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GENERIC RANK–TWO PERTURBATIONS OF

STRUCTURED REGULAR MATRIX PENCILS
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Abstract. The generic spectral behavior of classes of structured regular matrix pencils is exam-
ined under structure-preserving rank-2 perturbations, i.e., perturbations of normal rank two. For
T -alternating, palindromic, and skew-symmetric matrix pencils we observe the following effects
at each eigenvalue λ under a generic, structure-preserving rank-2 perturbation: 1) The largest
two Jordan blocks at λ are destroyed. 2) If hereby the eigenvalue pairing imposed by the struc-
ture is violated, also the largest remaining Jordan block at λ will grow in size by one. 3) If λ is
a single (double) eigenvalue of the perturbating pencil, one (two) new Jordan blocks of size one
will be created at λ .

1. Introduction

Rank-1 perturbations of unstructured matrices were studied in [8, 16, 17, 18, 19]
and the following result was established: When a matrix is subjected to a generic rank-
1 perturbation, its largest Jordan block at each eigenvalue is destroyed. Then, various
classes of matrices that are structured with respect to some indefinite inner product
were investigated under structure-preserving rank-1 perturbations in [7, 12, 13, 14, 15].
It was observed that in some cases, not only the largest Jordan block at each eigenvalue
was destroyed under perturbation, but that also the second largest Jordan block (i.e., the
largest remaining block) would grow in size by one.

Then again, unstructured regular matrix pencils were studied under generic low-
rank perturbations in [3]: It was observed that at each eigenvalue of the pencil, not
only certain blocks will be destroyed, but also some new blocks of size one will be
created. Now, the motivation of this paper is to look into similar results for matrix
pencils that have a certain symmetry structure and low-rank perturbations that preserve
this structure.

We will mainly focus on T -alternating matrix pencils (E,A) ∈ Cn,n×Cn,n (iden-
tifying the matrix pair (E,A) with the pencil λE−A whenever convenient), i.e., either
E is skew-symmetric and A is symmetric − then (E,A) is called T -even − or E is
symmetric and A is skew-symmetric − then (E,A) is called T -odd. It is well-known
that the eigenvalues of T -alternating matrix pencils occur in pairs (λ ,−λ ) and that at
0 and ∞ (where this pairing degenerates), the sizes of their Jordan blocks have to fulfill
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certain conditions (see Theorem 2.5 and also [21, 9]). Some applications that lead to
these and other types of structured matrix pencils are presented in [1].

Throughout this paper, we will prescribe the normal rank of the perturbation
(ΔE,ΔA) , i.e., the highest rank of the matrix λ ΔE−ΔA for any λ ∈C , so that a rank-k
perturbation refers to a perturbation with normal rank k . Let us first consider the case
k = 1: For unstructured matrix pencils (E,A) , a rank-1 perturbation will in general
perturb both E and A , as such perturbations can, e.g., have the form (βuvT ,αuvT ) .
However, the situation is different for T -alternating matrix pencils: If we consider a
T -even rank-1 perturbation (ΔE,ΔA) , then ΔE must be skew-symmetric and thus have
even rank, and at the same time its rank is less than or equal to one, from which we
obtain ΔE = 0. Then, ΔA will have rank one and be symmetric, leading to rank-1
perturbations of the form (0,uuT ) and similarly to (uuT ,0) in the T -odd case.

The generic spectral behavior of T -alternating matrix pencils (E,A)∈ Cn,n×Cn,n

under structure-preserving rank-1 perturbations of this type was determined in [1, The-
orem 3.2] to be as follows. If (E,A) has the partial multiplicities n1 � . . . � nm at some
(possibly infinite) eigenvalue λ̂ , the partial multiplicities of the perturbed pencil at λ̂
are obtained by applying the following steps to the list (n1, . . . ,nm) :

1) Remove the largest element n1 from the list.

2) If n1 = n2 and these two largest blocks are paired, replace n2 by n2 + 1 in the
list.

3) If λ̂ is an eigenvalue of (ΔE,ΔA) , add the new entry 1 to the end of the list.

Here, as mentioned previously, the situation that identical blocks are paired to one
another as in 2) does only occur if λ̂ is either 0 or ∞ . Further, since the perturbation
is equal to (0,uuT ) in the T -even case and (uuT ,0) in the T -odd case, the condition
in 3) is only realized if either (E,A) is T -even and λ̂ = ∞ or if (E,A) is T -odd and
λ̂ = 0.

Even so, considering T -alternating perturbations where only the symmetric matrix
of the pencil is actually perturbed does not suffice to analyze perturbations of rank
greater than one. For example, the T -even rank-2 perturbation (uvT − vuT ,0) cannot
be decomposed into the sum of T -even rank-1 perturbations. In this paper, we will
consider two different classes of T -alternating rank-2 perturbations, namely ones of
the form

[
u v w

]⎡⎣ 0 0 λ
0 0 −1
−λ −1 0

⎤⎦⎡⎣uT

vT

wT

⎤⎦ or
[
u v w

]⎡⎣0 0 λ
0 0 −1
λ 1 0

⎤⎦⎡⎣uT

vT

wT

⎤⎦ (1.1)

with u,v,w ∈ Cn and ones of the form

[
u v
][ 0 β λ −α

−β λ −α 0

][
uT

vT

]
or

[
u v
][ 0 β λ −α

β λ + α 0

][
uT

vT

]
with u,v ∈ C

n and α,β ∈ C .
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In Section 3, we will show the following result on perturbations (ΔE,ΔA) of the
form (1.1): If (E,A) ∈ Cn,n×Cn,n is a regular T -alternating matrix pencil that has the
partial multiplicities n1 � . . . � nm > 0 with m > 2 at some eigenvalue λ̂ ∈ C \ {0} ,
then the perturbed pencil (E + ΔE,A+ ΔA) generically has the eigenvalue λ̂ with the
partial multiplicities (n3, . . . ,nm) . This behavior is very similar to the one described
in [3] for unstructured matrix pencils (see also [4]). However, for the eigenvalues zero
and infinity of T -alternating pencils, we can expect different results, which is illustrated
by the following example.

EXAMPLE 1.1. Let (E,A) ∈ C
n,n ×C

n,n be a regular T -even matrix pencil that
has the partial multiplicities (6,5,5,4) at the eigenvalue 0 and let (ΔE,ΔA) be a
generic T -even rank-2 perturbation as in (1.1). We will show in Section 3 that the
perturbed pencil (E + ΔE,A + ΔA) generically has the eigenvalue 0 with the partial
multiplicities (6,4) . It is interesting that apparently two blocks of size 5 are generi-
cally destroyed under perturbation. We will explain the principles that correspond to
these classes of rank-2 perturbations in Section 3 of this paper.

This article is structured as follows: The next section of this paper will cover pre-
liminary results on low-rank perturbations and structured Kronecker canonical forms.
In Section 3, we will then determine the generic spectral behavior of regular, T -alter-
nating matrix pencils under the above structure-preserving rank-2 perturbations. In
Section 4, the results from Section 3 are shown to extend to the similarly structured
palindromic matrix pencils. Eventually, in Section 5, analogous results are derived for
skew-symmetric matrix pencils followed by a conclusion in the final section.

Throughout this paper, for square matrices X and Y (not necessarily of the same
dimension), define X ⊕Y := diag(X ,Y ) and let X⊕p := X ⊕ . . .⊕X ( p times). We
will denote the j th unit vector in Cn by e j,n , where the second index will be omitted
whenever it is clear from the context. Also, we will denote by Jn(λ ) the n×n Jordan
block corresponding to the eigenvalue λ and denote the n× n reverse identity matrix
by

Rn =

⎡⎢⎣ 1

. .
.

1

⎤⎥⎦ .

2. Preliminaries

In this paper, the following notion of genericity will be employed.

DEFINITION 2.1. 1) A set A ⊆ Cn is called algebraic if there exist finitely
many polynomials p1(x), . . . , pk(x) , such that a ∈ A if and only if

p j(a) = 0 for j = 1, . . . ,k.

2) An algebraic set A ⊆ C
n is called proper if A �= C

n .
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3) A set Ω ⊆ Cn is called generic if Cn \Ω is contained in a proper algebraic set.

Clearly, the intersection of finitely many generic sets is again generic and for an
invertible matrix X ∈ Cn,n the set XΩ is generic if Ω ⊆ Cn is generic. Subsets of Cn,m

or Cn,m ×Cn,m are called generic if they can be canonically identified with generic
subsets of Cnm or C2nm , respectively.

We continue with a lemma on generic sets that will be essential in the following
sections.

LEMMA 2.2. Let B ⊆C� not be contained in any proper algebraic subset of C� .
Then, B×Ck is not contained in any proper algebraic subset of C�×Ck .

Proof. First, we observe that the hypothesis that B is not contained in any proper
algebraic subset of C� is equivalent to the fact that for all nonzero polynomials p(x)
in � variables there exists an x ∈ B such that p(x) �= 0. Letting now q(x,y) be any
nonzero polynomial in �+ k variables, then the assertion is equivalent to showing that
there is an (x,y) ∈ B×Ck such that q(x,y) �= 0.

Thus, for any such q consider the set

Γq :=
{
y ∈ C

k | q( · ,y) is a nonzero polynomial
}

which is not empty (otherwise q would be constantly zero). Now, for any y ∈ Γq , by
hypothesis there exists an x ∈ B such that q(x,y) �= 0 but (x,y) ∈ B×Ck . �

2.1. Preliminary results on low-rank perturbations

In this section, we will review some preliminary results on low-rank perturbations
of regular matrix pencils. First, let us introduce the following phrase: We will say
that a regular matrix pencil has partial multiplicities that are greater than or equal to
a certain list of multiplicities, e.g., n1 � . . . � nk > 0, at some eigenvalue λ̂ if its
partial multiplicities at λ̂ are given by n′1 � . . . � n′m > 0 with m � k and n′j � n j for
j = 1, . . . ,k .

Then, the first result that we recap is the following [3, Lemma 2.1]:

LEMMA 2.3. Let (E,A) ∈ Cn,n ×Cn,n be regular with the partial multiplicities

n1 � . . . � nm > 0 associated with some eigenvalue λ̂ ∈ C and let (ΔE,ΔA) ∈ Cn,n ×
Cn,n have normal rank at most k . Then, if the perturbed pencil (E + ΔE,A+ ΔA) is
regular and k � m, it has partial multiplicities greater than or equal to (nk+1, . . . ,nm)
associated with λ̂ .

The next property of low-rank perturbations will frequently be used in the suc-
ceeding sections: For all (E,A),(ΔE,ΔA) ∈ Cn,n×Cn,n we have, by [3, Section 1],

rank(λE −A)− rank(λ ΔE −ΔA) � rank(λ (E + ΔE)− (A+ ΔA)) (2.1)

� rank(λE −A)+ rank(λ ΔE −ΔA)
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for any λ ∈C . Therefore, if (E,A) and (E +ΔE,A+ΔA) are both regular, the geomet-

ric multiplicity of (E,A) at an eigenvalue λ̂ cannot change by more than rank(λ̂ ΔE −
ΔA) under perturbation. Note that only the rank of λ̂ΔE −ΔA matters for this estimate
and that this number can be zero even for nonzero perturbations.

In order to concisely formulate the following result, let us introduce the notation
a(λ̂) in order to refer to the algebraic multiplicity of λ̂ as an eigenvalue of the matrix
pencil (E + ΔE,A+ ΔA) .

LEMMA 2.4. Let (E,A) ∈ Cn,n ×Cn,n be regular and consider a perturbation of
the form

(ΔE,ΔA) =
[
u1 . . . uk

](
δE,δA

)[
u1 . . . uk

]T
,

where (δE,δA) is an arbitrary but fixed (for the purpose of this lemma) k× k pencil.
Then, the following statements hold:

1) The set Λ ⊆ (Cn)k , so that the perturbed pencil (E + ΔE,A+ ΔA) is regular for
all (u1, . . . ,uk) ∈ Λ , is generic.

2) Suppose that for all (u1, . . . ,uk) ∈ Λ from 1) we have a(λ̂) � a0 . If there exists a

(u1, . . . ,uk) ∈ Λ with a(λ̂ ) = a0 , then a(λ̂) = a0 holds on some generic subset
of (Cn)k .

Proof. Regarding 1): For fixed (δE,δA) , consider the polynomial

n

∑
j=0

c jλ j = det
(
λ (E + ΔE)−A−ΔA

)
,

whose coefficients c j = c j(u1, . . . ,uk) depend polynomially on the entries of (u1, . . . ,uk) .
Hence, since c j(0) �= 0 holds for at least one j (recall that (E,A) is regular), at least
one c j is not constantly zero as a polynomial in the entries of (u1, . . . ,uk) . Thus, the
set Λ of all (u1, . . . ,uk) ∈ (Cn)k , such that c j(u1, . . . ,uk) �= 0 for at least one j , is the
desired generic set.

Regarding 2): By hypothesis, for all (u1, . . . ,uk) ∈ Λ , the perturbed pencil is reg-
ular and we have

det
(
(λ + λ̂)(E + ΔE)−A−ΔA

)
= λ a0q(λ ),

for a suitable polynomial q(λ ) , noting that the coefficient q(0) depends polynomially
on the entries of (u1, . . . ,uk) . For continuity reasons, this factorization even holds for
all (u1, . . . ,uk) ∈ (Cn)k . Since there is one particular (u1, . . . ,uk) such that q(0) �= 0,
by definition q(0) �= 0 is satisfied on some generic set Λ′ ⊆ (Cn)k . Then, clearly, Λ∩Λ′
is the desired generic set. �
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2.2. Structured Kronecker canonical forms

In this section we briefly recap some structured Kronecker canonical forms that
will be essential in the main proofs. The following T -even Kronecker form was de-
duced in [21].

THEOREM 2.5. (T -even Kronecker form) Let (E,A) ∈ C
n,n ×C

n,n be a T -even
matrix pencil. Then, there is a nonsingular matrix X ∈ Cn,n , such that

X(E,A)XT = KI ⊕KZ ⊕KF ⊕KS ,

where

KI = I2δ1+1⊕ . . .⊕I2δ�+1⊕I2ε1 ⊕ . . .⊕I2εm ,

KZ = Z2ρ1+1 ⊕ . . .⊕Z2ρr+1⊕Z2σ1 ⊕ . . .⊕Z2σs,

KF = Fφ1 ⊕ . . .⊕Fφt ,

KS = Sτ1 ⊕ . . .⊕Sτu ,

and the blocks are given as follows:

1) I2δ j+1 is one (2δ j +1)× (2δ j +1) block corresponding to the eigenvalue ∞:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

. .
.

1

. .
.

. .
.

0 1

. .
. −1

. .
.

. .
.

0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎣ 1

. .
.

1

⎤⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ (C(2δ j+1),(2δ j+1))2.

2) I2ε j contains two 2ε j ×2ε j blocks corresponding to the eigenvalue ∞:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

. .
.
1

. .
.

. .
.

0 1
0

. .
. −1

. .
.

. .
.

0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. .
.

1
1

. .
.

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ (C4ε j ,4ε j

)2
.
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3) Z2ρ j+1 contains two (2ρ j + 1)× (2ρ j + 1) blocks corresponding to the eigen-
value 0 :⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. .
.

1
−1

. .
.

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

. .
.
1

. .
.

. .
.

0 1
0

. .
.

1

. .
.

. .
.

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ (C(4ρ j+2),(4ρ j+2))2.

4) Z2σ j is one 2σ j ×2σ j block corresponding to the eigenvalue 0 :⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. .
.

1
−1

. .
.

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣
0

. .
.
1

. .
.

. .
.

0 1

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ (C2σ j ,2σ j

)2
.

5) Fφ j contains two φ j × φ j blocks that correspond to the eigenvalues λ j,−λ j ∈
C\ {0} : ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. .
.

1
−1

. .
.

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ j

. .
.

1

. .
.

. .
.

λ j 1
λ j

. .
.

1

. .
.

. .
.

λ j 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ (C2φ j ,2φ j

)2
.

6) Sτ j contains two singular blocks of dimension (τ j +1)× τ j and τ j × (τ j +1):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. .

.
0

1 . .
.

0 0
−1 0

. .
.

. .
.

−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. .

.
1

0 . .
.

0 1
0 1

. .
.

. .
.

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ (C(2τ j+1),(2τ j+1))2.

We note that there exists an analogously structured T -odd Kronecker form that
will not be needed in this paper. We refer the reader to [21] for the corresponding
theorem.

The following skew-symmetric Kronecker form is also taken from [21].
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THEOREM 2.6. (Skew-symmetric Kronecker form) Let (E,A)∈ Cn,n×Cn,n be a
skew-symmetric matrix pencil. Then, there is a nonsingular matrix X ∈ Cn,n , such that

X(E,A)XT = K̂I ⊕ K̂F ⊕ K̂S ,

where

K̂I = Îδ1
⊕ . . .⊕ Îδ�

, K̂F = F̂ε1 ⊕ . . .⊕ F̂εm , K̂S = Ŝτ1 ⊕ . . .⊕ Ŝτu ,

and the blocks are given as follows:

1) Îδ j
contains two δ j × δ j blocks corresponding to the eigenvalue ∞:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

. .
.
1

. .
.

. .
.

0 1
0

. .
. −1

. .
.

. .
.

0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. .
.

1
−1

. .
.

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ (C2δ j ,2δ j

)2
.

2) F̂ε j contains two ε j × ε j blocks corresponding to the eigenvalue λ j ∈ C:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. .
.

1
−1

. .
.

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ j

. .
.

1

. .
.

. .
.

λ j 1
−λ j

. .
. −1

. .
.

. .
.

−λ j −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ (C2ε j ,2ε j

)2
.

3) Ŝτ j contains two singular blocks of dimension (τ j +1)× τ j and τ j × (τ j +1):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. .

.
0

1 . .
.

0 0
−1 0

. .
.

. .
.

−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. .

.
1

0 . .
.

0 1
0 −1

. .
.

. .
.

0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ (C(2τ j+1),(2τ j+1))2.

3. T-alternating low-rank perturbations

Let us now turn to generic perturbations of T -alternating matrix pencils that have
normal rank two. First, we aim to derive a generic T -even Kronecker form of T -
even rank-2 perturbations assuming the dimension n to be greater than two. Clearly, if
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(ΔE,ΔA) is a T -even matrix pencil with normal rank two, then both ΔE and ΔA have
rank less than or equal to two, i.e., the pencil will have the form (uvT −vuT ,xyT +yxT )
for certain u,v,x,y ∈ Cn .

Then, assuming the generic condition that u and v are linearly independent (other-
wise we have ΔE = 0), there must exist an invertible S∈C

n,n , so that ST [u,v] = [e1,e2] ,
since this is a transformation to reduced row echelon form, i.e.,

ST (ΔE,ΔA)S = (e1e
T
2 − e2e

T
1 , x̃ỹT + ỹx̃T )

setting x̃ := ST x and ỹ := STy . Now, it is a generic assumption that the third entry
of ỹ is nonzero, i.e., there exists an invertible T ∈ Cn,n so that TT ỹ = e3 and also
TT [e1,e2] = [e1,e2] , so that

TTST (ΔE,ΔA)ST = (e1e
T
2 − e2e

T
1 , x̂eT

3 + e3x̂
T )

setting x̂ := TT x̃ . Clearly, if the normal rank of this matrix pencil shall be equal to two,
x̂ must have the form [x1,x2,0, . . . ,0]T (otherwise the normal rank would be greater
than or equal to three). But now, whenever the generic condition x1 �= 0 is satisfied,
multiplying the third row and column by 1/x1 and then adding a suitable multiple of
the first row and column onto the second, we obtain the matrix pencil

(e1e
T
2 − e2e

T
1 ,e1e

T
3 + e3e

T
1 ),

whose T -even Kronecker form is given by S1⊕S ⊕n−3
0 in terms of the blocks defined

in Theorem 2.5. Since similar arguments hold in the T -odd case, a T -alternating matrix
pencil with normal rank two can generically be displayed in the form

[
u v w

]⎡⎣ 0 0 λ
0 0 −1
−λ −1 0

⎤⎦⎡⎣uT

vT

wT

⎤⎦ or
[
u v w

]⎡⎣0 0 λ
0 0 1
λ −1 0

⎤⎦⎡⎣uT

vT

wT

⎤⎦ (3.1)

in the T -even or T -odd case, respectively.
This observation seems related to [2, Theorem 3.2] describing the generic Kro-

necker structure of matrix pencils with fixed rank. In particular, the generic Kronecker
structure of a matrix pencil with normal rank two consists of two singular blocks cor-
responding to left or right minimal indices one. Since the singular blocks of T -even
matrix pencils come in pairs, the simplest nontrivial singular structure that is allowed
for T -even matrix pencils is the block S1 , which is the same one from (3.1).

However, we note that the notion of genericity from [2] (which is the same as in [5,
6]) is different from the one in Definition 2.1. That these two notions of genericity must
be different is straightforward, since the notion of genericity from Definition 2.1 cannot
be applied to the set of matrix pencils with prescribed normal rank. This is due to the
fact that this set is a submanifold of the set of all matrix pencils, but Definition 2.1 can
only be applied to vector spaces. For this reason, it is not possible to give a more formal
characterization of the generic Kronecker structure of matrix pencils with prescribed
normal rank only using Definition 2.1.
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On the other hand, we will consider rank-2 perturbations of the form

[
u v
][ 0 λ β −α

−λ β −α 0

][
uT

vT

]
or

[
u v
][ 0 λ β −α

λ β + α 0

][
uT

vT

]
, (3.2)

in the T -even or T -odd case, respectively. This class of perturbations is important
because in practical applications, the matrices E and A from a matrix pencil possibly
play very different roles, so that it is realistic to have different perturbations on E and
A . Hence, setting one of the parameters α or β to zero, it is evident that perturbations
of only E or A are included in the above class of perturbations, and in particular, we
can realize purely skew-symmetric rank-2 perturbations of the form (uvT − vuT ,0) or
(0,uvT − vuT ) . Also, we note that the T -even Kronecker form (as in Theorem 2.5)
of (3.2) consists of either Z1 or F1 or I1 ⊕I1 depending on α and β being equal
to zero or not.

Concluding the above discussion of the genericity of the perturbations in (3.1)
and (3.2), we observe that whenever (ΔE,ΔA) is T -even and has normal rank two,
its T -even Kronecker form as in Theorem 2.5 has either one of the forms from (3.1)
or (3.2), or it consists of one block Z2 from Theorem 2.5. Now, since Z2 has a double
eigenvalue 0, it is apparent that Z2 is only the Kronecker structure of very particular
T -even pencils, so that the perturbations (3.1) and (3.2) indeed include almost all T -
even pencils with normal rank two.

Let us now consider two examples of perturbations as in (3.1) that also illustrate
the main idea of the proof of Theorem 3.4.

EXAMPLE 3.1. (Example 1.1 continued) Let (E,A) ∈ Cn,n×Cn,n again be a reg-
ular T -even matrix pencil that has the partial multiplicities (6,5,5,4) at the eigenvalue
0 and let (ΔE,ΔA) be a generic T -even rank-2 perturbation as in (3.1).

From Lemma 2.3 follows that (E + ΔE,A+ ΔA) has partial multiplicities greater
than or equal to (5,4) at 0 , but there cannot occur an odd number of blocks of size 5 at
0 by Theorem 2.5. Hence, the algebraic multiplicity of (E + ΔE,A+ ΔA) at 0 cannot
fall below 10, and in fact (for details see the proof of Theorem 3.4) it is generically
equal to 10. Therefore, the generic partial multiplicities can be either (6,4) or (5,5) .

In order to decide between the possible partial multiplicities (6,4) and (5,5) at
0 , we consider a further T -even rank-1 perturbation (0,xxT ) of (E +ΔE,A+ΔA) : By
Lemma 2.3, for any x so that (E +ΔE,A+ΔA+xxT ) is regular, its partial multiplicities
at 0 are given by

(6,5,5,4) rank-2−−−−−−→ (6,4) rank-1−−−−−−→� (4) or

(6,5,5,4) rank-2−−−−−−→ (5,5) rank-1−−−−−−→� (5),

where � (k) stands for ‘greater than or equal to k .’ Then again, a perturbation of the
form (ΔE,ΔA+xxT ) is a T -even rank-3 perturbation, that we will show in Lemma 3.3
to generically produce the following partial multiplicities at 0:

(6,5,5,4) rank-3−−−−−−−−−−−−−−−−−−−−−−−→ (4).
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It is now intuitive (for details see again the proof of Theorem 3.4) that this leads to a
contradiction if (6,4) are not the generic partial multiplicities of (E + ΔE,A+ ΔA) at
0 .

EXAMPLE 3.2. Let (E,A) ∈ Cn,n ×Cn,n be a regular T -even matrix pencil that
has the partial multiplicities (4,1,1) at the eigenvalue 0 and let (ΔE,ΔA) be a generic
T -even rank-2 perturbation as in (3.1). As in Example 3.1, we obtain that (E +ΔE,A+
ΔA) has multiplicities greater than or equal to (1) at 0 , but again, there cannot occur
an odd number of blocks of size 1 at 0. Thus, the possible partial multiplicities are (2)
and (1,1) , where the difference to Example 3.1 is that (1,1) includes one new block
being created instead of an existing one growing in size.

Now, from Examples 3.1 and 3.2 we conclude that to get the full picture on T -
even rank-2 perturbations, we need some information on T -even rank-3 perturbations,
which is why we dedicate the next lemma to studying them. The following lemma on
T -even rank-3 perturbations will be an essential ingredient for the proof of our main
theorem.

LEMMA 3.3. Let (E,A) ∈ Cn,n ×Cn,n be regular and T -even with the partial

multiplicities n1 � . . . � nm > 0 associated with some eigenvalue λ̂ . Also, consider a
T -even rank-3 perturbation of the form (ΔE,ΔA+ xxT ) , where (ΔE,ΔA) is a T -even
rank-2 perturbation.

1) If λ̂ = 0 , n1 is even, and n2 = n3 is odd, the following statements hold:

(a) If (ΔE,ΔA) has the form (3.2), then for each (α,β ) ∈ (C×C)\ {0} there
is a generic set Ω ⊆ (Cn)3 such that for all (u,v,x) ∈ Ω , the perturbed
pencil (E + ΔE,A+ ΔA+ xxT) is regular and has the partial multiplicities
(n4, . . . ,nm,1,1) if α = 0 and (n4, . . . ,nm) otherwise at 0 .

(b) If (ΔE,ΔA) has the form (3.1), then there is a generic set Ω′ ⊆ (Cn)4 such
that for all (u,v,w,x) ∈ Ω′ , the perturbed pencil (E +ΔE,A+ΔA+xxT ) is
regular and has the partial multiplicities (n4, . . . ,nm) at 0 .

2) If λ̂ = ∞ , n1 is odd, and n2 = n3 is even, the following statements hold:

(a) If (ΔE,ΔA) has the form (3.2), then for each (α,β ) ∈ (C×C)\ {0} there
is a generic set Ω ⊆ (Cn)3 such that for all (u,v,x) ∈ Ω , the perturbed
pencil (E + ΔE,A+ ΔA+ xxT) is regular and has the partial multiplicities
(n4, . . . ,nm,1,1,1) if β = 0 and (n4, . . . ,nm,1) otherwise at ∞ .

(b) If (ΔE,ΔA) has the form (3.1), then there is a generic set Ω′ ⊆ (Cn)4 such
that for all (u,v,w,x) ∈ Ω′ , the perturbed pencil (E +ΔE,A+ΔA+xxT ) is
regular and has the partial multiplicities (n4, . . . ,nm,1) at ∞ .

Proof. We consider the proof of 1) since 2) is shown by analogous arguments.
First, by Lemma 2.3 and (2.1) it is clear that if the perturbed pencil (E +ΔE,A+ΔA+
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xxT ) is regular, it has partial multiplicities greater than or equal to the above given

partial multiplicities at λ̂ in each case.
Thus, by Lemma 2.4 it is sufficient to show that there exist particular (u,v,x) or

(u,v,w,x) in the case (1a ) or (1b ), respectively, so that (E + ΔE,A + ΔA + xxT) has
the algebraic multiplicity n4 + . . . + nm + 2 if α = 0 in case (1a ) and n4 + . . . + nm

otherwise. To construct these particular perturbations, let us in the following assume
that (E,A) is already in T -even Kronecker form as in Theorem 2.5, where the λ̂ blocks
come first and are ordered decreasingly with respect to their size.

Concerning (1a ), let us regard the specific perturbation defined by u = en1+1 ,
v = en1+n2+1 , and x = e1 , since then the perturbed part of (E + ΔE,A+ ΔA+ xxT) is
given by[

λ
[ 0 Rn1/2

−Rn1/2 0

]
−Rn1Jn1(0)−e1eT

1

]
⊕
[

0 −Rn2Jn2(−λ )+(β λ−α)e1eT
1

−Rn2Jn2(λ )−(β λ +α)e1eT
1 0

]
(3.3)

having the determinant
(
λ n1 − (−1)n1/2

)(
λ n2 + β λ + α

)(
λ n2 + β λ −α

)
.

On the other hand, in the case (1b ) we consider the particular perturbation with
u = 0, v = en1+1 , w = en1+n2+1 and x = e1 , as then the perturbed part of (E +ΔE,A+
ΔA+ xxT ) also has the form (3.3) setting β = 0 and α = 1. Clearly, since the blocks
not included in (3.3) are unchanged by these particular perturbations, we obtain in the
case that (ΔE,ΔA) has the form (3.2) and α = 0, that the perturbed pencil has the
partial multiplicities (n4, . . . ,nm,1,1) at 0 and otherwise that its multiplicities at 0 are
given by (n4, . . . ,nm) . �

3.1. T-alternating rank-2 perturbations

Now, we are in a position to prove our main theorem on T -alternating rank-2 per-
turbations. Since it will in the following be crucial, we recall that λ̂ is an eigenvalue
of the singular perturbating pencil (ΔE,ΔA) if the rank of λ̂ ΔE −ΔA is less than the
normal rank of (ΔE,ΔA) (which is two in (3.1) and (3.2)). In particular, the perturba-
tion (3.1) has no eigenvalues and (3.2) has only the eigenvalues α/β and −α/β .

THEOREM 3.4. Let (E,A) ∈ Cn,n ×Cn,n be regular and T -alternating with the

partial multiplicities n1 � . . . � nm > 0 associated with an eigenvalue λ̂ and consider
a structure-preserving rank-2 perturbation (ΔE,ΔA) . Then, the following statements
hold:

1) If (ΔE,ΔA) has the form (3.2), then for each (α,β ) ∈ (C×C) \ {0} there is a
generic set Ω ⊆ (Cn)2 such that for all (u,v) ∈ Ω , the perturbed pencil (E +
ΔE,A+ ΔA) is regular and has the partial multiplicities at λ̂ as in Table 3.1.

2) If (ΔE,ΔA) has the form (3.1), then there is a generic set Ω′ ⊆ (Cn)3 such that
for all (u,v,w) ∈ Ω′ , the perturbed pencil (E + ΔE,A+ ΔA) is regular and has

the partial multiplicities at λ̂ as in Table 3.1.
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Table 3.1: Rank-2 perturbations of T -alternating matrix pencils.

(ΔE,ΔA) eigenvalue λ̂ n1 +n2 multiplicities

λ̂ no eigenvalue of (ΔE,ΔA)
λ̂ ∈ {0,∞} even (n3,n4, . . . ,nm)

odd (n3 +1,n4, . . . ,nm)

λ̂ ∈ C\ {0} (n3,n4, . . . ,nm)

λ̂ eigenvalue of (ΔE,ΔA)
λ̂ ∈ {0,∞} even (n3,n4, . . . ,nm,1,1)

odd (n3 +1,n4, . . . ,nm,1,1)

λ̂ ∈ C\ {0} (n3,n4, . . . ,nm,1)

Proof. It is sufficient to prove this theorem if (E,A) is T -even, since otherwise
we can consider the reverse pencil (A,E) . The proof will in the following be given

distinguishing by λ̂ : We will first consider the case λ̂ ∈ {0,∞} and then the case
λ̂ ∈ C\ {0} .

In the remainder of this proof, let us always assume that (E,A) is already in T -
even Kronecker form as in Theorem 2.5, where the λ̂ blocks come first and are ordered
decreasingly with respect to their size.

Case λ̂ ∈ {0,∞} : We will tackle this proof assuming λ̂ = 0, since the other case is
almost identical. In view of Lemmas 2.3 and 2.4, the perturbed pencil (E +ΔE,A+ΔA)
is generically regular and has partial multiplicities greater than or equal to (n3, . . . ,nm)
at 0 . If, in addition, 0 is an eigenvalue of (ΔE,ΔA) , it must be a double eigen-
value and we even obtain that these partial multiplicities are greater than or equal to
(n3, . . . ,nm,1,1) because of (2.1). We proceed considering the following two subcases.

Subcase n1 +n2 even: This case is realized if either n1,n2 are even or n1,n2 are
odd. In the latter case, as odd-sized 0 blocks occur an even number of times, we obtain
n1 = n2 .

Let us first consider the case that (ΔE,ΔA) has the form (3.2). We regard the
particular perturbation with u = e1 and v = en1+1 , since then the perturbed blocks of
(E + ΔE,A+ ΔA) are given by⎡⎣λ

[ 0 Rn1/2

−Rn1/2 0

]
−Rn1Jn1(0) (β λ −α)e1eT

1

−(β λ + α)e1eT
1 λ

[ 0 Rn2/2

−Rn2/2 0

]
−Rn2Jn2(0)

⎤⎦ (3.4)

or [
0 −Rn1Jn1(−λ )+ (β λ −α)e1eT

1
−Rn1Jn1(λ )− (β λ + α)e1eT

1 0

]
, (3.5)

depending on n1,n2 being both even or n1 = n2 being odd, respectively.
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On the other hand, if (ΔE,ΔA) has the form (3.1), we consider a perturbation given
by u = 0, v = e1 , and w = en1+1 . Again, the perturbed blocks of (E + ΔE,A + ΔA)
have the form (3.4) or (3.5), respectively, with β = 0 and α = 1.

As in both cases, no other blocks are affected by these particular perturbations,
we compute the algebraic multiplicity of (E + ΔE,A + ΔA) at 0 to be equal to n3 +
. . . + nm + 2 if 0 is an eigenvalue of (ΔE,ΔA) and equal to n3 + . . . + nm otherwise.
Therefore, by Lemma 2.4, (E + ΔE,A+ ΔA) is generically regular and has these alge-
braic multiplicities − and hence the partial multiplicities in the first and fourth row of
Table 3.1 − at 0.

Subcase n1 +n2 odd: As odd-sized 0 blocks occur an even number of times, this
case can only be realized if n1 is even and n2 is odd; then also n2 = n3 is obtained by
the same argument.

In this case, we observe that neither the partial multiplicity sequence (n3, . . . ,nm)
nor (n3, . . . ,nm,1,1) can occur at 0 in a T -even pencil as n3 is odd and they include an
odd number of chains of length n3 . Thus, the algebraic multiplicity of (E+ΔE,A+ΔA)
at 0 generically has to be at least n3 + . . .+ nm + 3 if 0 is an eigenvalue of (ΔE,ΔA)
and at least n3 + . . .+nm +1 otherwise.

To show that this minimum algebraic multiplicity is generically attained, consider
the following argument. If (ΔE,ΔA) has the form (3.2), regard the particular pertur-
bation with u = e1 and v = en1+1 + en1+2 + en1+n2+1 ; then the perturbed blocks of
(E + ΔE,A+ ΔA) are given by⎡⎢⎢⎣ λ

[ 0 Rn1/2

−Rn1/2 0

]
−Rn1Jn1(0) e1(e1 + e2)T (β λ −α) e1eT

1 (β λ −α)

(e1 + e2)eT
1 (−β λ −α) 0 −Rn2Jn2(−λ )

e1eT
1 (−β λ −α) −Rn2Jn2(λ ) 0

⎤⎥⎥⎦ . (3.6)

Since computing the determinant of this pencil is elementary but tedious, this is defered
to Appendix A.1, where the result is given by:

λ n1+2n2 +2(−1)n1/2(β 2λ 2−α2)λ n2+1.

Then again, if (ΔE,ΔA) has the form (3.1), consider a perturbation given by u = 0,
v = e1 , and w = en1+1 + en1+2 + en1+n2+1 . Then, the perturbed blocks of (E +ΔE,A+
ΔA) also have the form (3.6) with β = 0 and α = 1. Thus, in both cases, applying
Lemma 2.4 yields that (E + ΔE,A + ΔA) is generically regular and has the algebraic
multiplicity n3 + . . .+nm +3 if 0 is an eigenvalue of (ΔE,ΔA) and n3 + . . .+nm +1
otherwise.

In order to determine the generic partial multiplicities of (E + ΔE,A+ ΔA) at 0 ,
let us group together Jordan blocks of the same size, i.e., let

(n1,n2,n3, . . . ,nm) = (s1,s2, . . . ,s2︸ ︷︷ ︸
t2

, . . . ,sν , . . . ,sν︸ ︷︷ ︸
tν

),

then we have s1 = n1 with t1 = 1 and s2 = n2 = n3 where t2 � 2 is even. Now, the par-
tial multiplicities of the perturbed pencil at 0 are greater than or equal to (n3, . . . ,nm,1,1)
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or (n3, . . . ,nm) , i.e.,

(s2, . . . ,s2︸ ︷︷ ︸
t2−1

,s3, . . . ,s3︸ ︷︷ ︸
t3

, . . . ,sν . . . ,sν︸ ︷︷ ︸
tν

,1,1) or (s2, . . . ,s2︸ ︷︷ ︸
t2−1

,s3, . . . ,s3︸ ︷︷ ︸
t3

, . . . ,sν , . . . ,sν︸ ︷︷ ︸
tν

),

respectively, where either exactly one of these blocks will be larger by one or exactly
one more block of size one will exist. But to have an even number of Jordan chains of
length s2 at 0 in the perturbed pencil, this can only be realized by either

(s2+1,s2, ...,s2︸ ︷︷ ︸
t2−2

,s3, ...,s3︸ ︷︷ ︸
t3

, ...,sν , ...,sν︸ ︷︷ ︸
tν

,1,1) or (s2+1,s2, ...,s2︸ ︷︷ ︸
t2−2

,s3, ...,s3︸ ︷︷ ︸
t3

, ...,sν , ...,sν︸ ︷︷ ︸
tν

)

(3.7)
if 0 is an eigenvalue of (ΔE,ΔA) or not, respectively; or for ν � 3 and s3 = s2−1 by:

(s2, ...,s2︸ ︷︷ ︸
t2

,s3, ...,s3︸ ︷︷ ︸
t3−1

, ...,sν , ...,sν︸ ︷︷ ︸
tν

,1,1) or (s2, ...,s2︸ ︷︷ ︸
t2

,s3, ...,s3︸ ︷︷ ︸
t3−1

, ...,sν , ...,sν︸ ︷︷ ︸
tν

) (3.8)

if 0 is an eigenvalue of (ΔE,ΔA) or not, respectively; or for ν = 2 and s2 = 1 by:

(s2, . . . ,s2︸ ︷︷ ︸
t2

) (3.9)

if 0 is not an eigenvalue of (ΔE,ΔA) . (If 0 is an eigenvalue of (ΔE,ΔA) , the geometric
multiplicity at 0 is fixed under perturbation by (2.1), i.e., no additional block of size one
can be there.) Illustrating these possibilities, we note that in Example 3.1 we chose (3.7)
over (3.8), whereas in Example 3.2 we had to decide between (3.7) and (3.9).

Then, aiming to prove that the partial multiplicities in (3.7) are generically realized
in (E + ΔE,A+ ΔA) at 0 , let us assume the opposite: First, in the case that (ΔE,ΔA)
is as in (3.2), let there exist some (E,A) so that (E + ΔE,A+ ΔA) is regular and has
the partial multiplicities from (3.8) or (3.9) at 0 for all (u,v) ∈ B , where B is not
contained in any proper algebraic subset of (Cn)2 . Then, we apply a T -even rank-
1 perturbation (0,xxT ) to (E + ΔE,A + ΔA) . By Lemma 2.3 (or equivalently, by [1,
Theorem 2.7]), for all (u,v,x)∈B×Cn that are such that the pencil (E +ΔE,A+ΔA+
xxT ) is regular, it has partial multiplicities at 0 that are greater than or equal to

(s2, . . . ,s2︸ ︷︷ ︸
t2−1

,s3, . . . ,s3︸ ︷︷ ︸
t3−1

, . . . ,sν , . . . ,sν︸ ︷︷ ︸
tν

,1,1) or (s2, . . . ,s2︸ ︷︷ ︸
t2−1

,s3, . . . ,s3︸ ︷︷ ︸
t3−1

, . . . ,sν , . . . ,sν︸ ︷︷ ︸
tν

)

resulting from (3.8) if α = 0 or α �= 0, respectively, or greater than or equal to

(s2, . . . ,s2︸ ︷︷ ︸
t2−1

)

resulting from (3.9). On the other hand, Lemma 3.3 (1a ) states that (E +ΔE,A+ΔA+
xxT ) is regular and has the partial multiplicities at 0 given by

(s2, . . . ,s2︸ ︷︷ ︸
t2−2

,s3, . . . ,s3︸ ︷︷ ︸
t3

, . . . ,sν , . . . ,sν︸ ︷︷ ︸
tν

,1,1) or (s2, . . . ,s2︸ ︷︷ ︸
t2−2

,s3, . . . ,s3︸ ︷︷ ︸
t3

, . . . ,sν , . . . ,sν︸ ︷︷ ︸
tν

)
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if α = 0 or α �= 0, respectively, for all (u,v,x) ∈ Ω̂ , where Ω̂ is a generic subset of
(Cn)3 (that includes the case ν = 2 and s2 = 1 of (3.9)). Then, a contradiction is
obtained, since, by Lemma 2.2, the set B×Cn is not contained in any proper algebraic
subset of (Cn)3 and thus, clearly, (B×Cn)∩ Ω̂ is not empty.

In the second case that (ΔE,ΔA) is as in (3.1), a contradiction is obtained by simi-
lar arguments using Lemma 3.3 (1b ). Therefore, there exist generic sets Ω⊆ (Cn)2 and
Ω′ ⊆ (Cn)3 such that (E +ΔE,A+ΔA) is regular and has the partial multiplicities (3.7)
− i.e., the ones in the second and fifth row of Table 3.1 − at 0 for all (u,v) ∈ Ω or
(u,v,w) ∈ Ω′ , respectively.

Case λ̂ ∈ C \ {0} : Resulting from Lemmas 2.3 and 2.4 and equation (2.1), the
perturbed pencil (E + ΔE,A+ ΔA) is generically regular and has partial multiplicities
greater than or equal to the ones from the third and sixth row of Table 3.1 at λ̂ .

Thus, it remains to show that the respective partial multiplicities of (E + ΔE,A+
ΔA) generically cannot exceed (n3, . . . ,nm,1) or (n3, . . . ,nm) depending on λ̂ being
an eigenvalue of (ΔE,ΔA) or not, respectively, using Lemma 2.4. Let us first consider
the case that (ΔE,ΔA) has the form (3.2). Since the diagonal block of (E,A) including

the largest blocks at λ̂ is given by

(P,J) =

⎛⎜⎜⎜⎝
⎡⎢⎢⎣

0 Rn1

−Rn1 0
0 Rn2

−Rn2 0

⎤⎥⎥⎦,

⎡⎢⎢⎢⎣
0 Rn1Jn1(λ̂ )

Rn1Jn1(λ̂ ) 0

0 Rn2Jn2(λ̂ )
Rn2Jn2(λ̂ ) 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ,

we consider the particular perturbation with u = e1 +e2n1+n2+1 and v = en1+1 +e2n1+1 .
Then, the first two blocks of the perturbed pencil λ (E + ΔE)−A−ΔA , that we left-
multiply with PT are given by

⎡⎢⎢⎣
Jn1 (μ+)+(βλ +α)en1e

T
1 0 0 (βλ +α)en1e

T
1

0 −Jn1 (−μ−)+(βλ −α)en1e
T
1 (βλ −α)en1e

T
1 0

0 −(βλ −α)en2e
T
1 Jn1 (μ+)− (βλ −α)en2e

T
1 0

−(βλ +α)en2e
T
1 0 0 −Jn1 (−μ−)− (βλ +α)en2e

T
1

⎤⎥⎥⎦,
using the notation μ+ := λ + λ̂ and μ− := λ − λ̂ . The determinant of the above pencil
is computed in Appendix A.2 to be given by[

(λ + λ̂)n1(λ − λ̂)n2 − (λ + λ̂)n1(β λ + α)− (−1)n1(λ − λ̂)n2(β λ + α)
]

·
[
(λ − λ̂)n1(λ + λ̂)n2 +(−1)n2(λ − λ̂)n1(β λ −α)+ (λ + λ̂)n2(β λ −α)

]
.

Thus, as detPT = 1 holds, in the first block-part of the perturbed pencil the eigen-
value λ̂ (and also −λ̂ ) does not occur if λ̂ β �= ±α and only occurs with algebraic
multiplicity 1 if λ̂ β = ±α .

If, on the other hand, (ΔE,ΔA) has the form (3.1), we consider a perturbation with
u = 0, v = e1 + e2n1+n2+1 and w = en1+1 + e2n1+1 ; then analogous arguments show
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that λ̂ is not an eigenvalue of the first block-part of the perturbed pencil. Therefore,
in both cases we obtain by Lemma 2.4 that the perturbed pencil (E + ΔE,A+ ΔA) is
generically regular and has the partial multiplicities from the third and sixth row of
Table 3.1 associated with λ̂ . �

4. T-palindromic rank-2 perturbations

In this section, let us consider palindromic matrix pencils. A matrix pencil P(λ )
is called palindromic if it is either T -palindromic, i.e., P(λ ) = λB + BT for some
B ∈ Cn,n or if it is T -anti-palindromic, i.e., P(λ ) = λB−BT for some B ∈ Cn,n .

In order to investigate the impact of structure-preserving rank-2 perturbations on
palindromic matrix pencils, we aim to use the results on T -alternating rank-2 pertur-
bations obtained in Section 3. To that end, recall that the Cayley transformations with
pole at +1 and −1 are given by

C+1(P)(μ) = (1− μ)P
(

1+ μ
1− μ

)
and C−1(P)(μ) = (1+ μ)P

(
μ −1
1+ μ

)
and that the structure of P(λ ) corresponds to that of its Cayley transforms as in Ta-
ble 4.1, which is extracted from [10].

Table 4.1: Cayley transforms of structured matrix pencils.

P(λ ) C−1(P)(μ) C+1(P)(μ)

T -palindromic T -odd T -even

T -anti-palindromic T -even T -odd

T -even T -palindromic T -anti-palindromic

T -odd T -anti-palindromic T -palindromic

Clearly, T -alternating and palindromic matrix pencils are closely related by these
Cayley transformations and the reader is referred to [11] for a collection of properties
and invariants of this type of transformations (in the more general setting of Möbius
transformations of matrix polynomials). In particular, we will derive analogous classes
of palindromic rank-2 perturbations by applying C−1 to the T -alternating rank-2 per-
turbations from Section 3.

Concerning T -alternating rank-2 perturbations as in (3.1), applying C−1 yields

[
u v w

]⎡⎣ 0 0 λ−1
0 0 −λ−1

−λ +1 −λ−1 0

⎤⎦⎡⎣uT

vT

wT

⎤⎦ or
[
u v w

]⎡⎣ 0 0 λ−1
0 0 −λ−1

λ−1 λ +1 0

⎤⎦⎡⎣uT

vT

wT

⎤⎦
(4.1)
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in the T -palindromic or T -anti-palindromic case, respectively. We note that the Kro-
necker structure of both pencils from (4.1) consists of two nontrivial singular blocks:
one corresponding to a left minimal index one and the other one corresponding to a
right minimal index one.

Similarly, palindromic analogues to (3.2) are given by (applying C−1 )

[
u v
][ 0 λ γ +1

λ + γ 0

][
uT

vT

]
or

[
u v
][ 0 λ γ +1

−λ − γ 0

][
uT

vT

]
, (4.2)

in the T -palindromic or T -anti-palindromic case, respectively (setting −1 = α + β
and γ = β −α ). Perturbations of this type include the important special case γ = 0,
i.e., the matrix B standing for the palindromic matrix pencil λB±BT is subjected to
a generic rank-1 perturbation of the form B + uvT . (Hence, the pencil λB± BT is
subjected to the rank-2 perturbation λuvT ± vuT .)

The generic change in Jordan structure of palindromic pencils under these types of
structure-preserving rank-2 perturbations is described in the following theorem, where
the symbol C∞ stands for C∪{∞} .

THEOREM 4.1. Let P(λ ) ∈ Cn,n×Cn,n be regular and palindromic with the par-

tial multiplicities n1 � . . . � nm > 0 associated with an eigenvalue λ̂ and consider a
structure-preserving rank-2 perturbation Q(λ ) . Then, the following statements hold:

1) If Q(λ ) has the form (4.2), then for each γ ∈ C there is a generic set Ω ⊆ (Cn)2

such that for all (u,v)∈ Ω , the perturbed pencil P(λ )+Q(λ ) is regular and has

the partial multiplicities at λ̂ as in Table 4.2.

2) If Q(λ ) has the form (4.1), then there is a generic set Ω′ ⊆ (Cn)3 such that
for all (u,v,w) ∈ Ω′ , the perturbed pencil P(λ )+Q(λ ) is regular and has the

partial multiplicities at λ̂ as in Table 4.2.

Table 4.2: Rank-2 perturbations of palindromic matrix pencils.

Q(λ ) eigenvalue λ̂ n1 +n2 multiplicities

λ̂ no eigenvalue of Q(λ )
λ̂ ∈ {1,−1} even (n3,n4, . . . ,nm)

odd (n3 +1,n4, . . . ,nm)

λ̂ ∈ C∞ \ {1,−1} (n3,n4, . . . ,nm)

λ̂ eigenvalue of Q(λ )
λ̂ ∈ {1,−1} even (n3,n4, . . . ,nm,1,1)

odd (n3 +1,n4, . . . ,nm,1,1)

λ̂ ∈ C∞ \ {1,−1} (n3,n4, . . . ,nm,1)
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Proof. We restrict ourselves to the case that P(λ ) is T -palindromic; otherwise an
analogous proof is obtained. Thus, for any perturbation Q(λ ) , applying C+1 yields

C+1(P+Q)(μ) = C+1(P)(μ)+C+1(Q)(μ),

as C+1 is a linear transformation on the vector space Cn,n ×Cn,n . Also, since Q(λ )
is T -palindromic, C+1(P)(μ) and C+1(Q)(μ) are T -even and C+1(P)(μ) is regular
with partial multiplicities (n1, . . . ,nm) associated with the transformed eigenvalue μ̂ =
(λ̂ −1)/(λ̂ +1) by [11, Theorem 5.3] (see also [22]). Further, if Q(λ ) is as in (4.2),
we compute that

C+1(Q)(μ) =
[
u v
](

μ

[
0 γ −1

1− γ 0

]
−
[

0 γ +1

γ +1 0

])[ uT

vT

]
,

is a T -even rank-2 perturbation of C+1(P)(μ) that has the form (3.2). Analogously, if
Q(λ ) is as in (4.1), then

C+1(Q)(μ) =
[
u v w

]⎡⎢⎢⎣
0 0 2μ
0 0 −2

−2μ −2 0

⎤⎥⎥⎦
⎡⎢⎢⎣

uT

vT

wT

⎤⎥⎥⎦ ,

is a T -even rank-2 perturbation of C+1(P)(μ) of the form (3.1).
Thus, by Theorem 3.4, there exist generic sets Ω ⊆ (Cn)2 and Ω′ ⊆ (Cn)3 such

that for all (u,v) ∈ Ω or (u,v,w) ∈ Ω′ , respectively, the perturbed pencil C+1(P)(μ)+
C+1(Q)(μ) is regular and has the partial multiplicities at μ̂ given by Table 3.1, where
(ΔE,ΔA) is replaced by C+1(Q)(μ) and λ̂ is replaced by μ̂ .

Now, applying the inverse transformation C−1 , we obtain that for all (u,v) ∈ Ω
or (u,v,w) ∈ Ω′ , respectively, the perturbed pencil P(λ ) + Q(λ ) is regular and has
the partial multiplicities at λ̂ = (1+ μ̂)/(1− μ̂) given by Table 4.2 (using again [11,
Theorem 5.3]). �

5. Skew-symmetric rank-2 perturbations

In this section we will consider skew-symmetric matrix pencils (E,A) ∈ Cn,n ×
Cn,n , i.e., both E and A are skew-symmetric. Since for each λ ∈ C the matrix λE−A
is skew-symmetric, it follows that n is even if we assume that (E,A) is regular. Also, by
Theorem 2.6 skew-symmetric matrix pencils have each Jordan block appearing twice:
if (E,A) has the partial multiplicities n1 � n2 � . . . � nm > 0 at some eigenvalue, then
m is even with n2 j−1 = n2 j for j = 1,2, . . . ,m/2, but there is no eigenvalue pairing for
skew-symmetric matrix pencils as for T -alternating ones.

Similar considerations as in the third section of this paper (which we do not elab-
orate here for the sake of brevity) lead to the following two classes of skew-symmetric
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rank-2 perturbations. First, there are skew-symmetric rank-2 perturbations of the form

λ ΔE −ΔA =
[
u v w

]⎡⎢⎢⎣
0 0 λ
0 0 −1

−λ 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

uT

vT

wT

⎤⎥⎥⎦ , (5.1)

and second, there are rank-2 perturbations of the form

λ ΔE −ΔA =
[
u v
][ 0 λ β −α

−λ β + α 0

][
uT

vT

]
(5.2)

for α,β ∈ C . The following theorem characterizes the generic change in Jordan struc-
ture of regular skew-symmetric matrix pencils under these types of rank-2 perturba-
tions.

THEOREM 5.1. Let (E,A) ∈ Cn,n×Cn,n be regular and skew-symmetric with the

partial multiplicities n1 � . . . � nm > 0 associated with an eigenvalue λ̂ ∈ C and con-
sider a skew-symmetric rank-2 perturbation (ΔE,ΔA) . Then, the following statements
hold:

1) If (ΔE,ΔA) has the form (5.2), then for each (α,β ) ∈ (C ×C) \ {0} there
is a generic set Ω ⊆ (Cn)2 such that for all (u,v) ∈ Ω , the perturbed pencil

(E + ΔE,A + ΔA) is regular and has the partial multiplicities at λ̂ given by

(n3, . . . ,nm,1,1) if β λ̂ = α and (n3, . . . ,nm) otherwise.

2) If (ΔE,ΔA) has the form (5.1), then there is a generic set Ω′ ⊆ (Cn)3 such that
for all (u,v,w) ∈ Ω′ , the perturbed pencil (E + ΔE,A+ ΔA) is regular and has

the partial multiplicities (n3, . . . ,nm) at λ̂ .

Proof. By the Lemmas 2.3 and 2.4 and inequalities (2.1), in each of the cases
from above, the perturbed pencil is generically regular and has partial multiplicities
greater than or equal to the ones stated in the assertion. Thus, in view of Lemma 2.4,
it is sufficient to give a particular perturbation that creates these partial multiplicities in
each of the cases. Thus, let us in the following assume that (E,A) is in skew-symmetric
Kronecker form as in Theorem 2.6 and that the blocks corresponding to λ̂ come first
and are ordered decreasingly with respect to their size.

If (ΔE,ΔA) has the form (5.2), consider a perturbation with u = e1 and v = en1+1

since then the perturbed part of (E + ΔE,A+ ΔA) is given by[
0 −Rn1Jn1(λ̂ −λ )+(β λ −α)e1eT

1

Rn1Jn1(λ̂ −λ )−(β λ −α)e1eT
1 0

]
.

On the other hand, if (ΔE,ΔA) is as in (5.1), then we let u = 0, v = e1 , and w = en1+1

to also obtain that the perturbed part of (ΔE,ΔA) is given by the above pencil setting
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β = 0 and α = 1. In both cases, for this particular perturbation, the perturbed pencil
at λ̂ clearly has the partial multiplicities (n3, . . . ,nm,1,1) if λ̂ is an eigenvalue of
(ΔE,ΔA) and (n3, . . . ,nm) otherwise, which implies the assertion. �

REMARK 5.2. An analogous result for the infinite eigenvalue of (E,A) is ob-
tained by applying the above theorem to the reverse pencil (A,E) .

6. Conclusion

We have investigated regular T -alternating matrix pencils under two classes of
structure-preserving rank-2 perturbations. The difference to T -alternating rank-1 per-
turbations studied in [1] is that now both matrices of the pencil are subjected to pertur-
bation, so that the perturbation is not forced to have the eigenvalue 0 or ∞ , but may
instead have a pair of complex (possibly infinite) eigenvalues (γ,−γ) .

Underlying all the different cases that were considered, we find the following prin-
ciples governing T -alternating rank-2 perturbations: At each eigenvalue λ̂ of (E,A) ,
the Jordan structure of the perturbed pencil (E + ΔE,A + ΔA) is generically that of
(E,A) except for the following changes:

1) The largest two Jordan blocks corresponding to λ̂ are destroyed.

2) If the largest Jordan block at λ̂ is unpaired and the second largest block is paired
to an identical one, this largest remaining Jordan block will grow in size by one.

3) If λ̂ is a single (or double) eigenvalue of the perturbation (ΔE,ΔA) , i.e., ±λ̂ = γ ,
one (or two, respectively) new Jordan block(s) of size one will be created at λ̂ .

Using Cayley transformations, we saw that parallel results hold for palindromic
matrix pencils. Further, skew-symmetric matrix pencils were investigated under struc-
ture-preserving rank-2 perturbations, as a nontrivial skew-symmetric perturbation will
at least have rank two. The result was that generically, at each eigenvalue λ̂ of the
skew-symmetric pencil, the pair consisting of the largest two Jordan blocks is destroyed
under perturbation and that two new blocks of size one are created if λ̂ is an eigenvalue
of the perturbation.

Acknowledgements. The author is grateful to Christian Mehl for many useful sug-
gestions that helped greatly improve this manuscript. The author also thanks two anony-
mous referees for constructive comments.
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Appendix A.1

Suppose that x = λ β −α and y = −λ β −α , and let

T (λ ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ x x x
. .

. −1
. .

.
. .

.

−λ −1
y λ
y . .

. −1

. .
.

. .
.

λ −1
y −λ

. .
. −1

. .
.

. .
.

−λ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n1

n2

n2

.

Let us further assume that n1 is even, n2 is odd, and that in the top-left n1×n1 block of
T (λ ) there are n1/2 instances of each −λ and λ on the anti-diagonal. Then, we will
show in the following that

detT (λ ) = λ n1+2n2 −2(−1)n1/2xyλ n2+1.

Proof. We observe that an odd number of row permutations gives

−detT (λ ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ x x x
. .

. −1
. .

.
. .

.

−λ −1
−λ −1

. . .
. . .
. . . −1

y −λ
λ −1

. . .
. . .

y
. . . −1

y λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1

n2

n2

.

We make a Laplace expansion with respect to the last row

−detT (λ ) = −ydetT1(λ )+ λ detT2(λ ),
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where

T1(λ ) =

n1 −1 n2 n2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ x x x
. .

. −1
−λ . .

.

−1
−λ −1

. . .
. . .
. . . −1

−λ
λ −1

. . .
. . .
λ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n1

n2

n2−1

and

T2(λ ) =

n1 n2 n2−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ x x x
. .

. −1
. .

.
. .

.

−λ −1
−λ −1

. . .
. . .
. . . −1

y −λ
λ −1

. . .
. . .
. . . −1

y λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n1

n2

n2−1

Another Laplace expansion with respect to the last row yields

detT2(λ ) = ydetT3(λ )+ λ detT4(λ )

where

T3(λ ) =

n1−1 n2 n2−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ x x x
. .

. −1
−λ . .

.

−1
−λ −1

. . .
. . .
. . . −1

−λ
λ −1

. . .
. . .
λ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n1

n2

n2−2
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and

T4(λ ) =

n1 n2 n2−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ x x x
. .

. −1
. .

.
. .

.

−λ −1
−λ −1

. . .
. . .
. . . −1

y −λ
λ −1

. . .
. . .
. . . −1

λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n1

n2

n2−2

We go on to compute

detT4(λ ) = λ n2−2(−1)n1/2

n1 n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ −1
. . .

. . .

. . . −1
λ x x

−λ −1
. . .

. . .

. . . −1
y −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1

n2

= λ n2−2
[
−λ n1+n2 +(−1)n1/2ydetT5(λ )

]
,

where

detT5(λ ) =

n1−1 n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

−λ
. . .
. . . −1

λ x x
−λ −1

. . .
. . .
−λ −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1

n2−1

= det

[
x x

−λ −1

]
= x(λ −1).

We obtain

detT4(λ ) = λ n2−2[−λ n1+n2 +(−1)n1/2ydetT5(λ )
]

= λ n2−2[−λ n1+n2 +(−1)n1/2xy(λ −1)
]

= −λ n1+2n2−2 +(−1)n1/2λ n2−2xy
(
λ −1

)
.
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Inserting this into the formula for detT (λ ) yields

detT (λ ) = ydetT1(λ )−λydetT3(λ )−λ 2 detT4(λ )

= ydetT1(λ )−λydetT3(λ )+λ n1+2n2 +(−1)n1/2λ n2xy
(
1−λ

)
.

We finally compute

detT1(λ ) = x

n1−1 n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1
. .

.
. .

.

−λ . .
.

−1
−λ −1

. . .
. . .
. . . −1

−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n1 −1

n2

= −(−1)n1/2xλ n2 ,

and since detT3(λ ) = −detT1(λ ) holds it is:

detT (λ ) = ydetT1(λ )−λydetT3(λ )+λ n1+2n2 +(−1)n1/2λ n2xy
(
1−λ

)
= λ n1+2n2 −2(−1)n1/2xyλ n2+1.

Appendix A.2

Suppose that

T :=

n1 n1 n2 n2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ+ 1
. . .

. . .

. . . 1
ν+ μ+ ν+

μ− −1
. . .

. . .

. . . −1
ν− μ− ν−

μ+ 1
. . .

. . .

. . . 1−ν− −ν− μ+
μ− −1

. . .
. . .
. . . −1−ν+ −ν+ μ−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We will in the following show that

detT =
[
μn1

+ μn2− − μn1
+ ν+− (−1)n1μn2− ν+

][
μn1− μn2

+ +(−1)n2μn1− ν− + μn2
+ ν−

]
.
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Proof. Laplace expansion with respect to the first column gives

detT = μ+ detT1 +(−1)n1+1ν+ detT2 + ν+ detT3,

where

detT1 =

n1−1 n1 n2 n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μ+ 1
. . .

. . .

. . . 1
μ+ ν+

μ− −1
. . .

. . .

. . . −1
ν− μ− ν−

μ+ 1
. . .

. . .

. . . 1−ν− −ν− μ+
μ− −1

. . .
. . .
. . . −1−ν+ μ−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= μn1−1

+
(
μn2− −ν+

)
detTmid ,

denoting by Tmid the middle (n1 +n2)× (n1 +n2) block of T . Moreover, we have

detT2 =

n1−1 n1 n2 n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

μ+
. . .
. . .

. . .
μ+ 1

μ− −1
. . .

. . .

. . . −1
ν− μ− ν−

μ+ 1
. . .

. . .

. . . 1−ν− −ν− μ+
μ− −1

. . .
. . .
. . . −1−ν+ μ−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(
μn2− −ν+

)
detTmid
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and

detT3 =

n1−1 n1 n2 n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

μ+
. . .
. . . 1

μ+ ν+
μ− −1

. . .
. . .
. . . −1

ν− μ− ν−
μ+ 1

. . .
. . .
. . . 1−ν− −ν− μ+

μ− −1
. . .

. . .
μ− −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n1+1ν+ detTmid .

Putting these computations together, we obtain

detT =
[
μn1

+ (μn2− −ν+)+(−1)n1+1ν+(μn2− −ν+)+ ν2
+(−1)n1+1

]
detTmid

=
[
μn1

+ μn2− − μn1
+ ν+ − (−1)n1μn2− ν+

]
detTmid .

We continue with computing

detTmid =

n1 n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μ− −1
. . .

. . .

. . . −1
ν− μ− ν−

μ+ 1
. . .

. . .

. . . 1−ν− −ν− μ+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

A Laplace expansion with respect to the first column yields

detTmid = μ− detT4 +(−1)n1+1ν− detT5 +(−1)n1+n2ν− detT6,
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where

detT4 =

n1−1 n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μ− −1
. . .

. . .

. . . −1
μ− ν−

μ+ 1
. . .

. . .

. . . 1−ν− μ+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= μn1−1

−
[
μn2

+ +(−1)n2 ν−
]

and

detT5 =

n1−1 n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

μ−
. . .
. . .

. . .
μ− −1

μ+ 1
. . .

. . .

. . . 1−ν− μ+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n1−1

[
μn2

+ +(−1)n2 ν−
]

as well as

detT6 =

n1−1 n1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

μ−
. . .
. . . −1

μ− ν−
μ+ 1

. . .
. . .
μ+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n1−1ν−.

Hence, we obtain

detTmid = μn1− (μn2
+ +(−1)n2ν−)+ ν−(μn2

+ +(−1)n2ν−)+ (−1)n2+1ν2
−

= μn1− μn2
+ +(−1)n2μn1− ν− + μn2

+ ν−,

which altogether yields

detT =
[
μn1

+ μn2− − μn1
+ ν+− (−1)n1μn2− ν+

][
μn1− μn2

+ +(−1)n2μn1− ν− + μn2
+ ν−

]
.
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[4] F. DE TERÁN AND F. DOPICO, Generic change of the partial multiplicities of regular matrix pencils
under low-rank perturbations, Submitted for publication, 2015.
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