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Abstract. We present a Hilbert space perspective to homogenization of standard linear evolu-
tionary boundary value problems in mathematical physics and provide a unified treatment for
(non-)periodic homogenization problems in thermodynamics, elasticity, electro-magnetism and
coupled systems thereof. The approach permits the consideration of memory problems as well
as differential-algebraic equations. We show that the limit equation is well-posed and causal. We
rely on techniques from functional analysis and operator theory only.

1. Introduction

In the mathematical treatment of physical phenomena of heterogeneous materials
one is confronted with partial differential equations with variable coefficients. Some-
times one observes that there is a scale separation, that is, there is a “large” and a
“small” scale and the heterogeneities occur on the “small” scale only. In consequence,
the coefficients are highly oscillatory. Therefore, the computational effort for solving
these equations is considerably high. That is why one seeks for a replacement for the
partial differential equation with heterogeneous coefficients, such that this replacement
is easier to solve with a computer. In some cases, it is possible to derive such a re-
placement by studying the limit behavior of the equation by letting the ratio of “small”
scale over “large” scale tend to 0. So, one asks whether the solutions corresponding
to strictly positive ratio converge in some sense for the ratio tending to 0. Given the
convergence of the solutions, one asks further, whether the limit satisfies an equation
similar to the ones one started out with. A main objective in homogenization theory
is to show the convergence of the solutions as the ratio tends to zero and to derive the
limit equation.

If one assumes periodicity in the coefficients, many results are available for par-
ticular equations, see e.g. [5, 9, 37] as general references. In the non-periodic case
one cannot expect a similar behavior as very simple equations show, see e.g. [40, p. x,
equation (∗)].

In this note, we discuss a general compactness result: Given a bounded sequence
of coefficients, we prove that there exists a limit equation at least for a subsequence. We
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emphasize that we do not assume periodicity of the coefficients. Further, we show that
this compactness result may be applied to coupled systems or to equations with memory
terms. By means of an example, we elaborate on the precise strategy in Section 2.

In the literature, there are many techniques available that allow the study of ho-
mogenization in the non-periodic case. We mention here the method of H -convergence
in the sense of [13, 22, 37] or [9, Definition 13.3], which is well-suited for elliptic
equations. The method of Γ-convergence is tailored for variational integrals and opti-
mization problems related to them, see e.g. [6, 7, 21]. G-convergence and two-scale-
convergence, see respectively [10, 35, 55] and [2, 23, 53], are concepts that may be
applied to many equations of mathematical physics, as well.

The concept of G-convergence can be formulated in an abstract Hilbert space set-
ting, see [55, p. 74] (see also Section 5 in this paper). More precisely, given a sequence
of continuously invertible operators (An)n its G-limit is an invertible operator B , if
(A−1

n )n converges to B−1 in the weak operator topology. In this general setting, it is
unclear how to derive a more explicit expression for B . The notion of two-scale con-
vergence uses a L2 -setting and does not apply to general Hilbert spaces. For a possible
way of dealing with specific non-periodic coefficients, we refer to the generalization of
two-scale convergence in [24, 25].

Here we provide an alternative way of discussing homogenizationproblems, which
was introduced in [40, 41, 42] with (substantial) extensions in [43, 46, 45, 44, 48]. The
idea bases on results of [28, 29]. In [28, 29], a functional analytic Hilbert space frame-
work is developed, which serves to derive a unified solution theory for many equations
of mathematical physics. In this exposition, we will use the term evolutionary equa-
tions to refer to the class described in [28, 29]. Note that evolutionary equations cover
for example equations from thermoelasticity ([19]) or equations with dynamic bound-
ary conditions ([30]) or equations typical in control theory with unbounded control and
observation operators ([31]).

Next, we sketch the functional analytic set up of evolutionary equations. For a
given forcing term f , we consider

∂tw+Au = f . (1)

Here ∂t is a realization of the time-derivative as a normal continuously invertible op-
erator, A is a skew-selfadjoint operator in some Hilbert space H modeling the spatial
derivatives. We want to solve (1) for the unknown quantities w and u . Clearly, the
equation (1) is under-determined. Thus, (1) needs to be completed by the so-called
constitutive relation or material law M , being a continuous linear operator in time-
space, which links w and u via

M u = w. (2)

Hence, we solve the equation
∂tM u+Au = f (3)

for u . In applications, the operator M describes the material’s properties, hence the
name ‘material law’: The operator M consists of the inverse of the conductivity κ if
one discusses the heat equation. More precisely, the heat equation fits into (3) with the
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settings

u =
(

θ
q

)
, M =

(
1 0
0 ∂−1

t κ−1

)
, A =

(
0 div

grad 0

)
, f =

(
Q
0

)
where θ and q are the heat and heat flux, respectively, and Q is some external heat
source. Indeed, with these setting, (3) reads

∂t

(
1 0
0 ∂−1

t κ−1

)(
θ
q

)
+
(

0 div
grad 0

)(
θ
q

)
=
(

Q
0

)
.

Reading off the first line, we obtain ∂tθ +divq = Q . The second line is q =−κ gradθ .
Hence, ∂tθ −divκ gradθ = Q .

Maxwell’s equations for the electro-magnetic field (E,H) read(
∂t

(
ε 0
0 μ

)
+
(

σ 0
0 0

)
+
(

0 −curl
curl 0

))(
E
H

)
=
(

J
0

)
,

where ε is the dielectricity, σ is the (electric) conductivity, and μ is the magnetic
permeability. J are external currents. Thus, we obtain the shape of equation (3) with
the settings

u =
(

E
H

)
, M =

(
ε 0
0 μ

)
+ ∂−1

t

(
σ 0
0 0

)
, A =

(
0 −curl

curl 0

)
, f =

(
J
0

)
.

In general, we assume here that M may be represented as a function of ∂−1
t . Ex-

amples of such autonomous material laws are time-shifts, fractional time-derivatives or
convolutions with respect to the temporal variable, see e.g. [15, 41, 45].

Our treatment of homogenization problems within this setting boils down to the
discussion of continuous dependence on M under a suitable topology, see also Section
2 for a more detailed discussion. Consider a sequence of material laws (Mn)n and
corresponding solutions (un)n of the equation

∂tMnun +Aun = f .

We ask, whether the sequence (un)n converges to some limit v and whether there is a
material law N , such that v solves

∂tN v+Av = f .

In [43], this question was answered for A with compact resolvent. It has been success-
fully applied to the heat equation, the wave equation or the visco-elastic equations with
fractional time-derivatives or ordinary differential equations as constitutive relations,
see [43, Theorem 4.3 and Theorem 4.5] or [45]. In this paper, we complement the re-
sult obtained in [43, 45]. Imposing more restrictions on M , we merely require A to
have compact resolvent when restricted to a domain orthogonal to the nullspace of A .
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That is to say, instead of assuming that1 (D(A), |·|A) ↪→↪→ (H, |·|H) , we only assume
the following: Any sequence (un)n in D(A) with both (un)n and (Aun)n bounded in
H as well as un ∈ N(A)⊥ consists of a H -norm convergent subsequence. We refer to
the latter property as the nullspace-compactness-property (or (NC)-property for short)
see also Corollary 5.7 below.

A relevant example for an operator satisfying the (NC)-property is the Maxwell

operator A =
(

0 −curl
˚curl 0

)
in L2(Ω)6 , where ˚curl is the curl operator with electric

boundary condition and Ω � R3 is a bounded domain satisfying additional geometric
requirements, cf. [54, Theorem 2] or [26, 33]; other boundary conditions may also be
admitted, see [3].

Furthermore, in [40] it is shown that the operator

(
0 div
˚grad 0

)
defined in L2(Ω)N+1

satisfies the (NC)-property, where Ω � RN is open and bounded, ˚grad is the distribu-
tional gradient in L2(Ω) with domain equal to W 1

2,0(Ω) . The superscript “ ˚ ” refers to

Dirichlet boundary conditions and div is the negative adjoint of ˚grad. The same rea-

soning can be applied to the spatial operator of the elastic equations

(
0 Grad∗

−Grad 0

)
,

where Grad is the symmetrized gradient as defined in [43, Definition 4.9] with some
boundary conditions imposed on a bounded domain Ω satisfying suitable geometric
requirements, cf. e.g. [52, Theorem 2].

Our main theorem, Theorem 5.5, may be seen as a general theorem giving a com-
pactness result for the homogenization of (coupled) equations in mathematical physics.
We shall also mention that the results obtained in this article not only generalize [40,
Theorem 2.3.14] but improve the representation of the homogenized equations. More-
over, we show that the homogenized equations satisfy the assumptions of Theorem 3.1,
that is, we have a solution theory for the effective equations.

A detailed discussion of our main result is given in Section 2. In this section we
also give an account of the ideas used and compare our approach to other strategies in
the literature.

In Section 3, we discuss the mathematical framework of evolutionary equations
and recall the main theorem of [28]. Section 4 sketches the ideas, definitions and main
theorems of [41] and [43]. In Section 5 we present our main result, Theorem 5.5. We
show optimality of this theorem by means of counterexamples. The proofs in Section
5 also require the results from Section 7. The results from Section 7 are needed to
prove the well-posedness of the limit equation constructed in Theorem 5.5. The abstract
results obtained in Section 5 are exemplified in Section 6.

We indicate weak convergence in a Hilbert space by ‘⇀’ or ‘w- lim’. Norm-
convergence will be denoted by ‘→’ if not specified differently. The underlying scalar
field of any vector space discussed here is C .

1For Hilbert spaces H1,H2 and a linear operator A : D(A) � H1 → H2 with domain D(A) , we denote the
norm in the Hilbert space H1 by |·|H1 and the graph norm of A by |·|A . If H1 is continuously embedded in
H2 , we write H1 ↪→ H2 or (H1, |·|H1 ) ↪→ (H2, |·|H2 ) . If this embedding is compact we write H1 ↪→↪→ H2 or
(H1, |·|H1 ) ↪→↪→ (H2, |·|H2 ) .
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2. Discussion of the main result

Our aim is to provide homogenization results for a large class of partial differential
equations. The homogenized coefficients, however, have a different representation as
in classical results in the literature, cf. e.g. [5, 35]. We illustrate the difference between
the classical approach and the approach considered here with the heat equation (cf. e.g.
[29, p. 350]):

Let Ω � RN be a bounded domain. Denote by θ : (0,∞)×Ω → R the heat distri-
bution and by q : (0,∞)×Ω → RN the heat flux. The heat equation is a system of the
two equations {

∂tθ +divq = f

q = −κ gradθ .
(4)

Here ∂tθ denotes the time-derivative of θ , f is a given source term and κ : RN →
RN×N is a bounded function being the (material dependent, symmetric) conductivity
tensor satisfying κ(x) � c for some c > 0 and all x ∈ RN . Of course, θ and q are
the unknowns in the system. The first equation in (4) is called the heat flux balance
and the second one is Fourier’s law. The system is completed by boundary and initial
conditions. For simplicity, we assume both homogeneous Dirichlet boundary condi-
tions and homogeneous initial conditions for θ . As a reminder for Dirichlet boundary
conditions, we shall write ˚grad instead of grad.

The classical way of discussing the heat equation is to substitute Fourier’s law into
the heat flux balance. Thus, the heat equation reads

∂tθ −divκ ˚gradθ = f . (5)

Next, assume that κ is (0,1)N -periodic, that is, κ(x+ e) = κ(x) for all x ∈ RN ,
e∈Z

N . In homogenization theory one is interested in the effective behavior of solutions
of equations with highly oscillatory coefficients. A possible way to model that is the
following. For n∈N consider the solutions (θn,qn) and θn of the following respective
equations {

∂tθn +divqn = f

qn = −κ(n·) ˚gradθn.
(6)

and

∂tθn −divκ(n·) ˚gradθn = f . (7)

Standard a priori estimates imply that (possibly after passing to a subsequence) (θn,qn)n

and (θn)n convergeweakly to some functions (θ ,q) and θ , respectively. Classically, in
order to determine the heat distribution θ , one shows that θ solves ∂tθ −divκ0 ˚gradθ =
f . Here κ0 is a well-known (constant-coefficient-)matrix. The main step in the classi-
cal approach is to prove∫

Ω
κ(nx) ˚gradθn(t,x) · ˚gradθn(t,x) dx →

∫
Ω

κ0 ˚gradθ (t,x) · ˚gradθ (t,x) dx (n → ∞)
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A tool for the proof of the latter is the famous “div-curl-lemma”, which is due to Murat
and Tartar, see e.g. [22, 36], or [37, 8]. The strategy of doing so is well-established and
can also be applied to other cases such as linearized elasticity.

Starting out with the sequence of equations given by (6), we shall sketch another
way of deducing the limit equation. Written in a block-operator-matrix-form the equa-
tions (6) read as(

∂t

(
1 0
0 0

)
+
(

0 0
0 κ(n·)−1

)
+
(

0 div
˚grad 0

))(
θn

qn

)
=
(

f
0

)
. (8)

Following the introduction and recalling that ∂t can be realized as a continuously in-

vertible operator, the latter equations are clearly of the form (3) with Mn =
(

1 0
0 0

)
+

∂−1
t

(
0 0
0 κ(n·)−1

)
and A =

(
0 div
˚grad 0

)
. Note that, due to the imposed homogeneous

Dirichlet boundary conditions, A is a skew-selfadjoint operator in L2(Ω)N+1 since
div∗ = − ˚grad.

For computing the limit as n → ∞ , we want to apply [40, Theorem 3.5] (or Theo-
rem 5.3 in this article). For this we require that A has compact resolvent.

If Ω � R is a bounded, open interval, Theorem 5.3 is already applicable. Indeed,

in this case the operator A =
(

0 ∂1

∂̊1 0

)
has compact resolvent. Thus, we infer that

κ(·)−1 is periodic, and, hence, κ(n·)−1 converges in the weak*-topology of L∞ to the
constant function

∫ 1
0 1/κ . The limit equation reads

∂tθ − ∂1

(∫ 1

0
1/κ

)−1
∂̊1θ = f ,

where θ = w-limn→∞ θn . Here, the homogenized coefficient, that is,
(∫ 1

0 1/κ
)−1

co-

incides with the harmonic mean of κ .
Next, we consider the case N � 2, that is, the underlying medium is at least 2-

dimensional. Then, the nullspace of div is infinite-dimensional. Hence, the operator(
0 div
˚grad 0

)
has no compact resolvent. Thus, a rationale similar to the one-dimensional

case fails.
In the following, we propose yet another reformulation of (6) making Theorem 5.3

applicable. For this, note that the domain of ˚grad (endowed with its graph norm) equals
W 1

2,0(Ω) . By the selection theorem of Rellich and Kondrachov, we have W 1
2,0(Ω) ↪→↪→

L2(Ω) , since Ω was assumed to be bounded. Next, we try to overcome the problem of
the infinite-dimensional nullspace of div (and hence of A). The idea is to restrict A to
a domain being orthogonal to the nullspace of A . Due to Dirichlet boundary conditions
the operator ˚grad is one-to-one, thus N(A) , the nullspace of A , equals {0}⊕N(div) �
L2(Ω)⊕L2(Ω)N . Since div∗ = − ˚grad, we have L2(Ω)N = R( ˚grad)⊕N(div) . Using
Poincaré’s inequality, we deduce that the range of ˚grad is closed in L2(Ω)N . Hence,

L2(Ω)N = R( ˚grad)⊕N(div).
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Along that decomposition of L2(Ω)N , we decompose the heat flux qn from equation (8)

as qn = q(1)
n + q(2)

n with q(1)
n ∈ R( ˚grad) and q(2)

n ∈ N(div) . We introduce the operator
P : L2(Ω)N → R( ˚grad) , which maps any g∈ L2(Ω)N to its orthogonal projection Pg in
the range of ˚grad. Then the adjoint of P is the canonical embedding from R( ˚grad) into
L2(Ω)N . Hence, A as an operator acting on L2(Ω)⊕R( ˚grad)⊕N(div) may be written
as follows

A =
(

Ã 0
0 0

)
with Ã =

(
0 divP∗

P ˚grad 0

)
.

Observe that A leaves the space L2(Ω)⊕R( ˚grad) invariant. Moreover, note that Ã is
one-to-one and skew-selfadjoint on L2(Ω)⊕R( ˚grad) . Furthermore, it is not hard to see
that the domain of divP∗ if endowed with the graph norm is compactly embedded into
R( ˚grad) , see e.g. [43, Lemma 4.1]. Thus, the operator Ã has compact resolvent.

Denoting by Q : L2(Ω)N → N(div) the operator, which maps g ∈ L2(Ω)N to its
orthogonal projection Qg ∈ N(div) , we deduce from (8) the following system

⎛⎝∂t

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠+

⎛⎝0 0 0
0 Pκ(n·)−1P∗ Pκ(n·)−1Q∗
0 Qκ(n·)−1P∗ Qκ(n·)−1Q∗

⎞⎠+

⎛⎝ 0 divP∗ 0
P ˚grad 0 0

0 0 0

⎞⎠⎞⎠
⎛⎜⎝ θn

q(1)
n

q(2)
n

⎞⎟⎠=

⎛⎝ f
0
0

⎞⎠ .

(9)
Next, we could apply Theorem 5.3 to the first two rows of equation (9) by putting

Pκ(n·)−1Q∗q(2)
n to the right-hand side, that is,

(
∂t

(
1 0
0 0

)
+
(

0 0
0 Pκ(n·)−1P∗

)
+ Ã

)(
θn

q(1)
n

)
=
(

f

−Pκ(n·)−1Q∗q(2)
n

)
.

If we let n → ∞ in the latter formulation, we are not able to identify the limit of

−Pκ(n·)−1Q∗q(2)
n . A closer look into Theorem 5.3 reveals that due to the compact-

ness of the resolvent of Ã the sequence (θn,q
(1)
n )n converges in a way that the so-called

‘weak-strong principle’ can be applied, cf. Theorem 4.5. Hence, we are led to express

q(2)
n in terms of (θn,q

(1)
n ) . Therefore, we perform similarity transformations of (9). We

arrive at

⎛⎝∂t

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠+

⎛⎝0 0 0

0 Pκ(n·)−1P∗ −Pκ(n·)−1Q∗ (Qκ(n·)−1Q∗)−1
Qκ(n·)−1P∗ 0

0 Qκ(n·)−1P∗ Qκ(n·)−1Q∗

⎞⎠

+

⎛⎝ 0 divP∗ 0
P ˚grad 0 0

0 0 0

⎞⎠⎞⎠
⎛⎜⎝ θn

q(1)
n

q(2)
n

⎞⎟⎠=

⎛⎝ f
0
0

⎞⎠ .

Multiplication by

⎛⎝1 0 0
0 1 0

0 0
(
Qκ(n·)−1Q∗)−1

⎞⎠ gives
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⎛⎜⎝∂t

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠+

⎛⎜⎝0 0 0

0 Pκ(n·)−1P∗ −Pκ(n·)−1Q∗ (Qκ(n·)−1Q∗)−1
Qκ(n·)−1P∗ 0

0
(
Qκ(n·)−1Q∗)−1

Qκ(n·)−1P∗ 1

⎞⎟⎠
+

⎛⎝ 0 divP∗ 0
P ˚grad 0 0

0 0 0

⎞⎠⎞⎠
⎛⎜⎝ θn

q(1)
n

q(2)
n

⎞⎟⎠=

⎛⎝ f
0
0

⎞⎠ .

Note that the operators⎛⎜⎝0 0 0

0 Pκ(n·)−1P∗ −Pκ(n·)−1Q∗ (Qκ(n·)−1Q∗)−1
Qκ(n·)−1P∗ 0

0
(
Qκ(n·)−1Q∗)−1

Qκ(n·)−1P∗ 1

⎞⎟⎠ (n ∈ N)

form a bounded sequence in the space of linear operators in the separable Hilbert space
L2(Ω)N+1 . Thus, there exists a subsequence, which converges in the weak operator
topology of L

(
L2(Ω)N+1

)
. Applying Theorem 5.3 to the first two rows of the latter

equation, that is,(
∂t

(
1 0
0 0

)
+
(

0 0

0 Pκ(n·)−1P∗ −Pκ(n·)−1Q∗ (Qκ(n·)−1Q∗)−1
Qκ(n·)−1P∗

)
+
(

0 divP∗

P ˚grad 0

))(
θn

q(1)
n

)
=
(

f
0

)
,

we deduce that (θn,q
(1)
n )n weakly converges and that the sequence (∂−3

t θn(t),∂−3
t q(1)

n (t))n

strongly converges in L2(Ω)⊕R( ˚grad) for all t ∈ R , cf. Theorem 5.3. Hence,((
Qκ(n·)−1Q∗)−1

Qκ(n·)−1P∗q(1)
n

)
n

converges to the product of the limits of
((

Qκ(n·)−1Q∗)−1
Qκ(n·)−1P∗

)
n

and (q(1)
n )n ,

see Corollary 4.6. Thus, we may let n → ∞ in(
Qκ(n·)−1Q∗)−1

Qκ(n·)−1P∗q(1)
n +q(2)

n = 0.

We get that (θn,q
(1)
n ,q(2)

n )n weakly converges to a solution of the following equation⎛⎜⎜⎝∂t

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠+

⎛⎜⎜⎝
0 0 0

0 limn→∞
(
Pκ(n·)−1P∗ −Pκ(n·)−1Q∗ (Qκ(n·)−1Q∗)−1

Qκ(n·)−1P∗
)

0

0 limn→∞
((

Qκ(n·)−1Q∗)−1
Qκ(n·)−1P∗

)
1

⎞⎟⎟⎠
+

⎛⎝ 0 divP∗ 0
P ˚grad 0 0

0 0 0

⎞⎠⎞⎠⎛⎝ θ
q(1)

q(2)

⎞⎠=

⎛⎝ f
0
0

⎞⎠ .
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Next, we want to apply Theorem 3.1 in order to obtain well-posedness of the limit
equation. For this, we again apply similarity transformations. The details are given in
Section 7. We arrive at(

∂t

(
1 0 0
0 0 0
0 0 0

)
+

( 0 0 0
0 lim

n→∞

(
Pκ(n·)−1P∗−Pκ(n·)−1Q∗(Qκ(n·)−1Q∗)−1

Qκ(n·)−1P∗
)

lim
n→∞

(
Pκ(n·)−1Q∗(Qκ(n·)−1Q∗)−1

)
0 lim

n→∞

(
(Qκ(n·)−1Q∗)−1

Qκ(n·)−1P∗
)

lim
n→∞(Qκ(n·)−1Q∗)−1

)

+
(

0 divP∗ 0
P ˚grad 0 0

0 0 0

))( θ
q(1)

q(2)

)
=
( f

0
0

)
. (10)

It can be shown that Theorem 3.1 applies to the latter equation yielding the limit equa-
tion is well-posed. Note that, if one is only interested in the behavior of the heat distri-
bution θ , we can reformulate the latter equation into a second order form. The resulting
equation would be

∂tθ −divP∗
(

lim
n→∞

Pκ(n·)−1P∗ −Pκ(n·)−1Q∗
(
Qκ(n·)−1Q∗

)−1
Qκ(n·)−1P∗

)−1

P ˚gradθ = f .

Using the periodicity of κ , we deduce that Pκ(n·)−1P∗ converges in the weak operator
topology to P

∫
(0,1)N κ(x)−1 dxP∗ , cf. [43, Proposition 4.3]. Hence, the limit equation

reads

∂tθ −divP∗
(

P
∫
(0,1)N

κ−1P∗ − lim
n→∞

Pκ(n·)−1Q∗ (Qκ(n·)−1Q∗)−1
Qκ(n·)−1P∗

)−1

P ˚gradθ = f .

The interested reader might think, why such a seemingly complicated strategy
yielding the homogenized equations should be applied. In the case of the heat equation
this strategy indeed does not give anything new despite the fact that the homogenized
equations have a different representation. Further, with this strategy one cannot eas-
ily deduce the convergence of the whole sequence. However, note that the approach
presented here only uses abstract theory from functional analysis and does not rely on
the specific form of κ being a periodic multiplication operator. If κ is a linear oper-
ator invoking non-local terms, well-known homogenization theory might fail to work.
Moreover, the way of computing the homogenized coefficients carries over to a large
class of evolutionary equations: It is possible to treat Maxwell’s equations, the wave
equation, the heat equation or general coupled systems in mathematical physics in a
unified manner. It is also possible that a second order formulation might not be avail-
able or is not easy to handle, cf. e.g. [29, Equation (6.3.9), p. 455] so that the usual
strategy might not work.
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3. Setting

We recall the setting of evolutionary equations established in [28] or [29, Chapter
6]. For the construction of the time-derivative ∂t , we particularly refer to [15]. Let H
be a Hilbert space and denote by L2(R;H) the space of H -valued L2 -functions. The
operator

∂ : W 1
2 (R;H) � L2(R;H) → L2(R;H) : f �→ f ′

assigning to each weakly differentiable H -valued function its weak derivative is skew-
selfadjoint. Define the unitary Fourier transform F : L2(R;H) → L2(R;H) as the clo-
sure of the mapping

f �→
(

ξ �→ 1√
2π

∫
R

e−ixξ f (x) dx

)
defined for f ∈C∞

c (R;H) . Let

m : { f ∈L2(R;H);(x �→ x f (x))∈L2(R;H)}� L2(R;H)→ L2(R;H) : f �→ (x �→ x f (x)).

For ν > 0 define Hν,0(R;H) := L2(R,exp(−2νx) dx;H) the space of H -valued (equiv-
alence classes of) square-integrable functions with respect to the weighted Lebesgue
measure with Radon-Nikodym derivative exp(−2ν(·)) . We also write Hν,0(R) if
H = C . The mapping exp(−νm) : Hν,0(R;H) → L2(R;H) : f �→ (x �→ exp(−νx) f (x))
is unitary and the operator

∂t,ν := exp(−νm)∗(∂ + ν)exp(−νm)

is normal in Hν,0(R;H) . If there is no risk of confusion, we simply write ∂t instead
of ∂t,ν . We have ∂−1

t,ν ∈ L(Hν,0(R;H)) with
∥∥∂−1

t,ν
∥∥ = 1/ν . Introducing the Fourier-

Laplace transform Lν := F exp(−νm) , we get

∂t,ν = L ∗
ν (im+ ν)Lν .

Consequently,
∂−1
t,ν = L ∗

ν (im+ ν)−1 Lν .

The latter equation gives a functional calculus for the normal operator ∂−1
t,ν :

DEFINITION 1. (Hardy space and functional calculus for ∂t,ν ) For an open set E
� C and a Banach space X , we define the Hardy space

H ∞(E;X) := {M : E → X ;M bounded, analytic}
and ‖M‖∞ := sup{|M(z)|X ;z ∈ E} . Let H1,H2 be Hilbert spaces, ν > 0, r > 1/(2ν) .

• For M ∈ H ∞(BC(r,r);L(H1,H2)) define

M(∂−1
t,ν ) := L ∗

ν

(
M

(
1

im+ ν

))
Lν ,

where
(
M
(

1
im+ν

)
φ
)
(t) =

(
M
(

1
it+ν

))
(φ(t)) for all t ∈ R and φ ∈C∞

c (R;H1) .
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• For c > 0 define

H ∞,c(BC(r,r);L(H1)) := {M ∈ H ∞(BC(r,r);L(H1));Re z−1M(z) � c (z ∈ BC(r,r))}.

For easy reference, we call elements of H ∞(BC(r,r);L(H1)) material laws or
constitutive relations and elements of H ∞,c(BC(r,r);L(H1)) (c)-material laws.

We will deal with operators in Hν,0(R;H) in the following. In consequence, we
identify any closed, densely defined operator A : D(A) � H →H in some Hilbert space
H with its canonical extension on the space of H -valued Hν,0(R)-functions, cf. [28].
We have the following well-posedness theorem taken from [28].

THEOREM 3.1. ([28, Solution theory]) Let H be a Hilbert space, c,ν > 0 , r >
1/(2ν) and M ∈ H ∞,c(B(r,r);L(H)) . Let A : D(A) � H → H be skew-selfadjoint.
Then the equation

(∂tM(∂−1
t )+A)u = f

admits a unique solution u ∈ Hν,0(R;H) for all f ∈ D for some D � Hν,0(R;H)
dense. Moreover, the solution operator (∂tM(∂−1

t )+ A)−1 is a densely defined, con-
tinuous operator in Hν,0(R;H) with operator norm bounded by 1

c , and the operator

(∂tM(∂−1
t )+A)−1 is causal, that is, for all f ∈ Hν,0(R;H) and a ∈ R we have

χ(−∞,a)(∂tM(∂−1
t )+A)−1(χ(−∞,a) f ) = χ(−∞,a)(∂tM(∂−1

t )+A)−1( f ),

where χ(−∞,a) denotes the multiplication operator mapping f ∈Hν,0(R;H) to the trun-
cated function t �→ χ(−∞,a)(t) f (t) .

REMARK 3.1. The latter theorem may be generalized to non-autonomous equa-
tions, see [47, 34].

We note that the results in Theorem 3.1 results carry over to “tailor made” dis-
tribution spaces – so-called Sobolev lattices – discussed in [27]. In [43, Remarks 1.2:
(i)–(iii)] and [28, Sections 2 and 3] the core issues are sketched. We will use the no-
tation from [43] and for the sake of clarity, we recall the main definitions. For k ∈ Z ,
a Hilbert space H and a densely defined, closed linear operator C : D(C) � H → H
with 0 ∈ ρ(C) , we denote by Hk(C) the Hilbert space defined as the completion of
D(C|k|) with respect to the norm |·|Hk(C) : u �→ |Cku|H . It can be shown that the closure
of H|k|(C) � Hk(C) →Hk−1(C) : u �→Cu is unitary. We will re-use the letter C for this
extension. We are interested in the special cases C = A + 1 with A skew-selfadjoint
or C = ∂t . For � ∈ {−1,0,1} we let H�,A := H�(A+ 1) . For ∂t defined on Hν,0(R)-
functions with values in a Hilbert space H we write Hν,k(R;H) := Hk(∂t) . Conse-
quently, we also use the spaces Hν,k(R;H�,A) , � ∈ {−1,0,1} . The extension of the
solution operator to Hν,−1(R;H) also serves as a way to model initial value problems,
see e.g. [29, Section 6.2.5].
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4. Preliminary results

We summarize some findings from [41, 43].

DEFINITION 2. For an open set E � C and Hilbert spaces H1,H2 , we define on
the set H ∞(E;L(H1,H2)) the initial topology τM induced by the mappings

H ∞(E;L(H1,H2)) � M �→ 〈φ ,M(·)ψ〉 ∈ H (E),

where H (E) is the set of holomorphic C-valued functions endowed with the compact
open topology. We define H ∞

w (E;L(H1,H2)) := (H ∞(E;L(H1,H2)),τM ) and re-use
the name H ∞

w (E;L(H1,H2)) for the underlying set.

THEOREM 4.1. (sequential compactness, [41, Theorem 3.4]) Let H1,H2 be sep-
arable Hilbert spaces, E � C open. Let B � H ∞

w (E;L(H1,H2)) be bounded, that
is,

sup{‖M(z)‖L(H1,H2) ;z ∈ E,M ∈ B} < ∞.

Then B is relatively sequentially compact.

LEMMA 4.2. ([41, Lemma 3.5]) Let H be a Hilbert space, r > 0 . Let (Mn)n

be a bounded and convergent sequence in the space H ∞
w (B(r,r);L(H1,H2)) with limit

M ∈ H ∞
w (B(r,r);L(H1,H2)) . Then (Mn(∂−1

t ))n converges to M(∂−1
t ) in the weak

operator topology of L(Hν,k(R;H1),Hν,k(R;H2)) , where ν > 1/(2r) , k ∈ Z .

Proof. In [41, Lemma 3.5], the claim was shown for the case k = 0 and H1 = H2 .
The general case follows by observing that ∂ k

t : Hν,k(R;H1) → Hν,0(R;H1) is unitary
and obvious modifications. �

LEMMA 4.3. ([40, Lemma 1.5]) Let H1,H2 be Hilbert spaces. Let E � C be an
open disc with center z and let (Mn)n = (∑∞

k=0(·− z)kAnk)n be a convergent sequence
in H ∞

w (E;L(H1,H2)) with limit ∑∞
k=0(·−z)kAk . Then Ank → Ak as n→ ∞ in the weak

operator topology of L(H1,H2) for all k ∈ N0 .

For a Hilbert space H and ν > 0, we define

Cν (R;H) := {φ ∈C(R;H); sup
t∈R

|exp(−νt)φ(t)|H < ∞}.

We endow Cν (R;H) with the norm |·|Cν : φ �→ supt∈R|exp(−νt)φ(t)|H . Recall from
[29, Lemma 3.1.59] that Hν,1(R;H) continuously embeds into Cν(R;H) .

LEMMA 4.4. ([43, Lemma 2.2]) Let H be a Hilbert space, ν > 0 . If ( fn)n in
Hν,1(R;H) is bounded and converges pointwise to some f ∈ Hν,1(R;H) , then

∂−1
t fn(t)

n→∞−→ ∂−1
t f (t),

for all t ∈ R .
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THEOREM 4.5. (weak-strong principle, [43, Theorem 2.3]) Let H be a Hilbert
space, ε > 0 , (Mn)n be a convergent sequence in H ∞

w (BC(0,ε);L(H1,H2)) with limit
M . Then, for ν > 2/ε and any bounded sequence (vn)n in Hν,1(R;H1) and v ∈
Hν,1(R;H1) such that vn(t)

n→∞−→ v(t) in H1 for all t ∈ R ,

w- lim
n→∞

(Mn(∂−1
t )vn)(t) = (M(∂−1

t )v)(t) ∈ H2,

for all t ∈ R .

Proof. In [43] the proof is given for the case H1 = H2 . The assertion follows
analogously with obvious modifications. �

COROLLARY 4.6. Let H1,H2 be Hilbert spaces, ε > 0 , (Mn)n be a convergent
sequence in H ∞

w (BC(0,ε);L(H1,H2)) with limit M ∈ H ∞
w (BC(0,ε);L(H1,H2)) . Let

ν > 2/ε , k ∈ Z and let (vn)n be bounded in Hν,k(R;H1) , v ∈ Hν,k(R;H1) . Assume

there is l ∈ N0 such that ∂−l
t vn ∈ Hν,1(R;H1) and ∂−l

t vn(t)
n→∞−→ ∂−l

t v(t) in H1 for all
t ∈ R . Then

w- lim
n→∞

Mn(∂−1
t )vn = M(∂−1

t )v ∈ Hν,k(R;H2).

Proof. Since (Mn(∂−1
t )vn)n is bounded in Hν,k(R;H2) , there is a subsequence

with indices (n j) j weakly converging to some w ∈ Hν,k(R;H2) . The assumption

guarantees that (∂−|k|−l
t vn)n is bounded in Hν,1(R;H1) . Moreover, by Lemma 4.4,

(∂−|k|−l
t vn)n converges pointwise to ∂−|k|−l

t v . Thus, by Theorem 4.5 and the weak
continuity of point-evaluation, we deduce that, for t ∈ R ,

(∂−|k|−l
t w)(t) = w- lim

j→∞
(∂−|k|−l

t Mnj (∂
−1
t )vn j)(t) = w- lim

j→∞
Mnj (∂

−1
t )∂−|k|−l

t vn j(t)

= M(∂−1
t )∂−|k|−l

t v(t) = ∂−|k|−l
t M(∂−1

t )v(t).

Hence, w = M(∂−1
t )v . �

5. A general compactness theorem for the homogenization
of evolutionary equations

We introduce the concept of G-convergence to bridge the gap between the clas-
sical approach to homogenization theory and the Hilbert space perspective discussed
here.

DEFINITION 3. (G-convergence, [55, p. 74]) Let H be a Hilbert space. Let (An :
D(An) � H → H)n be a sequence of one-to-one mappings onto H and let B : D(B) �
H → H be one-to-one. We say that (An)n G-converges to B if for all f ∈ H the
sequence (A−1

n ( f ))n convergesweakly to some u , which satisfies u∈D(B) and B(u)=
f . B is called a G-limit of (An)n . We say that (An)n strongly G-converges to B in
H , if for all weakly converging sequences ( fn)n in H , (A−1

n ( fn))n weakly converges
to some u , which satisfies u ∈ D(B) and B(u) = w-limn→∞ fn .
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PROPOSITION 5.1. The G-limit is uniquely determined.

Proof. Let H be a Hilbert space. Let (An)n be a sequence of one-to-one onto map-
pings which is G-convergent to the one-to-one mapping B : D(B) � H → H . Define
C := {(u, f ) ∈ H ⊕H;u = w-limn→∞ A−1

n ( f )} . Then C � B , so that C is a mapping.
Moreover, since C is onto and B is one-to-one, we conclude that C = B . �

REMARK 5.2. Assume, in addition, that (An)n in the above definition is a se-
quence of linear and closed operators. Further assume B to be closed and linear. Then
the above definition of G-convergence is precisely convergence of the resolvents in the
weak operator topology, which is the original definition in [55] in the Hilbert space
setting.

We now prove compactness results concerning G-convergence for operators that
are associated with evolutionary equations. More precisely, we will deal with the fol-
lowing cases:

DEFINITION 4. Let H1,H2 be Hilbert spaces. We say a pair ((Mn)n,A ) satisfies

(P1) if there exists ε,r,c > 0 such that (Mn)n is a bounded sequence in

H ∞(B(0,ε);L(H1))∩H ∞,c(B(r,r);L(H1))

and
A : D(A ) � H1 → H1

is skew-selfadjoint and the embedding (D(A ), |·|A ) ↪→ (H1, |·|H1) is compact,

(P2) if there exists ε,c,r > 0 such that (Mn)n =
((

M11,n M12,n

M21,n M22,n

))
n

is bounded in

H ∞(B(0,ε);L(H1⊕H2))∩H ∞,c(B(r,r);L(H1 ⊕H2)) and A =
(

A 0
0 0

)
is such

that ((M11,n)n,A) satisfies (P1). Moreover,

(i) for all n ∈ N , R(M1(0)) = R(Mn(0)) and Mn(0) � c on R(M1(0)) ,
(ii) denoting by q j : Hj → R(π∗

j )∩N(M1(0)) ( j ∈ {1,2}) the canonical ortho-
projections, we have for all n ∈ N((

q2M
′
22,n(0)q∗2

)−1
q2M

′
21,n(0)q∗1

)∗
= q1M

′
12,n(0)q∗2

(
q2M

′
22,n(0)q∗2

)−1
.

With these definitions, the core result in [43] now reads as follows.

THEOREM 5.3. ([43, Theorem 3.5]) Let H be a Hilbert space and assume that
((Mn)n,A ) satisfies (P1) and that (Mn)n converges to N ∈ H ∞

w (B(0,ε);L(H)) . Then
there exists ν0 � 0 such that for all ν > ν0 , (∂tMnk(∂

−1
t )+A )k strongly G-converges

to ∂tN(∂−1
t )+A in Hν,−1(R;H) . Moreover, N ∈ H ∞,c(B(r,r);L(H)) and

∂−3
t (∂tMn(∂−1

t )+A )−1 fn(t) → ∂−3
t (∂tN(∂−1

t )+A )−1(w- lim
n→∞

fn)(t) ∈ H

as n → ∞ for all t ∈ R and all weakly convergent sequences ( fn)n in Hν,−1(R;H) .
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The generalization of this theorem to the case (P2) requires a homogenization
result for the case of A = 0, that is to say, a result on the homogenization of ordinary
integro-differential equations. Since we deal with a possibly degenerate case in the
sense of [28, Section 3.3], we cannot use the homogenization result for ordinary integro-
differential equations already established in [41, Theorem 5.2]. The refined argument
is tailored for the 0-analytic case (cf. Section 7), which, however, does not cover the
results in [41], see also [44] for a related result.

THEOREM 5.4. Let H be a separable Hilbert space, ε,c,d,r > 0 . Let (Mn)n

be a bounded sequence in H ∞(B(0,ε);L(H))∩H ∞,c(B(r,r);L(H)) and assume that
for all n ∈ N , Mn(0) � d on R(Mn(0)) = R(M1(0)) . Then there exists r′ ∈ (0,r] and
a strictly monotone sequence of positive integers (nk)k such that, for ν > 1/(2r′) ,
(∂tMnk(∂

−1
t ))k G-converges to ∂tμ(∂−1

t ) in Hν,−1(R;H) , where μ has the following
properties: there is ε ′,c′ > 0 such that

(i) μ ∈ H ∞(B(0,ε ′);L(H))∩H ∞,c′(B(r′,r′);L(H)) ,

(ii) R(μ(0)) = R(M1(0)) ,

(iii) for all open E � C relatively compact in B(0,ε ′) \ {0} (: ⇐⇒ E ⊂⊂ B(0,ε ′) \
{0}) ,

Mnk(·)−1 → μ(·)−1 ∈ H ∞
w (E;L(H)) (k → ∞).

Proof. Define the Hilbert spaces H1 := R(M1(0)) and H2 := N(M1(0)) together
with the canonical (orthogonal) projections π j : H →Hj , j ∈{1,2} . Then, for all n∈N

and j,k ∈ {1,2} , set Mjk,n(·) := π jMn(·)π∗
k . Now, the first assertion in Lemma 7.10

ensures the existence of ε ′ > 0 such that, for all E � C relatively compact in B(0,ε ′)\
{0} , the sequence (Mn(·)−1)n is bounded in H ∞(E;L(H1⊕H2)) . By σ -compactness
of B(0,ε ′) \ {0} and Theorem 4.1, we may choose a subsequence (Mnk(·)−1)k of
(Mn(·)−1)n such that there is a holomorphic mapping η : B(0,ε ′)\ {0}→ L(H) with

Mnk(·)−1 → η ∈ H ∞
w (E;L(H)) (k → ∞, E ⊂⊂ B(0,ε ′)\ {0}).

By Cauchy’s integral formulas, we infer that the coefficients of the Laurent series ex-
pansions of Mnk(·)−1 converge in the weak operator topology τw to the respective ones
of η . Hence, with the help of the first assertion of Lemma 7.10, the Laurent series
expansion of η is of the form

η(z) =
(

(τw-) limk→∞ M11,nk(0)−1 + M̂11(z) M̂12(z)
M̂21(z) z−1(τw-) limk→∞ M22,nk(0)−1 + M̂22(z)

)
for suitable bounded holomorphic operator-valued functions M̂jk for j,k ∈ {1,2} . The
second assertion of Lemma 7.10 yields the existence of ε ′′ > 0 such that μ := η(·)−1 ∈
H ∞(B(0,ε ′′);L(H)) . Moreover, from the representation in Lemma 7.10, we read off
that R(M1(0)) = R(μ(0)) and μ(0) � d′ on H1 for some d′ > 0 according to In-
equality (15) and the fact that positive definiteness is preserved under limits in the
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weak operator topology. Similarly, Reμ ′(0) � c′ > 0 on H2 . Thus, by Remark 7.3
it follows that μ lies in H ∞,c′′(B(r′,r′);L(H)) for some r′,c′′ > 0. It remains to
show the G-convergence result. To this end let ν > 1/(2r′) . By the convergence of
the coefficients in the Laurent series of ((Mnk(·))−1)k , we get that ((·)(Mnk (·))−1)k

converges to (·)η(·) in H ∞
w (B(1/(2ν),1/(2ν));L(H)) . Thus, Lemma 4.2 implies

that ((∂tMnk(∂
−1
t ))−1)k converges to ∂−1

t η(∂−1
t ) in the weak operator topology of

L(Hν,−1(R;H)) . Employing Remark 5.2, we obtain the desired G-convergence. �

THEOREM 5.5. Let H1,H2 be separable Hilbert spaces. Assume that ((Mn)n,A )
satisfies (P2). Then there exists ν0 � 0,ε ′,c′ > 0 and (nk)k a strictly monotone se-
quence of positive integers such that for all ν > ν0 the sequence (∂tMnk(∂

−1
t )+A )k

G-converges to (∂tN(∂−1
t )+A ) in Hν,−1(R;H1 ⊕H2) with

N(·) :=
(

η1(·)+ η4(·)η2(·)−1η3(·) η4(·)η2(·)−1

η2(·)−1η3(·) η2(·)−1

)
∈ H ∞(B(0,ε ′);L(H1 ⊕H2))∩H ∞,c′(B(1/(2ν0),1/(2ν0));L(H1 ⊕H2)),

where

η1(·) := lim
k→∞

M11,nk(·)−M12,nk(·)M22,nk(·)−1M21,nk(·) ∈ H ∞
w (B(0,ε ′);L(H1))

η2(·) := lim
k→∞

(
M22,nk(·)

)−1 ∈ H ∞
w (E;L(H2)) (E ⊂⊂ B(0,ε ′)\ {0})

η3(·) := lim
k→∞

M22,nk(·)−1M21,nk(·) ∈ H ∞
w (B(0,ε ′);L(H1,H2)) and

η4(·) := lim
k→∞

M12,nk(·)M22,nk(·)−1 ∈ H ∞
w (B(0,ε ′);L(H2,H1)).

Moreover, R(N(0)) = R(M1(0)) .

Proof. By Theorem 7.11 (applied to M = Mn and the sequence N just the constant
sequence consisting of Mn as every entry) there exist ε ′,r′,c′ > 0 such that, for all
n ∈ N ,(

1 −M12,n(·)M22,n(·)−1

0 1

)(
M11,n(·) M12,n(·)
M21,n(·) M22,n(·)

)(
1 0

−M22,n(·)−1M21,n(·) 1

)
=
(

M11,n(·)−M12,n(·)M22,n(·)−1M21,n(·) 0
0 M22,n(·)

)
∈ H ∞(B(0,ε ′);L(H1 ⊕H2))∩H ∞,c′(B(r′,r′);L(H1 ⊕H2)).

Let ν > 1/(2r′) . By Theorem 4.1 and Theorem 5.4, we may choose convergent subse-
quences of the material law sequences

(μ1,n)n := (M11,n(·)−M12,n(·)M22,n(·)−1M21,n(·))n

(μ2,n)n := (M22,n(·)−1)n
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(μ3,n)n := (M22,n(·)−1M21,n(·))n and

(μ4,n)n := (M12,n(·)M22,n(·)−1)n.

We will use the same index for the subsequences and denote the respective limits by
η1,η2,η3 and η4 . Using the representation from Theorem 7.6, we get with the help of
Theorem 7.11:

(G1⊕{0})⊕ (G3⊕{0}) = R

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝
(

M(0)
11,n 0
0 0

) (
M(0)

13,n 0
0 0

)
(

M(0)
31,n 0
0 0

) (
M(0)

33,n 0
0 0

)
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

= R

((
M11,n(0) M12,n(0)
M21,n(0) M22,n(0)

))
= R

((
M11,n(0)−M12,n(0)M22,n(0)−1M21,n(0) 0

0 M22,n(0)

))
= R

(
M11,n(0)−M12,n(0)M22,n(0)−1M21,n(0)

)⊕R(M22,n(0)) .

Now, M11,n(0)−M12,n(0)M22,n(0)−1M21,n(0) is strictly positive on G1 = R(M11,1(0))
and M22,n(0) is strictly positive on G3 = R(M22,1(0)) uniformly in n . Hence, we
deduce that R(η1(0)) = R(M11,1(0)) and, from Theorem 5.4, that R(η2(·)−1(0)) =
R(M22,1(0)) . Let ( f1, f2) ∈ Hν,−1(R;H1 ⊕ H2) and for n ∈ N , let (u1,n,u2,n) ∈
Hν,−1(R;H1 ⊕H2) be the unique solution of

∂t

(
M11,n(∂−1

t ) M12,n(∂−1
t )

M21,n(∂−1
t ) M22,n(∂−1

t )

)(
u1,n

u2,n

)
+
(

A 0
0 0

)(
u1,n

u2,n

)
=
(

f1
f2

)
.

Multiplying this equation by

(
1 −M12,n(∂−1

t )M22,n(∂−1
t )−1

0 (∂tM22,n(∂−1
t ))−1

)
, we obtain

(
∂t μ1,n(∂−1

t ) 0
μ3,n(∂−1

t ) 1

)(
u1,n

u2,n

)
+
(

A 0
0 0

)(
u1,n

u2,n

)
=
(

f1 − μ4,n(∂−1
t ) f2

μ2,n(∂−1
t )∂−1

t f2

)
.

Thus, (
u1,n

u2,n

)
=
(

(∂t μ1,n(∂−1
t )+A)−1( f1 − μ4,n(∂−1

t ) f2)
−μ3,n(∂−1

t )u1,n + μ2,n(∂−1
t )∂−1

t f2

)
.

Lemma 4.2 ensures that (μ4,n(∂−1
t ) f2)n weakly converges to η4(∂−1

t ) f2 . Thus, by
Theorem 5.3, we deduce that (u1,n)n weakly converges to (∂tη1(∂−1

t ) + A)−1( f1 −
η4(∂−1

t ) f2) =: v1 . Moreover, (∂−3
t u1,n)n converges pointwise to ∂−3

t v1 . Using the
equality

u2,n = −μ3,n(∂−1
t )u1,n + μ2,n(∂−1

t )∂−1
t f2 ∈ Hν,−1(R;H2),

we deduce, with the help of Corollary 4.6 for the first term on the right-hand side and
Theorem 5.4 for the second term, that

u2,n ⇀ v2 := −η3(∂−1
t )v1 + η2(∂−1

t )∂−1
t f2 ∈ Hν,−1(R;H2)
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as n → ∞ . We arrive at the limit system(
∂tη1(∂−1

t ) 0
η3(∂−1

t ) 1

)(
v1

v2

)
+
(

A 0
0 0

)(
v1

v2

)
=
(

f1 −η4(∂−1
t ) f2

η2(∂−1
t )∂−1

t f2

)
.

Multiplying this equation by

(
1 ∂tη4(∂−1

t )η2(∂−1
t )−1

0 η2(∂−1
t )−1∂t

)
, we obtain

∂t

(
η1(∂−1

t )+ η4(∂−1
t )η2(∂−1

t )−1η3(∂−1
t ) η4(∂−1

t )η2(∂−1
t )−1

η2(∂−1
t )−1η3(∂−1

t ) η2(∂−1
t )−1

)(
v1

v2

)
+
(

A 0
0 0

)(
v1

v2

)
=
(

f1
f2

)
.

Next, we consider the operator

N(·) =
(

η1(·)+ η4(·)η2(·)−1η3(·) η4(·)η2(·)−1

η2(·)−1η3(·) η2(·)−1

)
=
(

1 η4(·)
0 1

)(
η1(·) 0

0 η2(·)−1

)(
1 0

η3(·) 1

)
.

By Theorem 5.4, we deduce that η2(·)−1 is a (c′′)-material law with strictly positive
zeroth order term on the range of M22,1(0) for some c′′ > 0. Moreover, η1 is a (c′)-
material law by Theorem 5.3. Hence, using Theorem 7.11, we deduce the existence
of ε ′′,r′′,c′′′ > 0 such that N ∈ H ∞,c′′′(B(r′′,r′′);L(H1 ⊕H2))∩H ∞(B(0,ε ′′);L(H1 ⊕
H2)) . �

REMARK 5.6. In Theorem 5.5, we have proved that 0-analytic material laws lead
to 0-analytic material laws after the homogenization process. Hence, it cannot be ex-
pected that the homogenized material law contains fractional derivatives with respect to
time or explicit delay terms: Indeed, these operators cannot be represented as material
laws, which are analytic in 0, see e.g. [29, pp. 448 (a),(c)] or [32]. By Theorem 3.1
we see that the limit equation is also well-posed and causal. The assertion concerning
the range of the material law N may be interpreted as “the main physical phenomenon
remains unchanged under the homogenization process”: A clarification of the latter
statement is in order. One difference between the wave equation and the heat equation
written as a first order system as in [40, Example 1.4.6] or [49, Example 3.2] is the
range of the zeroth order term in the material law. More precisely, let Ω � RN open,
κ ∈ L∞(Ω)N×N such that κ−1 ∈ L∞(Ω)N×N . For smooth and compactly supported f
and g we shall rewrite the wave equation

∂ 2
t u−divκ ˚gradu = f

and the heat equation
∂tθ −divκ ˚gradθ = g
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as first order systems. Setting v := ∂t u , w := −κ ˚gradu ; q := −κ ˚gradθ , we get(
∂t

(
1 0
0 κ−1

)
+
(

0 div
˚grad 0

))(v
w

)
=
(

f
0

)
and (

∂t

(
1 0
0 0

)
+
(

0 0
0 κ−1

)
+
(

0 div
˚grad 0

))(θ
q

)
=
(

g
0

)
,

respectively. Therefore, the corresponding material laws read

Mwave(∂−1
t ) =

(
1 0
0 κ−1

)
and

Mheat(∂−1
t ) =

(
1 0
0 0

)
+ ∂−1

t

(
0 0
0 κ−1

)
.

So, Mwave(0) is onto. But the range of Mheat(0) coincides with L2(Ω)⊕{0}� L2(Ω)⊕
L2(Ω)N . According to Theorem 5.5, this property remains unchanged due to the ho-
mogenization process.

COROLLARY 5.7. Let H be a separable Hilbert space, ε,c,r > 0 , A : D(A) �
H → H skew-selfadjoint. Denote by P : H → N(A)⊥ , Q : H → N(A) the orthogonal
projections onto the respective spaces N(A)⊥ and N(A) . Assume that the operator A
has the (NC)-property, that is, (D(PAP∗), |·|PAP∗) ↪→ (H, |·|H) is compact. Let (Mn)n

be a bounded sequence in H ∞(B(0,ε);L(H))∩H ∞,c(B(r,r);L(H)) with Mn(0) � c
on R(Mn(0)) = R(M1(0)) for all n ∈ N . Denote by q2 : H → N(M1(0))∩N(A)⊥ ,
q4 : H → N(M1(0))∩N(A) the canonical orthogonal projections and assume

q2M
′
n(0)q∗4(q4M

′
n(0)q∗4)

−1 = q2M
′
n(0)∗q∗4(q4M

′
n(0)∗q∗4)

−1 for all n ∈ N. (11)

Then there exists ν0 � 0 , ε ′,c′ > 0 and (nk)k a strictly monotone sequence of positive
integers such that for all ν > ν0 , the sequence

(∂tMnk(∂
−1
t )+A)k

G-converges to

∂t
(
P∗η1(∂−1

t )P+P∗η4(∂−1
t )η2(∂−1

t )−1η3(∂−1
t )P+P∗η4(∂−1

t )η2(∂−1
t )−1Q

+Q∗η2(∂−1
t )−1η3(∂−1

t )P+Q∗η2(∂−1
t )−1Q

)
+A

in Hν,−1(R;H) , where2

η1(·) := lim
k→∞

PMnk(·)P∗ −PMnk(·)Q∗(QMnk(·)Q∗)−1QMnk(·)P∗

2The limits are computed in the way similar to Theorem 5.5 with H1 = N(A)⊥ and H2 = N(A) .
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η2(·) := lim
k→∞

(QMnk (·)Q∗)−1

η3(·) := lim
k→∞

(QMnk (·)Q∗)−1QMnk(·)P∗ and

η4(·) := lim
k→∞

(PMnk(·)Q∗)(QMnk(·)Q∗)−1.

Proof. The assertion follows by applying Theorem 5.5 to

((Mn)n,A ) =
(((

PMn(·)P∗ PMn(·)Q∗
QMn(·)P∗ QMn(·)Q∗

))
n
,

(
PAP∗ 0

0 0

))
. �

REMARK 5.8. The compatibility Condition (11) may be hard to check in appli-
cations. However, there are some situations in which the Condition (11) is trivially
satisfied:

• A is one-to-one; then N(A) = {0} and q4 = 0.

• R(M1(0)) � N(A)⊥ ; then N(M1(0))∩N(A)⊥ = {0} and q2 = 0.

• M1(0) is onto; then the preceding condition is satisfied. We remark here that this
condition was imposed in [40, Theorem 2.3.14]. This condition corresponds to
hyperbolic-type equations in applications.

• M′
n(0)= M′

n(0)∗ ; then q2M′
n(0)q∗4(q4M′

n(0)q∗4)
−1 = q2M′

n(0)∗q∗4(q4M′
n(0)∗q∗4)

−1 .

We do not yet know whether the compatibility condition is optimal. We can how-
ever give some examples to show that the other assumptions in (P2) are reasonable.
The following example shows that without the requirement on A to have the (NC)-
property the limit equation can differ from the expressions given in Theorem 5.5 or
Corollary 5.7.

EXAMPLE 5.9. (Compactness assumption does not hold) Let ν,ε > 0. Consider
the mapping a : R → R given by

a(x) := χ [0, 1
2 )(x− k)+2χ[ 1

2 ,1](x− k)

for all x ∈ [k,k+1) and k ∈ Z . By a(n · m̂)φ := (x �→ a(nx)φ(x)) for n ∈ N , we define
the corresponding multiplication operator in L2(R) . Note that a(x+ k) = a(x) for all
x ∈ R and k ∈ Z .

Let f ∈Hν,0(R;L2(R)) . We consider the evolutionary equation with (Mn(∂−1
t ))n :

= (∂−1
t a(n · m̂))n and A = i : L2(R) → L2(R) : φ �→ iφ . Clearly, N(A) = {0} . By [41,

Theorem 4.5] or [12, Theorem 1.5], we deduce that

Mn →
(

z �→ z
∫ 1

0
a(x) dx

)
=
(

z �→ 3
2
z

)
∈ H ∞

w (B(0,ε);L(L2(R)))

as n→∞ . If the assertion of Corollary 5.7 remains true in this case, then (∂tMn(∂−1
t )+

A)n G-converges to 3
2 + i . For n ∈ N , let un ∈ Hν,0(R;L2(R)) be the unique solution

of the equation
(∂tMn(∂−1

t )+A)un = (a(n · m̂)+ i)un = f . (12)
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Observe that by [12, Theorem 1.5]

un = (a(nm̂)+ i)−1 f ⇀

(∫ 1

0
(a(x)+ i)−1 dx

)
f =: u.

as n → ∞ . We integrate∫ 1

0
(a(x)+ i)−1 dx =

1
2
(1+ i)−1 +

1
2
(2+ i)−1.

Inverting the latter equation yields(∫ 1

0
(a(x)+ i)−1 dx

)−1

=
(

1
2
(1+ i)−1 +

1
2
(2+ i)−1

)−1

=
18
13

+
14
13

i.

Hence, u satisfies (
3
2

+ i

)
u = f and

(
18
13

+
14
13

i

)
u = f ,

which of course is a contradiction.

In the next example, the uniform positive definiteness is violated.

EXAMPLE 5.10. (Uniform positive definiteness condition does not hold)
Let H = C , ν > 0 and, for n ∈ N , let Mn(∂−1

t ) = ∂−1
t

1
n , A = 0, f ∈ Hν,0(R) \ {0} .

For n ∈ N , let un ∈ Hν,0(R) be defined by

∂tMn(∂−1
t )un =

1
n
un = f .

Then (un)n is not relatively weakly compact and contains no weakly convergent sub-
sequence.

In the final example, the range condition in (P2) is violated.

EXAMPLE 5.11. (Range condition does not hold) Let H be an infinite-dimen-
sional, separable Hilbert space. Let (φn)n be a complete orthonormal system. For
n ∈ N define Mn(∂−1

t ) := 〈φn, ·〉φn + ∂−1
t (1−〈φn, ·〉φn) . For the sequence (Mn)n the

range condition in (P2) (applied with A = 0) is violated. Let f ∈ Hν,0(R;H) , ν > 0.
For n ∈ N , let un ∈ Hν,0(R;H) be such that

∂tMn(∂−1
t )un = ∂t〈φn,un〉φn +un−〈φn,un〉φn = f .

It is easy to see that (un)n is bounded. Take the inner product of the last equation with
φm for some m ∈ N . If n ∈ N is larger than m we arrive at

〈un,φm〉 = 〈 f ,φm〉,
and we deduce that (∂tMn(∂−1

t ))n G-converges to ∂t∂−1
t = 1. This, however, does not

yield a differential equation.
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6. Applications

We demonstrate the applicability of our main theorem to the mathematical models
of some physical phenomena. For notational details, we refer to [40, pp. 34 and p. 98]
or to [39, 3.2 Examples].

Thermodynamics

Let α,β ∈ R , 0 < α < β , Ω � RN open and bounded, N ∈ N . Recall [9, Defini-
tion 4.11]:

M(α,β ,Ω) :=
{

κ ∈ L∞(Ω)N×N ;

Re〈κ(x)ξ ,ξ 〉 � α|ξ |2, |κ(x)ξ | � β |ξ |,ξ ∈ R
N , a.e. x ∈ Ω

}
.

Let Mself(α,β ,Ω) := {κ ∈M(α,β ,Ω);κ selfadjoint a.e.} . For κ ∈M(α,β ,Ω) denote
by κ(m̂) the associated multiplication operator in L2(Ω)N . Let (κn)n be a sequence in
Mself(α,β ,Ω) . Recall from Section 2 that a first order formulation of the heat equation
with Dirichlet boundary conditions in the context of evolutionary equations introduced
in [28] is the following(

∂t

(
1 0
0 0

)
+
(

0 0
0 κn(m̂)−1

)
+
(

0 div
˚grad 0

))(
u1,n

u2,n

)
=
(

f1
f2

)
.

We want to apply Corollary 5.7 with

A =
(

0 div
˚grad 0

)
and

(Mn(∂−1
t ))n :=

((
1 0
0 0

)
+ ∂−1

t

(
0 0
0 κn(m̂)−1

))
n
.

The compactness condition on the operator

(
0 div
˚grad 0

)
has already been established

e.g. in [40, Remark 3.2.2] or [43, the end of the proof of Theorem 4.3] and the sequence

(κn(m̂)−1)n is a sequence of selfadjoint operators. Since Mn(0) = M1(0) =
(

1 0
0 0

)
for

all n ∈ N , the range condition is satisfied. Thus Corollary 5.7 applies. The sequence
(Mn)n could be replaced by some convolution terms. Moreover it should be noted that
the case of not necessarily symmetric κn ’s has been considered in [43]. There, however,
a second-order formulation was used which, for more general material laws, may not
be available. The homogenized equations are derived in Section 2, see equation (10).

Electromagnetism

Let Ω � R3 open. The general form of Maxwell’s equations in bi-anisotropic
dissipative media used in [4] is(

∂t

(
ε γ
γ∗ μ

)
+
(

σ11∗ σ12∗
σ21∗ σ22∗

)
+
(

0 −curl
˚curl 0

))(
E
H

)
=
(

J
0

)
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with a (c)-material law (see Section 3 for a definition)

M(∂−1
t ) :=

(
ε γ
γ∗ μ

)
+ ∂−1

t

(
σ11∗ σ12∗
σ21∗ σ22∗

)

for a c > 0. Here, σ jk are L(L2(Ω)3)-valued functions on R , vanishing on R<0

and being such that the temporal convolutions σ jk∗ yield 0-analytic material laws,

j,k ∈ {1,2} . Moreover, the operator

(
ε γ
γ∗ μ

)
is assumed to be selfadjoint and strictly

positive definite in L2(Ω)6 . We emphasize here that the convolution kernels may also
take values in the linear operators on L2(Ω)3 , which are not representable as multipli-
cation operators, thus, in this way, generalizing the assumptions in [4]. Now, consider
a sequence of (c)-material laws (Mn)n of the above form with non-singular, strictly

positive zeroth order term:

(
εn γn

γ∗n μn

)
� d > 0 for all n ∈ N . Then, Corollary 5.7 ap-

plies if we assume Ω to be bounded and to satisfy suitable smoothness assumptions
on the boundary, see e.g. [26, 33, 54] (or (also for possibly other boundary conditions)

[3, 11, 14, 16, 50, 51]). Indeed, the range condition is satisfied since Mn(0) =
(

εn γn

γ∗n μn

)
is onto for all n ∈ N and, since N(Mn(0)) = {0} , the compatibility Condition (11)
also follows. Note that the homogenized equations are more complicated than in the
case of the heat equation. This is due to the fact that both the off-diagonal operators in

A =
(

0 −curl
˚curl 0

)
have an infinite-dimensional nullspace. In case of the heat equation

with Dirichlet boundary conditions, we have A =
(

0 div
˚grad 0

)
, where the nullspace of

˚grad is trivial.

To illustrate the versatility and applicability of Theorem 5.5 we show how our
methods apply to the equations of thermopiezoelectricity.

Thermopiezoelectricity

We assume Ω � R3 to be open and bounded. The equations of thermopiezoelec-
tricity describe the interconnected effects of elasticity, thermodynamics and electro-
magnetism. The set Ω models a body in its non deformed state. We recall the for-
mulation as in [29, 6.3.3, p. 457], where the model given in [18] is discussed, see also
[20]. The unknowns of the system are the time-derivative of the displacement field
v , the stress tensor T , the electric and magnetic field E and H as well as the heat
distributions θ and the heat flux q . Recall the spatial derivative operators from the
introduction and define Div as the negative adjoint of ˚Grad, the symmetrized gradient
with homogeneous Dirichlet boundary conditions. The equations read as follows
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⎛⎜⎜⎜⎜⎜⎜⎝

ρ0 0 0 0 0 0
0 C−1 C−1d 0 C−1λ 0
0 d∗C−1 ε +d∗C−1d 0 p+d∗C−1λ 0
0 0 0 μ 0 0
0 λ ∗C−1 p∗ + λ ∗C−1d 0 α + λ ∗C−1λ 0
0 0 0 0 0 q0 +q1(α + κ∂t)−1

⎞⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎝

0 Div 0 0 0 0
˚Grad 0 0 0 0 0
0 0 0 −curl 0 0
0 0 ˚curl 0 0 0
0 0 0 0 0 div
0 0 0 0 ˚grad 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
v
T
E
H
θ
q

⎞⎟⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎝
f
0
J
0
g
0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where ρ0,C,ε,μ ,q0,q1,α,κ ,d,λ , p are bounded linear operators in appropriate L2(Ω)-
spaces. To frame the latter system into the general context of this exposition, we find
that

A =

⎛⎜⎜⎜⎜⎜⎜⎝

0 Div 0 0 0 0
˚Grad 0 0 0 0 0
0 0 0 −curl 0 0
0 0 ˚curl 0 0 0
0 0 0 0 0 div
0 0 0 0 ˚grad 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

The material law is given by

M(∂−1
t ) =

⎛⎜⎜⎜⎜⎜⎜⎝

ρ0 0 0 0 0 0
0 C−1 C−1d 0 C−1λ 0
0 d∗C−1 ε +d∗C−1d 0 p+d∗C−1λ 0
0 0 0 μ 0 0
0 λ ∗C−1 p∗ + λ ∗C−1d 0 α + λ ∗C−1λ 0
0 0 0 0 0 q0 +q1(α + κ∂t)−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

M is a (c)-material law, if we assume that one of the following conditions is satisfied

(i) ρ0,C,ε,μ ,q0,α − p∗ε−1p,κ are selfadjoint and strictly positive,

(ii) ρ0,C,ε,μ ,q1,α − p∗ε−1p,κ are selfadjoint, strictly positive, q1κ−1 = κ−1q1

and q0 = 0.

Indeed, the material law can be written as a block operator matrix in the form

M(∂−1
t ) =

(
M11 0
0 M22(∂−1

t )

)
,
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where

M11 =

⎛⎜⎜⎜⎜⎝
ρ0 0 0 0 0
0 C−1 C−1d 0 C−1λ
0 d∗C−1 ε +d∗C−1d 0 p+d∗C−1λ
0 0 0 μ 0
0 λ ∗C−1 p∗ + λ ∗C−1d 0 α + λ ∗C−1λ

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 d∗ 1 0 0
0 0 0 1 0
0 λ ∗ p∗ε−1 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ρ0 0 0 0 0
0 C−1 0 0 0
0 0 ε 0 0
0 0 0 μ 0
0 0 0 0 α − p∗ε−1p

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 d 0 λ
0 0 1 0 ε−1p
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠
is strictly positive and, by choosing ν > 0 sufficiently large such that

∥∥∂−1
t

∥∥ becomes
small enough,

M22(∂−1
t ) = q0 +q1(α + κ∂t)−1 = q0 +q1κ−1∂−1

t +
∞

∑
n=1

(−1)n∂−n−1
t (κ−1α)nκ−1

is such that either M22(0) or M′
22(0) is strictly positive. Thus, M is a (c)-material law

for some c > 0.
Considering a sequence (Mn)n of such material laws with the boundedness and

uniform positive definiteness assumptions from Corollary 5.7, one may derive a ho-
mogenization result for these equations. We will not do this explicitly here. However,
in order to satisfy the range condition, one has to assume that all entries of the mate-
rial law sequence satisfy either Condition (i) or (ii). To deduce that A has the (NC)-
property, we have to impose suitable geometric requirements on Ω as in the previous
example.

We refer the interested reader to more examples of first order formulations of stan-
dard evolutionary equations in mathematical physics to [28, 29]. With these formula-
tions it is then rather straightforward to see when and how our homogenization result
applies.

7. Auxiliary results on 0 -analytic material laws

In this section, we provide the remaining results needed in Section 5. Our main
concern will be the discussion of 0-analytic material laws, that is, material laws that
are analytic at 0 ∈ C , cf. [28, Section 3.3]. To establish Theorem 5.5 similarity trans-
formations of 0-analytic material laws have to be discussed, where our main interest
is to show that under any of these similarity transformations a (c)-material law trans-
forms into a (c′)-material law for suitable c′ > 0. In order to achieve the main goal
of this section, Theorem 7.11, some technical results are required. We start with a fact
concerning Hardy space functions.

LEMMA 7.1. Let X be a Banach space, ε > 0 , μ(·)=
∞
∑

n=0
(·)nμn ∈H ∞(B(0,ε);X) .

Then for all k,n ∈ N0 we have
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(i) ‖μn‖ � ‖μ‖∞
(

2
ε
)n

(ii)
∥∥∑∞

n=k zn−kμn
∥∥� 2‖μ‖∞

( 2
ε
)k

for all z ∈ B
(
0, ε

4

)
.

Proof. The first assertion follows immediately from Cauchy’s integral formula
(integrate over a circle around 0 with radius ε/2) and the second is a straightforward
consequence of the first. �

With these estimates, we can establish some properties of 0-analytic material laws.
Recall that the inner products discussed here are linear in the second and conjugate
linear in the first component.

PROPOSITION 7.2. Let H be a Hilbert space, ε,c > 0 , 0 < r < ε/2 . Let M be a
material law in H ∞(B(0,ε);L(H))∩H ∞,c(B(r,r);L(H)) . Then M(0) is selfadjoint.
For φ = φ1⊕φ2 ∈ R(M(0))⊕N(M(0)) , the inequalities

〈M(0)φ1,φ1〉 � 0 and 〈ReM′(0)φ2,φ2〉 � c〈φ2,φ2〉

hold. If, in addition, R(M(0)) � H is closed, there exists d > 0 , such that for φ1 ∈
R(M(0)) we have

〈M(0)φ1,φ1〉 � d〈φ1,φ1〉.

Proof. We expand M into a power series about 0: M(z) = ∑∞
n=0 znMn for z ∈

B(0,ε) and suitable (Mn)n in L(H) . Then M(0) = M0 and M′(0) = M1 . For φ ∈ H
define xφ := Im〈M(0)φ ,φ〉 and yφ := Re〈M(0)φ ,φ〉 . It is easy to see that T : B(r,r)→
R> 1

2r
+ iR : z �→ z−1 is homeomorphic. Thus, for z ∈ B(r,r) with z1 := ImT (z) , z2 :=

ReT (z) , we have

c〈φ ,φ〉 � Re〈φ ,z−1M(z)φ〉

= Re(iz1 + z2)(ixφ + yφ )+Re〈φ ,
∞

∑
n=1

zn−1Mnφ〉

= −z1xφ + z2yφ +Re〈φ ,
∞

∑
n=1

zn−1Mnφ〉.

The left-hand side is non-negative. The last term on the right-hand side is bounded for
z→ 0. Moreover, since T is bijective (in particular, for every z2 the values of z1 range
over the whole real axis), it follows that xφ = 0. Thus, we arrive at

c〈φ ,φ〉 � z2yφ +Re〈φ ,
∞

∑
n=1

zn−1Mnφ〉.

Now, since z2 can be chosen arbitrarily large, while the second term of the right-hand
side remains bounded, it follows that yφ � 0. Thus, for every φ ∈ H , we deduce
that 〈φ ,M(0)φ〉 � 0. Since M(0) is a bounded operator in the complex Hilbert space
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H , the operator M(0) is selfadjoint and positive (semi-)definite and therefore H =
R(M(0))⊕N(M(0)) . Let φ ∈ N(M(0)) . Then for ε/2 > η > 0,

c|φ |2 � Re〈φ ,
∞

∑
k=1

ηk−1Mkφ〉

= Re〈φ ,M′(0)φ〉+ η Re〈φ ,
∞

∑
k=2

ηk−2Mkφ〉.

If we let η → 0+ , we get that Re〈φ ,M′(0)φ〉 � c|φ |2 . Now, M(0) is invariant on its
range and the restriction of M(0) to its range is one-to-one. Thus, if R(M(0)) is closed,
the closed graph theorem implies that M(0) : R(M(0)) → R(M(0)) is continuously
invertible. By the spectral theorem for continuous and selfadjoint operators it follows
that M(0) is strictly positive on its range. �

REMARK 7.3. We shall note here that the converse of Proposition 7.2 is also true
in the following sense: Let M ∈ H ∞(B(0,ε);L(H)) be such that M(0) = M(0)∗ . As-
sume that there exist d,c > 0 such that for all φ1 ∈ R(M(0)),φ2 ∈ N(M(0))

〈M(0)φ1,φ1〉 � d〈φ1,φ1〉 and 〈ReM′(0)φ2,φ2〉 � c〈φ2,φ2〉.
Then R(M(0)) � H is closed and for 0 < r � 1

2max{ν1,δ̂−1} , M ∈H ∞,c/3(B(r,r);L(H)) ,

cf. [38, Lemma 2.3] or [29, Remark 6.2.7], where ν1 := 1
d

(
2c
3 + 3

c

(‖M‖∞
2
ε
)2 + 2

ε ‖M‖∞

)
and δ̂ := min{‖M‖−1

∞
( ε

2

)2 c
6 , ε

4} .

Proof. It is easy to see that R(M(0)) is closed. Let (Mn)n in L(H) be such that
M(z) = ∑∞

n=0 znMn for all z ∈ B(0,ε) . By Lemma 7.1, we have ‖M′(0)‖ � 2
ε ‖M‖∞

and, for all 0 < δ � ε/4 and z ∈ B(0,δ ) ,
∥∥∑∞

n=2 zn−1Mn
∥∥� 2δ

( 2
ε
)2 ‖M‖∞ . For ν �

max{ν1, δ̂−1} , z∈B(1/(2ν),1/(2ν)) , φ = (φ1,φ2)∈R(M(0))⊕N(M(0)) and η > 0,

〈φ ,Re z−1M(z)φ〉

=
(
Re z−1)〈φ1,M(0)φ1〉+ 〈φ ,ReM′(0)φ〉+Re〈φ ,

∞

∑
n=2

zn−1Mnφ〉

� νd|φ1|2 + c|φ2|2−2
∥∥M′(0)

∥∥ |φ1||φ2|−
∥∥M′(0)

∥∥ |φ1|2−2δ̂ ‖M‖∞

(
2
ε

)2

|φ |2

�
(

νd−η
∥∥M′(0)

∥∥2−∥∥M′(0)
∥∥) |φ1|2 +

(
c− 1

η

)
|φ2|2− c

3
|φ |2

�
(

νd−η
(
‖M‖∞

2
ε

)2

−‖M‖∞
2
ε
− c

3

)
|φ1|2 +

(
2c
3
− 1

η

)
|φ2|2.

If η = 3/c , using ν > ν1 , we obtain

〈Rez−1M(z)φ ,φ〉�
(

νd−3
c

(
‖M‖∞

2
ε

)2

−‖M‖∞
2
ε
− c

3

)
|φ1|2+ c

3
|φ2|2 � c

3
|φ |2. �
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This completes the general discussion on 0-analytic material laws. In the follow-
ing we focus on material laws, which satisfy the following assumption.

ASSUMPTION 7.4. Assume there exist Hilbert spaces H1,H2 and constants ε,c >
0, 0 < r < ε/2 with

M ∈ H ∞(B(0,ε);L(H1 ⊕H2))∩H ∞,c(B(r,r);L(H1 ⊕H2))

and R(M(0)) � H1⊕H2 closed.

Before we turn to similarity transformations on the material law, we study some
properties of a material law satisfying Assumption 7.4. These properties are stated in
the next theorem for which we need the following elementary prerequisite.

LEMMA 7.5. Let H1,H2 be Hilbert spaces. Assume that(
M11 M12

M21 M22

)
∈ L(H1 ⊕H2)

is selfadjoint and positive definite. Then M12 = M∗
21 and if M22 = 0 then M12 = 0 .

Proof. It is easy to see that M11 = M∗
11 and M22 = M∗

22 and thus(
0 M12

M21 0

)
=
(

M11 M12

M21 M22

)
−
(

M11 0
0 M22

)
is selfadjoint. Assume now that M22 = 0. If M12 = M∗

21 �= 0, then there exists (φ1,φ2)∈
H1 ⊕H2 such that Re〈M12φ2,φ1〉 = 〈M12φ2,φ1〉+ 〈M21φ1,φ2〉 < 0. For α > 0 we
deduce that

0 �
〈(

M11 M12

M21 0

)(
φ1

αφ2

)
,

(
φ1

αφ2

)〉
= 〈M11φ1,φ1〉+ α (〈M12φ2,φ1〉+ 〈M21φ1,φ2〉) ,

which yields a contradiction if α is chosen large enough. �
In the following, for Hilbert spaces H1,H2 we denote the canonical orthogonal

projection H1 ⊕H2 → Hj onto the j th coordinate by π j , j ∈ {1,2} .

THEOREM 7.6. Let M satisfy Assumption 7.4. Using the notation from Assump-
tion 7.4, we define

G1 := R(π1M(0)π∗
1 ), G2 := N(π1M(0)π∗

1 ), G3 := R(π2M(0)π∗
2 ), G4 := N(π2M(0)π∗

2 ).

Then M has the following form:

M =

⎛⎜⎜⎜⎝z �→

⎛⎜⎜⎝
M(0)

11 0 M(0)
13 0

0 0 0 0

M(0)
31 0 M(0)

33 0
0 0 0 0

⎞⎟⎟⎠+ z

⎛⎜⎜⎜⎝
M(1)

11 (z) M(1)
12 (z) M(1)

13 (z) M(1)
14 (z)

M(1)
21 (z) M(1)

22 (z) M(1)
23 (z) M(1)

24 (z)
M(1)

31 (z) M(1)
32 (z) M(1)

33 (z) M(1)
34 (z)

M(1)
41 (z) M(1)

42 (z) M(1)
43 (z) M(1)

44 (z)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

∈ H ∞

(
B(0,ε);L

(
4⊕

j=1

Gj

))
,
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where for j,k ∈ {1,2,3,4} we have M(1)
jk ∈H ∞(B(0,ε);L(Gk,Gj)) and if j,k ∈ {1,3}

we have M(0)
k j

∗
= M(0)

jk ∈ L(Gk,Gj) . Moreover, there is d > 0 such that M(0)
j j � d for

j ∈ {1,3} .

Proof. By Proposition 7.2, we know that M(0) is selfadjoint and strictly positive
definite on its range. Thus,

M(0)
j j =

(
π∗

j M(0)π j : Gj → Gj
)

is selfadjoint and strictly positive definite and therefore H 1
2 j+ 1

2
= Gj ⊕Gj+1 for j ∈

{1,3} . We denote by ρ j : H1⊕H2 →Gj the orthogonal projections onto Gj and define

M(0)
jk := ρ jM(0)ρ∗

k , M(1)
jk := ρ j (M−M(0))ρ∗

k for all j,k ∈ {1,2,3,4} . Hence,

M =

⎛⎜⎜⎜⎝z �→

⎛⎜⎜⎜⎝
M(0)

11 0 M(0)
13 M(0)

14

0 0 M(0)
23 M(0)

24

M(0)
31 M(0)

32 M(0)
33 0

M(0)
41 M(0)

42 0 0

⎞⎟⎟⎟⎠+ z

⎛⎜⎜⎜⎝
M(1)

11 (z) M(1)
12 (z) M(1)

13 (z) M(1)
14 (z)

M(1)
21 (z) M(1)

22 (z) M(1)
23 (z) M(1)

24 (z)
M(1)

31 (z) M(1)
32 (z) M(1)

33 (z) M(1)
34 (z)

M(1)
41 (z) M(1)

42 (z) M(1)
43 (z) M(1)

44 (z)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ .

As M(0) is selfadjoint, Lemma 7.5 shows that M(0)
k j

∗
= M(0)

jk ∈ L(Gk,Gj) for all k, j ∈
{1,2,3,4} . Since M(0) is positive definite, it follows that the block operator matrices⎛⎜⎜⎝

M(0)
11 0 0 M(0)

14
0 0 0 0
0 0 0 0

M(0)
41 0 0 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 0

0 0 M(0)
23 0

0 M(0)
32 M(0)

33 0
0 0 0 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 0 0

0 0 0 M(0)
24

0 0 0 0

0 M(0)
42 0 0

⎞⎟⎟⎠
are positive definite as well. Thus, by Lemma 7.5, we deduce that M(0)

14 = M(0)
41

∗
= 0,

M(0)
23 = M(0)

32

∗
= 0 and M(0)

24 = M(0)
42

∗
= 0. �

For the next theorem we note that, for Hilbert spaces H1,H2 and B ∈ L(H2,H1) ,
we have (

1 B
0 1

)−1

=
(

1 −B
0 1

)
and

∥∥∥∥∥
(

1 B
0 1

)−1
∥∥∥∥∥�

√
1+‖B‖+‖B‖2. (13)

Moreover, we need the following lemmas:

LEMMA 7.7. Let H be a Hilbert space. Let T ∈ L(H) be continuously invertible,
A,B ∈ L(H) . If A = T ∗BT , i.e., A and B are similar, then ReA = T ∗ReBT and if in
addition ReB � c > 0 then ReA � c

‖T−1‖2 .

Proof. We have 2ReA = A∗ + A = T ∗B∗T +T ∗BT = 2T ∗ReBT . Assume that
ReB � c for some c > 0. Then, for φ ∈ H ,

〈ReAφ ,φ〉 = 〈ReBTφ ,Tφ〉 � c〈Tφ ,Tφ〉 � c

‖T−1‖2 〈φ ,φ〉. �
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LEMMA 7.8. Let M satisfy Assumption 7.4. Using the notation from Assumption
7.4, we define

G1 := R(π1M(0)π∗
1 ), G2 := N(π1M(0)π∗

1 ), G3 := R(π2M(0)π∗
2 ), G4 := N(π2M(0)π∗

2 ).

Let N(0)
13 ∈ L(G3,G1) , N(0)

14 ∈ L(G4,G1) , N(0)
41 ∈ L(G1,G4) , N(0)

24 ∈ L(G4,G2) , N(1)
1 ∈

H ∞(B(0,ε);L(G3 ⊕G4,G1 ⊕G2)) , N(1)
1′ ∈ H ∞(B(0,ε);L(G1 ⊕G2,G3⊕G4)) and

N1 :=

(
z �→

(
N(0)

13 N(0)
14

0 N(0)
24

)
+ zN(1)

1 (z)

)

N1′ :=

(
z �→

(
N(0)

13

∗
0

N(0)
41 N(0)

24

∗

)
+ zN(1)

1′ (z)

)
.

Then,

M :=
(

z �→
(

1 N1(z)
0 1

)
M(z)

(
1 0

N1′(z) 1

))
∈ H ∞(B(0,ε);L(H1 ⊕H2))

and R(M(0))= R(M (0)) , M (0)� d′ on its range and ReM ′(0)� c′ on the nullspace
of M (0) , where

d′ := d

(√
1+
∥∥∥N(0)

13

∥∥∥+
∥∥∥N(0)

13

∥∥∥2
)−2

and c′ := c

(√
1+
∥∥∥N(0)

24

∥∥∥+
∥∥∥N(0)

24

∥∥∥2
)−2

,

with d > 0 being the constant of positive definiteness of M(0) on its range from Theo-
rem 7.6.

Proof. Using the representation of M given in Theorem 7.6, we compute M (0) :

M (0) =

⎛⎜⎝1

(
N(0)

13 N(0)
14

0 N(0)
24

)
0 1

⎞⎟⎠
⎛⎜⎜⎝

M(0)
11 0 M(0)

13 0
0 0 0 0

M(0)
31 0 M(0)

33 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎝ 1 0(

N(0)
13

∗
0

N(0)
41 N(0)

42

∗

)
1

⎞⎟⎠

=

⎛⎝1

(
N(0)

13 0
0 0

)
0 1

⎞⎠
⎛⎜⎜⎝

M(0)
11 0 M(0)

13 0
0 0 0 0

M(0)
31 0 M(0)

33 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎝ 1 0(

N(0)
13

∗
0

0 0

)
1

⎞⎟⎠ .

Hence, M (0) is similar to a positive definite operator. Moreover, the similarity trans-
formation commutes with the projector

P :=

⎛⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠ .
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Thus, M(0) and M (0) have the same range and are both strictly positive on it. Indeed,
M(0) is strictly positive on G1⊕{0}⊕G3⊕{0} and since the similarity transformation
is a bijection on G1⊕{0}⊕G3⊕{0} , M (0) is a bijection on G1⊕{0}⊕G3⊕{0} as
well. In view of Lemma 7.7 and Inequality (13), we deduce M (0) � d′ on its range.
Next, consider (1−P)M ′(0)(1−P) . For this purpose, we compute

(1−P)
(

1 N1(z)
0 1

)

=

⎛⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
(

1 0
0 1

) (
N(0)

13 N(0)
14

0 N(0)
24

)
(

0 0
0 0

) (
1 0
0 1

)
⎞⎟⎟⎟⎠+

⎛⎜⎜⎝
(

0 0
0 0

)
zN(1)

1 (z)(
0 0
0 0

) (
0 0
0 0

)
⎞⎟⎟⎠
⎞⎟⎟⎟⎠

=

⎛⎜⎜⎝
(

0 0
0 1

) (
0 0

0 N(0)
24

)
(

0 0
0 0

) (
0 0
0 1

)
⎞⎟⎟⎠+

⎛⎜⎜⎜⎝
(

0 0
0 0

)
z

(
0 0

N(1)
1,23(z) N(1)

1,24(z)

)
(

0 0
0 0

) (
0 0
0 0

)
⎞⎟⎟⎟⎠

with suitable N(1)
1,2k ∈ H ∞(B(0,ε);L(Gk,G2)) (k ∈ {3,4}) and, similarly, we find

(
1 0

N1′(z) 1

)
(1−P) =

⎛⎜⎜⎜⎝
(

0 0
0 1

) (
0 0
0 0

)
(

0 0

0 N(0)
24

∗

) (
0 0
0 1

)
⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
(

0 0
0 0

) (
0 0
0 0

)
z

(
0 N(1)

1′,32(z)

0 N(1)
1′,42(z)

) (
0 0
0 0

)
⎞⎟⎟⎟⎠ ,

for suitable N(1)
1′,k2 ∈ H ∞(B(0,ε);L(G2,Gk)) (k ∈ {3,4}) . We obtain

(1−P)M ′(0)(1−P)

=

⎛⎜⎜⎝
(

0 0
0 1

) (
0 0

0 N(0)
24

)
(

0 0
0 0

) (
0 0
0 1

)
⎞⎟⎟⎠
⎛⎜⎜⎜⎝

M(1)
11 (0) M(1)

12 (0) M(1)
13 (0) M(1)

14 (0)
M(1)

21 (0) M(1)
22 (0) M(1)

23 (0) M(1)
24 (0)

M(1)
31 (0) M(1)

32 (0) M(1)
33 (0) M(1)

34 (0)
M(1)

41 (0) M(1)
42 (0) M(1)

43 (0) M(1)
44 (0)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

(
0 0
0 1

) (
0 0
0 0

)
(

0 0

0 N(0)
24

∗

) (
0 0
0 1

)
⎞⎟⎟⎟⎠

=

⎛⎜⎜⎝
(

0 0
0 1

) (
0 0

0 N(0)
24

)
(

0 0
0 0

) (
0 0
0 1

)
⎞⎟⎟⎠
⎛⎜⎜⎝

0 0 0 0

0 M(1)
22 (0) 0 M(1)

24 (0)
0 0 0 0

0 M(1)
42 (0) 0 M(1)

44 (0)

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

(
0 0
0 1

) (
0 0
0 0

)
(

0 0

0 N(0)
24

∗

) (
0 0
0 1

)
⎞⎟⎟⎟⎠

Now, by Lemma 7.7 and Inequality (13), we see ReM ′(0) � c′ on the nullspace of
M (0) . �

REMARK 7.9. Consider the following situation where we apply Lemma 7.8. Let
Gj be a Hilbert space for j ∈ {1,2,3,4} . Let

N2 :=

(
z �→

(
N(0)

13 0
0 0

)
+ z

(
N(1)

13 (z) N(1)
14 (z)

N(1)
23 (z) N(1)

24 (z)

))
∈ H ∞(B(0,ε);L(G3 ⊕G4,G1 ⊕G2))
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N2′ :=

(
z �→

(
N(0)

31 0
0 0

)
+ z

(
N(1)

31 (z) N(1)
32 (z)

N(1)
41 (z) N(1)

42 (z)

))
∈ H ∞(B(0,ε);L(G1 ⊕G2,G3 ⊕G4))

and assume N(0)
13

∗
= N(0)

31 ∈ L(G3,G1) . Moreover, let

N3 :=

(
z �→

(
N(0)

33 + zN(1)
33 (z) N(1)

34 (z)
N(1)

43 (z) z−1N(0)
44 +N(1)

44 (z)

))

with N(0)
33

∗
= N(0)

33 ∈ L(G3) , N(0)
44 ∈ L(G4) , N(1)

jk ∈ H ∞(B(0,ε);L(Gk,Gj)) , j,k ∈
{3,4} . Then it is easy to see that N2(·)N3(·) ∈ H ∞(B(0,ε);L(G3⊕G4,G1⊕G2)) and
N3(·)N2′(·) ∈ H ∞(B(0,ε);L(G1 ⊕G2,G3⊕G4)) and the following expansions hold

N2(z)N3(z) =
(

N(0)
13 N(0)

33 N(0)
13 N(1)

34 (0)
0 0

)
+

(
0 N(1)

14 (0)N(0)
44

0 N(1)
24 (0)N(0)

44

)
+O(z)

and

N3(z)N2′(z) =

(
N(0)

33 N(0)
31 0

N(1)
43 (0)N(0)

31 0

)
+
(

0 0

N(0)
44 N(1)

41 (0) N(0)
44 N(1)

42 (0)

)
+O(z)

for z → 0. Now, let M and the Gj ’s be as in Lemma 7.8. Assume the following
compatibility condition (

N(0)
44 N(1)

42 (0)
)∗

= N(1)
24 (0)N(0)

44 .

Then N1 := N2N3 and N1′ := N3N2′ satisfy the assumptions from Lemma 7.8.

We now turn to the analysis of inverses of material laws. Since we need to esti-
mate the norm bounds of these inverses, we observe that, for a Hilbert space H and a
continuous linear operator B∈ L(H) satisfying ReB � h for some h > 0, B−1 ∈ L(H) .
Moreover, using the Cauchy-Schwarz inequality, we deduce the estimate∥∥B−1

∥∥� 1/h. (14)

Another consequence of ReB � h is

ReB−1 � h/(‖B‖2). (15)

LEMMA 7.10. Let H1,H2 be Hilbert spaces, d,c,ε > 0 . Let L(H1) � M(0)
11 =

M(0)
11

∗
� d . Moreover, let M(1)

jk ∈ H ∞(B(0,ε);L(Hk,Hj)) with ReM(1)
22 (0) � c. Define

MI :=

(
B(0,ε) � z �→

(
M(0)

11 0
0 0

)
+ z

(
M(1)

11 (z) M(1)
12 (z)

M(1)
21 (z) M(1)

22 (z)

))
.

Then there exists ε ′ > 0 depending on ε,‖MI‖∞ ,c and d such that, for z ∈ B(0,ε ′) \
{0} ,
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MI(z)−1 =

(
M121(z) −M121(z)M

(1)
12 (z)M(1)

22 (z)−1

−M(1)
22 (z)−1M(1)

21 (z)M121(z) M(1)
22 (z)−1M(1)

21 (z)M121(z)M
(1)
12 (z)M(1)

22 (z)−1 + z−1M(1)
22 (z)−1

)
,

where

M121(z) :=
(
M(0)

11 + z
(
M(1)

11 (z)−M(1)
12 (z)M(1)

22 (z)−1M(1)
21 (z)

))−1

=
(
M(0)

11

)−1
+O(z) and M(1)

22 (z)−1

= M(1)
22 (0)−1 +O(z)

On the other hand, for M̂jk ∈ H ∞(B(0,ε ′);L(Hk,Hj)) with ReM̂(1)
22 (0) � c and

M̂I :=

(
B(0,ε ′)\ {0} � z �→

(
M(0)

11 + zM̂(1)
11 (z) M̂(1)

12 (z)
M̂(1)

21 (z) z−1M̂(1)
22 (z)

))

there exists ε ′′ > 0 depending on c,d,
∥∥∥M̂jk

∥∥∥
∞

( j,k ∈ {1,2}) such that, for all z ∈
B(0,ε ′′) ,

M̂I(z)−1 =

(
M̂121(z) −zM̂121(z)M̂

(1)
12 (z)M̂(1)

22 (z)−1

−zM̂(1)
22 (z)−1M̂(1)

21 (z)M̂121(z) z2M̂(1)
22 (z)−1M̂(1)

21 (z)M̂121(z)M
(1)
12 (z)M̂(1)

22 (z)−1 + zM̂(1)
22 (z)−1.

)
,

where

M̂121(z) :=
(
M(0)

11 + z
(
M̂(1)

11 (z)− M̂(1)
12 (z)zM̂(1)

22 (z)−1M̂(1)
21 (z)

))−1

=
(
M(0)

11

)−1
+O(z) and M̂(1)

22 (z)−1

= M̂(1)
22 (0)−1 +O(z).

In particular, MI′ ∈ H ∞(B(0,ε ′′);L(H1 ⊕H2)) .

Proof. The expressions for the inverses of MI and MI′ can be verified imme-
diately. The asymptotic expansions are straightforward applications of the Neumann
series expansion. The respective convergence radii can be estimated in terms of ε ,

‖MI‖∞ , c and d or ε ,
∥∥∥M̂jk

∥∥∥
∞

( j,k ∈ {1,2}) , c and d by Lemma 7.1 and Inequality

(14). �

THEOREM 7.11. Let H1,H2 be separable Hilbert spaces, c,d,ε,r > 0 . Let (Nn)n

=
((

N11,n N12,n
N21,n N22,n

))
n

be a bounded sequence in

H ∞(B(0,ε);L(H1 ⊕H2))∩H ∞,c(B(r,r);L(H1 ⊕H2))

and M ∈ H ∞(B(0,ε);L(H1 ⊕H2))∩H ∞,c(B(r,r);L(H1 ⊕H2)) . Assume that for all
n ∈ N we have R(M(0)) = R(Nn(0)) and M(0),Nn(0) � d on R(M(0)) . Denote by
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q j : Hj → R(π∗
j )∩N(M(0)) ( j ∈ {1,2}) the canonical ortho-projections. Assume for

all n ∈ N the compatibility condition((
q2N

′
22,n(0)q∗2

)−1
q2N

′
21,n(0)q∗1

)∗
= q1N

′
12,n(0)q∗2

(
q2N

′
22,n(0)q∗2

)−1
.

Then there exist ε ′,r′,c′ > 0 depending on ε,c,r,‖M‖∞ ,sup{‖Nn‖∞ ;n ∈ N},d such
that

(N1,n)n :=
((

z �→ N12,n(z)N22,n(z)−1))
n

(N1′,n)n :=
((

z �→ N22,n(z)−1N21,n(z)
))

n

are bounded in H ∞(B(0,ε ′);L(H2,H1)) and H ∞(B(0,ε ′);L(H1,H2)) , respectively.
Moreover, denoting by M1∈H ∞

w (B(0,ε ′);L(H2,H1)) and M1′∈H ∞
w (B(0,ε ′);L(H1,H2))

the respective limits of (N1,nk )k and (N1′,nk
)k for a strictly monotone sequence of posi-

tive integers (nk)k , we have

M :=
(

z �→
(

1 ±M1(z)
0 1

)
M(z)

(
1 0

±M1′(z) 1

))
∈ H ∞(B(0,ε ′);L(H1 ⊕H2))∩H ∞,c′(B(r′,r′);L(H1 ⊕H2)),

and R(M (0)) = R(M(0)) .

Proof. In the following, we use Hilbert spaces Gj , j ∈ {1,2,3,4} as in Theorem

7.6 and represent Nn for n∈N using bounded operators N(0)
jk,n , j,k ∈ {1,3} , and Hardy

space functions N(1)
jk,n , j,k ∈ {1,2,3,4} , as in Theorem 7.6. From Lemma 7.10 we have

an explicit expression for N22,n(z)−1 , namely

N22,n(z)−1 =

⎛⎝(N(0)
33,n

)−1
+O(z) O(1)

O(1) z−1N(1)
44,n(0)−1 +O(1)

⎞⎠ for z → 0.

Moreover, we have an estimate for the radius of convergence ε ′ for the Neumann ex-
pansion involved in this expression in terms of sup{‖Nn‖∞ ;n∈N},d,c,ε . In particular,

z �→N22,n(z)−1 satisfies the assumptions on N3 in Remark 7.9 (note that

((
N(0)

33,n

)−1
)∗

=
(
N(0)

33,n

)−1
, by Theorem 7.6). Moreover, using Theorem 7.6, we deduce that N12,n

and N21,n satisfy the assumptions on N2 and N2′ in Remark 7.9. Indeed, we have

N12,n(z):=

(
z �→

(
N(0)

13,n 0
0 0

)
+z

(
N(1)

13,n(z) N(1)
14,n(z)

N(1)
23,n(z) N(1)

24,n(z)

))
∈H ∞(B(0,ε);L(G3⊕G4,G1⊕G2))

N21,n(z):=

(
z �→

(
N(0)

31,n 0
0 0

)
+z

(
N(1)

31,n(z) N(1)
32,n(z)

N(1)
41,n(z) N(1)

42,n(z)

))
∈H ∞(B(0,ε);L(G1⊕G2,G3⊕G4))
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with
(
N(0)

13,n

)∗
= N(0)

31,n by Theorem 7.6.

Moreover, Remark 7.9 shows that N1,n and N1′,n satisfy the assumptions imposed
on N1 and N1′ in Lemma 7.8. More precisely, we have the expansions

N1,n(z) =

(
N(0)

13,n(N
(0)
33,n)

−1 N̂14,n

0 N(1)
24,n(0)N(1)

44,n(0)−1

)
+O(z)

N1′,n(z) =

(
(N(0)

33,n)
−1N(0)

31,n 0

N̂41,n N(1)
44,n(0)−1N(1)

42 (0)

)
+O(z)

for suitable continuous linear operators N̂14,n, N̂41,n . We deduce that(
N(0)

13,n(N
(0)
33,n)

−1
)∗

= (N(0)
33,n)

−1N(0)
31,n.

Moreover, the compatibility condition is precisely(
N(1)

24,n(0)N(1)
44,n(0)−1

)∗
= N(1)

44,n(0)−1N(1)
42,n(0).

Lemma 4.3 together with the fact that computing the adjoint is a continuous process
in the weak operator topology ensures that M1 and M1′ satisfy the assumptions im-
posed on N1 and N1′ in Lemma 7.8. To estimate the norm bounds of M1 and M1′ in
terms of d,c,sup{‖Nn‖∞ ;n ∈ N} and ε , we use Lemma 7.1 and Lemma 7.10. Hence
with the help of Lemma 7.8, we may estimate the constants of positive definiteness
of M (0) and ReM ′(0) on R(M (0)) and N(M (0)) , respectively, also in terms of
d,c,sup{‖Nn‖∞ ;n ∈ N} and ε . Note that we also have R(M (0)) = R(M(0)) . Remark
7.3 implies the remaining assertion. �
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