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Abstract. In this paper, we investigate the summation of fractional powers of matrices over finite
fields. More specifically, we show how a fractional power of a matrix of a linear transform over
a finite field can be obtained from the linear combination of some specific powers of the same
matrix. We use the developed theory to construct matrices related to fractional Fourier and cosine
transforms over finite fields.

1. Introduction

Fractional transforms have been widely investigated in the last decades. These
mathematical tools, which can be viewed as generalizations of the corresponding or-
dinary transforms, have been successfully applied in several areas, such as signal pro-
cessing, optics, cryptography and communications [10, 5, 8]. Recently, fractional trans-
forms over finite fields were introduced. In [21], a fractional number-theoretic trans-
form based on complete generalized Legendre sequences over finite fields was pro-
posed. In [7], a finite field fractional Fourier transform based on a matrix commuting
with the finite field Fourier transform matrix was introduced.

In this paper, we investigate the summation of fractional powers of matrices over
finite fields. More specifically, we establish in the finite field scenario the ideas pro-
posed in [6] and [9], where new methods for computing fractional powers of a matrix
with eigenstructure related to that of the discrete Fourier transform matrix are given.
Such methods use a linear combination of some specific fractional powers of a matrix
to obtain any of its fractional powers. In the case of the fractional Fourier transform,
for instance, this makes unnecessary the eigendecomposition-based computation of the
new fractional kernel whenever the fractional parameter changes; we only need to com-
pute the coefficients of the linear combination, which can be obtained from an inverse
Fourier transform operation.

Here, the validity of the above described principles in the finite field context is
demonstrated. With this purpose, we consider the fractional Fourier transform over
finite fields defined in [7]. Additionally, we introduce a new theorem, which is spe-
cially devoted to matrices with entries in a finite field and whose eigenvalues are all
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distinct. We show that fractional powers of matrices with the mentioned property can
be computed by a linear combination of its integer powers. This method is applied in
the computation of fractional powers of a finite field cosine transform matrix [13].

This paper is organized as follows. In Section 2, we present some concepts related
to periodic matrices and review some facts and definitions related to Fourier and cosine
transforms over finite fields. We also discuss aspects related to the eigenstructures of
the matrices of such transforms. In Section 3, we introduce the main results related
to the summation of fractional powers of matrices over finite fields and present some
illustrative examples. The paper closes with some concluding remarks in Section 4.

2. Preliminaries

In this section, we present some theoretical concepts related to periodic matri-
ces and transforms over finite fields. Particularly, we review some aspects related to
trigonometry in finite fields. Subsequently, we present definitions for Fourier and co-
sine transforms over finite fields as well as some results concerning the eigenstructures
of the corresponding transform matrices.

2.1. Periodic matrices over finite fields

Periodic matrices over finite fields perform an important role in the investigation
carried out in this paper. Although the study of the periodicity is more common for
matrices whose entries are complex numbers [3, 4], in what follows, we give a suitable
finite field extension of the main concepts related to this topic.

DEFINITION 1. A matrix M with entries in a finite field is periodic if Mr+1 = M
for some integer r . If r = P is the least positive integer such that MP+1 = M , then P
is called the period of M .

Differently from matrices whose entries are real or complex numbers, all non-
singular matrices over a finite field are periodic. This can be easily concluded using
some facts from group theory. Particularly, let us consider the general linear group
GL(N,q)1. Since GL(N,q) is finite, its elements have finite multiplicative orders, i. e.,
periods. In this way, restricting our investigation to nonsingular matrices over finite
fields, we can define a P -periodic matrix M as the one which satisfies MP = I , the
identity matrix. In the following proposition, a general characterization regarding the
eigenvalues of such matrices is given.

PROPOSITION 1. Let M be a P-periodic nonsingular matrix over a finite field
and λ be an eigenvalue of M . Then, λ ∈U = {ζ k,k = 0,1, . . . ,P−1} , where ζ has
multiplicative order ord(ζ ) = P.

1The general linear group GL(N,q) is the set of N×N invertible matrices with entries from GF(q) , with
matrix multiplication as the group operation; GF(q) denotes the finite field with q = pm elements ( p is a
prime and m is a positive integer). Fundamentals of groups and fields can be found in [1] and [2].
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Proof. Let λ and v be an eigenvalue and the corresponding eigenvector of M ,
respectively. From Mv = λv , one has MPv = λ Pv . Hence, v = λ Pv , which implies
λ P = 1. The solution set of this equation is the one given in the proposition. �

2.2. Trigonometry over finite fields

The fundamentals of trigonometry over finite fields were introduced in [18], as a
requirement for defining the Hartley transform over finite fields. In what follows, we
review some important definitions and propositions concerning this theme.

DEFINITION 2. The set of Gaussian integers over GF(p) is the set GI(p) = {c+
d j,c,d ∈ GF(p)} , where p is a prime such that j2 is a quadratic nonresidue over
GF(p) .

The “complex” structure GI(p) , whose elements ζ = c + d j have a “real” part
c = ℜ{ζ} and an “imaginary” part d = ℑ{ζ} , is isomorphic to the extension field
GF(p2) . Although GI(p) can be constructed for any prime p , afterward in this paper,
we consider p ≡ 3 (mod 4) and use the quadratic nonresidue j2 = −1, which provides
an interesting analogy with the usual complex numbers.

DEFINITION 3. The unimodular set of GI(p) , denoted by G1,p , is the set of ele-
ments ζ = (c+d j) ∈ GI(p) , such that c2 +d2 ≡ 1 (mod p) .

PROPOSITION 2. The structure 〈G1,p,•〉 is a cyclic group of order (p+1) .

The proof of Proposition 2 is given in [7]. Since the structure 〈G1,p,•〉 is iso-
morphic to the group of the (p + 1)-th complex roots of the unit, we may introduce
a graphic representation of unimodular elements over a finite field. This consists in
distributing such elements along a unit circle over the corresponding field, according to
their multiplicative orders.

EXAMPLE 1. In this illustrative example, we consider the unimodular set of GI(31) .

26+10 j

1-1 ≡ 30

j

-j ≡ 30 j

Multiplicative
orders

1
2
4
8
16
32

Figure 1: Representation of the elements of G1,31 along the unit circle over GI(31) .
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In Figure 1, we represent the 32 elements of G1,31 along the unit circle over GI(31) .
According to this representation, all unimodular elements are cyclically generated by
the element 26+ 10 j , whose multiplicative order is 32. The multiplicative orders of
all other unimodular elements are also given.

DEFINITION 4. Let ζ ∈ GI(p) be an element with multiplicative order denoted
by ord(ζ ) . The finite field cosine and sine of the arc related to ζ are computed modulo
p , respectively, as

cosζ (x) :=
ζ x + ζ−x

2
(1)

and

sinζ (x) :=
ζ x − ζ−x

2 j
, (2)

x = 0,1, . . . ,ord(ζ )−1.

Trigonometric functions over finite fields hold properties similar to those of the
standard real-valued ones, such as symmetry and the addition of arcs, for instance.
If such functions are computed with respect to a unimodular element, other interest-
ing properties are verified. If ζ ∈ G1,p , for example, one has cosζ (x) = ℜ{ζ x} and
sinζ (x) = ℑ{ζ x} [18, 7].

2.3. The finite field Fourier transform

In this section, we give a definition for the finite field Fourier transform (FFFT)
and present the main results related to the eigenstructure of its matrix [17, 12].

DEFINITION 5. The finite field Fourier transform of a vector x = (xi) , xi ∈GI(p) ,
i = 0,1, . . . ,N − 1, is a vector X = (Xk) , Xk ∈ GI(p) , k = 0,1, . . . ,N − 1, the compo-
nents of which are

Xk :=
1√
N

N−1

∑
i=0

xiζ−ki,

where ζ ∈ GI(p) has multiplicative order N . The inverse transform is given by

xi =
1√
N

N−1

∑
k=0

Xkζ ki.

The relationship between x and X can be expressed by the matrix equation

X = F ·x, (3)

where F is the transform matrix, whose element in the (k+1)-th row and the (i+1)-th
column is given by Fk,i = 1√

N
ζ−ki .

PROPOSITION 3. The period of F is 4 .

PROPOSITION 4. The F matrix has, at most, four distinct eigenvalues, namely
{1,−1,

√−1,−√−1} , whose multiplicities are given in Table 1.
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Table 1: Multiplicities of the eigenvalues of an N×N finite field Fourier transform matrix [17].

N Mult. 1 Mult. −1 Mult.
√−1 Mult. −√−1

4n n+1 n n−1 n
4n+1 n+1 n n n
4n+2 n+1 n+1 n n
4n+3 n+1 n+1 n n+1

2.4. The finite field cosine transform

In [13], the familiy of finite field trigonometric transforms was introduced. This
family includes eight types of cosine (FFCT) and eight types of sine (FFST) transforms
over finite fields. Several theoretical aspects of these transforms have been investigated
and applications for them have been proposed [20, 14]. FFCT and FFST of types 1
and 4 are closely related to the FFFT. On the other hand, FFCT and FFST of types 2
and 3 have some remarkable peculiarities, specially regarding the eigenstructure of the
respective transform matrices [12]. In what follows, we present the definition of the
FFCT of type 2 and discuss some of its properties.

DEFINITION 6. The finite field cosine transform of a vector x = (xi) , xi ∈GI(p) ,
i = 0,1, . . . ,N − 1, is a vector X = (Xk) , Xk ∈ GI(p) , k = 0,1, . . . ,N − 1, the compo-
nents of which are

Xk :=

√
2
N

N−1

∑
i=0

βkxi cosζ

(
k

(
i+

1
2

))
, (4)

where ζ ∈ GI(p) has multiplicative order 2N , and

βk =

{
1√
2
(mod p), k = 0,

1, k = 1,2, . . . ,N−1.

The inverse transform is given by

xi =

√
2
N

N−1

∑
k=0

βkXk cosζ

(
k

(
i+

1
2

))
.

Analogously to the FFFT, the computation of an FFCT can be expressed as

X = C ·x,

where C is the FFCT matrix, whose components are computed from Equation (4). We
observe that C−1 = CT , where {·}T denotes the transposition of the argument.

PROPOSITION 5. Let C be a diagonalizable FFCT matrix. The period of C is
the least common multiple ( lcm ) of the multiplicative orders of its eigenvalues.
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Proof. Let C be the N×N FFCT matrix and λ1,λ2, . . . ,λN its eigenvalues. Using
the fact that C is diagonalizable, one has

C = VΛΛΛΛCV−1, (5)

where V is a matrix whose columns are N linearly independent eigenvectors of C and
ΛΛΛΛC is a diagonal matrix whose entries are λ1,λ2, . . . ,λN . Since

Cr = VΛΛΛΛr
CV−1, (6)

where r is an integer, the period P , such that CP = I , is the least positive integer
satisfying ΛΛΛΛP

C = I . Such a condition is achieved if the P-th power of all eigenvalues of
C equals 1. Therefore, P = lcm(λ1,λ2, . . . ,λN) . �

Some aspects regarding the eigenstructure of the FFCT of type 2 were investigated
in [12], leading to a conjecture, which follows a line analogous to that developed for
the real-valued discrete cosine transform of type 2 [19]: all eigenvalues of the FFCT
matrix of type 2 are distinct. If we take this conjecture into account, every C matrix is
diagonalizable and, therefore, its period can be evaluated from the spectral expansion
given in Equation (6).

2.5. Fractional Fourier and cosine transforms over finite fields

Using the procedure introduced in [7], the N×N matrix of the fractional Fourier
transform over a finite field (GFrFT) can be computed from the spectral expansion

Fa = VΛΛΛΛa
FVT . (7)

In Equation (7), a represents the fractional parameter, which is actually a rational num-
ber; the matrix V has in its columns N orthonormal eigenvectors v of F . In this
case, such eigenvectors are Hermite-Gaussian vectors over finite fields derived from a
commuting matrix based approach [7, 16]; ΛΛΛΛa

F is a diagonal matrix whose entries are
(− j)ka , k = 0,1, . . . ,2

⌊
N
2

⌋
(k �= N−1, if N is even). The GFrFT of a vector x is then

computed as
Xa = Fax.

Fractional cosine and sine transform matrices of types 1 and 4 over finite fields can be
obtained using spectral expansions closely related to that given in Equation (7) [11].

The matrix of the fractional FFCT considered in this paper can be obtained from
the spectral expansion given in Equation (6), replacing the integer r by the fractional
parameter a . However, according to our previous discussion and differently from the
matrix F , the eigenstructure of C does not follow any systematic behavior. This makes
the computation of its eigenvalues and the subsequent construction of the eigenvector
set to be used in its spectral expansion a laborious work. The eigenvalues of C , for
instance, can lie in larger extension fields; besides having components also in extension
fields, the corresponding eigenvectors do not have any symmetry2. As we will show
in Section 3, the method proposed in this paper allows the computation of fractional
powers of C , avoiding the mentioned constraints.

2The eigenvectors of F have even or odd symmetry. This makes its construction simpler.
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3. Summation of fractional powers of matrices over finite fields

3.1. GFrFT computation by linear combination of GFrFTs

In [6], a procedure for computing a discrete fractional Fourier transform from a
linear combination of some discrete fractional Fourier transforms with specific frac-
tional parameters is given. In Propositions 6 and 7, we establish such a procedure for
finite fields.

PROPOSITION 6. Let x = (xi) , xi ∈ GI(p) , i = 0,1, . . . ,N − 1 , be a vector with
odd length N . The GFrFT of x , with fractional parameter a, can be computed as

Xa =
N−1

∑
i=0

Bi,aXib,

where the coefficients Bi,a are

Bi,a = F−1
(

1√
N

j−ka
)

k=0,...,N−1
=

1
N

1− jN(ib−a)

1− jib−a , i = 0, . . . ,N−1,

and b = 4/N .

Proof. Computing the FFFT of Bi,a , we obtain

j−ka =
N−1

∑
i=0

Bi,aζ−ik,

where ord(ζ ) = N . Expanding Equation (7) and replacing (− j)ka = j−ka by the above
expression, one computes the GFrFT of x as

Xa =
N−1

∑
k=0

(
N−1

∑
i=0

Bi,aζ−ik

)
vkv

T
k x

=
N−1

∑
i=0

Bi,a

(
N−1

∑
k=0

ζ−ikvkv
T
k x

)
.

Since ζN = j4 = 1, ζ can be taken as ζ = jb , where b = 4
N . Therefore, the last

equation becomes

Xa =
N−1

∑
i=0

Bi,a

(
N−1

∑
k=0

j−kibvkv
T
k x

)
=

N−1

∑
i=0

Bi,aXib. �

PROPOSITION 7. Let x = (xi) , xi ∈ GI(p) , i = 0,1, . . . ,N − 1 , be a vector with
even length N . The GFrFT of x , with fractional parameter a, can be computed as

Xa =
1

N +1

N

∑
i=0

Bi,aXib,
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where the coefficients Bi,a are

Bi,a = F−1
(

1√
N +1

j−ka
)

k=0,...,N−1
=

1
N +1

1− j(N+1)(ib−a)

1− jib−a , i = 0, . . . ,N,

and b = 4/(N +1) .

The proof of Proposition 7 is analogous to that of Proposition 6.

3.2. Linear combination of fractional powers of matrices

In [9], the procedure proposed in [6] was refined. A method for computing frac-
tional powers of matrices whose periods are different from 4 and whose eigestructure
is related to that of the FFFT was proposed. In the following theorem, this method is
extended to the finite field scenario.

THEOREM 1. Let L be an N ×N matrix, N odd, with period P and whose
spectral expansion is written as L = VΛΛΛΛV−1 . Let b = P/N and K = Lb = LP/N =
VΛΛΛΛP/NV−1 . Then, we compute

La = Ka/b =
N−1

∑
i=0

Ci,a/bK
i, (8)

where

Ci,a = F−1
(

1√
N

ζ−ka
)

k=0,...,N−1
=

1
N

1−1i−a

1− ζ i−a (9)

and ord(ζ ) = N . Particularly, when P = N , one has

La =
N−1

∑
i=0

Ci,aKi.

Proof. The spectral expansion of K is written as

K = VΛΛΛΛP/NVT =
N−1

∑
k=0

α− P
N kvkv

T
k

and, therefore, one has

Ka/b =
N−1

∑
k=0

α− P
N k a

b vkv
T
k .

Let us define

K̂a/b :=
N−1

∑
i=0

Ci,a/bK
i,
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which can be rewritten as

K̂a/b =
N−1

∑
i=0

Ci,a/b

N−1

∑
k=0

α− P
N kivkv

T
k

=
N−1

∑
k=0

(
N−1

∑
i=0

Ci,a/bα− P
N ki

)
vkv

T
k

=
N−1

∑
k=0

(
N−1

∑
i=0

Ci,a/bζ−ki

)
vkv

T
k .

The expression in parenthesis in the last equation corresponds to F
(
Ci,a/b

)
i=0,...,N−1

=

ζ−k a
b . Then,

K̂a/b =
N−1

∑
k=0

ζ−k a
b vkv

T
k = Ka/b = La. �

We remark that, in Equation (9), if the fractional parameter is written as a = a1/a2 ,
one has

1i−a = 1
1− a1

a2 =
(

1
1
a2

)a2−a1

;

we first compute (11/a2) as the a2 -th root of largest multiplicative order of 1 and then
we calculate its (a2−a1)-th power. In GI(31) , for example, it would be (11/32) = 26+
10 j (see Example 1). The same procedure is applied to the computation of fractional
powers of ζ . If N is even, we just have to replace N by N + 1 in the statement of
Theorem 1. The proof is also analogous to that developed above. In what follows, we
present an illustrative example of the application of Theorem 1.

EXAMPLE 2. Let us consider an FFFT over GI(31) with length N = 5. We use
the element ζ = 2, whose multiplicative order is ord(ζ ) = 5. The transform matrix is

F =

⎡⎢⎢⎢⎢⎣
26 26 26 26 26
26 13 22 11 21
26 22 21 13 11
26 11 13 21 22
26 21 11 22 13

⎤⎥⎥⎥⎥⎦ .

In order to compute fractional powers of F , according to Theorem 1, we must construct
the matrix K = F4/5 . Using the procedure given in [7], we obtain

K = F4/5 =

⎡⎢⎢⎢⎢⎣
2 21 26 26 21
21 1+7 j 14+2 j 14+29 j 22+24 j
26 14+2 j 29+24 j 19+7 j 14+29 j
26 14+29 j 19+7 j 29+24 j 14+2 j
21 22+24 j 14+29 j 14+2 j 1+7 j

⎤⎥⎥⎥⎥⎦ .
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If we want to compute F1/2 , for instance, we have a/b= 5/8 and Equation (9) becomes

Ci,5/8 =
1
5

1−1i−5/8

1− ζ i−5/8
.

The 8-th root of 1 is 27+ 27 j . Additionally, since ζ = 2, its 8-th root is 16+ 16 j .
Therefore, using 1/5 ≡ 25 (mod 31) , the last equation can be rewritten as

Ci,5/8 = 25
1− (27+4 j)8i−5

1− (16+16 j)8i−5 .

Finally, using Equation (8), we obtain

F1/2 =

⎡⎢⎢⎢⎢⎣
7+28 j 6+13 j 27+13 j 27+13 j 6+13 j
6+13 j 3+3 j 12+25 j 12+7 j 3+29 j
27+13 j 12+25 j 9+2 j 9+30 j 12+7 j
27+13 j 12+7 j 9+30 j 9+2 j 12+25 j
6+13 j 3+29 j 12+7 j 12+25 j 3+3 j

⎤⎥⎥⎥⎥⎦ .

It is important to remark that, using the additivity of the fractional parameter a ,
Equation (8) can be rewritten as

La =
N−1

∑
i=0

Ci,a/bK
i

= CN−1,a/bK
N−1 +CN−2,a/bK

N−2 + . . .+C1,a/bK+C0,a/bI

= K(. . .(K(K(CN−1,a/bK+CN−2,a/bI)+CN−3,a/bI)+CN−4,a/bI)+ . . .)+C0,a/bI.

The last equation indicates that La can be computed, according to Theorem 1, from the
matrix K = Lb uniquely. This means that Equation (8) can be efficiently evaluated and
implemented using regular architectures.

Although Theorem 1 also works for P > N , in practical applications, one usually
has the length of the signal greater than the period of the matrix (N > P) [9]. In fact, this
is the case when the Fourier (P = 4) and the sine and cosine of types 1 and 4 (P = 2)
transform matrices over finite fields are considered. However, for the finite field cosine
transform considered in this paper (type 2), this is not true. Such a behavior is explained
by the eigenstructure of the C matrix, whose main aspects were discussed earlier. Since
the eigenvalues of C are also not related to those of F , Theorem 1 can not be used to
compute Ca . These particularities have inspired Theorem 2, which can be applied to
the computation of fractional powers of any periodic matrix whose eigenvalues are all
distinct; this is done by combining integer powers of the original matrix and does not
require the precomputation of one of its fractional powers.

THEOREM 2. Let L be an N ×N matrix, with period P and whose eigenvalues
λ ∈U = {ζ k,k = 0,1, . . . ,P− 1} , where ζ has multiplicative order ord(ζ ) = P, are
all distinct. Then, we compute

La =
P−1

∑
i=0

Ci,aLi. (10)
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Proof. Let us denote by {λ(0),λ(1), . . . ,λ(N−1)} the eigenvalues of L . We con-
struct the matrix

L̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
L

λ(N)
. . .

λ(P−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

such that {λ0,λ1, . . . ,λ(P−1)} = U . From Theorem 1, one has

L̃a =
P−1

∑
i=0

Ci,aL̃i. (11)

Since the a -th power of L̃ is given by

L̃a =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
La

λ a
(N)

. . .
λ a

(P−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

directly from Equation (11) we derive Equation (10). �
In what follows, we show an illustrative example where a fractional power of the

C matrix is computed from a linear combination of its integer powers.

EXAMPLE 3. Let us consider an FFCT over GI(31) with length N = 4. We use
the unimodular element ζ = 4+ 27 j , whose multiplicative order is ord(ζ ) = 8. The
transform matrix is

C =

⎡⎢⎢⎣
16 16 16 16
28 10 21 3
16 15 15 16
10 3 28 21

⎤⎥⎥⎦
and its eigenvalues are λ(0) = 7+ 13 j , λ(1) = 7+ 18 j , λ(2) = 24+ 13 j and λ(3) =
24 + 18 j . The period of C is P = 16. Therefore, in order to compute C1/2 from
Theorem 2, we choose γ = 7 + 13 j , such that ord(γ) = 16, and use Equation (9) to
evaluate

Ci,1/2 =
1
16

1−1i−1/2

1− γ i−1/2
.

Using 1/16≡ 2 (mod 31) , 11/2 = −1 and γ1/2 = 2+11 j , we rewrite the last equation
as

Ci,1/2 = 2
1− (−1)2i−1

1− (2+11 j)2i−1 .
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Finally, using Equation (10), we obtain

C1/2 =

⎡⎢⎢⎣
5 j 1 j 22 j 24 j
29 j 15 j 24 j 23 j
28 j 9 j 17 j 26 j
5 j 29 j 4 j 7 j

⎤⎥⎥⎦ .

4. Concluding remarks

In this paper, we have investigated the computation of fractional powers of a ma-
trix over a finite field from a linear combination of some of its powers. The main
results, which are presented in Section 3, are focused on the computation of fractional
Fourier and trigonometric transforms over finite fields. In this sense, two cases can be
distinguished. In the first one, which is summarized by Theorem 1, we establish in the
finite field scenario a method for computing fractional powers of matrices whose eigen-
structure is related to that of the F matrix. In the second one, which is represented
by Theorem 2, we give a method for computing fractional powers of matrices whose
eigenvalues are all distinct.

The methods we have mentioned allow the computation of a finite field fractional
transform with a new fractional parameter a without the need of recurrent evaluations
of spectral expansions such as that given by Equation (7). This provides some computa-
tional advantages, which become relevant specially in applications involving multiple-
parameter fractional transforms. This is the case of some encryption schemes, such as
that proposed in [5], where discrete fractional transforms are employed. In [15], an im-
age encryption scheme based on the same premise, but using the GFrFT, is proposed.
This scheme can be implemented using the method given in Theorem 1.

Regarding Theorem 2, it is clear that it may become unpractical as P increases.
However, once it can be applied to any periodic matrix whose eigenvalues are all dis-
tinct, there may be other specific classes of matrices (different from those related to
the cosine transform of type 2) whose fractional powers can be efficiently computed
using the referred method. This includes matrices whose entries are complex numbers,
to which the theorem can be applied after some slight adjustments. In fact, there are
several areas to which the study of periodic matrices is relevant [3, 4]. Currently, we
have carried out further investigations related to this topic.
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