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Abstract. We investigate positive definite solutions of nonlinear matrix equations X− f (Φ(X))=
Q and X −∑m

i=1 f (Φi(X)) = Q , where Q is a positive definite matrix, Φ and Φi (1 � i � m)
are positive linear maps on Mn(C) and f is a nonnegative matrix monotone or matrix anti-
monotone function on [0,∞) . In this article, using appropriate inequalities and some fixed point
results, we prove the existence of unique positive definite solutions for the mentioned above
equations.

1. Introduction

We consider the positive solutions of the nonlinear matrix equations

X − f (Φ(X)) = Q, X −
m

∑
i=1

f (Φi(X)) = Q,

where Q is a positive n× n matrix, Φ and Φi (1 � i � m) are positive linear maps
on Mn(C) and f is a nonnegative matrix monotone or matrix anti-monotone function
on [0,∞) . Since 1990, this type of equations has been studied in initial form of X +
AX−1A∗ = Q under assumption that Q is positive semidefinite [1, 8]. This form of
nonlinear matrix equations have many applications in analysis of networks, dynamic
programming, control theory and statistics. A particular kind of this equation solved
for an optimal interpolation theory problem [20]. The equation X−AX−1A∗ = Q arises
in the analysis of stationary Gaussian reciprocal processes over a finite interval [15] and
the equation X +∑n

i=1 AiX−1Bi = Q solved for the analysis of certain Markov processes
called Tree-Like stochastic processes [3]. Specific equations such as X + A∗X−nA =
Q (n ∈ N) , X −A∗XqA = Q (q � 1) , X −∑n

i=1 A∗
i X

rAi = Q , X −∑n
i=1 A∗

i X
δiAi = Q

and so on have been extensively studied in the literature [12, 4, 5, 9, 16]. Fixed point
theorems play a crucial role in solving of these matrix equations [10].

Some researchers focused on theoretical results involving the existence of positive
solutions or the necessary and sufficient conditions of existence of positive solutions
[17, 16, 8] and the others investigated numerical iterative methods and perturbation
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analysis [12, 13, 21]. There are relatively few papers that deal with general matrix
equations. El-Sayed and Ran studied the equation X +A∗ f (X)A = Q , in the case that
f is either matrix monotone or matrix anti-monotone [7]. In addition, Ran and Reurings
derived sufficient conditions for the existence and the uniqueness of a positive definite
solution of the same equation [19].

2. Preliminaries

Let Mn(C) be the n×n complex matrix algebra equipped with the usual operator
norm ‖ · ‖ . It is known that the strong operator topology and the norm topology on
finite dimensional space B(Cn) = Mn(C) coincide. When we write limm→∞ Am = A
we mean limm→∞ ‖Am −A‖ = 0. We shall show the n× n identity matrix by I . A
linear map Φ : Mn(C)→Mn(C) is said to be a positive map if Φ(A) � 0 for all A � 0.
In addition, Φ is normalized, if Φ(I) = I . A typical positive linear map Φ : Mn(C) →
Mn(C) is Φ(X) = ∑m

i=1 A∗
i XAi , where Ai ∈ Mn(C) , i = 1, · · · ,m .

For an arbitrary n×n complex matrix A , the symbols λ1(A) , λn(A) , σ1(A) and
σn(A) stand for the maximum eigenvalue, minimum eigenvalue, maximum singular
value and minimum singular value, respectively. If A and B are Hermitian matrices and
A−B is positive semidefinite (positive definite, resp.), then we write A � B (A > B ,
resp.). It is known that if A is a positive semidefinite matrix then λn(A)I � A � λ1(A)I .

Suppose that B and C are two n× n Hermitian matrices and B � C (B < C ,
resp.). The notation [B,C] ((B,C) , resp.) means the set of all Hermitian matrices such
that B � X � C (B < X < C , resp.). Throughout this paper, we denote the class of all
Hermitian matrices and positive definite matrices by Hn and Pn , respectively. Let J ⊂R

be an interval. A real-valued continuous function f on J is said to be matrix monotone
(matrix anti-monotone) if for all A,B ∈ Hn , A � B implies that f (A) � f (B) ( f (A) �
f (B) , resp.). It is known (see e.g. [14]) that a nonnegative matrix monotone function f
has a representation of the form

f (t) =
∫ ∞

0

(1+ s)t
s+ t

dm(s), t > 0,

where m is a positive measure on the half-line [0,∞) . For example, the function f (t) =
logt is a nonnegative matrix monotone function on (1,+∞) . As usual a Hermitian
matrix C with spectrum in the domain J of f is called a fixed point of f if f (C) = C .
To achieve our result we employ the following known results.

LEMMA 2.1. [2] If A,B ∈ Pn such that A � B > 0 (A > B > 0 ), then

(i) Aα � Bα > 0 (Aα > Bα > 0 ) for 0 < α � 1

(ii) 0 < Aα � Bα (0 < Aα < Bα ) for −1 � α < 0 .

LEMMA 2.2. [11] Let A,B ∈ Hn and A < B. Let g : [A,B] → Cn×n be a matrix
monotone function such that A � g(A) � g(B) � B. Then g has two fixed points X+
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and X− (maximum and minimum fixed point, resp.) in [A,B] such that

X+ = lim
n→+∞

Bn and X− = lim
n→+∞

An,

where An = g(An−1) , A0 = A, Bn = g(Bn−1) and B0 = B for n = 1,2,3, · · · . Moreover,
if X+ = X− , then g has a unique fixed point X+ (or X− ).

3. Results

We start our work with the following lemma which is interesting on its own right.

LEMMA 3.1. Let f be a nonnegative matrix monotone function on J = [0,∞) and
A ∈ Pn . If μ � 1 , then f (μA) � μ f (A) . If 0 < μ � 1 , then f (μA) � μ f (A) .

Proof. For any μ � 1 and s � 0, we have (sI + μA) � (sI +A) so (sI + μA)−1 �
(sI + A)−1 . Since A commutate with (sI + μA)−1 , we have A(sI + μA)−1 � A(sI +
A)−1 . Similarly, for any 0 < μ � 1, we deduce that A(sI + μA)−1 � A(sI + A)−1 .
Hence

f (μA) =
∫

J
(1+ s)(μA)(s+ μA)−1dm(s)

{
� μ

∫
J(1+ s)A(s+A)−1dm(s) = μ f (A) μ � 1

� μ
∫
J(1+ s)A(s+A)−1dm(s) = μ f (A) 0 < μ � 1.

�

THEOREM 3.2. Let f be a nonnegative matrix monotone function on J = [0,∞) ,
A ∈ Pn and F(X) = Q+ f (X) , where Q ∈ Pn . Then for any 0 < μ � 1

F(μA) � μ(1+ ω(μ))F(A),

where ω(μ) = (1−μ)λn(Q)
μ(λ1(Q)+ f (λ1(A))) .

Proof. It is sufficient to show that F(μA)− μ(1 + ω(μ))F(A) � 0. By using
Lemma 3.1, we have f (μA)− μ f (A) � 0 for any 0 < μ � 1. In addition, A is a
positive definite matrix, so A � λ1(A)I , which implies − f (A) � − f (λ1(A)I) . Let
ω(μ) be an arbitrary nonnegative function of μ . Then

F(μA)− μ(1+ ω(μ))F(A) = Q+ f (μA)− μ(1+ ω(μ))(Q+ f (A))
= Q+( f (μA)− μ f (A))− μ(1+ ω(μ))Q− μω(μ) f (A)
� (1− μ)Q− μω(μ)Q− μω(μ) f (A)
� {(1− μ)λn(Q)− μω(μ)λ1(Q)− μω(μ) f (λ1(A))}I
� {(1− μ)λn(Q)− μω(μ)[λ1(Q)+ f (λ1(A))]}I.

Letting ω(μ) = (1−μ)λn(Q)
μ(λ1(Q)+ f (λ1(A))) , we get F(μA) � μ(1+ ω(μ))F(A) .

Note that since μ > 0, (1− μ) � 0, λn(Q) > 0 and f (λ1(A)) � 0, so ω(μ) �
0. �
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COROLLARY 3.3. Let f be a nonnegative matrix anti-monotone function on J =
[0,∞) , A ∈ Pn and F(X) = Q+ f (X) , where Q ∈ Pn . Then for any 0 < μ � 1

F2(μA) � μ(1+ ω(μ))F2(A),

where ω(μ) = (1−μ)λn(Q)
μ(λ1(Q)+ f ( f (λ1(A))+λ1(Q))) .

Proof. Since f is a matrix anti-monotone function, so f (Q + f (X)) is matrix
monotone and f (Q + f (A)) � f (λ1(Q)I + f (λ1(A))I) . Hence F2(X) = Q + f (Q +
f (X)) satisfies the conditions of Theorem 3.2. �

REMARK 3.4. Theorem 3.2 and Corollary (3.3) are general forms of Lemmas 2.3
and 3.1 in [5] with short proofs.

LEMMA 3.5. Let f be a matrix anti-monotone function on J . Suppose that A,B∈
Hn with spectra in J and A � f (B) � f (A) � B. Then the following assertions hold:

(i) f 2 has two fixed points X+ and X− in [A,B] , where X+ = limn→+∞ f 2n(B) and
X− = limn→+∞ f 2n(A) .

(ii) If A � X � B is a fixed point of f , then X− � X � X+ .

(iii) If X− = X+ = X , then f has a unique fixed point such that

X = lim
n→+∞

f n(X0),

where A � X0 � B.

Proof. (i) Since A � f (B) � f (A) � B , therefore, A � f (B) � f 2(A) � f 2(B) �
f (A) � B implying that A � f 2(A)� f 2(B) � B . Hence, g = f 2 satisfies the conditions
of Lemma 2.2. Consequently, f 2 has two fixed points X+ and X− in [A,B] , where
X+ = limn→+∞ f 2n(B) and X− = limn→+∞ f 2n(A) .

(ii) Let X be a matrix such that A � X � B and f (X) = X . By acting repeatedly,
we have f 2n(A) � f 2n(X) = X � f 2n(B) . Letting n → ∞ implies that X− � X � X+ .

(iii) If X− = X+ = X , then X = limn→∞ f 2n(A) = limn→∞ f 2n(B) . Moreover, if
X0 ∈ [A,B] , then for any n = 0,1,2, · · · , we have

f 2n(A) � f 2n(X0) � f 2n(B), (3.1)

which gives

f 2n(A) � f 2n+1(B) � f 2n+1(X0) � f 2n+1(A) � f 2n(B). (3.2)

By (3.1) and (3.2), we get limn→+∞ f 2n(X0) = limn→+∞ f 2n+1(X0) = X , hence,
limn→+∞ f n(X0)= X . Therefore, X = limn→+∞ f n(X0)= limn→+∞ f ( f n−1(X0))= f (X) .

�
We recall the well-known Schauder fixed-point theorem as follows: Let C be a

nonempty, compact and convex subset of a Banach space V. If f :C →C is continuous,
then f has a fixed point (see [10]).

We are ready to state our first main result.
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THEOREM 3.6. Let f be a nonnegative matrix monotone function on J = [0,∞) ,
let Φ : Mn(C) → Mn(C) be a positive linear map and g(X) = Q+ f (Φ(X)) , where X

and Q are positive definite. If there exists x1 > 0 such that f (x1) � x1−λ1(Q)
λ1(Φ(I)) , then the

following assertions hold:

(i) If 1 � λ1(Φ(I)) , then g(X) � β I , where β is a positive solution of x−λ1(Q) =
λ1(Φ(I)) f (x);

(ii) If 0 < λn(Φ(I)) � 1 , then g(X) � αI , where α is a positive solution of x−
λn(Q) = λn(Φ(I)) f (x) .

Moreover, if the conditions of (i) and (ii) are satisfied, then g has a unique positive
definite fixed point X in [αI,β I] and {gk(X0)} converges to X for any αI � X0 � β I .

Proof. (i) First, we show that the real function l(x) = b1 f (x)+ b2 has a unique
positive fixed point, where b1 = λ1(Φ(I)) and b2 = λ1(Q) . Since f is a nonnega-
tive matrix monotone function, so l is an increasing function such that 0 < l(0) =
λ1(Φ(I)) f (0) + λ1(Q) . By the assumption, f (x1) � x1−λ1(Q)

λ1(Φ(I)) , so we have l(x1) =
λ1(Φ(I)) f (x1) + λ1(Q) � x1 . Thus l satisfies the conditions of the Schauder fixed
point theorem, so l(x) has a positive fixed point in [0,x1] .

Hence the equation x−λ1(Q) = λ1(Φ(I)) f (x) has a positive solution β , i.e.

β −λ1(Q) = λ1(Φ(I)) f (β ).

For X � β I ,
Q+ f (Φ(X)) � Q+ f (Φ(β I)) = Q+ f (β Φ(I)).

It follows from Lemma 3.1 that

Q+ f (Φ(X)) � Q+ f (λ1(Φ(I))β I) � (λ1(Q)+ λ1(Φ(I)) f (β ))I = β I.

Therefore g(X) � β I .

(ii) Since f (x1) � x1−λ1(Q)
λ1(Φ(I)) < x1−λn(Q)

λn(Φ(I)) , using an argument similar to (i), one can

show that the equation x−λn(Q) = λn(Φ(I)) f (x) has a positive solution α , i.e.

α −λn(Q) = λn(Φ(I)) f (α).

By the same way, there exists a positive number γ such that

γ −λ1(Q) = λn(Φ(I)) f (γ).

Since λn(Q) � λ1(Q) , we have α � γ and since λn(Φ(I)) f (x) � λ1(Φ(I)) f (x) , we
get γ � β , so α � β . We consider X � αI .

Q+ f (Φ(X)) � Q+ f (Φ(αI)) = Q+ f (αΦ(I)).

From Lemma 3.1 we deduce that

Q+ f (Φ(X)) � (λn(Q)+ λn(Φ(I)) f (α))I = αI.
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Therefore g(X) � αI .
Now we assume that the conditions of (i) and (ii) are satisfied. Hence, for any

αI � X � β I , we have

αI � g(αI) � g(X) � g(β I) � β I.

If g acts on the latter inequality repeatedly, we infer that the increasing sequence
{gn(α)I} and the decreasing sequence {gn(β )I} are bounded above to β I and bounded
below to αI , respectively. Due to Lemma 2.2, X− = limn→+∞ gn(αI) and X+ =
limn→+∞ gn(β I) are fixed points of g and X− � X+.

In the sequel, we prove the uniqueness of the fixed point by the technique used in
[5]. It is sufficient to show that X− � X+ . For any αI � X � β I , we have

X− = g(X−) � αI =
α
β

β I � α
β

g(X+) =
α
β

X+.

Set t0 = max{t : X− � tX+} . Then 0 < t0 < ∞ . We claim that t0 � 1. In contrary
assume that 0 < t0 < 1. Employing Theorem 3.2, we obtain

X− = g(X−) � g(t0X+) � [1+ ω(t0)]t0g(X+) = [1+ ω(t0)]t0X+,

but [1+ ω(t0)]t0 > t0 , which contradicts the maximality of t0 . Consequently, t0 � 1,
which gives X− � X+.

Assume that αI � X0 � β I . Since g is a matrix monotone function, it follows that
for any n = 0,1,2, · · · ,

gn(αI) � gn(X0) � gn(β I),

and
lim

n→+∞
gn(αI) = lim

n→+∞
gn(β I) = X = X+ = X−,

which implies limn→+∞ gn(X0) = X . �
Using the same strategy one can prove the next result.

PROPOSITION 3.7. Let f be a nonnegative matrix monotone function on J =
[0,∞) . Let Φi : Mn(C) → Mn(C) (1 � i � m) be positive linear maps and g(X) =
Q+ ∑m

i=1 f (Φi(X)) , where X and Q are positive definite. If there exists x1 > a such

that f (x1) � x1−λ1(Q)
∑m

i=1 λ1(Φi(I))
, then the following assertions hold:

(i) If 1 � λ1(Φi(I)) , i = 1,2, . . . ,m, then g(X) � β I , where β is a positive solution
of x−λ1(Q) = ∑m

i=1 λ1(Φi(I)) f (x);

(ii) If 0 < λn(Φi(I)) � 1 , i = 1,2, . . . ,m, then g(X) � αI , where α is a positive
solution of x−λn(Q) = ∑m

i=1 λn(Φi(I)) f (x) .

Moreover, if the conditions of (i) and (ii) are satisfied, then g has a unique positive
definite fixed point X in [αI,β I] and {gk(X0)} converges to X for any αI � X0 � β I .

The next result reads as follows.
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THEOREM 3.8. Let f be a nonnegative matrix anti-monotone function on J =
[0,∞) , let Φ : Mn(C) → Mn(C) be a positive linear map and h(X) = Q+ f (Φ(X)) ,
where X and Q are positive definite. If the pair (α,β ) with α � β is a solution of the
following system: {

x = λn(Q)+ λn(Φ(I)) f (y)
y = λ1(Q)+ λ1(Φ(I)) f (x)

then the following assertions hold:

(i) If 1 � λ1(Φ(I)) , then h(X) � β I ;

(ii) If 0 < λn(Φ(I)) � 1 , then h(X) � αI .

Moreover, if the conditions of (i) and (ii) are satisfied, then g has a unique positive
definite fixed point X in [αI,β I] and {hk(X0)} converges to X for any αI � X0 � β I .

Proof. We show that αI � h(X) � β I for any αI � X � β I , while 1 � λ1(Φ(I))
and 0 < λn(Φ(I)) � 1. By using Lemma 3.1, we have

αI = (λn(Q)+ λn(Φ(I)) f (β ))I � Q+ f (Φ(X)) � (λ1(Q)+ λ1(Φ(I)) f (α))I = β I.

According to Lemma 3.5, h2 has two positive fixed points X− and X+ such that X− �
X+ , limn→+∞ h2n(αI) = X− and limn→+∞ h2n(β I) = X+.

To show uniqueness, we need only to verify X− � X+ . Since Q � h(X) , we have
Q � h2(X) � h(Q) . Now h2(X) � λ1(h(Q))I leads to

X− = h2(X−) = Q+ f (Φ(Q)+ Φ( f (Φ(X−))))

� λn(Q)I =
λn(Q)λ1(h(Q))

λ1(h(Q))
I

� λn(Q)
λ1(h(Q))

h2(X+) =
λn(Q)

λ1(h(Q))
X+.

Set t0 = max{t : X− � tX+} . Obviously, 0 < t0 < +∞ . We claim that t0 � 1. If
0 < t0 < 1, then, by Corollary 3.3, we have

X− = h2(X−) � h2(t0X+) � t0[1+ ω(t0)]h2(X+) = t0[1+ ω(t0)]X+,

but t0[1+ω(t0)] > t0 , which contradicts maximality of t0 . Hence, t0 � 1 and X− � X+ .
Due to Lemma 3.5, h(X) has a unique fixed point in [αI,β I] such that

X = lim
n→+∞

hn(X0),

where αI � X0 � β I . �

Utilizing the same reasoning as in the proof of the previous theorem one can show
the next result.
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COROLLARY 3.9. Let f be a nonnegative matrix anti-monotone function on J =
[0,∞) , let Φi : Mn(C) → Mn(C) (1 � i � m) be positive linear maps and h(X) =
Q+∑m

i=1 f (Φi(X)) , where X and Q are positive definite. If the pair (α,β ) with α � β
is a solution of the following system:

{
x = λn(Q)+ ∑m

i=1 λn(Φi(I)) f (y)
y = λ1(Q)+ ∑m

i=1 λ1(Φi(I)) f (x)

then the following assertions hold:

(i) If 1 � λ1(Φ(I)) , then h(X) � β I ;

(ii) If 0 < λn(Φ(I)) � 1 , then h(X) � αI .

Moreover, if the conditions of (i) and (ii) are satisfied, then g has a unique positive
definite fixed point X in [αI,β I] and {hk(X0)} converges to X for any αI � X0 � β I .

4. Application for nonlinear operator equations

The following corollaries and examples illustrate our results. Note that a fixed
point of function g(X) = Q+ f (Φ(X)) is the solution of the equation X − f (Φ(X)) =
Q .

We shall consider the following equation.

X − (
m

∑
i=1

A∗
i XAi)r = Q, (4.1)

where Q ∈ Pn and r ∈ [−1,1) .

COROLLARY 4.1. (i) Let r ∈ (0,1) and g(X) = Q + (∑m
i=1 A∗

i XAi)r . Suppose
that 1 � λ1(∑m

i=1 A∗
i Ai) and 0 < λn(∑m

i=1 A∗
i Ai) � 1 . Then Equation (4.1) has a unique

positive definite solution X in [αI,β I] , where α and β are the positive solutions of the
equations x−λn(Q)= λn(∑m

i=1 A∗
i Ai)xr and x−λ1(Q)= λ1(∑m

i=1 A∗
i Ai)xr , respectively.

In addition, {gk(X0)} converges to X for any αI � X0 � β I .
(ii) Let r∈ [−1,0) and h(X)= Q+(∑m

i=1 A∗
i XAi)r . Suppose that 1 � λ1(∑m

i=1 A∗
i Ai)

and 0 < λn(∑m
i=1 A∗

i Ai) � 1 . If the pair (α,β ) with α � β is a solution of the following
system: {

x = λn(Q)+ λn(∑m
i=1 A∗

i Ai)yr

y = λ1(Q)+ λ1(∑m
i=1 A∗

i Ai)xr,

then Equation (4.1) has a unique positive definite solution X in [αI,β I] . In addition,
{hk(X0)} converges to X for any αI � X0 � β I .

Proof. (i) In Theorem 3.6, we set Φ(X) = ∑m
i=1 A∗

i XAi and f (x) = xr , where r ∈
(0,1) . By Lemma 2.1, f is a nonnegative matrix monotone function on J = [0,∞) .

Since there exists a x1 > 0 such that xr
1 � x1−λ1(Q)

λ1(∑m
i=1 A∗

i Ai)
, ( limx→∞

λ1(∑m
i=1 A∗

i Ai)xr

x−λ1(Q) =
0, r ∈ (0,1)) we get the result.
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(ii) This result comes from Theorem 3.8, if we set Φ(X) = ∑m
i=1 A∗

i XAi and f (x) =
xr , where r ∈ [−1,0) . In this case, f is a matrix anti-monotone function on J = (0,∞)
by Lemma 2.1. �

One can specialize Equation (4.1) by putting Φ(X) = A∗XA , where A is an isom-
etry, i.e. A∗A = I and f (x) = x−1 . So λn(Φ(I)) = λ1(Φ(I)) = 1 and f (x) is a matrix
nonnegative anti-monotone function on (0,∞) , hence the conditions of corollary 4.1
are satisfied. It is sufficient to obtain the following system solution.

{
x = λn(Q)+ 1

y

y = λ1(Q)+ 1
x .

Assume that K is the correlation matrix of A ∈ Pn , i.e.

K = (ai j/(aiia j j)
1
2 ) f or A = (ai j)

The matrix K is positive definite. We define a map Φ(X) = K ◦X , where ◦ denotes
the Hadamard product of matrices. Then Φ is a normalized positive linear map ([18]).
Now we shall consider the following equation.

X − (K ◦X)r = Q, (4.2)

where Q ∈ Pn , r ∈ [−1,1) .

COROLLARY 4.2. (i) Let r ∈ (0,1) and g(X) = Q+ (K ◦X)r . Then Equation
(4.2) has a unique positive definite solution X in [αI,β I] , where α and β are positive
solutions of equations x−λn(Q) = xr and x−λ1(Q) = xr , respectively. In addition,
{gk(X0)} converges to X for any αI � X0 � β I .

(ii) Let r ∈ [−1,0) and h(X) = Q+(K ◦X)r . If the pair (α,β ) with α � β is a
solution of the following system:

{
x = λn(Q)+ yr

y = λ1(Q)+ xr

then Equation (4.2) has a unique positive definite solution X in [αI,β I] . In addition,
{hk(X0)} converges to X for any αI � X0 � β I .

Proof. Set Φ(X) = K ◦X and f (x) = xr in Theorem 3.6 and 3.8. Since Φ is a
normalized positive map, so λ1(Φ(I)) = λn(Φ(I)) = 1 which satisfies the conditions
of mentioned theorems. (Additionally, f (x) satisfies the conditions of the (i) and (ii)
by similar discussions as in Corollary 4.1.) �

COROLLARY 4.3. Let g(X) = Q+∑m
i=1 log(A∗

i XAi) , where Q∈ Pn . Suppose that
λn(Q) > 1 , 1 � σ2

1 (Ai) and 0 < σ2
n (Ai) � 1 , for i = 1, . . . ,m. Then the matrix equation

X −
m

∑
i=1

log(A∗
i XAi) = Q
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has a unique positive solution X in [αI,β I] , where α and β are positive solutions
of equations x−λn(Q) = ∑m

i=1 σ2
n (Ai) log(x) and x−λ1(Q) = ∑m

i=1 σ2
1 (Ai) log(x) , re-

spectively. Moreover, {gk(X0)} converges to X for any αI � X0 � β I .

Proof. It is sufficient to put f (x) = log(x) and Φi(X) = A∗
i XAi , for i = 1, . . . ,m

in Proposition 3.7. Since f (x) = log(x) is a matrix monotone function on (0,∞) and

there exists x1 > 1 such that log(x1) � x1−λ1(Q)
∑m

i=1 σ2
1 (Ai)

(λn(Q) > 1), so the conditions of

Proposition 3.7 are met.

(Since limx→∞
∑m

i=1 σ2
1 (Ai) log(x)

x−λ1(Q) = 0.) �

COROLLARY 4.4. Let g(X) = Q +U∗X(Xs + I)−1U , where Q ∈ Pn , s ∈ (0,1]
and U is a unitary matrix. Then the matrix equation

X −U∗X(Xs + I)−1U = Q

has a unique positive solution X in [αI,β I] , where α and β are positive solutions of
equations x−λn(Q) = x

xs+1 and x−λ1(Q) = x
xs+1 , respectively. Moreover, {gk(X0)}

converges to X for any αI � X0 � β I .

Proof. Put f (x) = x
xs+1 and Φ(X) = U∗XU in Theorem 3.6. Note that since

ϕ(x) = 1+ xs , where s ∈ (0,1] , is matrix monotone, so is f (x) = x
ϕ(x) = x

xs+1 , cf. [18,
Corollary 1.14]. In addition, since limx→∞

x
(x−λ1(Q))(xs+1) = 0, so there exists a number

x1 > 0 such that f (x1) < x1−λ1(Q) . �

5. Numerical experiments

We carry out numerical examples for computing a positive definite solution of
equations X − log(A∗XA) = Q , X − (A∗XA)−1 = Q and X − (K ◦X)

1
2 = Q by MAT-

LAB. All computations are presented with the first 6 digits and for the stopping condi-
tion of all algorithms we have chosen ε = 10−8 . We have used the methods described
in Theorems 3.6 and 3.8. The CPU time needed by all the algorithms is negligible, since
it is less than a second. In the following ‖ . ‖∞ stands for infinity norm of matrices.

EXAMPLE 5.1. Consider the equation X − log(A∗XA) = Q with

A =

⎛
⎝ 0.00171 0.1120 0.0400

0.0020 0.4720 −0.0020
−0.0040 −0.0010 2.0100

⎞
⎠ and Q =

⎛
⎝ 3 2 0

0 2 0
1 0 2

⎞
⎠ .

We have λ1(Q) = 3, λn(Q) = 2 > 1, 0 < σ2
n (A) = 0.000002� 1 and 1 � σ2

1 (A) =
4.041720. We compute α and β by solving the following equations, respectively.

x−2 = 0.000002log(x), x−3 = 4.041720log(x),
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which gives α = 2.000001 and β = 13.527597. So we begin with an initial matrix X0

such that
(2.000001)I � X0 � (13.527597)I.

We use the following iterative algorithm for calculating the solution.

Algorithm (a)

1. Set X0 = ((μ)2.000001+(1− μ)13.527597)I , where μ ∈ [0,1] .

2. For n = 0,1,2, ... , compute Xn+1 = Q+ log(A∗XnA) , until

‖ Q−Xn+1 + log(A∗Xn+1A) ‖∞< ε.

3. Xn+1 provides an approximation to X .

Table (a) reports, for different values of the parameter μ (μ = 0.2, μ = 0.5 and μ =
0.8), the number of iterations which is needed to satisfy the stopping conditions i.e.
‖ Q−X + log(A∗XA) ‖∞< ε and the relative error Rn = ‖Xn+1−Xn‖∞

‖Xn+1‖∞
, where X is the

approximation provided by Algorithm (a).

Table (a)
μ n Rn

0.2 29 4.942802e-10
0.5 29 5.108141e-10
0.8 29 5.373146e-10

The solution is

X �
⎛
⎝−6.128080−0.924340i −2.744315−1.969056i −2.992607+2.831025i

−4.683328−2.039036i 1.542492−1.771237i 0.754397+1.610607i
−2.060743+2.818150i 0.7094100+1.511913i 4.981168+0.028113i

⎞
⎠ .

EXAMPLE 5.2. Consider the equation X − (A∗XA)−1 = Q with

A =
(

1 −0.2
0.1 −0.6

)
and Q =

(
3 2
2 4

)
.

We have λn(Q) = 1.438447, λ1(Q) = 5.561553, 0 < σ2
n (A) = 0.304220 � 1 and

1 � σ2
1 (A) = 1.105780. By solving the following system, α and β are obtained.

{
x = 1.438447+0.3042201

y

y = 5.561553+1.1057801
x

It gives α = 1.4866950 and β = 6.3053370. So initial matrix X0 is chosen such
that

(1.4866950)I � X0 � (6.3053370)I.

We use the following iterative algorithm.
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Algorithm (b)

1. Set X0 = ((μ)1.4866950+(1− μ)6.3053370)I , where μ ∈ [0,1] .

2. For n = 0,1,2, ... , compute Xn+1 = Q+(A∗XnA)−1 , until

‖ Q−Xn+1 +(A∗Xn+1A)−1 ‖∞< ε.

3. Xn+1 provides an approximation to X .

Table (b) reports, for different values of the parameter μ , the number of iterations
which is needed to satisfy the stopping conditions i.e. ‖ Q−X +(A∗XA)−1 ‖∞< ε and
the relative error.

Table (b)
μ n Rn

0.2 13 7.532181e-11
0.5 12 4.531828e-10
0.8 13 5.742987e-10

The solution is X �
(

3.681601 2.703509
2.703509 5.105746

)
.

EXAMPLE 5.3. Consider the equation X − (K ◦X)
1
2 = Q . Let A be any diagonal

positive definite matrix. Then K is the identity matrix. Assume Q =

⎛
⎝1 0 0

0 2 0
0 0 3

⎞
⎠ .

Here λn(Q) = 1, λ1(Q) = 3 and α = 2.618034, β = 5.302776 which are the solutions
of the equations x−1 =

√
x and x−3 =

√
x , respectively. Therefore,

(2.618034)I � X0 � (5.302776)I.

ALGORITHM (C).

1. Set X0 = ((μ)2.618034+(1− μ)5.302776)I , where μ ∈ [0,1] .

2. For n = 0,1,2, ... , compute Xn+1 = Q + (K ◦ Xn)
1
2 , until ‖ Q− Xn+1 + (K ◦

Xn+1)
1
2 ‖∞< ε .

3. Xn+1 provides an approximation to X .

The result is presented in the following table.

Table (c)
μ n Rn

0.2 16 4.958179e-09
0.5 16 3.342531e-09
0.8 15 4.727529e-09



NONLINEAR MATRIX EQUATIONS 125

The solution is X �
⎛
⎝2.6180334 0 0

0 5.302776 0
0 0 4.000000

⎞
⎠ .

Comparing the examples, we conclude that the initial matrix influences on number
of iteration and relative error but the difference of number of iteration is insignificant in
most examples.
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