S2 < c1 ∑
n:|n|>N

| ( f ,Ψ∗
n,t ) |

1
| n |

for some constant c1. Now using the Schwarz inequality for l2 we obtain

S2 < c1

(
∑

n:|n|>N

| ( f ,Ψ∗
n,t ) |2

)1/2(
∑

n:|n|>N

1
n2

)1/2

� c1√
N

(
∑

n:|n|>N

| ( f ,Ψ∗
n,t ) |2

)1/2

.

Thus (38) follows from (39) and (40). Therefore to prove (37) it is enough to show that
there exists a positive constant c2 such that

∑
n:|n|>N

| ( f ,Ψ∗
n,t ) |2� c2 ‖ f ‖2 . (41)

It can be proved arguing as in the proof of (38) and using (23) instead of (20) �

THEOREM 2. The operator L(q) is a spectral operator if and only if it has no
spectral singularities at σ(L(q)) and at infinity.

Proof. If L(q) is a spectral operator, then by (7), (30) and Proposition 1 there
exists a positive constant c3 such that ‖ P(γ) ‖< c3 for all regular spectral arcs γ.
Therefore, by Definition 1 and Definition 2, the operator L(q) has no spectral singular-
ities at σ(L(q)) and at infinity. If L(q) has no spectral singularities at σ(L(q)) and at
infinity then (33) holds for all n ∈ Z and t ∈ (−π ,0)∪ (0,π). Using this and arguing
as in the proof of the implication (a) =⇒ (b) of Theorem 1, we obtain that L(q) is a
spectral operator �

DEFINITION 4. The component Γn , defined by (14), of the spectrum σ(L(q))
of the operator L(q) is said to be separated if Γn ∩Γm = /0 for all m �= n. Thus all
component Γn of the spectrum σ(L(q)) are separated if and only if all eigenvalues of
the operators Lt for t ∈ (−π ,π ] are simple.

COROLLARY 1. The Mathieu operator L(2acosx), where a is a complex number,
is a spectral operator if and only if

inf
q,p∈N

{| 2qα − (2p−1) |} �= 0 (42)

and all eigenvalues of the operators Lt for t ∈ (−π ,π ] are simple.
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Proof. Using the result of [13] mentioned in the end of introduction which states
that L(2acosx) has no spectral singularities at infinity if and only if (42) holds, we
prove the corollary as follows. If (42) holds and all eigenvalues are simple then L has
no spectral singularity at infinity and in spectrum and hence, by Theorem 2, L is a
spectral operator. Now suppose that L is a spectral operator. Then, by Theorem 2, L
has no spectral singularities at infinity and hence (42) holds. It remains to prove that all
eigenvalues are simple. By Proposition 2 the eigenvalues λn(t) for t ∈ (0,π) and for
all n are simple, since L has no spectral singularity in spectrum (see Theorem 2). Now
to complete the proof of the corollary it remains to prove that the eigenvalues λn(0)
and λn(π) for n ∈ Z are simple. It is well-known that, the geometric multiplicity of
λn(0) and λn(π) for all n is 1 (see p. 34–35 of [1]. Note that in [1] it was proved for
the real a . However, the proof pass through for the complex a.) Therefore if λn is a
multiple eigenvalue then there corresponds one eigenfunction and at least one associ-
ated function. Then, arguing as in the proof of Proposition 2 we obtain that λn is a
spectral singularity which contradicts the spectrality of L. �

3. On the spectral expansion of the asymptotically spectral Hill operator

In this section we examine the spectral expansion theorem in the case when L(q)
has no spectral singularity at infinite by using Section 2 and the results of [2] where it
was proved that for every f ∈ L2(−∞,∞) there exists ft(x) such that

f (x) =
1
2π

2π∫
0

ft (x)dt, (43)

ft (x) =
∞

∑
k=−∞

f (x+ k)e−ikt ,

∫ ∞

−∞
| f (x)|2 dx =

1
2π

2π∫
0

1∫
0

| ft (x)|2 dxdt (44)

and the followings hold

ft (x+1) = eit ft(x), ( f ,χk,t )(−∞,∞). = ( ft ,χk,t)(0,1) =
1

αk(t)
( ft ,Ψ∗

k,t) =: ak(t). (45)

In this case, by Theorem 1(c) and Proposition 2, the roots of dF(λ )
dλ = 0 lying in the

set {λn(t) : t ∈ (0,π), n ∈ Z} is finite. Denote these roots (if exists) by λ1,λ2, ...λm .
Let t1, t2, ...tm be a point of (0,π) such that λk ∈ σ(Ltk ) . Introduce the set E =
(−π ,π)\{0,±t1,±t2, ...± tm} . By the definition of E , if t ∈ E, then the eigenvalues
λk(t) , for all k ∈ Z, are simple and the system

{
Ψk,t(x) : k ∈ Z

}
of eigenfunctions of

Lt forms a Riesz basis in L2[0,1] , since if t �= 0,π then the system of the eigenfunc-
tions and associated functions of Lt(q) with potential q ∈ L1[0,1] forms Riesz basis of
L2[0,1] (see [11]). Therefore

ft(x) =
∞

∑
k=−∞

ak(t)Ψk,t(x), (46)
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where the series converges in the norm of L2(0,1). This with (43) implies that

f (x) =
1
2π

π∫
−π

ft (x)dt =
1
2π

∫
E

ft(x)dt =
1
2π

∫
E

∞

∑
k=−∞

ak(t)Ψk,t (x)dt (47)

Since in this section it is assumed that L(q) has no spectral singularity at infi-
nite, by Theorem 1 there are at most finite number of spectral singularities denoted by
λ1,λ2, ...λs. Here s � m, since by Proposition 2, λ1,λ2, ...λm are spectral singularities.
Let S be the set of integers such that Γn contains spectral singularities for n ∈ S. Note
that S is a finite subset of Z. By Proposition 2 and (45), if n /∈ S then

2π∫
0

1∫
0

∣∣ak(t)Ψk,t(x)
∣∣2 dxdt � β 2

2π∫
0

1∫
0

| ft (x)|2 dxdt < ∞ (48)

Therefore by Fubini theorem ∫
E

ak(t)Ψk,t (x)dt (49)

exists for almost all x when k /∈ S . Similarly by (33) the integral (49) exists for |k|> N .

THEOREM 3. If the operator L(q) has no spectral singularity at infinity, then
every function f ∈ L2(−∞,∞) has the spectral decomposition

f (x) =
1
2π

∫
E

∑
k∈S

ak(t)Ψk,t(x)dt + ∑
k∈Z\S

1
2π

∫
E

ak(t)Ψk,t(x)dt, (50)

where the series in (50) converges in the norm of L2(a,b) for every a,b ∈ R.

Proof. First let us consider the series

∑
k>N

ak(t)Ψk,t(x), (51)

where N is defined in Theorem 1 and t ∈ E . Let Rn(x,t) be remainder of (51)

Rn(x,t) = ∑
k>n

ak(t)Ψk,t(x),

where n > N. Since the series (51) converges in the norm of L2(0,1) by (45) and (27)
we have

Rn(x+1,t) = eitRn(x,t), Rn(.,t) ∈ L2(−m,m) (52)

for t ∈ E and for all m ∈ N. Repeating the proof of (38) and using (52) we obtain

‖ Rn(.,t) ‖2
(−m,m)� 2mc4 ∑

k:|k|>n

| ( ft ,Ψ∗
k,t )(0,1) |2 (53)
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for some constant c4, where ‖ f ‖(−m,m) is the L2(−m,m) norm of f . On the other
hand, it follows from (33), (23) and (24) that

∑
k:|k|>n

| ( ft ,Ψ∗
k,t)(0,1) |2� c5 ∑

k:|k|>n

| ( ft ,e
i(2πk+t)x)(0,1) |2 +c5 ‖ ft ‖2

(0,1) n−1 (54)

for some constant c5. Now using the Parseval equality for L(q) when q = 0 (see [2])
we obtain

∑
k∈Z

1
2π

∫
E

| ( ft ,e
i(2πk+t)x)(0,1) |2 dt =

∫ ∞

−∞
| f (x)|2 dx =

1
2π

∫
E

‖ ft ‖2
(0,1) dt

Therefore by (54) and (53) the following integral exists and

In =:
∫
E

∫
(−m,m)

| Rn(x,t) |2 dxdt → 0 (55)

as n → ∞. Thus by Fubini theorem Rn(x,t) is integrable with respect to t for almost
all x.

Now using the inequality∣∣∣∣
∫

E
f (t)dt

∣∣∣∣
2

� 2π
∫

E
| f (t)|2 dt,

Fubini theorem and then (55), we obtain

‖
∫
E

∑
k>n

ak(t)Ψk,t dt ‖2
(−m,m)� 2π

∫
(−m,m)

∫
E

| ∑
k>n

ak(t)Ψk,t(x) |2 dtdx = In → 0 (56)

as n → ∞ . Hence the series (51) is integrable and∫
E

( ∑
k>N

ak(t)Ψk,t (x))dt = ∑
k>N

∫
E

ak(t)Ψk,t(x)dt, (57)

where the last series converges in the norm of L2(−m,m) for every m ∈ N. In the same
way we prove that∫

E

( ∑
k<−N

ak(t)Ψk,t (x))dt = ∑
k<−N

∫
E

ak(t)Ψk,t(x)dt. (58)

Therefore using (57), (58) and (47) and taking into account that the integral in (49)
exists for k /∈ S we obtain that the first integral in (50) exists and (50) holds �

Now changing the variable to λ in (50) by using (28) and taking into account that
λn(−t) = λn(t), Γn = limε→0 Γn(ε), where Γn(ε) = {λ = λn(t) : t ∈ (ε,π − ε)}, and

lim
ε→0

∫
(−ε,ε)∪(π−ε,π+ε)

(
∑
k∈S

ak(t)Ψk,t (x)

)
dt = 0

by the absolute continuity of the integral, we obtain
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THEOREM 4. If the operator L(q) has no spectral singularity at infinity, then
every function f ∈ L2(−∞,∞) has the spectral decomposition

f (x) =
1
π

p.v.

⎛
⎜⎝∫

γ(s)

(φ(x,λ ))
1

p(λ )
dλ

⎞
⎟⎠+

1
π ∑

k∈Z\S

⎛
⎝∫

Γk

(φ(x,λ ))
1

p(λ )
dλ

⎞
⎠ , (59)

where

φ(x,λ ) = θ
′
(1,λ )h(λ )ϕ(x,λ )+

1
2
(θ (1,λ )−ϕ

′
(1,λ ))(h(λ )θ (x,λ )+g(λ )ϕ(x,λ ))

−ϕ(1,λ )g(λ )θ (x,λ ),

h(λ ) =
∞∫

−∞

ϕ(x,λ ) f (x)dx, g(λ ) =
∞∫

−∞

θ (x,λ ) f (x)dx, p(λ ) =
√

4−F2(λ ),

γ(s) =:
⋃

k∈S Γk is the part of the spectrum that contains the spectral singularities and
p.v. means that the integral over γ(s) is the limit of the integral over

⋃
k∈S Γk(ε) as

ε → 0. The series in (59) converges in the norm of L2(a,b) for every a,b ∈ R.

The results of [12] and [13] mentioned in the end of the introduction with Theorem
3 and Theorem 4 imply

COROLLARY 2. If the potential q satisfies one of the Condition 1 and Condition
2 then the spectral expansions of L(q) have the forms (50) and (59).
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