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(Communicated by L. Chi-Kwong)

Abstract. We address two long standing problems in the context of local spectral radius pre-
servers. First, we completely describe the form of maps preserving the peripheral local spectrum
of product or triple product of operators. Second, we establish the automatic continuity of linear
maps increasing the local spectral radius of operators at a fixed nonzero vector.

1. Introduction

Throughout this paper, X and Y denote infinite-dimensional complex Banach
spaces, and B(X ,Y ) denotes the space of all bounded linear maps from X into Y .
When X = Y , we simply write B(X) instead of B(X ,X) . The local resolvent set,
ρT (x) , of an operator T ∈ B(X) at a point x ∈ X is the union of all open subsets U
of the complex plane C for which there is an analytic function φ : U → X such that
(T −λ )φ(λ ) = x, (λ ∈U) . Clearly ρT (x) contains the resolvent set ρ(T ) of T , but
this containment could be proper. The local spectrum of T at x is defined by

σT (x) := C\ρT (x),

and thus it is a closed subset of σ(T ) , the spectrum of T . The local spectral radius of
T at x is defined by

rT (x) := limsup
n→+∞

‖Tnx‖ 1
n ,

and coincides with maximum modulus of σT (x) provided that T has the single-valued
extension property (SVEP). Recall that T ∈ B(X) is said to have SVEP provided that
for every open subset U of C , the equation (T −λ )φ(λ ) = 0, (λ ∈U) , has no non-
trivial analytic solution φ . Every operator T ∈ B(X) for which the interior of its point
spectrum, σp(T ) , is empty enjoys this property. The set

γT (x) := {λ ∈ σT (x) : |λ | = rT (x)}
is called the peripheral local spectrum of T at x . Note that γT (x) = /0 provided that
max{|λ | : λ ∈ σT (x)} < rT (x) . The remarkable books by P. Aiena [1] and by K.B.

Mathematics subject classification (2010): Primary 47B49; Secondary 47A10, 47A11.
Keywords and phrases: Linear preservers, spectrally bounded map, local spectrum, local spectral ra-

dius, the single-valued extension property.
This work was supported by NSERC (Canada).

c© � � , Zagreb
Paper OaM-10-12

189

http://dx.doi.org/10.7153/oam-10-12


190 A. BOURHIM, T. JARI AND J. MASHREGHI

Laursen, M.M. Neumann [27] provide an excellent exposition as well as a rich bibliog-
raphy of the local spectral theory.

The problem of linear preservers of local spectra of matrices and operators was
initiated by A. Bourhim and T. Ransford in [10], and then it was continued by several
authors; see for instance [4, 8, 11, 14, 15, 16, 17, 19, 26] and the references therein.
However, we should add that the literature on this subject is very extensive. In [11],
J. Bračič and V. Müller characterized surjective linear and continuous mappings on
B(X) preserving the local spectrum (local spectral radius) at a fixed nonzero vector
e of X , and thus extending the main results of [9, 21] to infinite-dimensional Banach
spaces. In [17, Theorem 1.2], C. Costara showed that every linear surjective map on
B(X) decreasing the local spectral radius at a nonzero vector of X is automatically
continuous. In [14], C. Costara characterized linear maps on the algebra Mn(C) of all
n× n complex matrices preserving the local spectrum or local spectral radius at non-
fixed vectors. He, in particular, showed that if ϕ is a linear map on Mn(C) then for
every T ∈Mn(C) there exists a nonzero vector xT ∈Cn such that σϕ(T )(xT )∩σT (xT ) �=
/0 if and only if ϕ is an automorphism or an anti-automorphism on Mn(C) .

Besides linear local spectra preservers, nonlinear maps preserving different local
spectra were considered by a number of authors. In [16], C. Costara described surjective
linear maps on B(X) which preserve operators of local spectral radius zero at points
of X . He showed, in particular, that if ϕ is a surjective linear map on B(X) such
that for every x ∈ X and T ∈ B(X) , we have rT (x) = 0 if and only if rϕ(T)(x) = 0,
then there exists a nonzero scalar c such that ϕ(T ) = cT for all T ∈ B(X) . This
result has been extended in [7] to the nonlinear setting where it shown that if ϕ is a
surjective (not necessarily linear) map on B(X) satisfying rT−S(x) = 0 if and only if
rϕ(T)−ϕ(S)(x) = 0, for every x ∈ X and S, T ∈ B(X) , then there is a nonzero scalar
c ∈ C and an operator A ∈ B(X) such that ϕ(T ) = cT +A for all T ∈ B(X) . In [15],
C. Costara described surjective maps ϕ on Mn(C) preserving the local spectral radius
distance and showed that if x0 is a nonzero vector of Cn , then a surjective map ϕ on
Mn(C) satisfies ϕ(0) = 0 and

rϕ(T)−ϕ(S)(x0) = rT−S(x0), (T, S ∈ Mn(C)) (1.1)
if and only if there exists an invertible matrix A ∈Mn(C) and unimodular scalar α ∈ C

such that either Ax0 = x0 and ϕ(T ) = ATA−1 for all T ∈ Mn(C) or Ax0 = x0 and
ϕ(T ) = ATA−1 for all T ∈ Mn(C) , where x0 is the complex conjugation of x0 . In
[5, 6], Bourhim and Mashreghi determined the structure of all surjective maps on B(X)
preserving the local spectrum at a nonzero fixed vector of product and triple product of
operators.

In this paper, we settle two important problems in this field. First, we character-
ize surjective maps on B(X) ‘preserving the peripheral local spectrum’ at a nonzero
fixed vector of product and triple product of operators. Second, we show that any lin-
ear surjective map on B(X) ‘increasing the local spectral radius’ at a nonzero vector
of X is bijective and continuous. The main tools in the proofs of our results are the
characterization of the linearly independence of two operators and the characterization
of rank one operators in term of the peripheral local spectrum at a nonzero fixed vector
of product and triple product of operators. These marginal results by themselves are
interesting.
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2. Statement of the main results

In this section, we gather the statement of our main results. However, to prove each
theorem some further tools are needed which are developed in subsequent sections.
Each case is discussed below.

In Section 4, we first establish a local spectral identity principle that character-
izes the linear dependence of two operators in term of the peripheral local spectrum of
product of operators. Second, we provide a local spectral characterization of rank one
operators in term of the peripheral local spectrum of product of operators. These are
the essential ingredients in establishing the following result that describes the structure
of all surjective maps on B(X) preserving the peripheral local spectrum at a nonzero
fixed vector of product of operators.

THEOREM 2.1. Let x0 ∈ X and y0 ∈ Y be two nonzero vectors. A map ϕ from
B(X) onto B(Y ) satisfies

γϕ(T )ϕ(S)(y0) = γTS(x0), (T, S ∈ B(X)), (2.2)

if and only if there exists a bijective bounded linear mapping A from X into Y such
that Ax0 = y0 , and either ϕ(T ) = −ATA−1 for all T ∈ B(X) or ϕ(T ) = ATA−1 for
all T ∈ B(X) .

In Section 5, we characterize maps preserving the peripheral local spectrum at a
fixed vector of triple product of operators. More explicitly, we prove the following re-
sult. Its proof uses as well a local spectral identity principle that characterizes the linear
dependence of two operators a local spectral characterization of rank one operators in
term of the peripheral local spectrum of triple product of operators.

THEOREM 2.2. Let x0 ∈ X and y0 ∈ Y be two nonzero vectors. A map ϕ from
B(X) onto B(Y ) satisfies

γϕ(T )ϕ(S)ϕ(T)(y0) = γTST (x0), (T, S ∈ B(X)), (2.3)

if and only if there exists a bijective mapping A ∈ B(X ,Y ) such that Ax0 = y0 and
ϕ(T ) = λATA−1 for all T ∈ B(X) , where λ is a third root of unity, i.e., λ 3 = 1 .

In Section 6, we turn our attention to linear maps increasing the local spectral ra-
dius at a nonzero fixed vector of X . We show that any linear surjective map ϕ from
B(X) into B(Y ) increasing the local spectral radius at a nonzero vector of X is bi-
jective, continuous and spectrally bounded from below; i.e., there is a constant m such
that r(T ) � mr(ϕ(T )) for all T ∈ B(X) . If the reverse inequality is satisfied then ϕ
is called spectrally bounded. Here, r(T ) denotes the classical spectral radius of any
operator T ∈ B(X) .

THEOREM 2.3. Let x0 ∈ X be a fixed nonzero element, and let ϕ be a surjective
linear map from B(X) into B(Y ) . If there is a constant M > 0 such that

rT (x0) � Mr(ϕ(T )) (2.4)

for all T ∈B(X) , then ϕ is a continuous bijective map spectrally bounded from below.
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A few comments must be added to the statement of the result. In [29], Šemrl de-
scribed spectrally bounded maps on L (H ) when H is an infinite-dimensional com-
plex Hilbert space and provided an example showing that there are infinite-dimensional
Banach spaces X and spectrally bounded maps on B(X) that are of standard forms. In
general, the complete description of all surjective linear maps from B(X) into B(Y )
that are spectrally bounded or spectrally bounded from below is still unknown and re-
mains an open problem. Of course, if such a description is obtained, then one would
be able to characterize surjective linear maps on B(X) increasing or decreasing the
local spectral radius of operators at a fixed nonzero vector. In [20], Fošner and Šemrl
obtained a characterization of the surjective linear maps on B(X) that are both spec-
trally bounded and spectrally bounded from below. The obtained forms are somehow
different from the ones appeared in [12] where Brešar and Šemrl showed that a sur-
jective linear map on B(X) preserves the spectral radius if and only if it is either an
automorphism or anti-automorphism multiplied by a scalar of modulus one.

3. Preliminaries and auxiliary results

In this section, we fix some notions and collect some useful lemmas needed for the
proof of our main results. We also establish some results which are interesting in their
own right. The first lemma summarizes some basic properties of the local spectrum
which will be used frequently.

LEMMA 3.1. For an operator T ∈ B(X) , vectors x, y ∈ X and a nonzero scalar
α ∈ C , the following statements hold.

1. If T has SVEP, then σT (x) �= /0 provided that x �= 0 .

2. σT (αx) = σT (x) if α �= 0 , and σαT (x) = ασT (x) .

3. σT (x+ y)⊂ σT (x)∪σT (y) . The equality holds if σT (x)∩σT (y) = /0 .

4. If T has SVEP, x �= 0 and Tx = λx for some λ ∈ C , then σT (x) = {λ} .

5. If T has SVEP and Tx = αy, then σT (y) ⊂ σT (x) ⊂ σT (y)∪{0} .

6. If R ∈ B(X) commutes with T , then σT (Rx) ⊂ σT (x) .

7. σTn(x) = {σT (x)}n for all x ∈ X and n � 1 .

Proof. See for instance [1, 27]. �
For any operator T ∈ B(X) , let T ∗ be its adjoint on the dual space X∗ of X . For

every nonzero x ∈ X and f ∈ X∗ , let x⊗ f denote the rank one operator defined on X
by

(x⊗ f )(y) := f (y)x.

Note that every rank one operator on X can be written in this way and every finite rank
operator is a finite sum of rank one operators.

The second lemma is a useful observation needed to establish the linearity of sur-
jective maps ϕ : B(X) → B(Y ) satisfying either (2.2) or (2.3).
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LEMMA 3.2. If x0 is a nonzero vector in X and R is a rank one operator in
B(X) , then following assertions hold.

1. γ(T+S)R(x0) = γTR(x0)+ γSR(x0) for all T, S ∈ B(X) .

2. γR(T+S)R(x0) = γRTR(x0)+ γRSR(x0) for all operator T, S ∈ B(X) .

Proof. The proof relies on the following fact that

γx⊗ f (x0) =

⎧⎨
⎩

{0} if f (x0) = 0

{ f (x)} if f (x0) �= 0
(3.5)

for all x ∈ X and f ∈ X∗ . �
We close this section with two more lemmas needed in the sequel.

LEMMA 3.3. Let x0 ∈X and y0 ∈Y be nonzero vectors, and let A : X →Y and B :
X∗ → Y ∗ be bijective linear transformations. The following statements are equivalent.

1. For every x ∈ X and f ∈ X∗ , we have rx⊗ f (x0) = rAx⊗B f (y0) .

2. A is continuous, B = αA∗−1 and Ax0 = βy0 for some nonzero scalars α, β ∈ C

with |α| = 1 .

Proof. If A is continuous, B = αA−1 and Ax0 = βy0 for some nonzero scalars
α, β ∈ C with |α| = 1, then

rAx⊗B f (y0) = rαA(x⊗ f )A−1(y0) = |α|rx⊗ f (A−1y0) = rx⊗ f (β−1x0) = rx⊗ f (x0)

for all x ∈ X and f ∈ X∗ . This establishes the implication (2) ⇒ (1) .
Conversely, assume that rx⊗ f (x0) = rAx⊗B f (y0) for all x ∈ X and f ∈ X∗ . Let

x ∈ X and f ∈ X∗ . First, note that

rx⊗ f (x0) =

⎧⎨
⎩

0 if f (x0) = 0,

| f (x)| if f (x0) �= 0.
(3.6)

Second, let us show that
| f (x)| = |B f (Ax)|. (3.7)

Assume first that f (x0) �= 0, and note that, since rAx0⊗B f (y0) = rx0⊗ f (x0) = | f (x0)|, we
have B f (y0) �= 0. Thus (3.6) shows that

| f (x)| = rx⊗ f (x0) = rAx⊗B f (y0) = |B f (Ax)|.
This ensures that (3.7) holds in this case. If, however, f (x0) = 0, take a linear func-
tional g ∈ X∗ such that g(x0) �= 0 and note that it follows from what has been shown
previously that

|( f + λg)(x)| = |B( f + λg)(Ax)|= |B f (Ax)+ λBg(Ax)|
for all nonzero scalars λ ∈ C . Letting λ goes to 0, we get | f (x)| = |B f (Ax)| which
establishes (3.7) in this case too; as desired.
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Now, let us show that A is continuous and B = A−1 . Let (xn)n be a sequence in X
converging to 0, and let y ∈ Y such that limn→∞ Axn = y . For every f ∈ X∗ , we have

|B f (y)| = lim
n→∞

|B f (Axn)| = lim
n→∞

| f (xn)| = 0,

and thus, B is bijective and f ∈ X∗ is an arbitrary linear functional, we see that y = 0.
The closed graph theorem tells us that A is continuous.

Moreover, if f ∈ X∗ is a fixed linear functional, then for every x ∈ X , we have

| f (x)| = |B f (Ax)| = |A∗B f (x)|,
and thus A∗B = α1X for some nonzero scalar α ∈C . Now, we show that x0 and A−1y0

are linearly independent. If not, there is a linear functional f in X∗ such that f (x0) = 1
and f (A−1y0) = 0 and

1 = rx0⊗ f (x0) = rAx0⊗B f (y0) = rαAx0⊗A∗−1 f (y0)

= rαA(x0⊗ f )A−1(y0) = rαx0⊗ f (A−1y0) = 0.

This contradiction shows that there is a nonzero scalar β ∈ C such that Ax0 = βy0 . To
finish the proof, we show that α must has modulus one. Pick up a linear functional f
in X∗ such that f (x0) = 1, and note that

1 = rx0⊗ f (x0) = rAx0⊗B f (y0) = rαA(x0⊗ f )A−1(y0)

= rαx0⊗ f (A−1y0) = rαx0⊗ f (x0) = |α|.
The proof is therefore complete. �

REMARK 3.4. If the local spectral radius is replaced by the peripheral local spec-
trum in the first statement of the above lemma, then it is easy to see that α must be 1
in the second statement.

LEMMA 3.5. Let x0 ∈ X and y0 ∈Y be nonzero vectors, and let C : X∗ → Y and
D : X → Y ∗ be bijective linear mappings. Then there are x ∈ X and f ∈ X∗ such that
rx⊗ f (x0) �= rC f⊗Dx(y0) .

Proof. Choose a nonzero linear functional g∈Y ∗ such that g(y0) = 0 and set x =
D−1g . Because x and x0 are nonzero vectors in X , one can find a linear functional f ∈
X∗ such that f (x0) �= 0 and f (x) �= 0. Then 0 �= | f (x)| = rx⊗ f (x0) and rC f⊗Dx(y0) =
rC f⊗g(y0) = 0; as desired. �

4. Proof of theorem 2.1

To prove Theorem 2.1, we need two auxiliary, but important, result: first, a local
spectral identity principle that characterizes the linear dependence of two operators in
term of the peripheral local spectrum; second, a spectral characterization of rank one
operators in term of the peripheral local spectrum.

THEOREM 4.1. Let x0 ∈ X be a nonzero vector, and let A, B ∈ B(X) . The fol-
lowing statements are equivalent.
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1. A = αB for some nonzero scalar α ∈ C .

2. For every T ∈ B(X) , we have rAT (x0) = 0 if and only if rBT (x0) = 0 .

3. For every rank one operator T ∈ B(X) , we have rAT (x0) = 0 if and only if
rBT (x0) = 0 .

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are trivial. We only need to
establish (3) ⇒ (1) .

Assume that (3) holds, i.e., rAT (x0) = 0 if and only if rBT (x0) = 0 for all rank
one operators T ∈ B(X) . Let us first show that Ax0 and Bx0 are linearly dependent.
Suppose to the contrary that Ax0 and Bx0 are linearly independent. This implies that
x0 , Ax0 and Bx0 are linearly dependent. Since, if not, there is a linear functional
f0 ∈ X∗ such that f0(x0) = f0(Ax0) = 1 and f0(Bx0) = 0. For T0 := x0 ⊗ f0 , we have
(AT0)

n x0 = Ax0 for all n � 1 and rAT0(x0) = 1. We also have (BT0)
n x0 = 0 for all

n � 2 and thus rBT0(x0) = 0. This is a contradiction. Thus, there are constants α
and β in C such that x0 = αAx0 + βBx0 . Note that either α �= 0 or β �= 0 and thus
we may and shall assume that α �= 0. Let f1 ∈ X∗ be a linear functional such that
f1(Ax0) = 1 and f1(Bx0) = 0. For T1 := x0 ⊗ f1 , we have (AT1)

n x0 = αAx0 for all
n � 1 and rAT1(x0) = 1. We also have (BT1)nx0 = 0 for all n � 2 and rBT1(x0) = 0.
This contradiction shows that Ax0 = αx0Bx0 for some nonzero scalar αx0 .

Now, let x be an arbitrary vector in X , and let S ∈ B(X) be an operator such that
Sx0 = x . Replacing T by ST in the third statement, we note that rAST (x0) = 0 if and
only if rBST (x0) = 0 for all rank one operators T ∈ B(X) . By what has been shown
above, there is αx that Ax = ASx0 = αxBSx0 = αxBx for some nonzero scalar αx . Thus,
there is a nonzero scalar α ∈ C such that A = αB . �

As a consequence, we obtain the following corollary which characterizes, in term
of the peripheral local spectrum, when two operators are the same.

COROLLARY 4.2. Let x0 ∈ X be a nonzero vector, and let A, B ∈ B(X) . The
following statements are equivalent.

1. A = B.

2. γAT (x0) = γBT (x0) for all operators T ∈ B(X) .

3. γAT (x0) = γBT (x0) for all rank one operators T ∈ B(X) .

Proof. We only need to show that (3) ⇒ (1) . So, assume that γAT (x0) = γBT (x0)
for all rank one operators T ∈ B(X) , and note that there is a nonzero α ∈ C such
that A = αB , by Theorem 4.1. To show that such α must be one, assume first that
there is x ∈ X such that Bx and x0 are linearly independent, and let f ∈ X∗ be a linear
functional such that f (Bx) = f (x0) = 1. Set T := x⊗ f , and note that BT = Bx⊗ f
and thus γBT (x0) = γBT (x0 −Bx)∪ γBT (Bx) = {0, 1} . It follows that {1} = γBT (x0) =
γAT (x0) = γαBT (x0) = {α}, and α = 1.
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Now, if Bx and x0 are linearly dependent for all x ∈ X , then either B = 0 and
there is nothing to prove, or B = x0 ⊗ f for some f ∈ X∗ . If the last case occurs, pick
up x �∈ ker( f ) such that f (x) = 1 and a linear functional g ∈ X∗ such that g(x0) = 1.
Let T := x⊗g, and note that Bx = x0 and that BTx0 = Bx = x0. It follows that {1} =
γBT (x0) = γAT (x0) = γαBT (x0) = {α}. �

The following theorem, which may be of independent interest, gives a spectral
characterization of rank one operators in term of the peripheral local spectrum.

THEOREM 4.3. For a nonzero vector x0 of X and a nonzero operator R∈B(X) ,
the following statements are equivalent.

1. R has rank one.

2. γRT (x0) is a singleton for all T ∈ B(X) .

3. γRT (x0) is a singleton for all operators T ∈ B(X) of rank at most two.

Proof. Obviously, if R has rank one and T ∈ B(X) is an arbitrary operator, then
RT has rank one too and thus γRT (x0) is a singleton. This shows that the implication
(1) ⇒ (2) always holds. So, we only need to establish the implication (3) ⇒ (1) .

Assume that γRT (x0) is a singleton for all operators T ∈ B(X) of rank at most
two. Suppose, by the way of contradiction, that R has rank at least two, and let us first
show that x0 is not in the range of R . If x0 is not in the range of R , then there are
u, v ∈ X such that x0 = Ru and x1 = Rv are linearly independent. Let f0 and f1 be
two linear functionals in X∗ such that fi(x j) = δi j , where δi j is the delta Kronecker
symbol. For T0 := (2v−u)⊗ f0 + v⊗ f1, we have RTx1 = Rv = x1 and

RT (x0 − x1) = R(2v−u)− x1 = −(x0− x1).

Thus,
σRT (x0) = σRT (x1)∪σRT (x0 − x1) = {−1,1},

and γRT (x0) = {−1,1} contains two different elements. This contradiction shows that
x0 is not in the range of R .

Now, pick two elements u = Rx and v = Ry from the range of R so that x0, u and
v are linearly independent. Choose two linear functionals f and g in X∗ such that

f (x0) = f (u) = 1, f (v) = 0,

and
g(x0) = −g(v) = 1, g(u) = 0.

For R1 := x⊗ f + y⊗g , we have

RR1u = u, RR1x0 = u+ v and RR1(RR1x0 −u) = −v = −(RR1x0−u).

Thus, σRR1(u) = {1} and σRR1(RR1x0−u) = {−1} , and therefore

σRR1(RR1x0) = σRR1(RR1x0)∪σRR1(RR1x0) = {−1, 1}.
From this, we see that

{−1, 1} = σRR1(RR1x0) ⊂ σRR1(x0) ⊂ σRR1(RR1x0)∪{0} = {−1, 0, 1},
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and γRR1(x0) = {−1, 1} contains two different elements. This contradiction shows
that R has rank one, and establishes the implication (3) ⇒ (1) . The proof is therefore
complete. �

We collected all necessary ingredients and we therefore are ready to prove our first
main result, i.e., Theorem 2.1.

Proof of Theorem 2.1. We only need to establish the ‘only if’ part whose proof is
long and delicate. Hence, we break it into several steps. Assume that ϕ satisfies (2.2).

Step 1: We show that ϕ is injective and ϕ(0) = 0. If ϕ(A) = ϕ(B) for some
operators A and B in B(X) , we get

γAT (x0) = γϕ(A)ϕ(T )(y0) = γϕ(B)ϕ(T )(y0) = γBT (x0)
for all T ∈ B(X) . By Corollary 4.2, we have A = B and thus ϕ is injective. But since
ϕ is assumed to be surjective, the map ϕ is, in fact, bijective. For the second part of the
claim, note that for every T ∈ B(X) , we have {0} = γ0×T (x0) = γϕ(0)ϕ(T)(y0). Again
by Corollary 4.2 and the bijectivity of ϕ , we see that ϕ(0) = 0.

Step 2: We show that either

γϕ(T )(y0) = γT (x0) (4.8)

or
γϕ(T )(y0) = −γT (x0) (4.9)

for all T ∈ B(X) . To do so, we first prove that ϕ(1) = 1 or ϕ(1) = −1 . Indeed, for
every T ∈ B(X) , we have

{0} = γT (x0) = γT 2(x0) ⇐⇒ {0} = γϕ(T )2(y0) = γϕ(T )(y0),

and thus

γϕ(T )(y0) = {0} ⇐⇒ γT (x0) = {0}= γ1T (x0) ⇐⇒ γϕ(1)ϕ(T )(y0) = {0}.
By the subjectivity of ϕ and Lemma 4.1, we see that ϕ(1) = α1 for some nonzero
scalar α ∈ C . Such α must be 1 or −1 since

{1} = γ12(x0) = γϕ(1)2(y0) = γα21(y0) = {α2}.
If ϕ(1) = 1 , then for every T ∈ B(X) , we have

γT (x0) = γ1×T (x0) = γϕ(1)ϕ(T )(y0) = γ1×ϕ(T )(y0) = γϕ(T )(y0),
and (4.8) is established. If ϕ(1) = −1 , then

γT (x0) = γ1×T (x0) = γϕ(1)ϕ(T )(y0) = γ−1×ϕ(T )(y0) = −γϕ(T)(y0)
for all T ∈ B(X) . This establishes (4.9).

Step 3: The next goal is to show that ϕ is a linear map preserving rank one op-
erators in both directions. Let R ∈ B(X) be a rank one operator, and note that, since
ϕ(0) = 0 and ϕ is bijective, ϕ(R) �= 0. Moreover, for every operator S = ϕ(T ) ∈
B(Y ) , we have γRT (x0) = γϕ(R)ϕ(T )(y0) = γϕ(R)S(y0) contains at most one element. By
Theorem 4.3, we see that ϕ(R) has rank one. The converse holds since ϕ is bijective
and ϕ−1 satisfies (2.2) too, and thus ϕ preserves rank one operators in both directions.

Step 4: To establish the linearity of ϕ , let us first show that ϕ is homogenous. For
every λ ∈ C and S, T ∈ B(X) , we have

γλ ϕ(S)ϕ(T )(y0) = λ γϕ(S)ϕ(T )(y0) = λ γST (x0) = γλST (x0) = γϕ(λS)ϕ(T)(y0).



198 A. BOURHIM, T. JARI AND J. MASHREGHI

Since ϕ is bijective, Corollary 4.2 shows that ϕ(λS) = λ ϕ(S) for all S ∈ B(X) and
λ ∈ C ; as desired. Now, to show that ϕ is additive keep in mind that ϕ preserves rank
one operators in both directions. Let R ∈ B(X) be a rank one operator and T, S ∈
B(X) , and note that, by Lemma 3.2, we have

γϕ(T+S)ϕ(R)(y0) = γ(T+S)R(x0) = γTR(x0)+ γSR(x0)
= γϕ(T )ϕ(R)(y0)+ γϕ(S)ϕ(R)(y0)
= γ(

ϕ(T )+ϕ(S)
)

ϕ(R)
(y0).

By the arbitrariness of the rank one operator R , the bijectivity of ϕ and Lemma 4.1,
we deduce that

ϕ(T +S) = ϕ(T )+ ϕ(S)

for all S, T ∈ B(X) , and ϕ is linear.
Step 5: We show that ϕ takes the desired form. Since ϕ is a bijective linear map

preserving the rank one operators in both directions, either there are bijective linear
mappings A : X → Y and B : X∗ → Y ∗ such that

ϕ(x⊗ f ) = Ax⊗B f , (x ∈ X , f ∈ X∗), (4.10)

or there are bijective linear mappings C : X∗ → Y and D : X → Y ∗ such that

ϕ(x⊗ f ) = C f ⊗Dx, (x ∈ X , f ∈ X∗); (4.11)

see for instance [31, Theorem 3.3]. By Lemma 3.5, the second form can not occur,
and thus ϕ only takes the form (4.10). Since ϕ satisfies either (4.8) or (4.9), Lemma
3.3 shows that A is continuous, B = αA∗−1 and Ax0 = βy0 for some nonzero scalars
α, β ∈ C with α = ±1. After replacing A by β−1A , we may and shall assume that
Ax0 = y0 and keep in mind that ϕ(x⊗ f ) = ±A(x⊗ f )A−1 for all x ∈ X and f ∈ X∗ .
Now, for every rank one operator R ∈ B(X) and every T ∈ B(X) , we have

γ±ATA−1ϕ(R)(y0) = γATA−1ARA−1(y0) = γATRA−1(y0) = γTR(x0) = γϕ(T )ϕ(R)(y0).

By Corollary 4.2, we see that ϕ(T ) = ±ATA−1 for all T ∈ B(X) . The proof is now
complete. �

5. Proof of theorem 2.2

For the proof of Theorem 2.2 we need two new ingredients that we establish below.
The first result is a local spectral identity principle that characterizes in term of local
spectral radius of triple product of operators when two given operators are linearly
dependent. The second result characterizes rank one operators in term of the peripheral
local spectrum of triple product of operators.

THEOREM 5.1. Let x0 ∈ X be a nonzero vector, and let A, B ∈ B(X) . The fol-
lowing statements are equivalent.

1. A = αB for some nonzero scalar α ∈ C .

2. rTAT (x0) = rTBT (x0) for all operators T ∈ B(X) .
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3. rTAT (x0) = rTBT (x0) for all rank one operators T ∈ B(X) .

Proof. We only need to show that the implication (3) ⇒ (1) holds.
Assume that rTAT (x0) = rTBT (x0) for all rank one operators T ∈ B(X) , and let x

be a nonzero vector from X and f ∈ X∗ a linear functional for which f (x0) �= 0 and
f (x) �= 0. For T := x⊗ f , we have

| f (x) f (Ax)| = rTAT (x0) = rTBT (x0) = | f (x) f (Bx)|,
and thus

| f (Ax)| = | f (Bx)| (5.12)

for all linear functionals f ∈ X∗ satisfying f (x0) �= 0 and f (x) �= 0. Now, let f ∈ X∗
be a linear functional in X∗ for which f (x0) �= 0 and f (x) = 0, and note that x and x0

must be linearly independent. Pick up a linear functional g ∈ X∗ such that g(x0) = 0
and g(x) = 1, and note that ( f +λg)(x0) = f (x0) �= 0 and ( f +λg)(x) = λ �= 0 for all
nonzero scalars λ ∈ C . Thus (5.12) applied to ( f + λg) shows that

|( f + λg)(Ax)| = |( f + λg)(Bx)|
for all nonzero scalars λ ∈ C . Letting λ goes to 0, we get | f (Ax)| = | f (Bx)| for all
f ∈ X∗ for which f (x0) �= 0 and f (x) = 0. This and (5.12) show that

| f (Ax)| = | f (Bx)| (5.13)

for all linear functionals f ∈ X∗ satisfying f (x0) �= 0. Finally, let f ∈ X∗ be a linear
functional in X∗ for which f (x0) = 0 and pick up a linear functional h ∈ X∗ such that
h(x0) = 1. Since ( f + λh)(x0) = λ �= 0 for all nonzero scalars λ ∈ C , the identity
(5.13) applied to ( f + λg) shows that

|( f + λh)(Ax)| = |( f + λh)(Bx)|
for all nonzero scalars λ ∈ C . Letting λ goes to 0, we get | f (Ax)| = | f (Bx)| for all
f ∈ X∗ , and Ax and Bx are linearly dependent for all x ∈ X . Hence, A = αB for some
nonzero scalar α ∈ C ; as desired. �

In the following corollary, we exploit the above result to characterize, in terms of
local spectral radius of triple product of operators, when two given operators coincide.

COROLLARY 5.2. Let x0 ∈ X be a nonzero vector, and let A, B ∈ B(X) . The
following statements are equivalent.

1. A = B.

2. γTAT (x0) = γTBT (x0) for all operators T ∈ B(X) .

3. γTAT (x0) = γTBT (x0) for all rank one operators T ∈ B(X) .

Proof. We only need to show that (3)⇒ (1) . So, assume that γTAT (x0)= γTBT (x0)
for all rank one operators T ∈B(X) , and note that there is a nonzero scalar α ∈C such
that A = αB , by Theorem 5.1. If A = 0, then there is nothing to prove since in this case
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B = 0 too. So, assume Ax �= 0 for some vector x ∈ X , and let g be a linear functional
in X∗ such that g(x0) �= 0, g(x) �= 0 and g(Ax) �= 0. For T := x⊗g , we have

{g(Ax)g(x)} = γTAT (x0) = γTBT (x0) = {g(Bx)g(x)} = {αg(Ax)g(x)},
and α = 1. Thus A = B , and the proof is complete. �

The following result characterizes rank one operators in terms of the peripheral
local spectrum of triple product of operators.

THEOREM 5.3. Let x0 be a nonzero vector of X . For a nonzero operator R ∈
B(X) , the following are equivalent.

1. R has rank one.

2. γTRT (x0) is a singleton for all T ∈ B(X) .

Proof. Obviously, if R has rank one and T ∈ B(X) is an arbitrary operator, then
TRT has rank one too and thus γTRT (x0) is a singleton. This shows that the implication
(1) ⇒ (2) always holds.

Conversely, assume that R has rank at least two, and let us show that there exists
T ∈ B(X) such that γTRT (x0) contains at least two elements. We shall discuss two
cases.

Case 1. If there exist two vectors x1, x2 ∈ X such that x0 , Rx1 and Rx2 are
linearly independent, then there also exists x ∈ X such that x, x0, Rx1 and Rx2 are
linearly independent. Hence, there exists an operator T ∈ B(X) of a finite rank such
that Tx0 = x1 , Tx = x2 , TRx1 = x0−2x and TRx2 = −x . Then we have

TRTx = TRx2 = −x and TRTx0 = TRx1 = x0 −2x,

and consequently, TRT (x0 − x) = x0 − x . Thus,

σTRT (x0) = σTRT (x)∪σTRT (x0 − x) = {−1,1},
and γTRT (x0) = {−1,1} contains two different scalars.

Case 2. If x0, Rx1 and Rx2 are linearly dependent for all x1, x2 ∈ X , then R has
rank 2 and its image contains x0 . So, R := x1 ⊗ f1 + x2⊗ f2 and x0 = α1x1 + α2x2 for
some linearly independent vectors x1, x2 ∈ X , linearly independent linear functionals
f1, f2 ∈ X∗ and α1, α2 ∈ C . If both α1 and α2 are nonzero scalars, then take z1

and z2 in X linearly independent of x1 and x2 such that f1(z1) = α−1
1 , f1(z2) = 0,

f2(z1) = 0 and f2(z2) = −α−1
2 . Now, let x := x0− z1− z2 �= 0 and define Txi = zi and

Tzi = αizi . Note that Tx = 0, TRTz1 = z1 and TRTz2 = −z2. It follows that

σTRT (x0) = σTRT (x+ z1 + z2) = σTRT (x)∪σTRT (z1)∪σTRT (z2) = {−1,0,1},
and γTRT (x0) = {−1,1} contains two different scalars.

If α2 = 0, then x0 = α1(x1− x2)+ α1x2 and R = (x1− x2)⊗ f1 + x2⊗ ( f1 + f2) .
By what has shown above, there is T ∈ B(X) such that γTRT (x0) = {−1,1} contains
two different scalars.

The case when α1 = 0 is similar, and thus the implication (2) ⇒ (1) is estab-
lished. �



LOCAL SPECTRAL RADIUS PRESERVERS 201

We collected all required ingredients and we proceed to prove our second main
result, i.e. Theorem 2.2.

Proof of Theorem 2.2. Checking the ‘if’ part is straightforward, and we therefore
just deal with the ‘only if’ part. So assume that ϕ satisfies (2.3), and we proceed to
show that ϕ takes the desired form.

Step 1: We first show that ϕ is injective and ϕ(0) = 0. Assume that ϕ(A) = ϕ(B)
for some A, B ∈ B(X) , and note that

γTAT (x0) = γϕ(T )ϕ(A)ϕ(T)(y0) = γϕ(T )ϕ(B)ϕ(T)(y0) = γTBT (x0)
for all T ∈B(X) . By Theorem 5.1, we see that A = B and ϕ is injective and thus it is,
in fact, bijective. In a similar way, we show that ϕ(0) = 0. For every T ∈ B(X) , we
have

{0} = γT×0×T (x0) = γϕ(T )ϕ(0)ϕ(T)(y0).

Again, by Theorem 5.1 and the bijectivity of ϕ , we see that ϕ(0) = 0.
Step 2: We show that ϕ is a linear map preserving rank one operators in both

directions. Let R ∈ B(X) be a rank one operator and note that γTRT (x0) contains
exactly one element and so does γϕ(T )ϕ(R)ϕ(T)(x0) . By Theorem 5.3 and the bijectivity
of ϕ , we see that ϕ(R) is a rank one operator. Since ϕ is bijective and ϕ−1 satisfies
(2.3), we see that if ϕ(R) is a rank one operator, then so is R .

Step 3: Let us verify that ϕ is linear. Let us first show that ϕ is homogenous. For
every λ ∈ C and A, T ∈ B(X) , we have

γϕ(T )(λ ϕ(A))ϕ(T )(y0) = λ γϕ(T )ϕ(A)ϕ(T)(y0)
= λ γTAT (x0)
= γT (λA)T (x0)
= γϕ(T )ϕ(λA)ϕ(T)(y0).

Since ϕ is surjective, Theorem 5.1 shows that ϕ(λA) = λ ϕ(A) for all λ ∈ C and
A ∈ B(X) ; as desired.

To show that ϕ is additive, let R ∈ B(X) be a rank one operator and let T, S ∈
B(X) . Then, by Lemma 3.2, we have

γϕ(R)ϕ(T+S)ϕ(R)(y0) = γR(T+S)R(x0)
= γRTR(x0)+ γRSR(x0)
= γϕ(R)ϕ(T)ϕ(R)(y0)+ γϕ(R)ϕ(S)ϕ(R)(y0)
= γ

ϕ(R)
(

ϕ(T )+ϕ(S)
)

ϕ(R)
(y0).

By the arbitrariness of rank one operator R , the bijectivity of ϕ and Theorem 5.1, we
deduce that

ϕ(T +S) = ϕ(T )+ ϕ(S)

for all T, S ∈ B(X) , and ϕ is linear.
Step 4: We show that ϕ(1) = λ1 for some scalar λ ∈ C for which λ 3 = 1. Note

that, since σTn(x0) = {σT (x0)}n and rTn(x0) = {rT (x0)}n for all T ∈B(X) and n � 1,
we see that γTn(x0) = {γT (x0)}n for all T ∈ B(X) and n � 1. Therefore,

{γT (x0)}3 = γT 3(x0) = γϕ(T )3(y0) =
{

γϕ(T )(y0)
}3

(5.14)



202 A. BOURHIM, T. JARI AND J. MASHREGHI

for all TB(X) . Let R∈B(X) be an operator such that ϕ(R) = 1 , and let us first verify
that Rx and x are linearly dependent for all x ∈ X . Fix a nonzero vector x ∈ X , and
let us first show that either x and Rx are linearly dependent or x0 and Rx are linearly
dependent. Assume to the contrary that Rx is linearly independent with both x and x0 ,
and pick up a linear functional f1 ∈X∗ such that f1(Rx) = 0, f1(x) �= 0 and f1(x0) �= 0.
For T1 := x⊗ f1 , we have T1RT1x0 = 0 and

{0} = γT1RT1(x0) = γϕ(T1)ϕ(R)ϕ(T1)(y0) = γϕ(T1)2(y0).

This shows that γϕ(T1)(y0) = {0} and thus, by (5.14), we have

{0} = {γϕ(T1)(y0)}3 = {γT1(x0)}3.

This shows that γT1(x0) = {0} and thus rT1(x0) = 0. Since T1x0 = f1(x0)x and f1(x0) �=
0, we have

| f1(x)| = rT1(x) = rT1(T1x0) = rT1(x0) = 0.

This contradicts the fact that f1(x) �= 0 and shows that either x and Rx are linearly
dependent or x0 and Rx are linearly dependent. In particular, when x = x0 we note that
Rx0 and x0 are linearly independent.

Next, we may and shall assume that x and x0 are linearly independent and show
that x0 and Rx are linearly independent so that x and Rx are linearly dependent. As-
sume for the sake of contradiction that Rx = β0x0 for some scalar β0 ∈ C . If β0 = 0,
then take a linear functional f2 ∈ X∗ such that f2(x) = f2(x0) = 1 and let T2 := x⊗ f2 .
Just as above, one gets that

{0} = {γϕ(T2)(y0)}3 = {γT2(x0)}3,

and
1 = rT2(x) = rT2(T2x0) = rT2(x0) = 0.

This contradiction shows that β0 must be different from 0. Now, pick up a linear
functional f3 ∈ X∗ such that f3(x0) = 1 and f3(x) = 2β0 . For T3 := x⊗ f3 , we have
T3RT3x0 = β0x and T3RT3x = 2β 2

0 x . Thus, by Lemma 3.1, we have

{2β 2
0} = σT3RT3(x) ⊂ σT3RT3(x0) ⊂ σT3RT3(x)∪{0} = {0, 2β 2

0 }.
Hence, {2β 2

0 } = γT3RT3(x0) = γϕ(T3)2(y0) . Since ϕ(T3) has rank one, γϕ(T3)(y0) con-

tains one element and thus either γϕ(T3)(y0) = {√2β0} or γϕ(T3)(y0) = {−√
2β0} . But,

as T3x0 = x and T3x = 2β0x , we have {2β0} = σT3(x) ⊂ σT3(x0) ⊂ σT3(x)∪ {0} =
{0, 2β0} and γT3(x0) = {2β0} . By (5.14), we see that either 2β0 =

√
2β0 or 2β0 =

−√
2β0 which is impossible. This contradiction shows that x0 and Rx are linearly in-

dependent and thus x and Rx are linearly dependent. The arbitrariness of x and the
linearity of ϕ show that ϕ(1) = λ1 for some scalar λ ∈ C and by (5.14), we see that
λ 3 = 1. As λ−1ϕ satisfies (2.3) as well, we may and shall assume that ϕ(1) = 1 . Then

γT (x0) = γ1T1(x0) = γϕ(1)ϕ(T )ϕ(1)(y0) = γϕ(T )(y0) (5.15)

for all T ∈ B(X) .
Step 5: It remains to check that ϕ takes the desired form. Since ϕ is a bijective

linear map preserving rank one operators in both directions, either there are bijective
linear mappings A : X → Y and B : X∗ → Y ∗ such that

ϕ(x⊗ f ) = Ax⊗B f , (x ∈ X , f ∈ X∗), (5.16)
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or there are bijective linear mappings C : X∗ → Y and D : X → Y ∗ such that

ϕ(x⊗ f ) = C f ⊗Dx, (x ∈ X , f ∈ X∗); (5.17)

see for instance [31, Theorem 3.3]. By Lemma 3.5 and Lemma 3.3, we see that ϕ
only takes the first form such that A is continuous, B = A∗−1 and Ax0 = βy0 for some
nonzero scalar β ∈ C . After replacing A by β−1A , we may and shall assume that
Ax0 = y0 . To finish the proof, note that for every rank one operator R ∈ B(X) and
every T ∈ B(X) , we have

γϕ(R)ATA−1ϕ(R)(y0) = γARA−1ATA−1ARA−1(y0)

= γARTRA−1(y0)
= γRTR(x0)
= γϕ(R)ϕ(T)ϕ(R)(y0).

Hence, by Theorem 5.1, we see that ϕ(T ) = ATA−1 for all T ∈ B(X) . The proof is
now complete. �

6. Proof of theorem 2.3

As in the previous two cases, before giving the proof on the main result we need
some auxiliary lemmas. The first lemma is quoted from [11], and will be used in the
proof of Theorem 2.3. Recall that the surjectivity spectrum of an operator T ∈ B(X)
is defined by

σsu(T ) = {λ ∈ C : T −λ is not onto}.
It is a nonempty compact subset of σ(T ) .

LEMMA 6.1. Let T ∈ B(X) , and let x0 ∈ X be a nonzero vector. Then, for each
λ ∈σsu(T ) and every ε > 0 , there is S∈B(X) such that ‖T −S‖< ε and λ ∈σS(x0) .

Proof. See [11]. �
In [17, Lemma 2.1], Costara showed that if A ∈ B(X) and x0 is a nonzero vector

of X such that rT−A(x0)� r(T ) for all T ∈B(X) , then A = 0. A generalization of such
lemma was obtained in [7], which is similar to a local version of Zemánek’s spectral
characterization of the radical [2, Theorem 5.3.1].

LEMMA 6.2. For an operator A ∈ B(X) and a nonzero fixed vector x0 ∈ X , the
following statements are equivalent.

(i) A = 0 .

(ii) rT+A(x0) � rT (x0) for all operators T ∈ B(X) .

(iii) rT+A(x0) � r(T ) for all operators T ∈ B(X) .

(iv) r(T +A) � r(T ) for all operators T ∈ B(X) .
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(v) r(T +A) = 0 for all nilpotent operators T ∈ B(X) of at most rank one.

Proof. See [7, 17]. �
We are now in a position to prove our third main result, i.e., Theorem 2.3.

Proof of Theorem 2.3. Assume that there is a constant M > 0 such that rT (x0) �
Mr(ϕ(T )) for all T ∈B(X) , and let us prove that ϕ is injective. Suppose that ϕ(T0) =
0 for some T0 ∈ B(X) , and let us show that T0 = 0. Let T ∈ B(X) , and consider the
following function

f (λ ) := rλT0+T (x0), (λ ∈ C).

Clearly, we have

f (λ ) � f ∗(λ ) � Mr(ϕ(λT0 +T )) = Mr(ϕ(T ))

for all λ ∈ C . Here, f ∗(λ ) := limsupμ→λ f (μ), (λ ∈ C), is the upper regulariza-
tion of f . It is subharmonic (see for example [17]), and thus Liouville’s Theorem
implies that f ∗ is a constant function. It follows, in particular, that f ∗(1) = f ∗(0) =
limsupμ→0 rμT0+T (x0) . This together with the upper semicontinuity of the spectral ra-
dius entail that

rT0+T (x0) = f (1) � f ∗(1) = lim sup
μ→0

rμT0+T (x0) � lim sup
μ→0

r(μT0 +T ) � r(T ).

As T is an arbitrary operator, Lemma 6.2 implies that T0 = 0 and ϕ is injective; as
desired. Since ϕ is now a bijective map and its inverse ϕ−1 satisfies

rϕ−1(S)(x0) � Mr(S)

for all S ∈ B(Y ) . By Theorem [17, Theorem 1.2] and the open mapping theorem, we
deduce that both ϕ−1 and ϕ are continuous.

To show that ϕ is spectrally bounded from below, we argue as in [11] to show that
r(T ) � Mr(ϕ(T )) for all T ∈ B(X) . Pick up an operator and let λ ∈ σsu(T ) such that
r(T ) = |λ | . By Lemma 6.1, there is a sequence of operators (Tn)n ⊂ B(X) converging
to T such that λ ∈ σTn(x0) for all n . Since ϕ is continuous and the spectral radius is
upper semi-continuous, we have

Mr(ϕ(T )) � M limsup
n→∞

r(ϕ(Tn)) � limsup
n→∞

rTn(x0) � |λ | = r(T ),

and ϕ is spectrally bounded from below. �

Finally, we turn our attention to some consequences of Theorem 2.3. The first one
was established in [8] by Bourhim under the extra condition of the continuity.

COROLLARY 6.3. Let H and K be two infinite-dimesional complex Hilbert
spaces. Let h0 ∈ H and k0 ∈ K be fixed nonzero elements. For a linear map ϕ from
L (H ) onto L (K ) , the following are equivalent.

(i) There are two constants m, M > 0 such that mrT (h0) � rϕ(T )(k0) � MrT (h0) for
all T ∈ L (H ) .

(ii) There is a constant M > 0 such that rϕ(T )(k0) � MrT (h0) for all T ∈ L (H ) .



LOCAL SPECTRAL RADIUS PRESERVERS 205

(iii) There is a constant m > 0 such that mrT (h0) � rϕ(T)(k0) for all T ∈ L (H ) .

(iv) There is a bijection A ∈ L (H ,K ) and a nonzero scalar α such that Ah0 = k0

and ϕ(T ) = αATA−1 for all T ∈ L (H ) .

Proof. Combine [8, Corollary 5.5], [17, Theorem 1.2] and Theorem 2.3. �
Let T ∈B(X) be a bounded linear operator and x∈ X a fixed vector. The analytic

residuum of T , denoted by ℜ(T ) , is the largest open set U ⊆C for which the equation
(T −λ )ϕ(λ ) = 0, (λ ∈U), has no nontrivial analytic solution ϕ on U . Its closure is
denoted by ST , and the set ST ∪σT (x) is also called the local spectrum of T at x and
is denoted by σx(T ) instead of σT (x) . Note that, unlike the standard local spectrum,
σx(T ) is a nonempty closed set if x �= 0, and that

ΓT (x) := max{|λ | : λ ∈ σT (x)} � rT (x) � max{|λ | : λ ∈ σx(T )} � r(T ); (6.18)

see for instance [24, II. 14. Theorem 12]. If, however, T has the SVEP, then obviously
the left three local spectral radii coincide.

The following result describes surjective linear maps ϕ on B(X) that preserve the
above local spectrum at a nonzero fixed vector of X . Its proof is on the straightforward
side, and will be included here for the sake of completeness.

COROLLARY 6.4. Let ϕ : B(X) → B(Y ) be a surjective linear map, and let
x0 ∈ X and y0 ∈ Y be nonzero vectors. The following statements are equivalent.

(i) σx0(T ) = σy0(ϕ(T )) for all T ∈ B(X) .

(ii) σx0(T ) ⊂ σy0(ϕ(T )) for all T ∈ B(X) .

(iii) σx0(T ) ⊃ σy0(ϕ(T )) for all T ∈ B(X) .

(iv) There is a bijection A ∈ B(X ,Y ) such that Ax0 = y0 and ϕ(T ) = ATA−1 for all
T ∈ B(X) .

Proof. Clearly, (iv)⇒ (i)⇒ (ii) and (iv)⇒ (i)⇒ (iii) . So, we only need to show
that (ii) ⇒ (iv) and (iii) ⇒ (iv) .

Assume that σx0(T ) ⊃ σy0(ϕ(T )) for all T ∈B(X) , and note that it follows from
(6.18) that

rϕ(T )(y0) � max{|λ | : λ ∈ σy0(ϕ(T ))} � max{|λ | : λ ∈ σx0(T )} � r(T )

for all T ∈ B(X) . By [17, Theorem 1.2], ϕ is a continuous map. Now, let us prove
that

σ(ϕ(T )) ⊂ σ(T ) (6.19)

for all T ∈B(X) . Since Sϕ(T ) ⊂ σy0(ϕ(T ))⊂ σx0(T )⊂ σ(T ) and σ(ϕ(T )) = Sϕ(T )∪
σsu(ϕ(T )) for all T ∈ B(X) , we only need to show that σsu(ϕ(T )) ⊂ σ(T ) for all
T ∈ B(X) . Indeed, given an operator T ∈ B(X) and λ ∈ σsu(ϕ(T )) , by Lemma
6.1, there is a sequence (Sn)n of operators in B(Y ) such that ‖Sn−ϕ(T )‖ < n−1 and
λ ∈ σSn(y0) ⊂ σy0(Sn) . Applying the open mapping theorem, one can find a sequence
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(Tn)n ⊂B(X) converging to T such that ϕ(Tn) = Sn for all n , and thus λ ∈ σx0(Tn)⊂
σ(Tn) for all n . Hence, Tn−λ is not invertible for all n and so is limn(Tn−λ ) = T −λ
since the collection of all noninvertible operators in B(X) is closed. It follows that
σsu(ϕ(T )) ⊂ σ(T ) for all T ∈ B(X) , and thus (6.19) is established. Now, to show
that ϕ is injective it suffices, in view of [30, Theorem 3.4], to show that ϕ does not
vanish at an operator of rank one. In fact, we shall show that ϕ(x0⊗ f ) �= 0 for all linear
functionals f ∈X∗ for which f (x0)= 1. Assume for the sake of contradiction that there
is a linear functional f ∈ X∗ such that f (x0) = 1 and ϕ(x0 ⊗ f ) = 0. By (6.19), we
have σ(ϕ(1))⊂ σ(1) = {1} , and thus ϕ(1) has the SVEP and σ(ϕ(1)) = σϕ(1)(y0) =
σy0(ϕ(1)) = {1} . We also have (1+x0⊗ f )(x0) = 2x0 and ϕ(1+x0⊗ f ) = ϕ(1) , and
thus

{1} = σy0(ϕ(1)) = σy0(ϕ(1+ x0⊗ f )) ⊂ σx0(1+ x0⊗ f ) = {2}.
This contradiction shows that ϕ is injective and thus [30, Theorem 3.4] implies that
either ϕ(T ) = ATA−1, (T ∈ B(X)), for some isomorphism A ∈ B(X ,Y ) , or ϕ(T ) =
BT ∗B−1, (T ∈ B(X)), for some isomorphism B ∈ B(X∗,Y ) . Now, with the proof of
Lemma 3.3 and Lemma 3.5, one can show that ϕ takes only the first form with A can
be supposed to satisfy Ax0 = y0 . This establishes the implication (iii) ⇒ (iv) .

Assume that σx0(T ) ⊂ σy0(ϕ(T )) for all T ∈B(X) , and note that it follows from
(6.18) that

rT (x0) � max{|λ | : λ ∈ σx0(T )} � max{|λ | : λ ∈ σy0(ϕ(T ))} � r(ϕ(T ))
for all T ∈ B(X) . By Theorem 2.3, ϕ is a continuous bijective map and thus the
implication (iii) ⇒ (iv) applied to ϕ−1 shows that the implication (ii) ⇒ (iv) always
holds too. �

7. Comments and open problems

In this section, we make some remarks and comments on nonlinear preservers of
local spectral radius and discuss some related problems. First, we would like to point
out that the restriction to infinite-dimensional Banach spaces in the statement of our
main results is just for the sake of simplicity. Second, note that the local spectral radius
of an operator T ∈ B(X) at a vector x ∈ X could be defined by

ΓT (x) := max{|z| : z ∈ σT (x)}
with the convention that max /0 = −∞ , and the peripheral local spectrum of T at x
could be given by

ΛT (x) := {λ ∈ σT (x) : |λ | = ΓT (x)}.
Of course, ΛT (x) = γT (x) and rT (x) = ΓT (x) when T has the SVEP. Here, we would
like to point out that our above results and their proofs remain valid when replacing
γT (x0) by ΛT (x0) and rT (x0) by ΓT (x0) .

In the sequel, let x0 ∈ X and y0 ∈ Y be two nonzero vectors. Our study can
be viewed as a step towards the study of some further challenging problems on local
spectral radius preservers. We mention two major open problems. First, which maps ϕ
from B(X) onto B(Y ) satisfy

rϕ(T )ϕ(S)(y0) = rTS(x0), (T, S ∈ B(X))? (7.20)
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Second, which maps ϕ from B(X) onto B(Y ) satisfy

rϕ(T )ϕ(S)ϕ(T )(y0) = rTST (x0), (T, S ∈ B(X))? (7.21)

Similar questions can be asked when replacing rT (x0) by ΓT (x0) .
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[12] M. BREŠAR AND P. ŠEMRL, Linear maps preserving the spectral radius, J. Funct. Anal., 142, No. 2,
(1996) 360–368.

[13] J. T. CHAN, C. K. LI AND N. S. SZE, Mappings preserving spectra of products of matrices, Proc.
Amer. Math. Soc., 135 (2007), 977–986.

[14] C. COSTARA, Local spectrum linear preservers at non-fixed vectors, Linear Algebra and its Applica-
tions, 457, No. 15, (2014) 154–161.

[15] C. COSTARA, Surjective maps on matrices preserving the local spectral radius distance, Linear and
Multilinear Algebra, 62, No. 7, (2014) 988–994.

[16] C. COSTARA, Linear maps preserving operators of local spectral radius zero, Integral equations and
Operator Theory, 73, No. 1, (2012) 7–16.

[17] C. COSTARA, Automatic continuity for linear surjective mappings decreasing the local spectral radius
at some fixed vector, Arch. Math., 95, No. 6, (2010) 567–573.

[18] J. L. CUI AND J. C. HOU, Maps leaving functional values of operator products invariant, Linear
Algebra and its Applications, 428 (2008) 1649–1663.

[19] M. ECH-CHERIF EL KETTANI AND H. BENBOUZIANE, Additive maps preserving operators of inner
local spectral radius zero, Rendiconti del Circolo Matematico di Palermo (2), 63, No. 2, (2014) 311–
316.
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