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Abstract. For a particular family of long-range potentials V , we prove that the eigenvalues of the
indefinite Sturm–Liouville operator A = sign(x)(−Δ+V(x)) accumulate to zero asymptotically
along specific curves in the complex plane. Additionally, we relate the asymptotics of complex
eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.

1. Introduction

Given a real-valued potential V such that

V ∈ L∞(R), lim
x→±∞

V (x) = 0, limsup
x→±∞

x2V (x) < −1
4
, (1)

consider a one-dimensional Schrödinger operator in L2(R)

T := TV := − d2

dx2 +V(x),

Dom(T ) :=
{

f ∈ L2(R) | f , f ′ ∈ AC(R), T f ∈ L2(R)
}

.

(2)

It is well known that in this case the spectrum Spec(T ) is bounded from below, the
essential spectrum Specess(T ) = [0,∞) , and the negative spectrum Spec(T )∩ (−∞,0)
consists of eigenvalues accumulating to zero from below.

Let J := sign(x) be the multiplication operator by ±1 on R± . In what follows we
consider the point spectrum of the operator

A := AV := JTV , Dom(A) = Dom(T ). (3)
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This operator is not self-adjoint (and not even symmetric) on L2(R) , and its spectrum
need not therefore be real. However, as J∗ = J−1 = J , A can be treated as a self-adjoint
operator in the Krein space (L2(R), [·, ·]) with indefinite inner product

[ f ,g] := 〈J f ,g〉L2(R) =
∫

R

f (x)g(x) sign(x)dx

or equivalently as a J -self-adjoint operator [1]. Operators of type (3) have been studied
both in the framework of operator pencils, cf. [9, 22], and of indefinite Sturm–Liouville
problems [4, 6, 19, 21].

In both settings the literature is extensive, starting mostly with Soviet contributions
in the 1960s, including those by Krein, Langer, Gohberg, Pontryagin and Shkalikov. We
refer to [22, 21] for reviews and bibliographies. In particular due to its many applica-
tions, for example in control theory, mathematical physics and mechanics, the field is
still very active, with recent works on the theoretical,as well as numerical, aspects, (see
e.g. [9, 10, 14, 27] and references therein).

In the special case of indefinite Sturm–Liouville operators, it is well known that
for positive potentials, V � 0, the spectrum of AV is real and the operator AV is similar
to a self-adjoint operator [7, 8, 24, 20].

The case V ∈ L1(R,(1+ |x|)dx) has been considered in [16], where it is shown that
AV is self-adjoint iff Spec(AV ) = R . Finally, for (quasi-)periodic finite zone potentials,
[18] explores some conditions under which AV is similar to a self-adjoint or a normal
operator. For a review of indefinite weighted Sturm–Liouville problems on a finite
interval, see [12].

Let us return to our original problem (3). Recently, there was a rapid growth
of interest in the case of non-positive potentials, especially by Behrndt, Trunk, and
collaborators [2, 4, 6, 5], clarifying the structure of their spectra and other properties as
well as stating new conjectures on rather unusual spectral behaviour [3].

The following known results are a particular case of [4, Theorem 1 and Theorem
2] and [5, Theorem 4.2].

PROPOSITION 1. For the operator A in (3),

(a) Spec(A) is symmetric with respect to R .

(b) Specess(A) = R .

(c) Spec(A)\R consists of eigenvalues of finite multiplicity.

(d) No point of R\ {0} is an accumulation point of non-real eigenvalues of A.

(e) At least one of the following statements is true:

(i) The non-real eigenvalues of A accumulate only to 0 ;

(ii) There exist embedded eigenvalues of A in R+ that accumulate to 0 ;

(iii) There exist embedded eigenvalues of A in R− that accumulate to 0 ;

(iv) The growth of λ 	→ (A− μ)−1 near zero is not of finite order.
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(f) If additionally V is even, V (x) = V (−x) , then Spec(A) is also symmetric with
respect to iR .

(g) The non-real spectrum of A is contained in the strip | Imμ | < 2‖V‖∞ .

Despite the amount of information on the structure of the spectrum of A , known
proofs of Proposition 1 are not constructive and, in fact, we do not even know a priori
which of the four statements (e)(i)–(iv) are true for a particular given potential. Some
numerical experiments, cf. [4], have recently led to conjecture that statement (e)(i) in
Proposition 1 may hold for many potentials satisfying (1), see Figure 1.

Figure 1: A numerical example showing accumulation to 0 of complex eigenvalues (red dia-
monds) of the operator Aγ , γ = 2.5 . The magenta and white circles on the negative real axis are
the eigenvalues of Tγ corresponding to the eigenfunctions which are even or odd with respect to
zero, cf. [4].

In this paper we prove that for a particular family of potentials

V (x) = Vγ(x) = − γ
1+ |x| , γ > 0, (4)

Proposition 1(e)(i) holds. Moreover we also prove (Theorem 6) that the complex eigen-
values of

T = Tγ := TVγ

accumulate to zero asymptotically along specific curves in the complex plane, and that
the explicit asymptotics of complex eigenvalues of Tγ can be obtained from the asymp-
totics of eigenvalues of the self-adjoint operator

A = Aγ := AVγ (5)

(or, more precisely, from the eigenvalues of its restriction on either even or odd (with
respect to zero) subspace). We also extend these results to the more general non-
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symmetric potentials

Vγ−,γ+(x) =

⎧⎪⎨
⎪⎩
− γ+

1+ |x| if x > 0

− γ−
1+ |x| if x < 0

, γ+,γ− ∈ R+. (6)

The rest of the paper is organised as follows. Section 2 contains the statements of
our main results. The proofs, as well as some numerical examples, are in Sections 3–5;
they are based on the explicit expressions for Jost solutions of the differential equation

− d2

dx2 g(x)− γ
1+ x

g(x) = μg(x)

on R+ and a rather delicate asymptotic analysis involving Kummer functions. A brief
exposition of some auxiliary results, mainly due to Temme [25], which we use in our
proofs, is given in the Appendix.

2. Sharp asymptotics of the eigenvalues of the self-ajdiont operator

Let TD
γ and TN

γ denote the restrictions of the operator Tγ to R+ with Dirichlet
and Neumann boundary condition at zero, resp. By the spectral theorem, for symmetric
potentials Vγ(x)

Spec(Tγ ) = Spec(TD
γ )∪Spec(TN

γ )

with account of multiplicities. Let −λ #
n (γ) denote the eigenvalues of T #

γ , # = D or N ,
ordered increasingly. In what follows we often drop the explicit dependence on γ .

It is well-known that −λ #
n < 0 and −λ N

n < −λ D
n < −λ N

n+1 for all n ∈ N , and also
that −λ #

n → 0− as n → ∞ .
Before stating our main results, we need some additional notation.

DEFINITION 2. Let F denote the class of piecewise smooth functions F : R+ →
R which have a discrete set of singularities (with no finite accumulation points). At
each singularity both one-sided limits of F are ±∞ and differ by sign. Assume for
simplicity that 0 is not a singularity of F , and that F(0) = 0. For F ∈F we denote by
ΘF(x) the continuous branch of the multi-valued Arctan(F(x)) such that ΘF(0) = 0.

REMARK 3. Away from the singularities of F , the function ΘF(x) can be written
in terms of the ordinary arctan(F(x)) (which takes the values in

[− π
2 , π

2

]
) and the total

signed index of F on [0,x] , which we denote by ZF(x) , and which is defined as the
total number of jumps from +∞ to −∞ on [0,x] minus the total number of jumps in
the opposite direction:

ZF(x) :=

⎛
⎜⎝ ∑

{τ∈(0,x]| lim
t→τ−F(t)=+∞}

− ∑
{τ∈(0,x]| lim

t→τ−F(t)=−∞}

⎞
⎟⎠ 1. (7)
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Then
ΘF(x) = arctan(F(x))+ πZF(x). (8)

Obviously, Θ−F(x) = −ΘF(x) .
Our first result gives sharp two-term asymptotics of eigenvalues (accumulating to

zero) of the self-adjoint operators T #
γ .

THEOREM 4. As n → ∞ ,

λ D
n (γ) =

γ2

4n2

(
1− 2

πn
ΘR1(γ)+O

(
1
n2

))
,

λ N
n (γ) =

γ2

4n2

(
1− 2

πn
ΘR0(γ)+O

(
1
n2

))
,

where

Rk(γ) =
Jk
(
2
√γ
)

Yk
(
2
√γ
) ,

and Jk and Yk denote the Bessel functions of the first and second kind, respectively.

Figure 2: R1(γ) and R0(γ) (resp. magenta and blue line) from Theorem 4 and the correspond-
ing ΘR1(γ) and ΘR0(γ) (resp. magenta and blue dashed line).

Figure 3: Approximate eigenvalues of Tγ , γ = 2.5 , as described in Theorem 4. The magenta
(resp. white) circles correspond to −λD

n (resp. −λN
n ). The solid (resp. dashed) lines are the

left-hand sides of (25) (resp. (26)) whose roots are the eigenvalues. Only curves and eigenvalues
up to −0.01 are displayed.

This immediately implies
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COROLLARY 5. As n → ∞ ,

λ D
n −λ N

n = O
(
(λ #

n )3/2
)

.

Some old papers found both in physical and mathematical literature addressed
the problem of approximating the eigenvalues of Schrödinger operators with shifted
Coulomb potentials, see e.g. [13, 26] and references therein. However they were con-
sidering somewhat different asymptotic limits, and to the best of our knowledge the
two-terms asymptotics of Theorem 4 are new.

3. Sharp asymptotics of the eigenvalues of the non-self-ajdiont operator

Our main result is the following

THEOREM 6. (i) The eigenvalues of Aγ lie asymptotically on the curves

|Imμ | = ϒ(γ) |Re μ |3/2 +O
(
(Re μ)2) , μ → 0, (9)

where

ϒ(γ) =
1

πγ
log

q2(γ)
1+q2(γ)

(10)

and

q(γ) := π
√

γ (J0(2
√

γ)J1(2
√

γ)+Y0(2
√

γ)Y1(2
√

γ)) . (11)

(ii) More precisely, the eigenvalues {μ}n∈N of Aγ in the first quadrant (ordered by
decreasing real part) are related to the absolute values λ #

n of the eigenvalues of
the self-adjoint operators T #

γ , # = D or N , by

μn = λ D
n +ϒ−(γ)(λ D

n )3/2+O
(
(λ D

n )2)= λ N
n +ϒ+(γ)(λ N

n )3/2 +O
(
(λ N

n )2) (12)

as n → ∞ , where

ϒ∓(γ) =
4

πγ
arctan

(
1

i∓2q(γ)

)
. (13)

The expressions for eigenvalues in the other quadrants are obtained by symme-
tries with respect to R and iR .

Before proceeding to the proofs, we want to discuss the statements of Theorem 6
in more detail.

REMARK 7. (a) It is immediately seen from (10) and (13) that

ϒ(γ) = Imϒ−(γ) = Imϒ+(γ).
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(b) If we introduce two functions τ∓ : R+ → C by

τ∓(t) = t + ϒ∓t3/2,

then

Imτ−(t) = Imτ+(t) = ϒt3/2,

which is just another way of writing (a). (We have dropped the dependence on γ
here for clarity.)

(c) The statement (ii) of Theorem 6 contains in fact several results. Taking the imag-
inary parts of (12) leads immediately to (9) by Corollary 5. The equalities ob-
tained by taking the real parts (12) are more intricate: they indicate that, up to the
terms of order (λ #

n )2 , the values of Re(τ−(λ D
n )) and Re(τ+(λ N

n )) coincide.

In other words, we can construct the eigenvalues of the non-self-adjoint operator
Aγ by perturbing either the anti-symmetric self-adjoint eigenvalues λ D

n or the
symmetric self-adjoint eigenvalues λ N

n , and the different formulae still lead to
the same result, modulo higher-order terms.

(d) The only previously known bound, see Proposition 1(g), implies only that for our
potential Vγ , | Imμ | < 2γ .

The typical eigenvalue behaviour is illustrated in Figure 4.

Figure 4: The red diamonds are numerically computed exact eigenvalues of Aγ , γ = 2.5 , lying
in the first quadrant. The complex parametric curves μ = τ−(t) (the magenta solid line) and
μ = τ+(t) (the blue dashed line) are as in Remark 7(b). The approximated complex eigenvalues,
computed by the first part of formula (12) are shown as magenta squares, and computed by the
second part of formula (12) are shown as white squares. The absolute values of the eigenvalues
of Tγ are marked on the real line in the same way as in Figure 3. The dotted arrows are to
indicate which real eigenvalue “produces” the corresponding complex ones.
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4. Explicit form of the Jost solutions

4.1. Solutions of the equation on the half-line

Let fξ be a general solution of the differential equation

− d2

dy2 f (y)− 1
y

f (y) = ξ f (y), y ∈ R+. (14)

The change of variables
y = γ(x+1), (15)

relates fξ with solutions gμ,γ of the differential equation

− d2

dx2 g(x)− γ
1+ x

g(x) = μ g(x), x ∈ R+, (16)

by
gμ,γ(x) = fμ/γ2 (γ(x+1)) . (17)

4.2. Explicit solutions of the differential equation (16)

Assuming ξ ∈ C+ , we will write

s := −i
√
−ξ (18)

where we take the principal branch of
√ · , i.e. the uniquely determined analytic branch

that maps R+ into itself. Obviously s2 = ξ .
With the ansatz

f (y) = ye−isyh(y), (19)

equation (14) can be reduced to

− y
d2

dy2 h(y)− (2−2isy)
d
dy

h(y)+ (2is−1)h(y) = 0. (20)

With the additional change of variables

w = 2isy (21)

we arrive at a particular case of the Kummer Hypergeometric Equation [23, Chapter
13.1]

w
d2

dw2 h̃(w)+ (b−w)
d
dw

h̃(w)−ah̃(w) = 0 (22)

with

a = 1− 1
2is

, b = 2, w = 2isy, h̃(w) = h
( w

2is

)
.
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The two linearly independent solutions of (22) are known as Kummer hypergeometric
functions M(a,b;w) and U(a,b;w) so that

h̃(w) = C1U(a,b;w)+C2M(a,b;w), C1,C2 = const .

Hence the solutions fξ (y) of (14) are of the form

fξ (y) = ye−isy
(

C1U

(
1− 1

2is
,2; 2isy

)
+C2M

(
1− 1

2is
,2; 2isy

))
. (23)

Thus, by (17), the solutions of (16) are of the form

gμ,γ(x) = γ(1+ x)e−
√−μ (1+x)

(
C1U

(
1− γ

2
√−μ

,2; 2
√−μ (1+ x)

)

+C2M

(
1− γ

2
√−μ

,2; 2
√−μ (1+ x)

))
.

4.3. The Jost solutions of (16)

It is well known, see e.g. [23, 13.7.1 and 13.7.2], that the first order asymptotic
behaviour of the Kummer Hypergeometric Functions is given, as |w| → ∞ , by

U(a,b;w) ∼ w−a, −3π
2

<arg(w) <
3π
2

,

M(a,b;w) ∼ ewwb−a

Γ(a)
+

eπ iaw−a

Γ(b−a)
, −π

2
�arg(w) <

3π
2

, a,b−a �∈ −N∪{0},

where Γ(·) stands for the usual Gamma function.
For μ ∈ C\R+ , we have −√−μ ⊂ {z ∈ C | Rez < 0} , and therefore

U

(
1− γ

2
√−μ

,2; 2y
√−μ

)
∼ (2y

√−μ
) γ

2
√−μ −1

,

and

M

(
1− γ

2
√−μ

,2; 2y
√−μ

)
∼ (2y

√−μ)
γ

2
√−μ +1

Γ
(
1− γ

2
√−μ

) e2y
√−μ

as y → ∞ .
This in turn implies that the fξ and gμ defined above are L2(R+) if and only if

C2 = 0. For convenience, we choose further on the normalisation C1 = 1.
The L2(R+) solutions of (16) are called the Jost solutions. We denote them by

ϕμ(γ,x) := gμ,γ(x)
∣∣
C1=1,C2=0 = γ(1+x)e−

√−μ (1+x) U

(
1− γ

2
√−μ

,2; 2(1+ x)
√−μ

)
.

(24)
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5. Proof of Theorem 4

5.1. The characteristic equations for the self-adjoint problem

It is well known that T has a negative discrete spectrum accumulating to zero.
We need a more detailed knowledge of the asymptotics of its eigenvalues and of the
corresponding eigenfunctions.

It follows from the arguments of the previous sections that up to a scaling constant
the eigenfunctions of the self-adjoint problem (16) are given, on R+ , by

ψλ (γ,x) = γ(1+ x)e−
√

λ (1+x) U

(
1− γ

2
√

λ
,2; 2(1+ x)

√
λ
)

.

The eigenvalues −λ D
n of the self-adjoint operator TD

γ with Dirichlet boundary
conditions at zero are thus given by the solutions of ψλ (γ,0) = 0, i.e.

γ e−
√

λ

2
√

λ
U

(
− γ

2
√

λ
,0,2

√
λ
)

= 0 (25)

The eigenvalues −λ N
n of the self-adjoint operator TN

γ with Neumann boundary

conditions at zero are given by the solutions of d
dxψλ (γ,x)

∣∣∣
x=0

= 0, i.e.

γ e−
√

λ

λ 2

(
(γ−2

√
λ )U

(
− γ

2
√

λ
,−1,2

√
λ
)

+2
√

λ (
√

λ−1)U
(
− γ

2
√

λ
,0,2

√
λ
))

= 0.

(26)
The solutions of transcendental equations (25) and (26) can be computed numeri-

cally, although it is a non-trivial task as the left-hand sides of these equations oscillate
wildly for small λ (cf. Figure 6). We instead use asymptotic techniques to approximate
the Kummer functions as λ → 0 and to control their oscillations. A quick took at (25)
and (26) shows that we require asymptotic formulas, as λ → 0+ , for

U

(
− γ

2
√

λ
,c; 2

√
λ
)

, c ∈ {0,−1}, (27)

Unfortunately, it is a difficult task — the corresponding formulas, are not, in fact, in the
standard references. We rely, instead, on the results from the forthcoming book [25]
which we summarise and adapt in the Appendix.

5.2. Asymptotic solutions of a transcendental equation

A crucial element of our analysis is the investigation of the large κ -roots of the
equation

tan(γκ) = G(κ ,γ) (28)

where γ is treated as a parameter, and where G depends analytically on κ in the vicin-
ity of κ = ∞ and, to leading order, is of class F as a function of γ . The required
results are summarised in the following
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LEMMA 8. Let G(κ ,γ) be an analytic function of κ around κ = ∞ such that

G(κ ,γ) = G0(γ)
(
1+O(κ−1)

)
, as κ → ∞,

G0 ∈F , and the O terms are regular in γ . Then the solutions κn(γ) , ordered increas-
ingly, of the equation (28), are given, as n → ∞ , by

κn(γ) =
πn
γ

+
1
γ

ΘG0(γ)+O(n−1). (29)

The proof of Lemma 8 is in fact immediate as soon as we recall Definition 2 of Θ
and the fact that tan is π -periodic.

Considering additional terms in the expansion of G one can get additional terms
in the expansion of κn . This is in fact what we do in more detail in Section 6.2.

5.3. Approximation of Dirichlet eigenvalues

We can use the asymptotic approximation obtained in (A.8) to reduce (25) to the
simpler form

cos

(
γπ

2
√

λ

)
(J1 (2

√
γ)+O(λ ))+ sin

(
γπ

2
√

λ

)
(Y1 (2

√
γ)+O(λ )) = 0. (30)

This in turn can be rewritten as

tan

(
γπ

2
√

λ

)
= − J1

(
2
√γ
)

Y1
(
2
√γ
) +O(λ ). (31)

Applying Lemma 8 with

κ =
1

2
√

λ
, G0(γ) = − J1

(
2
√γ
)

Y1
(
2
√γ
) = −R1(γ),

we obtain, after a minor effort,

λn =
γ2π2

4

(
nπ −ΘG0(γ)

)−2 +O(n−4)

=
γ2

4n2

(
1+

2
πn

ΘG0(γ)+O(n−2)
)

(32)

=
γ2

4n2

(
1− 2

πn
ΘR1(γ)+O(n−2)

)
(33)

as n → +∞ , thus proving the first part of Theorem 4.
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5.4. Approximation of Neumann eigenvalues

The analysis for Neumann eigenvalues is slightly more complicated. Again we
can use (A.8) to reduce (26) to

tan

(
γπ

2
√

λ

)
= −P(γ,λ )

Q(γ,λ )
(34)

where

P(γ,λ ) :=
√

γ(5
√

λ −8)(
√

λ +1)J1 (2
√

γ)+ (11
√

λ −8γ)(2
√

λ − γ)J2 (2
√

γ)

−8
√

γ
√

λ (2
√

λ − γ)J3 (2
√

γ)+O(λ 3/2),

Q(γ,λ ) :=
√

γ(5
√

λ −8)(
√

λ +1)Y1 (2
√

γ)+ (11
√

λ −8γ)(2
√

λ − γ)Y2 (2
√

γ)

−8
√

γ
√

λ (2
√

λ − γ)Y3 (2
√

γ)+O(λ 3/2).

Applying once again Lemma 8 with

κ =
1

2
√

λ
, G0(γ) = − P(γ,0)

Q(γ,0)
= − J0

(
2
√γ
)

Y0
(
2
√γ
) = −R0(γ),

we quickly arrive at

λn =
γ2

4n2

(
1+

2
πn

ΘG0(γ)+O(n−2)
)

=
γ2

4n2

(
1− 2

πn
ΘR0(γ)+O(n−2)

)
(35)

as n → ∞ , thus proving the second part of Theorem 4.

6. Proof of the asymptotic results of the non-self-adjoint operator

6.1. Eigenvalues and the Jost solutions

LEMMA 9. The eigenvalues of (5) are the zeroes of the determinant

M(μ) = Mγ (μ) = ϕ ′
μ(γ,0)ϕ−μ(γ,0)+ ϕ ′

−μ(γ,0)ϕμ(γ,0). (36)

Proof. Suppose that μ ∈ C is an eigenvalue of Aγ , and that gμ(x) ∈ L2(R) is a
corresponding eigenfunction. Then gμ solves the differential equation

− d2

dx2 gμ(x)− γ
1+ |x|gμ(x) = sign(x)μgμ(x).

If g± denote the restrictions of gμ on R+ and R− , then by integrability we must have

g+(x) = C+ϕμ(γ,x), g−(−x) = C−ϕ−μ(γ,x), x ∈ R+,

where ϕμ(γ,x) is the Jost solution (24).
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As an eigenfunction should be continuously differentiable at zero, we obtain

{
C+ϕμ(γ,0)−C−ϕ−μ(γ,0) = 0,

C+ϕ ′
μ(γ,0)+C−ϕ ′−μ(γ,0) = 0,

which has a non-trivial solution if and only if Mγ (μ) = 0. �

REMARK 10. (a) It follows from (24) that if μ is real, either ϕμ or ϕ−μ is not
square integrable, and therefore Aγ cannot have real eigenvalues.

(b) By [6, Proposition 4.6] one can instead look for the eigenvalues of (3) as the
zeroes of the m-function

mγ(μ) =
ϕ ′

μ(γ,0)
ϕμ(γ,0)

+
ϕ ′−μ(γ,0)
ϕ−μ(γ,0)

. (37)

The use of half-line m-functions is natural and has been already suggested else-
where, in particular the statement of Lemma 9 may be found e.g. in [11, 17]. For
some further developments concerning indefinite Sturm–Liovuille problems with
turning point at zero see also [15] and references therein.

(c) In what follows we assume that μ is in the upper half plane C+ and look for the
eigenvalues on the first quadrant. The final result will follow by symmetry (see
Proposition 1(a) and Proposition 1(f)).

6.2. The determinant

We can use (24) and the known relations [23, §13.3] between Kummer hypergeo-
metric functions to rewrite (36) as

M(μ)

=
γ2√−μe−

√−μ−√μ

8μ5/2

[(
γ
√−μ+2μ

)
U
(
− γ

2
√−μ

,−1; 2
√−μ

)
U
(
− γ

2
√μ

,0;2
√

μ
)

+(2μ − γ
√

μ)U
(
− γ

2
√−μ

,0; 2
√−μ

)
U
(
− γ

2
√μ

,−1; 2
√

μ
)

+2μ
(√−μ +

√
μ −2

)
U
(
− γ

2
√−μ

,0; 2
√−μ

)
U
(
− γ

2
√μ

,0; 2
√

μ
)]

.

(38)

To find approximate solutions of M(μ) = 0, we use the asymptotic formula (A.8).
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Let us define for brevity

jν := Jν (2
√

γ), yν := Yν(2
√

γ),

K+ := cos

(
γπ

2
√μ

)
, K− := cosh

(
γπ

2
√μ

)
,

S+ := sin

(
γπ

2
√μ

)
, S− := sinh

(
γπ

2
√μ

)
,

T+ := tan

(
γπ

2
√μ

)
, T− := tanh

(
γπ

2
√μ

)
.

With these abbreviations and with the use of asymptotic formulae (A.8), equation
(36) becomes

i
√γ√μ

Γ
(

iγ
2
√μ

+1

)
Γ
(

γ
2
√μ

+1

){(
1− 5

√μ
8γ

)
(2μ − iγ

√
μ) ( j1K+ + y1K−)

×
[(

1+
11i

√μ
8γ

)
( j2S+ + iy2S−)+

√μ (y3S−− i j3S+)√γ

]

+ i

(
1+

5i
√μ
8γ

)
( j1S+ + iy1S−)

[
(2μ − γ

√
μ)

×
((

1− 11
√μ
8γ

)
( j2K+ + y2K−)+

√μ ( j3K+ + y3K−)√γ

)

−
( 1

8 − i
8

)(√μ − (1+ i)
)√μ

(
8γ −5

√μ
)
( j1K+ + y1K−)√γ

]}
= 0,

(39)

where we have dropped the lower order terms.
Simplifying, writing S± = T±K± , and collecting terms in K± , we get

K+

{
(1+ i) j21

√
γ (
√

μ − (1+ i))
(
64iγ2−40(1+ i)γ

√
μ +25μ

)
+T−y1

(−8iγ2 +(5+16i)γ
√

μ −10μ
)
( j2 (8γ −11

√
μ)+8 j3

√
γ
√

μ)

− j1
[
−16i j3

√
γ
√

μ
(
4(1+ i)γ2−5γ

√
μ +5(1− i)μ

)
+2 j2

(
64γ3−128(1− i)γ2√μ −135iγμ +55(1+ i)μ3/2

)
+T− (8γ −5

√
μ)
(
(1+ i)

√
γ (
√

μ − (1+ i))(8γ +5i
√

μ)y1

+(γ +2i
√

μ)(8
√

γ
√

μy3 + y2 (−11
√

μ +8iγ))
)]}

−K−
{

y1

[
8 j3

√
γ
√

μ
(−8iγ2 +(16+5i)γ

√
μ −10μ

)
(40)

+ j2
(
64γ3− (40−216i)γ2√μ − (176+135i)γμ +110μ3/2

)
+(1+ i)T−

(√
γ (
√

μ − (1+ i))
(
64γ2−40(1− i)γ

√
μ −25iμ

)
y1
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+8(1− i)
√

γ
√

μy3
(
4(1+ i)γ2−5γ

√
μ +5(1− i)μ

)
+ y2

(
64(1+ i)γ3−256γ2√μ +135(1− i)γμ +110iμ3/2

))]
+ j1 (8γ +5i

√
μ)
(

(k−2
√

μ)(y2 (8γ −11
√

μ)+8
√

γ
√

μy3)

+ (1− i)
√

γ (
√

μ − (1+ i))(8γ −5
√

μ)y1

)}
= 0.

In what follows, we essentially replicate the reasoning in Lemma 8, but working
to a higher accuracy. Introduce in the equation (40) the ansatz

μ = λ + νλ 3/2 + ηλ 2, (41)

where λ is, as before, the absolute value of an eigenvalue of the self-adjoint operator
with either Dirichlet or Neumann boundary conditions. Now replace back K− , T−
and K+ with the corresponding expressions. The next step — expanding the left-hand
side of the resulting equation in the Taylor series with respect to λ around zero, — is
delicate.

First of all, observe that as λ → 0

cos

(
γπ

2
√

λ + νλ 3/2 + ηλ 2

)

= cos

(
γπ

2
√

λ

(
1−
(

ν
√

λ
2

+
(

η
2
− 3ν2

8

)
λ +O(λ 3/2)

)))

= cos

(
γπ

2
√

λ

)
cos

(
γπ
4

(
ν +

(
η − 3ν2

4

)√
λ
))

+ sin

(
γπ

2
√

λ

)
sin

(
γπ
4

(
ν +

(
η − 3ν2

4

)√
λ
))

+O(λ ),

and similarly

sin

(
γπ

2
√

λ + νλ 3/2 + ηλ 2

)

= sin

(
γπ

2
√

λ

)
cos

(
γπ
4

(
ν +

(
η − 3ν2

4

)√
λ
))

− cos

(
γπ

2
√

λ

)
sin

(
γπ
4

(
ν +

(
η − 3ν2

4

)√
λ
))

+O(λ ).

We want to derive a similar expansion for tanh

(
γπ

2
√

λ+νλ 3/2+ηλ 2

)
. We use

tanh(t1 − t2) =
sinh(t2)+ cosh(t2) tanh(t1)
cosh(t2)− sinh(t2) tanh(t1)

with t1 := γπ
2
√

λ
and t2 := γπ

4

(
ν +

(
η − 3ν2

4

)√
λ +O(λ )

)
.
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As tanh(πγ/2
√

λ) = 1 for λ → 0 modulo exponentially small terms, we get
(again up to exponentially small errors)

tanh

(
γπ

2
√

λ + νλ 3/2 + ηλ 2

)
=

sinh(t2)+ cosh(t2)
cosh(t2)− sinh(t2)

= −1,

and (40) reduces to an equation involving only tan
(

γπ
2
√

λ

)
, tan

(
γπ
4

(
ν+
(

η− 3ν2

4

)√
λ
))

and powers of
√

λ . This is still, however, very hard to control.

6.3. Complex eigenvalue curves

We can now use our knowledge of the self-adjoint problem (see (31) and (34)) to
simplify (40) further. For definiteness, suppose that −λ is an eigenvalue of TD .

Using the approximate identity (31), obtained for the eigenvalues of the Dirichlet
self-adjoint problem on the half line, we can reduce the already simplified (40) to an

equation involving only tan
(

γπ
4

(
ν +

(
η − 3ν2

4

)√
λ
))

and powers of
√

λ . Collecting

the tangent terms, after some cumbersome but straightforward simplifications we arrive
at

tan

(
γπ
4

(
ν +

(
η − 3ν2

4

)√
λ
))

=
P̃(λ ,γ)
Q̃(λ ,γ)

(42)

where

P̃(λ ,γ) = −(4+4i)γ +(12+7i)
√

λ ,

Q̃(λ ,γ) = i(4+4i)γ +(7+12i)
√

λ

+2π
(
4
√

γ
(
(1+ i)γ −3

√
λ
)

( j0 j1 + y0y1)+7
√

λ
(
j21 + y2

1

))
,

and we have dropped terms of order O(λ ) . We have used the following standard rela-
tions [23, Ch. 13] for the Bessel functions,

Jn+1(2
√

γ)Yn(2
√

γ)− Jn(2
√

γ)Yn+1(2
√

γ) =
1

π√γ
,

J1(2
√

γ)−√
γJ2(2

√
γ) =

√
γJ0(2

√
γ),

Y1(2
√

γ)−√
γY2(2

√
γ) =

√
γY0(2

√
γ),

in the simplifications.
Note that right-hand side of (42) does not depend on ν . We can now invert the

tangent and solve with respect to ν , to find the coefficient for the λ 3/2 term in (41).
Expanding in λ around 0 and taking the leading term we get

ν =: ϒ−(γ) =
4

πγ
arctan

(
1

i−2π√γ
(
J0(2

√γ)J1(2
√γ)+Y0(2

√γ)Y1(2
√γ)

)
)

. (43)

The contribution of the other terms in the expansion then forms a part of η , which we
drop.
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REMARK 11. We can repeat the same procedure using the relation (34) for the
absolute value of a Neumann eigenvalue λ as a starting point. In this case we obtain

ν =: ϒ+(γ) = ν =
4

πγ
arctan

(
1

i+2π√γ
(
J0(2

√γ)J1(2
√γ)+Y0(2

√γ)Y1(2
√γ)

)
)

.

(44)

REMARK 12. One can use standard asymptotic formulas for Bessel functions (see
[23, Chapter 10]) to observe

q(γ) ∼
⎧⎨
⎩
− log(γ)

π if γ → 0
1

4
√γ −

3cos(4
√γ)

512γ if γ → ∞
.

Moreover, again using standard estimates and properties of Bessel functions and their
zeroes one can observe that

|J0(x)|, |J1(x)|, |Y0(x)|, |Y1(x)| < 1√
2

for x � 2,

and the four functions are monotone for x < 2 (J0 increasing and bounded by 1, the
other ones decreasing, in particular the Y are unbounded). In particular, for any γ ∈
(0,1) neither ϒ−(γ) and ϒ+(γ) nor their real and imaginary parts, vanish. Moreover
ϒ∓(γ) define curves in the complex plane that diverge as γ → 0 and converge to 0 as
γ → +∞ .

With q(γ) as in (11) we get (13). Then the identity Imϒ−(γ) = Imϒ+(γ) follows
immediately using the standard relation between arctan and log (see Remark 7(a)),
thus proving part (i) of Theorem 6.

Proving part (ii) of Theorem 6 requires some extra work. First of all observe that,
up to the errors of order O(n−4) , we have

λ D
n −λ N

n = − γ2

2πn3

(
ΘR1(γ)−ΘR0(γ)

)
= − γ2

4πn3

(
i log

(
(J1(2

√γ)− iY1(2
√γ))(J0(2

√γ)+ iY0(2
√γ))

(J1(2
√γ)+ iY1(2

√γ))(J0(2
√γ)− iY0(2

√γ))

))

= − γ2

4πn3

(
i log

(
q(γ)+ i
q(γ)− i

))
,

where Rk(γ) are defined in Theorem 4 and the first identity follows from the fact that
zeroes of Y0 and Y1 are interlaced. Similarly

ϒ−(γ)−ϒ+(γ) =
2i
πγ

log

(
2q(γ)−2i
2q(γ)+2i

)
.

Despite the appearance of the complex unity i in the above formulae, all these expres-
sions are in fact real!



240 M. LEVITIN AND M. SERI

To show that the two asymptotic formulae (12) for μn coincide up to the lower
order terms, we use Theorem 4, to obtain, as n → ∞ ,(

λ D
n + ϒ−

n (γ)(λ D
n )3/2

)
−
(

λ N
n + ϒ+

n (γ)(λ N
n )3/2

)
+O

(
1
n4

)

= − γ2i
4πn3 log

(
q(γ)+ i
q(γ)− i

)
+

2i
πγ

log

(
2q(γ)+2i
2q(γ)−2i

)(
γ2

4n2

)3/2

+O

(
1
n4

)

=
γ2i

4πn3

(
log

(
q(γ)+ i
q(γ)− i

)
− log

(
q(γ)+ i
q(γ)− i

))
+O

(
1
n4

)

= O

(
1
n4

)
,

thus concluding the proof.

7. Generalizations and other remarks

The procedure used to prove Theorem 6 can be repeated in a completely similar
way to obtain a result for the operator

A(γ+,γ−) = JTV , V (x) =

{ γ+
1+|x| if x > 0

γ−
1+|x| if x < 0

, γ+,γ− ∈ R+.

In this case the m-function is of the form

M(λ ) =
ϕ ′

μ,γ+(0)
ϕμ,γ+(0)

+
ϕ ′−μ,γ−(0)
ϕ−μ,γ−(0)

.

Figure 5: Approximated eigenvalues of A(γ+,γ−) for γ− = 1.5 , γ+ = 5 .

The curves in the upper (resp. lower) half plane are no more symmetric w.r.t. iR ,
however for the left quadrants and right quadrants we can extend Theorem 6. The only
difference is that now the ϒ− and ϒ+ are now functions of both γ+ and γ− .
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Let ν,η ∈ R+ . Set

f−(ν,η) :=
J2
1(2

√
η)+ J2

0(2
√

η)
J2
1(2

√
ν)+ J2

0(2
√

ν)

(
i−π

√
ν
(
J0(2

√
ν)J1(2

√
ν)+Y0(2

√
ν)Y1(2

√
ν)
))

−π
√

η (J0(2
√

η)J1(2
√

η)+Y0(2
√

η)Y1(2
√

η)) ,

f+(ν,η) :=
J2
1(2

√
η)+ J2

0(2
√

η)
J2
1(2

√
ν)+ J2

0(2
√

ν)

(
i+ π

√
ν
(
J0(2

√
ν)J1(2

√
ν)+Y0(2

√
ν)Y1(2

√
ν)
))

+ π
√

η (J0(2
√

η)J1(2
√

η)+Y0(2
√

η)Y1(2
√

η)) .

Then the two factor multiplying the term Re μ3/2 are given by

ϒ−(γ+,γ−) :=
4
π

{
γ−1
− arctan(1/ f−(γ+,γ−)) if Re μ > 0

γ−1
+ arctan(1/ f−(γ−,γ+)) if Re μ < 0

,

ϒ+(γ+,γ−) :=
4
π

{
γ−1
− arctan(1/ f+(γ+,γ−)) if Re μ > 0

γ−1
+ arctan(1/ f+(γ−,γ+)) if Re μ < 0

.

One can immediately see that the asymmetry appearing w.r.t. iR is reflected in the
asymmetric dependence on γ+ and γ− .

It is interesting to observe that for Reμ > 0 the effect of γ− is much stronger than
the one of γ+ (the latter appears only in the cotangent term, its contribution is bounded,
while the former additionally appears as an inverse prefactor). The situation is opposite
when Reμ < 0.

The expressions for ϒ∓(γ−,γ+) are more involved than the ones for ϒ∓(γ) but, as
expected, they simplify to (43) and (44) for γ+ = γ− . As that case, it is possible to use
the standard results on Bessel functions to show that the two constants have non-zero
real and imaginary part for any γ± > 0.

To answer the general question posed in [3] for a wider class of potentials one
would need good estimates of the Jost functions in a complex half ball containing the
origin and the positive and negative real axis. To our knowledge, the best result of this
kind is contained in a paper by Yafaev [28]. In that work, however, the author needed
to exclude two cones containing the real axis for his estimates to hold. Additionally
he could get only the first term in the asymptotic expansion, whereas for our result we
would need at least the first two.

A. Uniform asymptotic expansion of Kummer hypergeometric functions

We need to approximate

U
(
− γ

2
√−μ

,c; 2
√−μ

)
, U

(
− γ

2
√μ

,c; 2
√

μ
)
, c ∈ {0,−1}, (A.1)

in the limit μ → 0. We use the theory developed in [25, Chapter 27]. By formula [25,
(27.4.85)], as a → ∞ , and with az bounded and Re(az) > 0,

U(−a,c; az) ∼ β 1−c Γ(a+1)e
1
2 az

(
Cc−1(ζ )

∞

∑
n=0

An

an + βCc−2(ζ )
∞

∑
n=0

Bn

an

)
, (A.2)
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where An and Bn are defined by an iterative procedure, ζ = 2βa and

Cν (ζ ) = cos(πa)Jν(ζ )+ sin(πa)Yν(ζ ). (A.3)

On can immediately see that in our case

a = a± =
γ

2
√±μ

, z = z± =
γ
a2±

. (A.4)

We will drop the subscript ± for the rest of the discussion.
Additionally we need an expression for β . This is defined in [25, (27.4.36)] as

β =
1
2
(w0 + sinh(w0))

where w0 = 2arcsinh( 1
2

√
z) , see [25, (27.4.33)]. Equation [25, (27.4.52)] gives an

asymptotic expansion for β as z → 0:

β 2 = z+
1
12

z2 +O(z3).

By Taylor expansion we get

β =
√

z

√
1+

1
12

z+O(z2) =
√

z

(
1+

1
24

z+O(z2)
)

. (A.5)

Therefore
ζ = 2βa = 2

√
γ
(
1+

γ
24

a−2 +O(a−4)
)

and Re(az) = Re(γ/a) .
Observe that for γ ∈ R+ , Re(az) > 0 iff Re(a) > 0.
The coefficients A0 and B0 also have explicit expressions that can be derived using

some symmetry properties and L’Hôpital rule, see [25, (27.4.74)]):

A0 =
(

β
2sin(θ )

)c
√

2
β

tanθ cos(cθ )

B0 =
(

β
2sin(θ )

)c
√

2
β

tanθ
sin(cθ )

β

where θ = − 1
2 iw0 .

The computation of An and Bn for n � 0 is quite involved, however we will need
only A1 . One can exploit the procedure to compute A0 and B0 , and the recursive
definition of the coefficients to get a Taylor approximation in negative powers of a for
c ∈ {0,−1} . We get

if c = 0, A0
0 = 1+O(a−2), A0

1 = − 5
16

+O(a−2), βB0
0 = 0, (A.6)
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Figure 6: Plot of real part (left) and imaginary part (right) of U
(
− γ

2
√−μ ,c; 2

√−μ
)

(black)

and its approximation given by (A.8) (dashed red) for small values of μ and γ = 2.5 .

if c = −1, A−1
0 = 1+O(a−4), A−1

1 = −11
16

+O(a−2), βB−1
0 = −

√γ
2a

+O(a−3).

(A.7)

With these, (A.2) can be re-written

U
(
−a,c;

γ
a

)
∼
(√γ

a

) 1−c
2

Γ(a+1)e
γ
2a
(
C̃c−1(a,γ)(Ãc

0 + Ãc
1)+ C̃c−2(a,γ) B̃c

0 +O(a−2)
)

(A.8)
where

C̃ν (a,γ) := cos(πa)Jν(2
√

γ)+ sin(πa)Yν(2
√

γ) (A.9)

and Ãc
0 , Ãc

1 and B̃c
0 are obtained dropping the error term in the appropriate coefficient

in (A.6) and (A.7).

REMARK A.1. Here the error is in fact O(γ/a2) , we may thus expect the im-
provement in the precision of the asymptotics when γ � 1.

REMARK A.2. (Validity of the expansion) If we define

t1 = β + π i+
√

(β + π i)2−β 2,

then the asymptotic formula (A.2) is valid for

− argt1− π
2

+ δ � arga � argt1 +
π
2
− δ , (A.10)

and the same applies to z (see [25, Chapter 26.4.2]).
In our case

t1 ∼ 2π i+2β +O(β 2).

For |a| � 1, argt1 is in the upper complex half plane. In particular this allows a and z
to be in the closure of the first and fourth quadrant.
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