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CLOSED IDEALS IN L (X) AND L (X∗) WHEN

X CONTAINS CERTAIN COPIES OF �p AND c0

BEN WALLIS

(Communicated by N.-C. Wong)

Abstract. Suppose X is a real or complexified Banach space containing a complemented copy
of �p , p ∈ (1,2) , and a copy (not necessarily complemented) of either �q , q ∈ (p,∞) , or c0 .
Then L (X) and L (X∗) each admit continuum many closed ideals. If in addition q � p′ ,
1
p + 1

p′ = 1 , then the closed ideals of L (X) and L (X∗) each fail to be linearly ordered. We
obtain additional results in the special cases of L (�1⊕�q) and L (�p⊕c0) , 1 < p < 2 < q < ∞ .

1. Introduction

The past decade has seen some dramatic new results on the closed ideal structure
of the algebra of operators L (�p ⊕ �q) , 1 < p < q < ∞ . Some important new ideals
in that algebra were described in [16] and [15] when 1 < p < 2 < q < ∞ , and then in
[17] the authors showed that it contains infinitely many closed ideals for all choices 1 <
p < q < ∞ . In this paper, we find that only small changes to the proofs are necessary to
adapt one of the main results in [17], yielding infinitely many-indeed, continuum many-
new closed ideals in L (�p⊕c0) , for 1 < p < 2, and in L (�1⊕ �q) for 2 < q < ∞ . We
then adapt results from [16] to find additional information on the closed ideal structure
of these operator algebras.

In the process of doing all this, we noticed that the proof methods remain valid for
much more general cases, yielding the two main Theorems 1.1 and 1.2 below. Before
stating these, let us recall some definitions and notation. If X is a real Banach space
then XC denotes its complexification. Recall that an operator T ∈ L (X ,Y ) , X and
Y Banach spaces, is said to be finitely strictly singular (FSS ) just in case for every
ε > 0 there exists n ∈ Z+ such that for every n -dimensional subspace E ⊆ X we have
infx∈E‖Tx‖ < ε‖x‖ . (In the literature, finitely strictly singular operators are sometimes
called superstrictly singular operators.) Milman proved in [9] that class FSS forms
a norm-closed operator ideal. Let us also define, for an operator T ∈L (X ,Y ) and each
n ∈ Z+ ,

an(T ) = supinf
{‖Tx+E‖Y/E : x ∈ X ,‖x‖ = 1

}
,

where the “sup” is taken over all closed subspaces E of Y such that dim(Y/E) =
n . The operator T is then said to be superstrictly cosingular (SSCS ) just in case
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limn→∞ an(T ) = 0. It can be shown (cf., e.g., [13, Theorem 4]) that SSCS is in full
duality with FSS , and hence forms a norm-closed operator ideal. More precisely, an
operator T is class SSCS (resp. FSS ) if and only if T ∗ is class FSS (resp.
SSCS ).

Our first main result, then, is as follows.

THEOREM 1.1. Let p ∈ (1,2) and q∈ (p,∞) . Suppose X is a real Banach space
containing a complemented copy of �p , and a copy of either �q or c0 (which need not
be complemented). Then L (X) and L (XC) each admit a chain, with cardinality of
the continuum, of closed ideals contained in FSS (X) and FSS (XC) , respectively.
Furthermore, L (X∗) and L (X∗

C) each admit a chain, with cardinality of the contin-
uum, of closed ideals contained in SSCS (X∗) and SSCS (X∗

C) , respectively.

Among the spaces satisfying the conditions of Theorem 1.1 are Rosenthal’s Xp

spaces for p ∈ (1,2)∪(2,∞) , defined in [14]. Indeed, let us consider the generalization
of those spaces defined in [18], denoted Xp,r for 1 � r < p � ∞ . Note that whenever
p ∈ (2,∞) , we have Xp = Xp,2 , and whenever p ∈ (1,2) we have Xp = X∗

p′,2 . In [18,
Corollary 3.2] it was proved that Xp,r always contains complemented copies of �p (or
c0 , if p = ∞) and �r . They are reflexive for all 1 < r < p < ∞ , and hence satisfy the
conditions of Theorem 1.1 in those cases. The nonreflexive space X∞,r also satisfies
the conditions as long as r ∈ (1,2) . So do certain Orlicz sequence spaces, for instance
the ones described in [5, Corollary 4.9], which contain complemented subspaces of �p

for all p ∈ [a,b] , where a ∈ [1,2) and b ∈ (a,∞) . However, to be sure, not all Orlicz
sequence spaces satisfy the conditions, since there exist such spaces, for instance the
ones constructed in [6], with no complemented copies of c0 or �p for any p ∈ [1,∞) .
Most notably, the spaces �p⊕ c0 and �1⊕ �q satisfy the conditions of Theorem 1.1 for
all 1 < p < 2 < q < ∞ , and we shall discuss them at greater length in section 5.

We obtain the following additional result on the structure of closed ideals under
certain similar conditions.

THEOREM 1.2. Let 1 < p < 2 < p′ � q < ∞ . Suppose X is a (real or complex)
Banach space containing a complemented copy of �p , and also containing a copy of
either �q or c0 (not necessarily complemented). Then each of L (X) and L (X∗)
contains two incomparable closed ideals.

Note that, by two ideals being incomparable, we mean that neither ideal is a subset
of the other. This means in particular that the closed ideals of L (X) and L (X∗) in
the above Theorem are not linearly ordered.

Let us set forth some notation which shall be used throughout. For the most part,
our notation will be standard, such as appears in [7, 1, 2]. However, we shall recall
presently some of the most common conventions. If 1 � p � ∞ then let p′ ∈ [1,∞]
denote its conjugate, i.e. 1

p + 1
p′ = 1. For any set S , denote by |S| its cardinality. For

normed spaces X and Y , we write L (X ,Y ) for the space of all continuous linear oper-
ators from X into Y . Indeed, by an operator we shall always mean a continuous linear
operator between normed linear spaces. We let K denote the class of all compact
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operators. If A is a subset of a Banach space X then we denote by A its closure and
[A] its closed linear span. Let us also borrow a piece of terminology from [15]: If X
and Y are Banach spaces, then a linear subspace J of L (X ,Y ) is called a subideal
just in case whenever A ∈ L (X) , B ∈ L (Y ) , and T ∈ J , we have BTA ∈ J . (A
subideal of L (X) is called, simply, an ideal.) Whenever A is a set of continuous
linear operators, we let

GA (X ,Y ) = {T ∈ L (X ,Y ) : there exists A ∈ A such that T factors through A}.
In case A is just a singleton {R} , we write GR = G{R} . For a class J of continuous
linear operators between Banach spaces, we write [J ] for the class whose components
are just the closed linear spans of the components of J . In other words, [J ](X ,Y ) =
[J (X ,Y )] .

If X and Y are Banach spaces with respective bases (xn) and (yn) such that (xn)
dominates (yn) , i.e. ‖∑anyn‖�C‖∑anxn‖ for all (an)∈ c00 , then there exists a natural
map IX ,Y ∈ L (X ,Y ) which we shall call the formal identity operator, i.e. the operator
satisfying IX ,Y xn = yn for all n ∈ N . Let Ip,q denote the formal identity from �p to �q ,
1 � p � q < ∞ , and let Ip,0 denote the formal identity from �p to c0 (all with respect to
the canonical bases). We also write Ip,∞ and I0,∞ for the operators taking the respective
canonical bases of �p and c0 into �∞ in the obvious way. Milman observed in [10] that
Ip,q ∈ FSS (�p, �q) and Ip,0 ∈ FSS (�p,c0) for all 1 � p < q � ∞ .

If 1 � p < ∞ , let us write

Zp :=

(
∞⊕

n=1

�n
2

)
�p

,

and

Z∞ :=

(
∞⊕

n=1

�n
2

)
c0

.

The spaces Zp , 1 � p � ∞ , each have a natural basis which is formed by stringing
together the standard bases of �n

2 . Let us call this natural basis the canonical basis for
Zp . Pełczyński proved (cf., e.g., [7, p. 73]) that for any 1 < p < ∞ there exists an
isomorphism

Dp : �p → Zp =

(
∞⊕

n=1

�n
2

)
�p

.

(Note that although this means Zp
∼= �p , the canonical bases of these spaces are quite

different.) If 1 � p � q < ∞ , we then denote by

I2,p,q : Zp =

(
∞⊕

n=1

�n
2

)
�p

→
(

∞⊕
n=1

�n
2

)
�q

= Zq

and

I2,p,0 : Zp =

(
∞⊕

n=1

�n
2

)
�p

→
(

∞⊕
n=1

�n
2

)
c0

= Z∞,
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the formal identity operators between corresponding canonical basis vectors.
Unfortunately, no such Pełczyński decomposition exists for �1 or c0 . However,

we can nevertheless construct a continuous linear embedding as follows. Recall that
for every n ∈ Z+ there exists kn ∈ Z+ and a 2-embedding θn : �n

2 → �kn
∞ (cf., e.g., [2,

Example 11.1.2]). Then we write

θ =
∞⊕

n=1

θn : Z∞ =

(
∞⊕

n=1

�n
2

)
c0

→
(

∞⊕
n=1

�kn
∞

)
c0

= c0.

Let us fix Dp (1 < p < ∞), (kn)∞
n=1 , (θn)∞

n=1 , and θ =
⊕∞

n=1 θn once and for all. Then
we can define a (p,q)-Pelczyski decomposition operator as any operator of the form
D−1

q I2,p,qDp ∈ L (�p, �q) , 1 < p < q < ∞ , and a (p,0)-left Pełczyński decomposition
operator as any operator of the form θ I2,p,0Dp ∈ L (�p,c0) , 1 < p < ∞ .

We organize the remainder of this paper as follows. Section 2 lays out some pre-
liminaries on how closed subideals in real Banach spaces are related to closed subideals
in their complexified counterparts. This is necessary for section 3, where the main re-
sult of [17] is adapted to prove the more general Theorem 1.1. In section 4, we modify
a result from [16] to prove Theorem 1.2. Finally, in section 5, we prove some additional
results for the special cases L (�p ⊕ c0) and L (�1 ⊕ �q) , 1 < p < 2 < q < ∞ , which
are also based on arguments in [16].

2. Closed subideals in complexified Banach spaces

The main result in [17] was proved for real Banach spaces, and so our adaptation
here will extend to complex Banach spaces via a complexification procedure. For this
reason, let us recall some facts about the complexification XC of a real Banach space
X , defined as the Banach space

XC := X ⊕ iX ,

and endowed with vector space operations

(x1 + iy1)+ (x2 + iy2) = (x1 + x2)+ i(y1 + y2)

and
(α + iβ )(x+ iy) = (αx−βy)+ i(βx+ αy),

as well as the norm

‖x+ iy‖XC
:= sup

φ∈[0,2π ]
‖xcosφ + ysinφ‖X .

Notice that this means

1
2

(‖x‖X +‖y‖X) � ‖x+ iy‖XC
� ‖x‖X +‖y‖X (1)



CLOSED IDEALS IN L (X) AND L (X∗) 289

so that x j + iy j → x+ iy in XC if and only if x j → x and y j → y in X (cf., e.g., [1, pp.
5–6]). If T ∈ L (X ,Y ) is a continuous linear operator between Banach spaces X and
Y , we can consider its complexification TC ∈ L (XC,YC) defined by

TC(x1 + ix2) = Tx1 + iTx2.

In this case, ‖TC‖ = ‖T‖ (cf., e.g., [1, Lemma 1.7]), and we can write

TC =
[
T 0
0 T

]
,

where we view elements of XC and YC as 1×2 matrices, in the obvious way. In fact,
if T ∈ L (XC,YC) then there exist operators R,S ∈ L (X ,Y ) such that

T = RC + iSC =
[
R −S
S R

]
(cf., e.g., [1, Theorem 1.8]).

We now give some basic results about complexification of ideals. If A ⊆L (X ,Y )
for real Banach spaces X and Y then we write

AC := {RC : R ∈ A }.

PROPOSITION 2.1. Let X and Y be real Banach spaces, and suppose A is a
subset of L (X ,Y ) . Then

span(AC) =
{[

R −S
S R

]
: R,S ∈ span(A )

}
and

[AC] = span(AC) =
{[

R −S
S R

]
: R,S ∈ [A ]

}
.

Proof. Notice that for all α,β ∈ R and R ∈ span(A ) we have

(α + iβ )RC =
[

αR −βR
βR αR

]
.

Also, the set {[
R −S
S R

]
: R,S ∈ span(A )

}
is clearly closed under addition. This shows that

span(AC) ⊆
{[

R −S
S R

]
: R,S ∈ span(A )

}
.

Notice that if R = ∑m
j=1 α jR j and S = ∑n

k=1 βkSk for α j,βk ∈ R and Rj,Sk ∈ A then[
R −S
S R

]
=

m

∑
j=1

α j(Rj)C + i
n

∑
k=1

βk(Sk)C,
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which shows that the reverse inequality also holds.
Next, suppose R j → R for (R j)∞

j=1 ⊆ span(AC) . Write

R j =
[
Rj −S j

S j R j

]
and R =

[
R −S
S R

]
for Rj,S j ∈ span(A ) and R,S ∈ L (X ,Y ) . Suppose towards a contradiction that R /∈
[A ] . Then we can find ε > 0 such that ‖Rj −R‖ > ε for all j ∈ Z+ . Hence, there
exists x j ∈ X such that ‖(Rj −R)x j‖Y � ε‖x j‖X . However, due to[

(Rj −R) −(S j −S)
(S j −S) (Rj −R)

][
x j

0

]
=
[
(Rj −R)x j

(S j −S)x j

]
,

we have

‖(R j −R)(x j + i0)‖YC
� 1

2
‖(Rj −R)x j‖Y � ε

2
‖x j‖X =

ε
2
‖x j + i0‖XC

,

contradicting the fact that R j →R . Thus, R∈ [A ] , and an analogous argument shows
that S ∈ [A ] as well. It follows that

[AC] ⊆
{[

R −S
S R

]
: R,S ∈ [A ]

}
.

The reverse inequality is even more obvious, and we are done. �

PROPOSITION 2.2. Let W , X , Y , and Z be real Banach spaces, and let T ∈
L (W,Z) . Then

[GTC
](XC,YC) =

{[
R −S
S R

]
: R,S ∈ [GT ](X ,Y )

}
.

Proof. Let T ∈ GTC
(XC,YC) , and write T = S TCR for

R =
[
R1 −R2

R2 R1

]
∈ L (XC,WC) and S =

[
S1 −S2

S2 S1

]
∈ L (ZC,YC).

Then

T =
[
(S1TR1−S2TR2) −(S1TR2 +S2TR1)
(S1TR2 +S2TR1) (S1TR1−S2TR2)

]
so that

GTC
(XC,YC) ⊆

{[
R −S
S R

]
: R,S ∈ span(GT (X ,Y ))

}
.

By Proposition 2.1 we now have

GTC
(XC,YC) ⊆ span((GT (X ,Y ))C)
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and hence, applying Proposition 2.1 once more,

[GTC
](XC,YC) ⊆ [(GT (X ,Y ))C] =

{[
R −S
S R

]
: R,S ∈ [GT ](X ,Y )

}
.

To see the reverse inequality, suppose R,S ∈ span(GT (X ,Y )) , and write R =
∑m

j=1 α jB jTA j and S = ∑n
k=1 βkDkTCk for Aj,Ck ∈ L (X ,W ) and Bj,Dk ∈ L (Z,Y ) .

Notice that[
R −S
S R

]
=

m

∑
j=1

α j(Bj)CTC(Aj)C + i
n

∑
k=1

βk(Dk)CTC(Ck)C ∈ span
(
GTC

(XC,YC)
)
.

If follows that{[
R −S
S R

]
: R,S ∈ span(GT (X ,Y ))

}
⊆ span

(
GTC

(XC,YC)
)
.

Let us define A = span(GT (X ,Y )) . Thus, again applying Proposition 2.1 successively
we get{[

R −S
S R

]
: R,S ∈ [GT ](X ,Y )

}
=
{[

R −S
S R

]
: R,S ∈ [A ]

}
= [AC] = [span(AC)]

=
[{[

R −S
S R

]
: R,S ∈ span(A )

}]
=
[{[

R −S
S R

]
: R,S ∈ A

}]
=
[{[

R −S
S R

]
: R,S ∈ span(GT (X ,Y ))

}]
⊆ [span

(
GTC

(XC,YC)
)
] = [GTC

](XC,YC). �

The following is almost certainly known to specialists, but we will provide a short
proof for completeness.

PROPOSITION 2.3. Let X and Y be real Banach spaces, and let R ∈ L (X ,Y ) .
Then R ∈ FSS (X ,Y ) if and only if RC ∈ FSS (XC,YC) .

Proof. Suppose R ∈ FSS (X ,Y ) . Let us begin by showing that

R⊕0 ∈ FSS (X ⊕�1 X ,Y ⊕�1 Y ). (2)

Suppose δ > 0. Then there is n∈Z+ such that for every n -dimensional subspace E of
X there exists e ∈ E such that ‖Re‖Y < δ‖e‖Y . Let Ẽ be an n -dimensional subspace
of X ⊕�1 X , and let (e j ⊕ e′j)n

j=1 be a basis for Ẽ . If (e j)n
j=1 is a linearly dependent set

then find (α j)n
j=1 ∈ Rn , not all zero, such that ∑n

j=1 α je j = 0 and hence

‖(R⊕0)
n

∑
j=1

α j(e j ⊕ e′j)‖X⊕�1
X = 0 < δ‖

n

∑
j=1

α j(e j ⊕ e′j)‖Y⊕�1
Y �= 0.
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Otherwise (e j)n
j=1 is linearly independent, in which case it spans an n -dimensional

subspace [e j]nj=1 so that there exist (α j)n
j=1 ∈ Rn satisfying

‖(R⊕0)
n

∑
j=1

α j(e j ⊕ e′j)‖X⊕�1
X = ‖R

n

∑
j=1

α je j‖Y

< δ‖
n

∑
j=1

α je j‖X � δ‖
n

∑
j=1

α j(e j ⊕ e′j)‖Y⊕�1
Y .

This proves (2), and by a nearly identical argument it follows that also 0⊕R is FSS ,
and hence that

R⊕R = (R⊕0)+ (0⊕R)∈ FSS (X ⊕�1 X ,Y ⊕�1 Y ). (3)

Now let’s show that RC ∈ FSS (XC,YC) . Select any ε > 0, and let N ∈ Z+ be
such that for any N -dimensional subspace Ẽ of X ⊕�1 X there exists ẽ ∈ Ẽ such that

‖(R⊕R)ẽ‖Y⊕�1
Y < ε‖ẽ‖X⊕�1

X .

Let Ê be any N -dimensional subspace of XC , and let ( f j + ig j)N
j=1 be a basis for Ê .

By (1), ( f j ⊕ g j)N
j=1 must be linearly independent in and hence [ f j ⊕ g j]Nj=1 an N -

dimensional subspace of X ⊕�1 X . So by (3) we can find nonzero (β j)N
j=1 ∈ RN such

that

‖(R⊕R)
N

∑
j=1

β j( f j ⊕g j)‖Y⊕�1
Y <

ε
2
‖

N

∑
j=1

β j( f j ⊕g j)‖X⊕�1
X .

and hence, together with (1),

‖RC

N

∑
j=1

β j( f j + ig j)‖Y⊕�1
Y � ‖(R⊕R)

N

∑
j=1

β j( f j ⊕g j)‖Y⊕�1
Y

<
ε
2
‖

N

∑
j=1

β j( f j ⊕g j)‖X⊕�1
X � ε‖

N

∑
j=1

β j( f j + ig j)‖XC
.

For the converse, let us suppose instead that RC ∈FSS (XC,YC) . Let ε > 0, and
select n ∈ Z+ such that for any n -dimensional subspace Ê of XC there exists e ∈ Ê
such that ‖RCe‖YC

< ε
2‖e‖XC

. Let E be any n -dimensional subspace of X , and find a
basis (e j)n

j=1 for E . Then (e j + i0)n
j=1 spans an n -dimensional subspace of XC , which

means we can find (α j)n
j=1 ∈ Rn and (β j)n

j=1 ∈ Rn such that

‖
n

∑
j=1

(α j + iβ j)RC(e j + i0)‖YC
<

ε
2
‖

n

∑
j=1

(α j + iβ j)(e j + i0)‖XC
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and hence, together with (1),

‖R
n

∑
j=1

α je j‖Y +‖R
n

∑
j=1

β je j‖Y � 2‖
n

∑
j=1

(Rα je j + iRβ je j)‖YC

= 2‖
n

∑
j=1

(α j + iβ j)RC(e j + i0)‖YC

< ε‖
n

∑
j=1

(α j + iβ j)(e j + i0)‖XC

= ε‖
n

∑
j=1

(α je j + iβ je j)‖XC

� ε‖
n

∑
j=1

α je j‖X + ε‖
n

∑
j=1

β je j‖X .

It follows that either

‖R
n

∑
j=1

α je j‖Y < ε‖
∞

∑
j=1

α je j‖X or ‖R
n

∑
j=1

β je j‖Y < ε‖
n

∑
j=1

β je j‖X .

This means R ∈ FSS (X ,Y ) . �

3. Continuum many closed ideals in L (X) and L (X∗)

In this section we will adapt the proof of [17, Theorem 6] to a more general case.
This will require us to summarize and restate many of the preliminaries in that paper.

Fix p ∈ (1,2) , and let p′ ∈ (2,∞) denote its conjugate, i.e. 1
p + 1

p′ = 1. Also, let

v = (vn)∞
n=1 denote a sequence of values in (0,1] . For each n∈Z+ , in [17, Section 2.4]

was defined a real finite-dimensional Banach space E(n)
p′,vn

= (Rn,‖·‖p′,vn) , according to
the rule

‖(a j)n
j=1‖p′,vn = ‖(a j)n

j=1‖�n
p′
∨ vn‖(a j)n

j=1‖�n
2
.

Let (e(p′,v,n)
j )n

j=1 denote the canonical basis of E(n)
p′,vn

, and denote by (e(p′,v,n)∗
j )n

j=1 the

biorthogonal basis for its dual E(n)∗
p′,vn

. We can also fix, once and for all, a sequence

( f (p,v,n)
j )n

j=1 of independent, symmetric, 3-valued, random variables in Lp , satisfying

‖ f (p,v,n)
j ‖Lp = 1 and ‖ f (p,v,n)

j ‖L2 = 1
vn

, and then define the space F (n)
p,vn = [ f (p,v,n)

j ]nj=1 .

When p and v understood from context, we will simply write f (n)
j = f (p,v,n)

j , and refer

to ( f (n)
j )n

j=1 as the canonical basis for F (n)
p,vn .

In [17, p. 5] it was observed that we can view spaces F (n)
p,vn as subspaces of �3n

p .

This is because, since the vectors ( f (n)
j )n

j=1 are 3-valued, their span is a subspace of
the span of characteristic functions on 3n pairwise disjoint sets in Lp , whose span is in
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turn isometrically isomorphic to �3n

p . In particular, we can view ( f (n)
j )n

j=1 as vectors in

�3n

p . It was also observed in [17, p. 5, eq. (4)] that

1
Kp

‖
n

∑
j=1

a je
(p′,v,n)∗
j ‖

E(n)∗
p′,vn

� ‖
n

∑
j=1

a j f
(n)
j ‖�3n

p
� ‖

n

∑
j=1

a je
(p′,v,n)∗
j ‖

E(n)∗
p′,vn

∀(a j)n
j=1 ∈ Rn, (4)

where Kp ∈ [1,∞) is a constant depending only on p . (Note that we will refer to
these same constants Kp , 1 < p < ∞ , throughout this section.) Then was given, in

[17, Proposition 1], that ( f (n)
j )n

j=1 is a normalized, 1-unconditional basis for F (n)
p,vn , that

there exist projections P(n)
p,vn ∈ L (�3n

p ) onto F (n)
p,vn , n ∈ Z+ , and that these projections

are uniformly bounded by Kp .
We shall need another important fact about these spaces, which has already been

proved in [17].

LEMMA 3.1. ([17, Proposition 1(iii)]) Let p ∈ (1,2) , and let v = (vn) be a se-
quence in (0,1] . Then for each n ∈ Z+ , each 1 � k � n, and each A ⊆ {1, · · · ,n}
satisfying |A| = k , we have

1
Kp

(
k1/p∧ k1/2

vn

)
� ‖∑

j∈A

f (n)
j ‖�3n

p
� k1/p∧ k1/2

vn
,

where ( f (n)
j )n

j=1 denotes the canonical basis for F (n)
p,vn .

Let us now define the space

Yp,v =

(
∞⊕

n=1

F (n)
p,vn

)
�p

,

which can be viewed as a Kp -complemented subspace of �p = (⊕∞
n=1�

3n

p )�p . Indeed,
there exists a Kp -projection Pp,v ∈ L (�p) onto Yp,v defined by

Pp,v =
∞⊕

n=1

P(n)
p,vn : �p =

(
∞⊕

n=1

�3n

p

)
�p

→
(

∞⊕
n=1

�3n

p

)
�p

= �p.

When p is understood from context, we will write Yv = Yp,v and Pv = Pp,v .
If X is a Banach space with dimension d ∈ Z+ ∪{∞} , with a fixed basis (xi)d

i=1 ,
we set Nd = {1, · · · ,d} if d ∈ Z+ and Nd = Z+ otherwise. We then define the fun-
damental function ϕX : Nd ∪ [1,d) → R and the lower fundamental function λX : Nd ∪
[1,d) → R by the rules

ϕX(k) = sup

{
‖∑

i∈A

xi‖X : A ⊆ Nd , |A| � k

}
and
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λX(k) = inf

{
‖∑

i∈A

xi‖ : A ⊆ Nd , |A| � k

}
for all k ∈ Nd , extending them each to Nd ∪ [1,d) via linear interpolation. Notice that
we obtain, immediately from Lemma 3.1, the following.

COROLLARY 3.2. Let p ∈ (1,2) , and let v = (vn) be a sequence in (0,1] . Then
for any n ∈ Z+ and any 1 � k � n we have

ϕFn(k) � k1/p∧ k1/2

vn
,

where we have used the notation Fn = F(n)
p,vn .

As a matter of convention, if v = (vn)∞
n=1 is a nonincreasing sequence in (0,1] ,

then we extend v to all of [0,∞) by setting v0 = 1 and vx = v�x� . This allows us to
restate a Lemma proved in [17].

LEMMA 3.3. ([17, Lemma 3]) Let p ∈ (1,2) , and let v = (vn)∞
n=1 be a nonin-

creasing sequence in (0,1] satisfying vn � n−η for all n ∈ Z+ , where η = 1
p − 1

2 .

Then for each k ∈ Z+ we have

λYp,v(k) � �√k/2�
v�
√

k/2�Kp
√

2
.

In order to prove our main result, we shall need two more Lemmas from [17].

LEMMA 3.4. ([17, Lemma 4]) Let Y be an infinite-dimensional Banach space
with a normalized, 1-unconditional basis ( f j)∞

j=1 , and for each m ∈ Z+ , let Gm be

an m-dimensional Banach space with a normalized, 1-unconditional basis (g(m)
i )m

i=1 ,
and let Bm : Gm → Y be a linear operator with ‖Bm‖ � 1 . Assume that the conditions

lim
k→∞

sup
m�k

ϕGm(k)
k

= 0, and (5)

lim
m→∞

ϕGm(m)
λY (cm)

= 0 for all c > 0 (6)

are both satisfied. Then

lim
m→∞

1
m

m

∑
i=1

‖Bmg(m)
i ‖∞ = 0,

where we define ‖y‖∞ = sup j∈Z+ |y j| for any y = ∑∞
j=1 y j f j ∈Y .

Recall that when 1 � p � 2, the space �p has cotype 2 (cf., e.g., [2, Theorem
6.2.14]). Throughout this section, we shall let Cp denote the cotype-2 constant for �p .
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LEMMA 3.5. Suppose p ∈ (1,2) and q ∈ (p,∞) , and let v = (vn)∞
n=1 be a se-

quence in (0,1] . Fix any n ∈ Z+ and any σ ∈ (0,1] satisfying vn � σ
1
2− 1

p′ , and let

( f (n)
j )n

j=1 denote the canonical basis for F(n)
p,vn . If y = ∑n

j=1 y j f
(n)
j satisfies

‖y‖
F

(n)
p,vn

� 1, and sup
1� j�n

|y j| � σ ,

then

‖(y j)n
j=1‖q

�n
2
� max{Cp

p ,K
q
p} ·σ

q
2− p

2 ∧ q
2− q

p′ · ‖y‖p

F(n)
p,vn

.

Furthermore, we have

‖(y j)n
j=1‖�n

2
� Kpσ

1
2− 1

p′ .

Proof. The first part of this Lemma is just a restatement of [17, Lemma 5]. To
prove the “furthermore” part, let us raise each side of the previous inequality to the 1/q
power, to obtain

‖(y j)n
j=1‖�n

2
� max{Cp/q

p ,Kp} ·σ
1
2− p

2q∧ 1
2− 1

p′ · ‖y‖p/q

F(n)
p,vn

.

Taking the limit as q → ∞ , we now have

‖(y j)n
j=1‖�n

2
� max{1,Kp} ·σ

1
2∧ 1

2− 1
p′ = Kpσ

1
2− 1

p′ . �

Fix any nonincreasing sequence v = (vn) in (0,1] and any p∈ (1,2) . In the proof
to [17, Lemma 5] it was observed that, in �p , any normalized and 1-unconditional basis
Cp -dominates the canonical basis of �2 . (This is a straightforward consequence of �p ,
1 � p � 2, having cotype 2.) In particular, the canonical basis of each �n

2 , n ∈ Z+ , is

Cp -dominated by canonical basis of F(n)
p,vn . Thus, for any q ∈ [p,∞] we may define the

formal identity operator
Ip,v,q : Yp,v → Zq

such that ‖Ip,v,q‖ � Cp . When p is understood from context, we will simply write
Iv,q = Ip,v,q . In case we need to consider Banach spaces over C , as an abuse of notation
we will write Iv,q and Pv in place of the complexification maps

(Iv,q)C : (Yp,v)C → (Zq)C and (Pv)C : (�p)C → (�p)C.

This gives us enough machinery to prove the next Lemma. It is analogous to [17,
Theorem 6], and the proof here is essentially the same, except making slight modifi-
cations where necessary. Note that we include some gritty details which were omitted
from the original proof in [17]. (In fact, we shall continue to follow this policy of giving
greater detail when later adapting results from [16] in Sections 4 and 5, as we believe it
enhances readability.)
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LEMMA 3.6. Let p∈ (1,2) and q∈ (p,∞] , and let v = (vn)∞
n=1 and w = (wn)∞

n=1
be nonincreasing sequences in (0,1] . Let Yv , Yw , Iv,q , Iw,q , Pv , and Pw be as above.
Suppose X is a real Banach space such that π : X →W is a bounded projection onto
a subspace W of X , such that there exists an isomorphism U : W → �p . Suppose also
that Y is a real Banach space such that there exists a continuous linear embedding
J : Zq → Y . Assume vn � n−η and wn � n−η for all n ∈ Z+ , where η = 1

p − 1
2 . Also

assume that

lim
n→∞

v√cn

wn
= 0 for all c ∈ (0,1), (7)

where we extend (vn)∞
n=1 to (vx)x∈[0,∞) using the rule v0 = 1 and vx = v�x� , as described

above. Then

JIw,qPwUπ /∈ [GIv,q ](X ,Y ) and (JIw,qPwUπ)C /∈ [GIv,q ](XC,YC).

Proof. By Proposition 2.2, it is sufficient to consider the real case. Let ( f (n)
j )n

j=1

denote the canonical basis for Fn := F (n)
p,vn , and let (g(n)

j )n
j=1 denote the canonical basis

for Gn := F (n)
p,wn , which we may view as vectors in Yv and Yw , respectively. Set h(n)

j :=

JIwPwg(n)
j = JIw,qg

(n)
j ∈ Y , so that

{h(n)
j : n ∈ Z+, j = 1, · · · ,n}

is a copy of the standard basis for Zq as embedded into Y . Then let

{h(n)∗
j : n ∈ Z+, j = 1, · · · ,n} ⊆ Y ∗

denote their biorthogonal functionals, which are bounded by some constant K ∈ [1,∞)
since the h(n)

j ’s are seminormalized. For each m ∈ Z+ , define a continuous linear
functional Φm ∈ L (X ,Y )∗ by the rule

Φm(V ) =
1
m

m

∑
i=1

h(m)∗
i (VU−1g(m)

i ), V ∈ L (X ,Y ),

where here we are viewing Yw as a subspace of �p = (⊕�3n

p )�p and hence the g(m)
i ’s as

vectors in �p . Notice that these functionals are uniformly bounded by K‖U−1‖ so that
they have a weak*-accumulation point Φ ∈ L (X ,Y )∗ . Since Φm(JIw,qPwUπ) = 1 for
all m ∈ Z+ we have Φ(JIw,qPwUπ) = 1 as well.

Now let A ∈L (Zq,Y ) and B ∈ L (X ,Yv) with ‖A‖� 1 and ‖B‖� 1
‖U−1‖ . Even-

tually, we will show that
lim
m→∞

Φm(AIv,qB) = 0. (8)

From this it will follow that Φ(AIv,qB) = 0, and hence JIw,qPwUπ /∈ [GIv,q ](X ,Y ) as
desired.
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Let Bm : U−1Gm → Yv denote the restriction of B to U−1Gm . We claim that

lim
m→∞

1
m

m

∑
i=1

‖BmU−1g(m)
i ‖∞ = 0, (9)

where, as in Lemma 3.4, we define

‖y‖∞ = sup
{|yn, j| : n ∈ Z+, j = 1, · · · ,n}

for any y = ∑∞
n=1 ∑n

j=1 yn, j f
(n)
j ∈ Yv . By Corollary 3.2 we have ϕGm(k) � k1/p for

all 1 � k � m , which means condition (5) in Lemma 3.4 holds. Notice that Yv has a
normalized 1-unconditional basis, since it is formed from the �p -sum of spaces with
normalized 1-unconditional bases. Furthermore, ‖BmU−1‖ � 1 for all m ∈ Z+ . Thus,
if we can verify condition (6), then we will be able to apply Lemma 3.4 to get (9).
Indeed, by Lemma 3.3 we have

λYv(k) � �√k/2�
Kp

√
2 · v�√k/2�

�
√

k/2−1

v√
k/2

Kp
√

2

for all k ∈Z+ . Recall that λYv is a nondecreasing function extended to [1,∞) via linear
interpolation. Since also for each x ∈ [1,∞) we have

√�x�/2 � �√x/2� and hence

v√�x�/2 � v�
√

x/2� = v√
x/2,

this means

λYv(x) � λYv(�x�) �
√�x�/2−1

v√�x�/2Kp
√

2
�
√

(x−1)/2−1

v√
x/2Kp

√
2

.

Notice that√
(x−1)/2−1

v√
x/2

Kp
√

2
·
3Kpv√x/2

x1/2
=

3
√

(x−1)/2−3√
2x

=
3
2

√
1− 1

x
− 3√

2x
→ 3

2

as x → ∞ . Thus, there is γ ∈ [1,∞) such that

λYv(x) � x1/2

3Kpv√x/2

for all x ∈ (γ,∞) . We also have, again by Corollary 3.2, that ϕGm(m) � w−1
m m1/2 for

all m ∈ Z+ . Thus, for any c > 0 and sufficiently large m , we have

ϕGm(m)
λYv(cm)

�
3Kpv√cm/2

(cm)1/2
·w−1

m m1/2 =
3Kp

c1/2
·
v√

cm/2

wm
.

Notice that since (vn) is nonincreasing, if c � 1 then v√
cm/2 � v√(1/2)m and hence

ϕGm(m)
λYv(cm)

� 3Kp

c1/2
·
v√

cm/2

wm
� 3Kp

c1/2
·
v√(1/2)m

wm
→ 0
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as m → ∞ , by assumption (7). Otherwise, c/2 ∈ (0,1) and so again by (7) we have

ϕGm(m)
λYv(cm)

� 3Kp

c1/2
·
v√

cm/2

wm
=

3Kp

c1/2
·
v√(c/2)m

wm
→ 0.

Thus, condition (6) of Lemma 3.4 is satisfied, and (9) follows.
Now let us now prove (8). Set t = 1

2 − 1
p′ , and fix an arbitrary ρ ∈ (0,1) . Notice

that by (7) we have vn → 0, and so we can find n0 ∈ N such that vn � ρ t for all n � n0 .
Then

|Φm(AIv,qB)| =
1
m

∣∣∣∣∣ m

∑
i=1

h(m)∗
i (AIv,qBU−1g(m)

i )

∣∣∣∣∣
� K

m

m

∑
i=1

‖Iv,qBmU−1g(m)
i ‖Zq . (10)

Select 1 � i � m , and then write

BmU−1g(m)
i =

∞

∑
n=1

n

∑
j=1

xn, j f
(n)
j

for scalars xn, j ∈ R . Due to the fact that the basis { f (n)
j : n ∈ Z+, j = 1, · · · ,n} is

normalized and 1-unconditional, we have

‖BmU−1g(m)
i ‖∞ � ‖BmU−1g(m)

i ‖Yv � ‖g(m)
i ‖Yw = 1

(cf., e.g., [1, Lemma 1.49]). Now set

σ (m)
i := ρ ∨‖BmU−1g(m)

i ‖∞ � 1,

and observe that vn � σ (m)t
i for n � n0 . Furthermore, max j |xn, j| � σ (m)

i , so that the
conditions of Lemma 3.5 are satisfied for (xn, j)n

j=1 when n � n0 .
We complete the proof by separately considering two cases, where q = ∞ and then

where q �= ∞ .
Case q = ∞ .
By Lemma 3.5 we have(

n

∑
j=1

|xn, j|2
)1/2

� Kpσ (m)t
i for all n � n0.

Thus,

‖Iv,∞BmU−1g(m)
i ‖Z∞ = sup

n∈Z+

(
n

∑
j=1

|xn, j|2
)1/2

� Kpσ (m)t
i ∨ sup

n�n0

(
n

∑
j=1

|xn, j|2
)1/2

� Kpσ (m)t
i ∨n1/2

0 ‖BmU−1g(m)
i ‖∞.
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Combining the above with (10), we now have

|Φm(AIv,∞B)| � K
m

m

∑
i=1

‖Iv,∞BmU−1g(m)
i ‖Z∞

� K
m

m

∑
i=1

[
Kpσ (m)t

i ∨n1/2
0 ‖BmU−1g(m)

i ‖∞

]
� KKp

m

m

∑
i=1

σ (m)t
i +

Kn1/2
0

m

m

∑
i=1

‖BmU−1g(m)
i ‖∞

Notice that t ∈ (0,1/2) and so ξ �→ ξ t is a concave function on (0,∞) . Thus we have

|Φm(AIv,∞B)| � KKp

m

m

∑
i=1

σ (m)t
i +

Kn1/2
0

m

m

∑
i=1

‖BmU−1g(m)
i ‖∞

� KKp

(
1
m

m

∑
i=1

σ (m)
i

)t

+
Kn1/2

0

m

m

∑
i=1

‖BmU−1g(m)
i ‖∞.

Letting m → ∞ , condition (9) now gives us

|Φm(AIv,∞B)| � KKp

(
1
m

m

∑
i=1

σ (m)
i

)t

+
Kn1/2

0

m

m

∑
i=1

‖BmU−1g(m)
i ‖∞

= KKp

(
1
m

m

∑
i=1

ρ ∨‖BmU−1g(m)
i ‖∞

)t

+
Kn1/2

0

m

m

∑
i=1

‖BmU−1g(m)
i ‖∞

→ KKpρ t .

Since ρ ∈ (0,1) was arbitrary, we have (8).

Case q �= ∞ .

By Lemma 3.5 we have

(
n

∑
j=1

|xn, j|2
)q/2

� Nσ (m)r
i ‖

n

∑
j=1

xn, j f
(n)
j ‖p

Fn
for all n � n0,

where N = max{Cp
p ,K

q
p} and r = min{ q

2 − p
2 , q

2 − q
p′ } . This gives us
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‖Iv,qBmU−1g(m)
i ‖Zq =

⎛⎝ ∞

∑
n=1

(
n

∑
j=1

|xn, j|2
)q/2

⎞⎠1/q

�

⎛⎝ n0

∑
n=1

(
n

∑
j=1

|xn, j|2
)q/2

⎞⎠1/q

+

⎛⎝ ∑
n>n0

(
n

∑
j=1

|xn, j|2
)q/2

⎞⎠1/q

�
(

n0

∑
n=1

(
‖BmU−1g(m)

i ‖∞n1/2
0

)q
)1/q

+

(
∑

n>n0

Nσ (m)r
i ‖

n

∑
j=1

xn, j f
(n)
j ‖p

Fn

)1/q

� n1/2+1/q
0 ‖BmU−1g(m)

i ‖∞ +N1/qσ (m)r/q
i

(
∑

n>n0

‖
n

∑
j=1

xn, j f
(n)
j ‖p

Fn

)1/q

� n1/2+1/q
0 ‖BmU−1g(m)

i ‖∞ +N1/qσ (m)r/q
i ‖BmU−1g(m)

i ‖p/q
Yv

� n1/2+1/q
0 ‖BmU−1g(m)

i ‖∞ +N1/qσ (m)r/q
i .

Combining this with (10) and the concavity of ξ �→ ξ r/q (which follows from the fact
that r/q < 1), we get

|Φm(AIv,qB)| � K
m

m

∑
i=1

‖Iv,qBmU−1g(m)
i ‖Zq

� K
m

m

∑
i=1

(
n1/2+1/q

0 ‖BmU−1g(m)
i ‖∞ +N1/qσ (m)r/q

i

)
=

Kn1/2+1/q
0

m

m

∑
j=1

‖BmU−1g(m)
j ‖∞ +

KN1/q

m

m

∑
i=1

σ (m)r/q
i

� Kn1/2+1/q
0

m

m

∑
j=1

‖BmU−1g(m)
j ‖∞ +KN1/q

(
1
m

m

∑
i=1

σ (m)
i

)r/q

.

Letting m → ∞ , condition (9) now gives us

|Φm(AIv,qB)| � Kn1/2+1/q
0

m

m

∑
j=1

‖BmU−1g(m)
j ‖∞ +KN1/q

(
1
m

m

∑
i=1

σ (m)
i

)r/q

→ KN1/qρ r/q.

Since ρ ∈ (0,1) was arbitrary, we have (8). �
We will also need a basic fact about the existence of preduals. We provide a short

proof in lieu of a direct reference.

PROPOSITION 3.7. Let X and Y be Banach spaces, and suppose Y ∗ is reflexive.
Then every operator in L (Y ∗,X∗) is the dual of an operator in L (X ,Y ) .
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Proof. Recall that if an operator T ∈ L (Y ∗,X∗) is weak*-to-weak* continuous,
then it has a predual S = T∗ ∈ L (X ,Y ) (cf., e.g., [8, Theorem 3.1.11]). We will show
that this condition is satisfied whenever Y ∗ is reflexive. Since T is norm-to-norm
continuous, it is therefore weak-to-weak continuous (cf., e.g., [3, Theorem II.5]). How-
ever, every weak*-open set is also weak-open (cf., e.g., [3, pp. 12–3]), which means T
is weak-to-weak* continuous. Since Y ∗ is reflexive, the weak and weak* topologies on
Y ∗ coincide. Thus, T is weak*-to-weak* continuous as desired. �

Let M = {m1 < m2 < · · ·} be an infinite subset of Z+ . If p ∈ (1,2) then we
let η = 1

p − 1
2 , and then define the sequence wp

M = (wn)∞
n=1 in (0,1] as follows. We

set w1 = 1 and w23mk = 2−ηk for each k ∈ Z+ , and extend to the rest of Z+ via linear
interpolation. Now we shall fix a chain C , with cardinality of the continuum, of subsets
of Z+ satisfying the property that if N and M are distinct elements in C then either
N ⊆ M and |M \N| = ∞ , or else M ⊆ N and |M \N| = ∞ . This is not hard to achieve.
For instance, given r ∈ (0,1) , let (tr,n)∞

n=1 be a strictly increasing sequence of rational
numbers such that tr,n → r as n→ ∞ . Let f : Q →Z+ be any injective map, and define
Mr = { f (ts,n) : s ∈ (0,r),n ∈ Z+} for each r ∈ (0,1) . Then for any 0 < r1 < r2 < 1
we have Mr1 ⊆ Mr2 and |Mr2 \Mr1 | = ∞ . If necessary, we will delete a maximal and
minimal element from C .

Thus, we can state and prove the following result.

THEOREM 3.8. Let 1 < p < 2 < r < ∞ , and let C be a chain as described above.
Then

[GIwp
N ,∞

](�p,c0) � [GIwp
M ,∞

](�p,c0) � FSS (�p,c0)

and
[G ∗

Iwp
N ,∞

](�1, �r) � [G ∗
Iwp

M ,∞
](�1, �r) � SSCS (�1, �r)

for all M � N lying in C .

REMARK 3.9. The statement of Theorem 3.8 is really just the most significant
immediate application of the following more general result. Let p ∈ (1,2) and q ∈
(p,∞] . Suppose X is a real Banach space containing a complemented copy of �p , and
that Y is a real Banach space containing a copy of �q if q �= ∞ , or of c0 if q = ∞ . Let
C be a chain as described above. Then

[GIwp
N ,q

](X ,Y ) � [GIwp
M ,q

](X ,Y ) � FSS (X ,Y )

and
[GIwp

N ,q
](XC,YC) � [GIwp

M ,q
](XC,YC) � FSS (XC,YC)

for all M � N lying in C .
If furthermore X is reflexive, then

[G ∗
Iwp

N ,q
](Y ∗,X∗) � [G ∗

Iwp
M ,q

](Y ∗,X∗) � SSCS (Y ∗,X∗)
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and
[G ∗

Iwp
N ,q

](Y ∗
C,X∗

C) � [G ∗
Iwp

M ,q
](Y ∗

C,X∗
C) � SSCS (Y ∗

C,X∗
C)

for all M � N lying in C .

Proof. We will prove Remark 3.9, whence Theorem 3.8 follows easily.
It was shown in the proof of [17, Theorem A] that if M ⊆ N ⊆ Z+ with N \M

also infinite, then the sequences v = wp
N = (vn)∞

n=1 and w = wp
M = (wn)∞

n=1 satisfy
condition (7) of Lemma 3.6, as well as the condition that vn � n−η and wn � n−η for
all n ∈ Z+ , where η = 1

p − 1
2 . Recall from Pełczyński’s Decomposition Theorem (cf.,

e.g., [7, p. 73]) that Zq is isomorphic to �q when q �= ∞ , and if instead q = ∞ we have
that Z∞ embeds into c0 via the map θ defined in the introduction. Thus, in either case,
Zq embeds into Y , and the conditions of Lemma 3.6 are satisfied.

Let us now recall some observations from the proof of [17, Corollary 7]. Indeed,
from condition (7) it follows that vn � wn for sufficiently large n . Together with con-

dition (4), this means the canonical basis of F(n)
p,w is Kp -dominated by that of F(n)

p,v for
sufficiently large n . It follows that the formal inclusion map

IYv,Yw : Yv → Yw

is bounded. Together with Iv,q = Iw,qIYv,Yw , we get

[GIv,q ](X ,Y ) ⊆ [GIw,q ](X ,Y ),

and, by Proposition 2.2,

[GIv,q ](XC,YC) ⊆ [GIw,q ](XC,YC).

These inclusions are seen to be strict by applying Lemma 3.6.
We also need to observe that Iw,q is class FSS , from which will follow the

inclusions
[GIw,q ](X ,Y ) � FSS (X ,Y ),

and
[GIw,q ](XC,YC) � FSS (XC,YC).

(These inclusions will be strict since we have deleted a maximal element from C .)
Indeed, it has already been shown in [17, Proposition 8] that the real version of Iw,q is
FSS when q �= ∞ , and in case q = ∞ then we see that the real version of Iw,∞ is still
FSS since it factors through the FSS map Iw,2 . Applying Proposition 2.3 covers
the complexification case.

Finally, let us consider the case where X is reflexive. Notice that Y ∗∗ contains a
copy of Y and hence of Zq , satisfying the conditions of Lemma 3.6 for Y ∗∗ in place of
Y . Hence, there exist operators

T ∈ GIw,q(X ,Y ∗∗)\ [GIv,q ](X ,Y ∗∗)
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and
T̂ ∈ GIw,q(XC,Y ∗∗

C )\ [GIv,q ](XC,Y ∗∗
C ).

Since X and hence also XC are reflexive, by Proposition 3.7 we have T = S∗ for some
S ∈ L (Y ∗,X∗) and T̂ = Ŝ∗ for some Ŝ ∈ L (Y ∗

C,X∗
C) . It follows that

S ∈ G ∗
Iw,q

(Y ∗,X∗)\ [GIv,q ]
∗(Y ∗,X∗)

and
Ŝ ∈ G ∗

Iw,q
(Y ∗

C,X∗
C)\ [GIv,q ]

∗(Y ∗
C,X∗

C).

We must also have S /∈ [G ∗
Iv,q

](Y ∗,X∗) , otherwise there would be Sn ∈ G ∗
Iv,q

(Y ∗,X∗)
such that Sn → S and hence S∗n → S∗ in norm, contradicting the fact that S∗ = T /∈
[GIv,q ](X ,Y ∗∗) . For the same reason, Ŝ /∈ [G ∗

Iv,q
](Y ∗

C,X∗
C) . It follows that the inclusions

[G ∗
Iv,q

](Y ∗,X∗) ⊆ [G ∗
Iw,q

](Y ∗,X∗),

and
[G ∗

Iv,q
](Y ∗

C,X∗
C) ⊆ [G ∗

Iw,q
](Y ∗

C,X∗
C)

are both strict. The proof is then complete as we consider the full duality between
FSS and SSCS (cf., e.g., [13, Theorem 4]), together with the fact that we deleted
a maximal and minimal element from C . �

Before proving the main Theorem 1.1, let us study the relationship between closed
subideals of L (X ,Y ) and closed ideals in L (X⊕Y ) . Recall again that if A is a subset
of L (W,Z) then we denote by GA (X ,Y ) the set of all operators in L (X ,Y ) factoring
through some operator in A .

PROPOSITION 3.10. Let X and Y denote Banach spaces. For each closed subideal
I in L (X ,Y ) , we define

Ψ(I ) := [GI ](X ⊕Y ),

the closed linear span of operators acting on X ⊕Y and factoring through elements of
I . Then Ψ is an order isomorphism between the closed subideals in L (X ,Y ) and the
closed ideals in L (X ⊕Y ) of the form Ψ(I ) .

Proof. Let I and J be closed subideals in L (X ,Y ) . Clearly, if I ⊆ J ,
then Ψ(I ) ⊆ Ψ(J ) . Now let us suppose instead that Ψ(I ) ⊆ Ψ(J ) . Pick any
T ∈ I . Let P : X ⊕Y → X and R : X ⊕Y → Y denote the canonical projections onto
X and Y , respectively, and let J : X → X ⊕Y and Q : Y → X ⊕Y denote the canonical
embeddings. Then QTP ∈ Ψ(I ) ⊆ Ψ(J ) , and so we can find a sequence of finite
sums satisfying

lim
n→∞

mn

∑
j=1

Bn, jTn, jAn, j = QTP,
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where An, j ∈ L (X ⊕Y,X) , Bn, j ∈ L (Y,X ⊕Y ) , and Tn, j ∈ J for all n and j . Let us
set

Sn :=
mn

∑
j=1

RBn, jTn, jAn, jJ ∈ J .

Then Sn → RQTPJ = T , and since J is closed we get T ∈ J , showing that I ⊆
J . �

We also need the following result on finding copies of �q or c0 in a decomposed
space.

PROPOSITION 3.11. Let 1 � p < q < ∞ . Suppose Y is a (real or complex) Ba-
nach space such that �p⊕Y contains a copy of �q (resp. c0 ). Then Y contains a copy
of �q (resp. c0 ).

Proof. Let (xn ⊕ yn)∞
n=1 be a seminormalized basic sequence which is K -equiva-

lent, for some 1 � K < ∞ , to the canonical basis of �q (resp. c0 ), where xn ∈ �p and
yn ∈Y for all n∈Z+ . We claim that (xn)∞

n=1 has a convergent subsequence. Otherwise,
by Rosenthal’s �1 Theorem, we consider separately the case where (xn)∞

n=1 contains a
subsequence equivalent to the canonical basis of �1 , which can only be true if p = 1
since �p contains no copy of �1 for 1 < p < ∞ . Pass to this subsequence, and set
x′n = x2n+1 − x2n so that (x′n)∞

n=1 is a seminormalized basic sequence and equivalent
to the canonical basis of �p = �1 in this case. Next, consider the case where (xn)∞

n=1
fails to contain a subsequence equivalent to the canonical basis of �1 . Then we can
pass to a subsequence if necessary and again define x′n = x2n+1 − x2n so that (x′n)∞

n=1
is seminormalized and weakly null. By the Bessaga-Pełczyński Selection Principle
together with [2, Lemma 2.1.1 and Remark 2.1.2], we can pass to a further subsequence
if necessary so that (x′n)∞

n=1 is again equivalent to the canonical basis of �p . Thus in
either case, we have passed to a subsequence so that (x′n)∞

n=1 is C -equivalent to the
canonical �p basis for some 1 � C < ∞ . Now set y′n := y2n+1 − y2n . Then (x′n ⊕
y′n)∞

n=1 is C′ -equivalent to the canonical �p basis for some 1 � C′ < ∞ . Without loss
of generality we may assume that �p⊕Y is endowed with the �1 norm, i.e. ‖x⊕ y‖ =
‖x‖+‖y‖ whenever x ∈ �p and y ∈ Y . In the �q case we now have

C′N1/q � ‖
N

∑
n=1

x′n⊕ y′n‖ � ‖
N

∑
n=1

x′n‖ � C−1N1/p

for all N ∈ Z+ , which is impossible. Similarly, in the c0 case we have

C′ � ‖
N

∑
n=1

x′n⊕ y′n‖ � ‖
N

∑
n=1

x′n‖ � C−1N1/p

for all N ∈ Z+ , which is again impossible. Thus, (xn)∞
n=1 contains a convergent subse-

quence as claimed. Pass to it, and let x∈ �p be such that ‖xn−x‖� 2−n for all n∈Z+ .
Then

‖
N

∑
n=1

xn⊕ yn‖ � ‖
N

∑
n=1

xn‖ � ‖
N

∑
n=1

x‖−
N

∑
n=1

‖xn− x‖ � ‖
N

∑
n=1

x‖−1 = N‖x‖−1.
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In the �q case this means

KN1/q � ‖
N

∑
n=1

xn⊕ yn‖ � N‖x‖−1

for all N ∈ Z+ , and in the c0 case we have

K � ‖
N

∑
n=1

xn⊕ yn‖ � N‖x‖−1

for all N ∈ Z+ . Either way, we must have x = 0 or face a contradiction as N → ∞ .
Thus, by the Principle of Small Perturbations, we can pass to a subsequence if necessary
so that (xn ⊕ yn)∞

n=1 is equivalent to (0⊕ yn)∞
n=1 . It follows that (yn)∞

n=1 is equivalent
to the canonical basis of �q (resp. c0 ), and hence that Y contains a copy of �q (resp.
c0 ). �

Now we can proceed with the proof of the main Theorem.

Proof of Theorem 1.1. Let X be a real Banach space containing a complemented
copy of �p , and a copy of either �q or c0 . Let us decompose X = �p ⊕Y for some
subspace Y of X . Notice that by Proposition 3.11, Y contains a copy of either �q or
c0 .

Next, let Ψ be as defined in Proposition 3.10. Since FSS and SSCS are
closed operator ideals, we have

Ψ(FSS (�p,Y )) ⊆ FSS (�p⊕Y ) = FSS (X)

and
Ψ(SSCS (�p,Y )) ⊆ SSCS (�p⊕Y) = SSCS (X).

Similarly, since (�p)C ⊕YC = (�p⊕Y)C , we have

Ψ(FSS ((�p)C,YC))⊆FSS (XC) and Ψ(SSCS ((�p)C,YC))⊆SSCS (XC).

Due to p ∈ (1,2) , the space �p is reflexive. Applying Theorem 3.9 and Proposition
3.10 therefore completes the proof. �

4. Incomparable ideals in L (X) and L (X∗)

In this section we prove Theorem 1.2. Note once more that we will very closely
follow the proof of [16, Theorem 5.4], except making certain modifications where nec-
essary. We will need the following preliminary, which was given in [16] as a Corollary
to [4, Theorem 9.13]. As a matter of notation, if A is an n× n matrix, then we let
‖A‖p,q , 1 � p,q � ∞ , denote the operator norm when A is viewed as an operator
A : �n

p → �n
q .
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PROPOSITION 4.1. ([16, Corollary 5.2]) Let m∈Z+ , and let 1 � p < r < q � ∞ .
Suppose U is an invertible m×m matrix satisfying ‖U‖p,q � 1 and ‖U‖r′,r′ � δ . Then
for any factorization U = AB we must have ‖A‖r,q‖B‖p,r � δ−1 . For i = 1, · · · ,m, let
ei ∈ Km denote the i th coordinate vector. If Ũ is another m×m matrix satisfying

‖U −Ũ‖p,q �
(

2 max
1�i�m

‖U−1ei‖p

)−1

then for any factorization Ũ = ÃB̃ we must have

‖Ã‖r,q‖B̃‖p,r � (2δ )−1.

This is enough to prove the next result.

THEOREM 4.2. Let 1 < p < 2 , and let p′ be its conjugate, i.e. 1
p + 1

p′ = 1 .
Suppose X is a (real or complex) Banach space containing a complemented copy of
�p , and let P : X → �p denote a projection onto �p .

(i) Suppose Y is a (real or complex) Banach space containing a copy of c0 , and
let J : c0 → Y be any bounded linear embedding. Then there exists an operator
U ∈ (FSS ∩SSCS )(�p,c0) such that

JUP /∈ [G�2 ](X ,Y ).

Furthermore, if X is reflexive then there exists an operator

V ∈ (FSS ∩SSCS )(Y ∗,X∗)\ [G�2](Y
∗,X∗).

(ii) Suppose Ŷ is a (real or complex) Banach space containing a copy of �q , q ∈
[p′,∞) , and let Ĵ : �q → Ŷ be any bounded linear embedding. Then there exists
an operator Û ∈ (FSS ∩SSCS )(�p, �q) such that

ĴÛP /∈ [G�2 ](X ,Ŷ ).

Furthermore, if X is reflexive then there exists an operator

V̂ ∈ (FSS ∩SSCS )(Ŷ ∗,X∗)\ [G�2](Ŷ
∗,X∗).

Proof. Let us inductively define a sequence (Hn)∞
n=1 of 2n−1×2n−1 matrices. Set

H1 := [1] , and if Hn has been defined for n ∈ Z+ , set

Hn+1 :=
[
Hn Hn

Hn −Hn

]
.

Note that, in the literature, each Hn , n ∈ Z+ is called the n th Hadamard matrix, and
for any 1 � r � s � ∞ it can be viewed as an operator Hn ∈ L (�2n−1

r , �2n−1

s ) .
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It was observed in [16, Remark 5.3] (and is routine to verify) that each

H2
n = 2n−1I2n−1 ,

where I2n−1 denotes the 2n−1×2n−1 identity matrix, and that

‖Hn‖2,2 = 2(n−1)/2 and ‖Hn‖1,∞ = 1.

Thus, if r ∈ (1,2) then we can apply the Riesz-Thorin Interpolation Theorem with
φ = 2/r′ ∈ [0,1] , to obtain

‖Hn‖r,r′ � ‖Hn‖φ
2,2‖Hn‖1−φ

1,∞ = 2(n−1)/r′.

We can therefore define, for any r ∈ [1,2] ,

U (r)
n := 2−(n−1)/r′Hn

so that ‖U (p)
n ‖p,p′ � 1, and hence also ‖U (p)

n ‖p,∞ � 1. Due to these facts, we can define
the norm-1 linear operator

U (p) =
∞⊕

n=1

U (p)
n :

(
∞⊕

n=1

�2n−1

p

)
�p

→
(

∞⊕
n=1

�2n−1

p′

)
�p′

.

Next, define
Û := Ip′,qU

(p) and U := Ip′,0U
(p).

Since Ip′,0 is FSS , it follows that U is as well. That Û is FSS has already been
shown in [16, Theorem 6.8].

Since �∞ is injective, it will help to first consider that space. Suppose towards
a contradiction that Iq,∞Û ∈ [G�2 ](�p, �∞) . Recall that if X , Y , and Z are Banach
spaces with Z ∼= Z⊕Z , then GZ(X ,Y ) is always a linear space (cf., e.g., [15, eq. (2), p.
313]). In particular, G�2(�p, �∞) is a linear space, and so there is Ũ ∈ G�2(�p, �∞) with
‖Iq,∞Û − Ũ‖p,∞ < 1

2 . Write Ũ = AB for A ∈ L (�2, �∞) and B ∈ L (�p, �2) , and set
C := ‖A‖‖B‖ . Due to 2 < p′ < ∞ , we can pick n ∈ Z+ such that

C <

(
2 ·2(n−1)( 1

p′ −
1
2 )
)−1

Denote by Jn : �2n−1

p → (
⊕∞

n=1 �2n−1

p )�p and Rn : (
⊕∞

n=1 �2n−1

∞ )�∞ → �2n−1

∞ the canon-
ical embedding and projection, which are both norm-1. Now let E be any 2n−1 -
dimensional subspace of �2 containing BJn�

2n−1

p = Im(BJn) . Recall that a closed sub-
space of a Hilbert space is again a Hilbert space, and so by Parseval’s identity we can
now see that E is isometrically isomorphic to �2n−1

2 . Hence, RnŨJn = (RnA|E)(BJn)
factors through �2n−1

2 , and

‖RnA|E‖‖BJn‖ � ‖A‖‖B‖= C <

(
2 ·2(n−1)( 1

p′ −
1
2 )
)−1

. (11)
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Due to H2
n = 2n−1I2n−1 , we have (U (p)

n )−1 = 2−(n−1)2(n−1)/p′Hn . Recall also that

‖Hn‖1,∞ = 1, so that for each i th coordinate vector ei ∈ K2n−1
we have

‖(U (p)
n )−1ei‖p = 2−(n−1)2(n−1)/p′‖Hnei‖p � 2−(n−1)2(n−1)/p′2(n−1)/p‖Hnei‖∞

= ‖Hnei‖∞ � ‖Hn‖1,∞‖ei‖1 = 1,

and hence

‖U (p)
n −RnŨJn‖p,∞ = ‖Rn(Iq,∞Û −Ũ)Jn‖p,∞

� ‖Iq,∞Û −Ũ‖p,∞ <
1
2

�
(

2 max
1�i�2n−1

‖(U (p)
n )−1ei‖p

)−1

.

This gives us

δ := ‖(U (p)
n )−1‖2,2 = 2−(n−1)2(n−1)/p′‖Hn‖2,2

= 2−(n−1)2(n−1)/p′2(n−1)/2 = 2
(n−1)( 1

p′ −
1
2 )

.

Thus we have ‖U (p)
n ‖p,∞ � 1, ‖(U (p)

n )−1‖2,2 = δ , RnŨJn = (RnA|E)(BJn) , and

‖U (p)
n −RnŨJn‖p,∞ �

(
2 max

1�i�2n−1
‖(U (p)

n )−1ei‖p

)−1

,

so that we can apply Proposition 4.1 to obtain

‖RnA|E‖2,∞‖BJn‖p,2 � (2δ )−1 =
(

2 ·2(n−1)( 1
p′ −

1
2 )
)−1

.

However, this contradicts (11). This proves that Iq,∞Û /∈ [G�2 ](�p, �∞) .
Next, suppose towards a contradiction that ĴÛP ∈ [G�2 ](X ,Ŷ ) . Then we can find

operators (Ân)∞
n=1 ⊆ G�2(X ,Y ) with Ân → ĴÛP in norm. Set Ỹ := Ĵ�q ⊆ Ŷ , and let

J̃ : �q → Ỹ be the isomorphism induced by Ĵ , i.e. J̃x = Ĵx for all x ∈ �q . Now let
Q : �p → X be an embedding satisfying PQ = Ip,p . Via injectivity of �∞ we may
extend R := Iq,∞J̃−1 to R̃ : Ŷ → �∞ . Then

R̃ÂnQ → R̃ĴÛPQ = Iq,∞J̃−1J̃ÛPQ = Iq,∞Û ,

contradicting the fact that Iq,∞Û /∈ [G�2 ](�p, �∞) . It follows that ĴÛP /∈ [G�2 ](X ,Ŷ ) .
Notice that I0,∞U = Iq,∞Û so that I0,∞U /∈ [G�2 ](�p, �∞) . This way, we can run a

similar argument as above, by supposing towards a contradiction that JUP∈ [G�2 ](X ,Y ) .
Then we can find operators An ∈ G�2(X ,Y ) such that An → JUP . Let S : Jc0 → c0 be
an isomorphism satisfying SJ = I0,0 . Via injectivity we may extend M := I0,∞S to
M̃ : Y → �∞ . Then

M̃AnQ → M̃JUPQ = I0,∞SJUPQ = I0,∞U,
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contradicting the fact that I0,∞U /∈ [G�2 ](�p, �∞) . It follows that JUP /∈ [G�2 ](X ,Y ) .
Now let’s suppose X is reflexive. Denote by K : Y → Y ∗∗ and K̂ : Ŷ → Ŷ ∗∗ the

canonical embeddings. By Proposition 3.7 there exist operators V (p) ∈ L (�p, �p′) and
P∗ ∈ (�p′ ,X

∗) such that V (p)∗ = U (p) and (P∗)∗ = P . Let us define

V := P∗V (p)I1,pJ
∗ and V̂ := P∗V (p)Iq′,pĴ

∗.

Notice that we have J∗∗|c0 = KJ , and hence

V ∗ = J∗∗Ip′,∞U (p)P = J∗∗|c0 Ip′,0U
(p)P = KJUP.

Similarly,
V̂ ∗ = Ĵ∗∗Ip′,qU (p)P = Ĵ∗∗ÛP = K̂ĴÛP.

It was shown in [13, Theorem 4] that an operator T is class FSS (resp. SSCS )
if and only if T ∗ is SSCS (resp. FSS ). In particular, this means V and V̂ are
both SSCS . Also, since U∗ and V both factor through I1,p , they are each class
FSS , and furthermore U is class SSCS . Now, V̂ factors through a predual Û∗
of Û , with Û∗ : �q′ → �p′ and hence V̂ both SSCS . Recall that an operator is said to
be B-convex just in case it fails to contain uniformly isomorphic copies of �n

1 , n ∈ Z+ .
This is equivalent to having type r for some r > 1 (cf., e.g., [12, Remark 2.7]). Of
course, �p has type p > 1 (cf., e.g., [2, Theorem 6.2.14]) and hence is B-convex. It
was also shown in [13, Theorem 3] that if X is a B-convex Banach space, Y is an
arbitrary Banach space, and T : X → Y is FSS , then T ∗ is FSS . In particular,
Û∗ = Û∗ is FSS , and it follows therefore that Û is SSCS and V̂ is FSS .

It remains to show that neither V nor V̂ are class [G�2 ] . First, notice that we have
already proved the first part of (i), so that, since KJ : c0 → Y ∗∗ is a bounded linear
embedding with Y ∗∗ containing a copy of c0 , therefore KJUP /∈ [G�2 ](X ,Y ∗∗) . Let
us assume towards a contradiction that V ∈ [G�2 ](Y

∗,X∗) . Then for each γ > 0, there
exists Ṽ ∈ G�2(Y

∗,X∗) such that ‖V −Ṽ‖ < γ . This gives us (Ṽ )∗ ∈ G�2(X ,Y ∗∗) , with

‖V ∗ − (Ṽ)∗‖ = ‖(V − Ṽ)∗‖ = ‖V − Ṽ‖ < γ.

It follows that KJUP = V ∗ ∈ [G�2 ](X ,Y ∗∗) , which contradicts our conclusion from
above. A nearly identical argument shows that V̂ /∈ [G�2 ](Ŷ

∗,X∗) . �

COROLLARY 4.3. Let 1 < p < 2 < p′ � q � ∞ . Suppose X is a (real or complex)
Banach space containing a complemented copy of �p , and that Y is a (real or complex)
Banach space containing a copy of either �q if q �= ∞ or c0 if q = ∞ (not necessarily
complemented). Then the closed subideals of L (X ,Y ) are not linearly ordered. In
particular, we have the following diagram.

FSS

�����

{0} ����� K ����� FSS ∩ [G�2 ]

�����

�����

�= L

[G�2 ]

�����
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Here, the dashed arrows (−−> ) all represent proper inclusions, and “ �=” represents
incomparable subsets, i.e. that neither set is a subset of the other.

If furthermore X is reflexive, then the closed subideals of L (Y ∗,X∗) are not lin-
early ordered, and we have the following diagram.

SSCS

�����

{0} ����� K ����� SSCS ∩ [G�2 ]

�����

������

�= L

[G�2 ]

		����

Proof. Let π : X →W be a projection onto a subspace W which is isomorphic to
�p , and let A : W → �p be an isomorphism. Consider the case where q �= ∞ , and let
Ĵ : �q → Y be an embedding. Then ĴIp,qAπ is class FSS ∩G�2 but not K . Next,
consider the case where q = ∞ , and let J : c0 → Y be an embedding. Then JIp,0Aπ
is FSS ∩G�2 but not K . Since FSS is in full duality with SSCS and each
of K and G�2 is in full duality with itself, this gives us the first two arrows in each
diagram.

In case q �= ∞ , let T̂ = D−1
q I2,p,qDp be a (p,q)-Pełczyński operator. Then ĴT̂ Aπ

is class G�2 but not FSS since it uniformly fixes copies of �n
2 for all n ∈ Z+ . Due to

the duality between FSS and SSCS , its dual (ĴT̂ Aπ)∗ is �2 -factorable but not
SSCS .

Similarly, in case q = ∞ , let T = θ I2,p,0Dp be a (p,0)-left Pełczyński operator.
Then for the same reasons, JTAπ is class G�2 but not FSS , and its dual (JTAπ)∗ is
class G�2 but not SSCS . Applying Theorem 4.2 now completes the proof. �

The second main Theorem follows straightforwardly from the above Corollary.

Proof of Theorem 1.2. Let X be a (real or complex) Banach space containing a
complemented copy of �p and a copy of either �q or c0 . We decompose X = �p ⊕Y
for some subspace Y of X , so that by Proposition 3.11, Y contains a copy of either �q

or c0 . Since p ∈ (1,2) , the space �p is reflexive, and so by Corollary 4.3 we can find
incomparable closed subideals in L (�p,Y ) and L (Y ∗, �∗p) . By Proposition 3.10, this
means L (X) and L (X∗) admit incomparable closed ideals. �

5. Closed ideals in L (�p⊕ c0) and L (�1⊕ �q) , 1 < p < 2 < q < ∞

In this section we will study the special cases of L (�p⊕ c0) and L (�1 ⊕ �q) for
1 < p < 2 < q < ∞ . We shall begin by summarizing what is currently known about the
closed ideals in these algebras. It was proved in [11, Theorem 5.3.2] that L (�p ⊕ �q) ,
1 � p < q < ∞ , has exactly two maximal ideals, and that the lattice of further closed
ideals is order-isomorphic to the lattice of closed subideals in L (�p, �q) . According to
Proposition 3.10, we also have an injective and order-preserving relationship between
the closed subideals in L (�p,c0) , 1 � p < ∞ , and the closed ideals in L (�p ⊕ c0) .
In [16, Proposition 3.1], the authors showed that any ideal of L (�1, �q) containing a
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noncompact operator must also contain I1,q . By replacing “�q ” with “c0 ” as needed in
their proof, we obtain the analogous conclusion that any ideal of L (�p,c0) containing
a noncompact operator must also contain Ip,0 .

It was shown in [13, Proposition 4] that FSS (�p,c0) is a proper closed subideal
of L (�p,c0) for 1 < p < ∞ . In contrast, in [13, Remark 5] the author observed that
FSS (�1, �q) = L (�1, �q) . However, we can consider superstrictly cosingular opera-
tors in place of FSS . Indeed, by duality we have that SSCS (�1, �q) is a proper
closed subideal in L (�1, �q) .

The following diagram captures the facts we have summarized so far regarding the
lattice of closed subideals in L (�p,c0) , 1 < p < ∞ .

{0} �� K �� [GIp,0 ] �� FSS ����� L

The notation comes from [16]. As in that paper, the various types of arrows represent
inclusions. A solid single-bar arrow (→) is an immediate successor (i.e., no ideals
sitting in between), while a double solid arrow (⇒) denotes a unique immediate suc-
cessor. A hyphenated arrow (−−> ) represents a proper inclusion, and a dotted arrow
( · · ·> ) is an inclusion which we do not know whether it is proper.

Let us also give a diagram of the facts so far regarding the closed subideal structure
of L (�1, �q) , 1 < q < ∞ .

{0} �� K �� [GI1,q ] �� SSCS ����� L

Fix 1 < p < 2. Let Iv,∞ be any of the operators from Theorem 3.9 (with q = ∞), and let
T be a (p,0)-left Pełczyński operator. We will show in this section that the following
diagram represents part of the closed subideal structure of L (�p,c0) .

{0} �� K �� [GIp,0 ] ����� [GIv,∞ ]

FSS


�����

�����

����� FSS ∩ [G�2 ]

�����

��������

�= [FSS +GT ] �� L

[GT ]

��			

Here, the “not equal to” symbol ( �= ) means that neither subideal is a subspace of
the other. Note again that the new diagram for L (�p,c0) is only proved for 1 < p < 2.

Using duality, we will also prove the following structure for the closed subideals
of L (�1, �q) for all 2 < q < ∞ .

{0} �� K �� [GI1,q ] ����� [G ∗
Iv,∞ ]

SSCS

�����
����� SSCS ∩ [G�2 ]

�����

������

�= L

[G�2 ]

		����
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Again, note that this diagram only holds for 2 < q < ∞ .
We begin our proof by giving some basic norm estimates, which we will need

momentarily. Recall that if X is a Banach space with a basis (xn)∞
n=1 , and k ∈ Z+ ,

then the k th partial sum projection with respect to (xn)∞
n=1 is the continuous linear

operator Sk ∈ L (X) defined by

Sk

∞

∑
n=1

anxn =
k

∑
n=1

anxn for all x =
∞

∑
n=1

anxn ∈ X .

Where convenient, we shall define S0 = 0.

PROPOSITION 5.1. Let X be a (real or complex) Banach space with a basis and
corresponding and partial sum projections (Sk)∞

k=1 , and let E be finite-dimensional
subspace of X . For every δ > 0 there exists N ∈ Z+ such that ‖e−Ske‖ � δ‖e‖ for
all e ∈ E and k � N .

Proof. Let {e1, · · · ,en} , n = dim(E) , be a normalized basis for E , and let K >
0 be such that it is K -equivalent to the canonical basis of �n

1 . Notice that for each
i = 1, · · · ,n , we can find ki ∈ Z+ such that ‖ei − Skei‖ � δ/K for all k � ki . Let
N := max{k1, · · · ,kn} . Then for any e = ∑n

i=1 aiei ∈ E and k � N we have

‖e−Ske‖ = ‖
n

∑
i=1

ai(ei −Skei)‖ � δ
K

n

∑
i=1

|ai| � δ‖
n

∑
i=1

aiei‖ = δ‖e‖. �

PROPOSITION 5.2. Let X be a (real or complex) Banach space with a basis and
corresponding partial sum projections (Sk)∞

k=1 ⊆L (X) , and let E be a n-dimensional
subspace, n ∈ Z+ , of X . Let T ∈ L (X ,Y ) for some Banach space Y , and such that
T |E is bounded below by ε > 0 , i.e. ‖Te‖ � ε‖e‖ for all e ∈ E . Then for every
δ ∈ (0,ε) , there exists N ∈Z+ such that SNE is n-dimensional and T |(SNE) is bounded
below by δ , i.e. ‖TSNe‖ � δ‖SNe‖ for all e ∈ E .

Proof. Since δ ∈ (0,ε) , we can find γ ∈ (0,1) such that

δ � ε
1+ γ

− ‖T‖γ
1− γ

.

By Proposition 5.1, c N ∈ Z+ such that ‖e−SNe‖ � γ‖e‖ for all e ∈ E . Thus,

‖e‖ =
1

1− γ
(‖e‖− γ‖e‖) � 1

1− γ
(‖SNe‖+‖e−SNe‖− γ‖e‖) � 1

1− γ
‖SNe‖.

This shows that dim(SNE) = dim(E) . Together with

‖SNe‖ � ‖e‖+‖e−SNe‖ � (1+ γ)‖e‖,
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it also gives us

ε
1+ γ

‖SNe‖ � ε‖e‖ � ‖Te‖ � ‖TSNe‖+‖T‖‖e−SNe‖

� ‖TSNe‖+‖T‖γ‖e‖ � ‖TSNe‖+
‖T‖γ
1− γ

‖SNe‖,

and finally

δ‖SNe‖ �
(

ε
1+ γ

− ‖T‖γ
1− γ

)
‖SNe‖ � ‖TSNe‖. �

We will also need to recall the following obvious consequence of the Second Iso-
morphism Theorem for modules.

PROPOSITION 5.3. Let E be a finite-dimensional subspace and let Z be an infinite-
dimensional subspace of a vector space X . Then

dim(E)−dim(X/Z) � dim(E ∩Z).

Proof. By the Second Isomorphism Theorem for modules we have

E/(E∩Z) ∼= (E +Z)/Z

so that

dim(E)−dim(E ∩Z) = dim(E/(E ∩Z)) = dim((E +Z)/Z) � dim(X/Z)

and hence
dim(E)−dim(X/Z) � dim(E ∩Z). �

Now let us prove the following Theorem, which is very closely analogous to [16,
Theorem 4.11]. Our methods are almost identical to theirs, and so we will not deviate
too far from their proof. Let us use the following notation in our proof. If X is a Banach
space with a basis (xn) , then for any x ∈ X we write

supp(x) =

{
n ∈ Z+ : an �= 0,x =

∞

∑
n=1

anxn

}
,

and if E is a subset of X then we define

supp(E) =
⋃
e∈E

supp(e).

THEOREM 5.4. Let 1 < p < ∞ , and let T ∈L (�p,c0) be any (p,0)-left Pełczyński
decomposition operator. If R ∈ L (�p,c0)\FSS (�p,c0) then T factors through R.
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Proof. Let (kn)∞
n=1 , θ =

⊕∞
n=1 θn , and I2,p,0 be as in the definition of the (p,0)-

left Pełczyński decomposition operator T = θ I2,p,0Dp . It is enough to show that θ I2,p,0

factors through R . To do it, we will closely follow the proof of [16, Theorem 4.11],
only making some crucial modifications along the way.

Since R is not FSS , there exists ε > 0 and a sequence (En)∞
n=0 of subspaces

of �p such that dim(En) = n for all n ∈ Z+ , and such that ‖Rx‖ � ε‖x‖ for all x ∈⋃∞
n=1 En . Due to Proposition 5.2, we can assume supp(En) < ∞ for all n∈N , adjusting

ε if necessary. Let (Fn)∞
n=1 be defined by setting Fn := REn for each n ∈ N , and let

(Sk)∞
k=0 be the canonical partial sum projections lying in L (c0) . Choose γ ∈ (0,1/2)

to satisfy (1+ γ)/(1− γ) � 2.
Let’s inductively construct sequences (Ên)∞

n=0 and (F̂n)∞
n=0 , and a strictly increas-

ing sequence (mn)∞
n=0 ⊆ N , such that the following conditions are satisfied for all

n ∈ Z+ .

(i) mn−1 < supp(Ên) ;

(ii) mn−1 < supp(F̂n) ;

(iii) supp(Ên) � mn ;

(iv) F̂n = RÊn ;

(v) ‖Rx‖ � ε‖x‖ for all x ∈ Ên ;

(vi) ‖y−Smny‖ � γ2−n‖y‖ for all y ∈ F̂n ; and

(vii) dim(Ên) = dim(F̂n) = n .

First, set m0 = 0, Ê0 = {0} , and F̂0 = {0} , and suppose that we have constructed Êi ,
F̂i , and mi , for all i < n and some n ∈ Z+ . Let G and G′ be the subspaces of �p and
c0 , respectively, consisting of all the vectors whose first mn−1 coordinates are zero. Put
k := 2mn−1 +n . Due to Proposition 5.3, we now have

mn−1 +n = (2mn−1 +n)−mn−1 = dim(Fk)−dim(c0/G′)

� dim(Fk ∩G′) = dim(R|−1
Ek

(Fk ∩G′)).

Again due to Proposition 5.3, we get

n = (mn−1 +n)−mn−1 � dim(R|−1
Ek

(Fk ∩G′))−dim(�p/G)

� dim(R|−1
Ek

(Fk ∩G′)∩G)

Let Ên be an n -dimensional subspace of R|−1
Ek

(Fk ∩G′)∩G , and set F̂n = RÊn . Then

(i), (ii), (iv), and (vii) are all satisfied for this n . Notice that Ên ⊆ Ek , so that (v) is also
satisfied. By Proposition 5.1, we can find N ∈ Z+ such that ‖y−Sky‖ � γ2−n‖y‖ for
all y ∈ Fn and k � N . If we pick mn = max{maxsupp(Ên),N} , this satisfies (iii) and
(vi), and the construction is complete.

For convenience, let us relabel En = Ên and Fn = F̂n for all n ∈ Z+ . Recall that
for each k ∈ Z+ there exists nk ∈ Z+ such that every nk -dimensional subspace of �p
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contains an k -dimensional subspace which is 2-isomorphic to �k
2 (cf., e.g., [2, Theorem

12.3.3]). Thus, by passing to subspaces of a suitable subsequence, we can assume that
each En is 2-isomorphic to �n

2 . Then pass to a matching subsequence of (mn) , and
relabel each Fn = REn , so that properties (i)–(vii) above are preserved. In addition to
these properties, for each n ∈ Z+ , there now exists an isomorphism Un : �n

2 → En such
that ‖Un‖ � 2 and ‖U−1

n ‖ � 2.
We claim that any normalized sequence (yn)∞

n=1 ⊆ c0 such that yn ∈ Fn for each
n ∈ Z+ is basic and 2-equivalent to the canonical basis ( fn)∞

n=1 of c0 ; in particular
this means the Fn ’s are all linearly independent. Indeed, due to property (ii) above,
the sequence (Smnyn)∞

n=1 is a block sequence of ( fn)∞
n=1 . Also, by definition of the

c0 -norm together with property (vi), we have

1 = ‖yn‖ = max{‖Smnyn‖,‖yn−Smnyn‖} � max{‖Smnyn‖,γ2−n}.

Since γ2−n < 1 and ‖Smnyn‖ � ‖yn‖ = 1, this means ‖Smnyn‖ = 1. Thus, (Smnyn)∞
n=1

is a normalized block basis of ( fn)∞
n=1 , so that it is 1-equivalent to ( fn) (cf., e.g., [2,

Lemma 2.1.1]). On the other hand, notice that

2
∞

∑
n=1

‖yn−Smnyn‖
‖Smnyn‖ � 2

∞

∑
n=1

2−nγ = 2γ < 1

so that by the Principle of Small Perturbations (cf., e.g., [2, Theorem 1.3.9]), (yn)∞
n=1

is (1+ γ)/(1− γ)-equivalent to (Smnyn)∞
n=1 and hence, due to (1+ γ)/(1− γ) � 2, it

is 2-equivalent to ( fn)∞
n=1 .

For each n ∈ Z+ , define Rn : En → Fn by the rule Rnx = Rx for all x ∈ En . Then
each Rn is an invertible operator satisfying ‖Rn‖ � ‖R‖ and ‖R−1

n ‖ � 1/ε . For each
n ∈ Z+ , let us also define an operator

Jn = θnU
−1
n R−1

n : Fn → �kn
∞ .

Notice that this means ‖Jn‖� 4/ε for all n∈ Z+ . Let us also, for each n∈ Z+ , denote
by

Qn : �kn
∞ →

(
∞⊕

n=1

�kn
∞

)
c0

the canonical norm-1 embedding. Due to the linear independence of the Fn ’s, we can
now define a linear map

J : span
∞⋃

n=1

Fn →
(

∞⊕
n=1

�kn
∞

)
c0

by the rule Jy = QnJny for all y ∈ Fn and n ∈ Z+ . Let us show that J is bounded.
For any nonzero y ∈ span

⋃∞
n=1 Fn , we can write y = ∑ j

k=1 yk for some j ∈ Z+ , where

(Fik)
j
k=1 is a subsequence and yk ∈ Fik \{0} for each k = 1, · · · , j . Since every normal-

ized basic sequence formed by single elements in each Fn is 2-equivalent to ( fn)∞
n=1 ,
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this gives us

‖Jy‖ = ‖J
j

∑
k=1

yk‖ = sup
1�k� j

‖QikJikyk‖ � 4
ε

sup
1�k� j

‖yk‖ � 8
ε
‖

j

∑
k=1

‖yk‖ yk

‖yk‖‖ =
8
ε
‖y‖.

Thus, J extends to

J̃ : c0 →
(

∞⊕
n=1

�kn
∞

)
c0

via the separable injectivity of
(⊕∞

n=1 �kn
∞
)
c0
∼= c0 (cf., e.g., [3, VII, p. 72]).

Next, define an operator

U :

(
∞⊕

n=1

�n
2

)
�p

→ �p

by the rule

U
∞⊕

n=1

xn =
∞

∑
n=1

Unxn.

Actually, it is not yet clear that it is possible to define U , except of finitely-supported
⊕�p -sums. Let us show that when restricted to finite support, U is bounded, and hence
well-defined on the whole space via continuous extension. Since the En ’s are disjointly
supported in �p , and ‖Un‖ � 2 for all n ∈ Z+ , we have

‖U
∞⊕

n=1

xn‖ = ‖
∞

∑
n=1

Unxn‖ =

(
∞

∑
n=1

‖Unxn‖p

)1/p

� 2

(
∞

∑
n=1

‖xn‖p

)1/p

= 2‖
∞⊕

n=1

xn‖.

It follows, as claimed, that U is bounded on finite ⊕�p -sums, and hence is a well-
defined bounded operator on the whole space.

Observe that we now have θ I2,p,0 = J̃RU , which completes the proof. �

Let us now show how to deduce the new diagrams above for L (�p,c0) and
L (�1, �q) , 1 < p < 2 < q < ∞ . We don’t need to prove the first two arrows in each
diagram, since they are already known. Each third and fourth arrows follow from The-
orem 3.9 together with the fact that the operators Iv,∞ are all �2 -factorable. The rest
of the diagram for L (�1, �q) follows from Corollary 4.3. Now let T be a (p,0)-
left Pełczyński operator, which we have already observed is not FSS . Thus, by
Theorem 5.4 together with the fact that T is �2 -factorable, [GT ](�p,c0) is an imme-
diate successor to FSS ∩ [G�2 ](�p,c0) , and [FSS + GT ](�p,c0) is the only im-
mediate successor to FSS (�p,c0) . Theorem 4.2 together with the fact that T is
�2 -factorable but not FSS shows us that FSS (�p,c0) and [GT ](�p,c0) are incom-
parable, i.e. neither one is a subset of the other. It is also clear from these facts that
FSS ∩ [G�2 ](�p,c0) is a proper subset of FSS (�p,c0) and [GT ](�p,c0) is a proper
subset of [FSS +GT ](�p,c0) . Thus, the new diagrams are proved.
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(1970), Vol. 10, pp. 15–26.
[11] ALBRECHT PIETSCH, Operator Ideals, Mathematische Monographien, Vol. 16, Deutscher Verlag der

Wissenschaften (1978).
[12] GILLES PISIER, Holomorphic semi-groups and the geometry of Banach spaces, Annals of Mathemat-

ics Second Series, (March 1982), Vol. 115, No. 2, pp. 375–392.
[13] A. PLICHKO, Superstrictly singular and superstrictly cosingular operators, North-Holland Mathe-

matics Studies (July 2004), Vol. 197, Functional analysis and its applications, pp. 239–255, ISBN
0-444-51373-6.

[14] HASKELL P. ROSENTHAL, On the subspaces of Lp (p > 2) spanned by sequences of independent
random variables, Israel J. Math. (1970), Vol. 8, pp. 273–303.

[15] THOMAS SCHLUMPRECHT, On the closed subideals of L(�p ⊕ �q) , Operators and Matrices (2012),
Vol. 6, 311–326.

[16] B. SARI, THOMAS SCHLUMPRECHT, NICOLE TOMCZAK-JAEGERMANN, VLADIMIR TROITSKY,
On norm closed ideals in L(�p,�q) , Studia Math. (2007), Vol. 179, No. 3, pp. 239–262.
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