THE STRUCTURE OF m-ISOMETRIC WEIGHTED SHIFT OPERATORS

Belal Abdullah and Trieu Le

(Communicated by R. Curto)

Abstract. We obtain simple characterizations of unilateral and bilateral weighted shift operators that are m-isometric. We show that any such operator is a Hadamard product of 2 -isometries and 3 -isometries. We also study weighted shift operators whose powers are m-isometric.

1. Introduction

Throughout the paper, H denotes a separable infinite dimensional complex Hilbert space. Let $m \geqslant 1$ be an integer. A bounded linear operator T on H is said to be m isometric if it satisfies the operator equation

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} T^{* k} T^{k}=0 \tag{1.1}
\end{equation*}
$$

where T^{*} denotes the adjoint of T and $T^{* 0}=T^{0}=I$, the identity operator on H. It is immediate that T is m-isometric if and only if

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}\left\|T^{k} x\right\|^{2}=0 \tag{1.2}
\end{equation*}
$$

for all $x \in H$. It is well known and not difficult to check that any m-isometric operator is k-isometric for any $k \geqslant m$. We say that T is strictly m-isometric (or equivalently, T is a strict m-isometry) if T is m-isometric but it is not $(m-1)$-isometric. Clearly, any 1 -isometric operator is isometric. This notion of m-isometries was introduced by Agler [1] back in the early nineties in connection with the study of disconjugacy of Toeplitz operators. The general theory of m-isometric operators was later investigated in great details by Agler and Stankus in a series of three papers [2, 3, 4].

In this paper, we are investigating unilateral as well as bilateral weighted shift operators that are m-isometric. Examples of such unilateral weighted shifts were given by Athavale [5] in his study of multiplication operators on certain reproducing kernel Hilbert spaces over the unit disk. In [9], Botelho and Jamison provided other examples of strictly 2 -isometric and 3-isometric unilateral weighted shifts. The papers [14, 13] discuss some necessary and sufficient conditions for a unilateral weighted shift to be

[^0]an m-isometry. Recently, Bermúdez et al. [8] obtained a complete characterization of such operators. However, their characterization appears difficult to apply. In fact, combinatorial identities are often involved in checking whether a given unilateral weighted shift satisfies their criterion to be an m-isometry. See [8, Corollary 3.8]. Here, we offer a more simplified characterization of m-isometric weighted shifts. Our approach works not only for unilateral shifts but also for bilateral shifts. Even though our characterization is equivalent to the characterization given in [8], it is more transparent and useful. We shall see how our result quickly recovers several known examples. We further obtain an interesting structural result which says that for $m \geqslant 2$, any strictly m-isometric weighted shift is the Hadamard product (also known as the Schur product) of strictly 2 -isometric or 3 -isometric weighted shifts. We shall also study weighted shifts whose powers are m-isometric. Similar results will be proven for weighted bilateral shifts. Our characterization of m-isometric weighted bilateral shifts offers several examples which include the examples considered in a recent paper [10].

The paper is organized as follows. In Section 2, we provide a detailed study of unilateral weighted shifts which are m-isometric. The main result in this section gives a complete characterization of such operators. Several examples will be given. In Section 3, we discuss Hadamard products of m-isometric weighted shifts. We prove a factorization theorem for these operators. We then study weighted shifts whose powers are m-isometric in Section 4. Several examples are discussed. Finally, in Section 5, we investigate bilateral weighted shifts. A characterization and a factorization theorem for m-isometric bilateral weighted shifts are given.

2. m-isometric unilateral weighted shift operators

Fix an orthonormal basis $\left\{e_{n}\right\}_{n \geqslant 1}$ of H. For a sequence of complex numbers $\left\{w_{n}\right\}_{n \geqslant 1}$, the associated weighted unilateral shift operator S is a linear operator on H with

$$
S e_{n}=w_{n} e_{n+1} \quad \text { for all } n \geqslant 1
$$

It is well known and is not difficult to see that S is a bounded operator if and only if the weight sequence $\left\{w_{n}\right\}_{n \geqslant 1}$ is bounded. We shall always assume that S is a bounded weighted shift operator. The reader is referred to [16] for an excellent source on the study of these operators. In this paper, we only focus our attention on weighted shifts that are m-isometric.

Since $S e_{n}=w_{n} e_{n+1}$ for all $n \geqslant 1$, we see that $S^{k} e_{n}=\left(\prod_{\ell=n}^{k+n-1} w_{\ell}\right) e_{n+k}$ for $k \geqslant 1$. Consequently,

$$
S^{* k} e_{n}= \begin{cases}0 & \text { if } n \leqslant k \\ \left(\prod_{\ell=n-k}^{n-1} \bar{w}_{\ell}\right) e_{n-k} & \text { if } n \geqslant k+1\end{cases}
$$

Therefore, $S^{* k} S^{k}$ is a diagonal operator with respect to the orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ and

$$
S^{* k} S^{k} e_{n}=\left(\prod_{\ell=n}^{k+n-1}\left|w_{\ell}\right|^{2}\right) e_{n}
$$

Now assume that S is an m-isometry. That is, S satisfies equation (1.1), and equivalently, equation (1.2). We collect here two well-known facts about the weight sequence of S. These facts have appeared in [8, Propositions 3.1 and 3.2], [9, Equation (4)], and also [13, Theorem 1].
(a) From (1.2), it follows that any m-isometry is bounded below, hence, injective. Consequently, $w_{n} \neq 0$ for all $n \geqslant 1$.
(b) S is m-isometric if and only if for any integer $n \geqslant 1$,

$$
\begin{equation*}
(-1)^{m}+\sum_{k=1}^{m}(-1)^{m-k}\binom{m}{k}\left(\prod_{\ell=n}^{k+n-1}\left|w_{\ell}\right|^{2}\right)=0 \tag{2.1}
\end{equation*}
$$

By studying the infinite system of equations (2.1), Bermúdez et al. [8, Theorem 3.4] gives a characterization of the weight sequence $\left\{w_{n}\right\}_{n \geqslant 1}$. Here, using a different approach, namely, the theory of Difference Equations, we obtain an equivalent but more transparent characterization. As a consequence, we derive interesting properties of m isometric weighted shifts which have not been discovered before. The technique of Difference Equations has been used (but for a different purpose) in the study of m isometries in $[6,7]$.

THEOREM 2.1. Let S be a unilateral weighted shift with weight sequence $\left\{w_{n}\right\}_{n \geqslant 1}$. Then the following statements are equivalent.
(a) S is an m-isometry.
(b) There exists a polynomial p of degree at most $m-1$ with real coefficients such that for all integers $n \geqslant 1$, we have $p(n)>0$ and

$$
\begin{equation*}
\left|w_{n}\right|^{2}=\frac{p(n+1)}{p(n)} . \tag{2.2}
\end{equation*}
$$

The polynomial p may be taken to be monic.

Proof. We define a new sequence of numbers $\left\{u_{n}\right\}_{n \geqslant 1}$ as follows. Set $u_{1}=1$ and $u_{n}:=\prod_{j=1}^{n-1}\left|w_{j}\right|^{2}$ if $n \geqslant 2$. Since $w_{j} \neq 0$ for any j as we have remarked above, all u_{n} are positive. We have $\left|w_{n}\right|^{2}=u_{n+1} / u_{n}$ and more generally,

$$
\prod_{\ell=n}^{k+n-1}\left|w_{\ell}\right|^{2}=\frac{u_{k+n}}{u_{n}}
$$

for all integers $n \geqslant 1$ and $k \geqslant 1$.
From (2.1), we see that S is an m-isometry if and only if the sequence $\left\{u_{n}\right\}_{n \geqslant 1}$ is a solution to the difference equation

$$
(-1)^{m}+\sum_{k=1}^{m}(-1)^{m-k}\binom{m}{k} \frac{u_{k+n}}{u_{n}}=0 \quad \text { for all } n \geqslant 1
$$

This equation is equivalent to

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} u_{k+n}=0 \quad \text { for all } n \geqslant 1 \tag{2.3}
\end{equation*}
$$

The characteristic polynomial of this linear difference equation is

$$
f(\lambda)=\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} \lambda^{k}=(\lambda-1)^{m}
$$

Since $\lambda=1$ is the only root of f with multiplicity m, the theory of Linear Difference Equations (see, for example, [12, Section 2.3]) shows that $\left\{u_{n}\right\}_{n \geqslant 1}$ is a solution of (2.3) if and only if u_{n} is a polynomial in n of degree at most $m-1$.

The argument we have so far shows that S is an m-isometry if and only if there is a polynomial q of degree at most $m-1$ with real coefficients such that $u_{n}=q(n)$ for all $n \geqslant 1$.

We now prove the implication (a) \Longrightarrow (b). Suppose S is an m-isometry. Consider the polynomial q given in the preceding paragraph. Since q is positive at all positive integers, the leading coefficient α of q must be positive. Put $p=q / \alpha$. Then p is a monic polynomial and for all $n \geqslant 1$, we have $p(n)=q(n) / \alpha>0$ and

$$
\left|w_{n}\right|^{2}=\frac{u_{n+1}}{u_{n}}=\frac{q(n+1)}{q(n)}=\frac{p(n+1)}{p(n)} .
$$

For the implication $(b) \Longrightarrow(a)$, suppose there is a polynomial p of degree at most $m-1$ with real coefficients such that $p(n)>0$ and $\left|w_{n}\right|^{2}=p(n+1) / p(n)$ for all $n \geqslant 1$. Set $q(n)=p(n) / p(1)$. Then we have $u_{1}=1=q(1)$ and for $n \geqslant 2$,

$$
u_{n}=\prod_{j=1}^{n-1}\left|w_{j}\right|^{2}=\prod_{j=1}^{n-1} \frac{p(j+1)}{p(j)}=\frac{p(n)}{p(1)}=q(n)
$$

Since q is of degree at most $m-1$, we conclude that $\left\{u_{n}\right\}_{n \geqslant 1}$ solves the difference equation (2.3). Consequently, S is an m-isometry.

REMARK 2.2. The monic polynomial p satisfying (b) in Theorem 2.1, if exists, is unique. Indeed, suppose \tilde{p} is another monic polynomial such that $\left|w_{n}\right|^{2}=\tilde{p}(n+$ 1) $/ \tilde{p}(n)$ and $\tilde{p}(n)>0$ for all integers $n \geqslant 1$. Then for any integer $k \geqslant 2$,

$$
\frac{p(k)}{p(1)}=\prod_{\ell=1}^{k-1}\left|w_{\ell}\right|^{2}=\frac{\tilde{p}(k)}{\tilde{p}(1)}
$$

Since the polynomials $p / p(1)$ and $\tilde{p} / \tilde{p}(1)$ agree at all integer values $k \geqslant 2$, they must be the same polynomial. Therefore, $p / p(1)=\tilde{p} / \tilde{p}(1)$, which implies that $\tilde{p}=$ $(\tilde{p}(1) / p(1)) p$. Because both p and \tilde{p} are monic, it follows that $\tilde{p}(1) / p(1)=1$ and hence, $\tilde{p}=p$.

As an immediate corollary to Theorem 2.1, we characterize unilateral weighted shifts that are strictly m-isometric.

COROLLARY 2.3. A unilateral weighted shift S is strictly m-isometric if and only if there exists a polynomial p of degree $m-1$ that satisfies condition (b) in Theorem 2.1.

Proof. We consider first the "only if" direction. Suppose S is a strict m-isometry. Then the polynomial p in Theorem 2.1 has degree at most $m-1$. If the degree of p were strictly smaller than $m-1$, then another application of Theorem 2.1 shows that S would be $(m-1)$-isometric, which is a contradiction. Therefore, the degree of p must be exactly $m-1$.

Now consider the "if" direction. Suppose $\left|w_{n}\right|^{2}=p(n+1) / p(n)$ for all $n \geqslant 1$, where p is a polynomial of degree $m-1$. We know from Theorem 2.1 that S is m isometric. By Remark 2.2, there does not exist a monic polynomial q with degree at most $m-2$ such that $\left|w_{n}\right|^{2}=q(n+1) / q(n)$ for all $n \geqslant 1$. Theorem 2.1 then implies that S is not an $(m-1)$-isometry. Therefore, S is strictly m-isometric.

We now apply Corollary 2.3 to investigate several examples.

EXAMPLE 2.4. A unilateral weighted shift S is a strict 2 -isometry if and only if there is a monic polynomial p of degree 1 such that $p(n)>0$ and $\left|w_{n}\right|^{2}=p(n+$ $1) / p(n)$ for all $n \geqslant 1$. Write $p(n)=n-b$ for some real number b. The positivity of p at the positive integers forces b to be smaller than 1 .

We conclude that S is a strict 2 -isometry if and only if there exists a real number $b<1$ such that

$$
\left|w_{n}\right|=\sqrt{\frac{n+1-b}{n-b}} \quad \text { for all integers } n \geqslant 1
$$

Choosing $b=0$, we recover the well-known fact [15] that the Dirichlet shift is a strict 2 -isometry.

ExAmple 2.5. A unilateral weighted shift S is a strict 3 -isometry if and only if there is a monic polynomial p of degree 2 such that $p(n)>0$ and $\left|w_{n}\right|^{2}=p(n+$ $1) / p(n)$ for all $n \geqslant 1$. Write $p(x)=(x-\alpha)(x-\beta)$ for some complex numbers α and β. Since p is positive at all positive integers, one of the following three cases must occur:
(1) Both α and β belong to $\mathbb{C} \backslash \mathbb{R}$. An example is $p(x)=x^{2}-5 x+7$. In this case,

$$
\left|w_{n}\right|^{2}=\frac{p(n+1)}{p(n)}=\frac{n^{2}-3 n+3}{n^{2}-5 n+7} \quad \text { for all } n \geqslant 1
$$

This example appeared in [9, Section 2.1].
(2) There exists an integer $n_{0} \geqslant 1$ such that both α and β belong to the open interval $\left(n_{0}, n_{0}+1\right)$.
(3) Both α and β belong to the interval $(-\infty, 1)$.

EXAMPLE 2.6. For each integer $m \geqslant 1$, consider the unilateral weighted shift S with the weight sequence given by

$$
w_{n}=\sqrt{\frac{n+m}{n}} \quad \text { for all } n \geqslant 1
$$

This operator was considered in [5, Proposition 8] and [8, Corollary 3.8], where it was verified to be a strict $(m+1)$-isometry. We provide here another proof of this fact. Put $p(x)=(x+m-1) \cdots x$. Then p is a monic polynomial of degree m and for all integers $n \geqslant 1$, we have $p(n)>0$ and

$$
\sqrt{\frac{p(n+1)}{p(n)}}=\sqrt{\frac{(n+m) \cdots(n+1)}{(n+m-1) \cdots n}}=\sqrt{\frac{n+m}{n}}=w_{n} .
$$

By Corollary 2.3, S is strictly $(m+1)$-isometric.
Theorem 2.1 shows that in order for S to be m-isometric, the values $\left|w_{n}\right|^{2}$ must be a rational function of n and $\lim _{n \rightarrow \infty}\left|w_{n}\right|^{2}=1$. This immediately raises the following question.

Question 1. Suppose S is a unilateral weighted shift with the weight sequence $\left\{w_{n}\right\}_{n \geqslant 1}$. Suppose there are two polynomials f and g with real coefficients such that $\left|w_{n}\right|^{2}=f(n) / g(n)$ and that $\lim _{n \rightarrow \infty} f(n) / g(n)=1$. What conditions must f and g satisfy to ensure that S is an m-isometry for some integer $m \geqslant 2$?

Example 2.6 shows that the relation between f and g is not at all obvious. While it is possible to obtain a criterion that involves the roots of f and g, such a criterion may not be useful or practical. On the other hand, we do not know if it is possible to find a condition that involves only the coefficients of f and g. This may have an interesting answer.

In the rest of the section, we investigate m-isometric weighted shift operators whose weight sequence starts with a given finite set of values. More specifically, let $r \geqslant 1$ be an integer and let a_{1}, \ldots, a_{r} be nonzero complex numbers. We are interested in the question: does there exist an m-isometric unilateral weighted shift S such that $S e_{k}=a_{k} e_{k+1}$ for all $1 \leqslant k \leqslant r$? By Theorem 2.1, the answer to this question hinges on the existence of a polynomial p such that $p(n)>0$ for all $n \geqslant 1$ and $\left|a_{k}\right|^{2}=p(k+1) / p(k)$ for $1 \leqslant k \leqslant r$. The following result shows the existence of such a polynomial.

PROPOSITION 2.7. Let $r \geqslant 1$ be an integer and let a_{1}, \ldots, a_{r} be nonzero complex numbers. For any $m \geqslant r+2$, there exists a strictly m-isometric unilateral weighted shift operator whose weight sequence starts with a_{1}, \ldots, a_{r}.

Proof. By Lagrange interpolation, there exists a polynomial f of degree at most r such that $f(1)=1$ and

$$
f(k)=\left|a_{1}\right|^{2} \cdots\left|a_{k-1}\right|^{2} \quad \text { for } 2 \leqslant k \leqslant r+1
$$

Let $m \geqslant r+2$. We shall look for a polynomial p with degree $m-1$ in the form

$$
p(x)=x^{m-r-2}(x-1) \cdots(x-r-1)+\alpha f(x)
$$

such that $p(n)>0$ for all integers $n \geqslant 1$. Here α is a positive number that we need to determine. Note that $p(k)=\alpha f(k)>0$ for all $1 \leqslant k \leqslant r+1$ so we only need to find α such that $p(n)>0$ for $n \geqslant r+2$. This is equivalent to

$$
\frac{1}{\alpha}>\sup \left\{\frac{-f(x)}{x^{m-r-2}(x-1) \cdots(x-r-1)}: x \geqslant r+2\right\} .
$$

Since the rational function on the right hand is continuous on $[r+2, \infty)$ and its limit at infinity is zero, the above supremum is finite. Consequently, there exists such an α. Note that p is a monic polynomial of degree $m-1$ and for $1 \leqslant k \leqslant r$,

$$
\left|a_{k}\right|^{2}=\frac{f(k+1)}{f(k)}=\frac{\alpha f(k+1)}{\alpha f(k)}=\frac{p(k+1)}{p(k)} .
$$

Let S be the unilateral weighted shift operator whose weight sequence $\left\{w_{n}\right\}_{n \geqslant 1}$ is given by $w_{n}=a_{n}$ for $1 \leqslant n \leqslant r$ and

$$
w_{n}=\sqrt{\frac{p(n+1)}{p(n)}} \quad \text { for } n \geqslant r+1
$$

Since p is a polynomial of degree $m-1$ and $\left|w_{n}\right|^{2}=p(n+1) / p(n)$ for all $n \geqslant 1$, Corollary 2.3 shows that S is strictly m-isometric.

REMARK 2.8. The condition $m \geqslant r+2$ in the above proposition is necessary. In fact, with an appropriate choice of a_{1}, \ldots, a_{r}, there does not exist an $(r+1)$-isometric unilateral weighted shift operator whose weight sequence starts with a_{1}, \ldots, a_{r}. For example, set $r=1$ and take $\left|a_{1}\right|<1$. Example 2.4 shows that there does not exist a 2 -isometric weighted shift operator S with $S e_{1}=a_{1} e_{2}$ since $\left|a_{1}\right|<1$.

3. The semigroup of m-isometric unilateral weighted shifts

In this section, we investigate the structure of m-isometric weighted shifts. Let us define \mathscr{W} to be the set of all unilateral weighted shifts that are m-isometric for some integer $m \geqslant 1$. We shall see that \mathscr{W} turns out to be a semigroup with an identity. The multiplication on W is the Hadamard product of operators. We shall also show that any element in \mathscr{W} can be factored as a product of simpler factors.

Let us first recall the Hadamard product, which is also known as the Schur product. Suppose A and B are bounded operators on H. Let $\left(a_{j k}\right)$ and $\left(b_{j k}\right)$, respectively, be
the matrix representations of A and B with respect to the orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$. Then the Hadamard product of A and B, denoted by $A \odot B$, is an operator on H with matrix $\left(c_{j k}\right)$, where $c_{j k}=a_{j k} b_{j k}$ for all integers $j, k \geqslant 1$. It is well known that $A \odot B$ is a bounded operator on H.

It is clear that the Hadamard product of any two unilateral weighted shifts is a unilateral weighted shift. Corollary 2.3 tells us more.

Proposition 3.1. Let S and T be unilateral weighted shift operators such that S is strictly k-isometric and T is strictly ℓ-isometric. Then $S \odot T$ is strictly $(k+\ell-1)$ isometric. Consequently, the following statements hold.
(i) The pair (\mathscr{W}, \odot) is a commutative semigroup with identity U, the unweighted unilateral shift.
(ii) If $S \odot T=U$, then both S and T are isometric operators. This shows that invertible elements in (\mathscr{W}, \odot) are exactly the isometries.

Proof. Let $\left\{s_{n}\right\}_{n \geqslant 1}$ and $\left\{t_{n}\right\}_{n \geqslant 1}$ be the weight sequences of S and T, respectively. Then $S \odot T$ is a unilateral weighted shift with weights $w_{n}=s_{n} t_{n}$ for $n \geqslant 1$.

Since S is k-isometric, Corollary 2.3 shows the existence of a polynomial p of degree $k-1$ with real coefficients such that $p(n)>0$ and $\left|s_{n}\right|^{2}=p(n+1) / p(n)$ for all $n \geqslant 1$. Similarly, there is a polynomial q of degree $\ell-1$ such that $q(n)>0$ and $\left|t_{n}\right|^{2}=q(n+1) / q(n)$ for all $n \geqslant 1$. Put $h=p \cdot q$. Then h is a polynomial with degree $k+\ell-2$ and for any $n \geqslant 1$,

$$
h(n)=p(n) q(n)>0, \quad \text { and } \quad\left|w_{n}\right|^{2}=\left|s_{n}\right|^{2}\left|t_{n}\right|^{2}=\frac{h(n+1)}{h(n)}
$$

By Corollary 2.3 again, $S \odot T$ is strictly $(k+\ell-1)$-isometric. Therefore, \mathscr{W} is closed under \odot and hence, (\mathscr{W}, \odot) is a semigroup. It is clear that the unweighted unilateral shift U is the identity of this semigroup.

If $S \odot T=U$, then since U is isometric, we have $k+\ell-1=1$. This forces $k=\ell=1$, which means that both S and T are isometric operators. The proof of the proposition is now completed.

In general, the operator $A \odot B$ is usually not m-isometric when A is an arbitrary k-isometry and B is an arbitrary ℓ-isometry. An obvious example is $A=I$, the identity operator, and B any ℓ-isometry whose matrix contains at least one zero on its main diagonal. Then $A \odot B$ is a diagonal operator with at least one zero on its diagonal. Since $A \odot B$ is not injective, it cannot be m-isometric for any $m \geqslant 1$. This shows that the property in Proposition 3.1 is quite special for m-isometric unilateral weighted shifts. On the other hand, we would like to explain here that a more general approach can be used to prove Proposition 3.1, without the need of an explicit characterization. Recall that the tensor product space $H \bar{\otimes} H$ admits the orthonormal basis $\left\{e_{j} \otimes e_{k}: j, k \geqslant\right.$ $1\}$. The "diagonal subspace" \widetilde{H} is a subspace of $H \bar{\otimes} H$ with the orthonormal basis $\left\{e_{j} \otimes e_{j}: j \geqslant 1\right\}$. It is well known that $A \odot B$ is unitarily equivalent to the compression
of the tensor product $A \otimes B$ on \widetilde{H}. Duggal [11] shows that if A is k-isometric and B is ℓ-isometric, then $A \otimes B$ is m-isometric on $H \bar{\otimes} H$ with $m=k+\ell-1$. Since the compression of an m-isometric operator on a subspace may not be m-isometric, the operator $A \odot B$ may not be m-isometric as we have seen above. However, if both A and B are unilateral weighted shifts, then \widetilde{H} turns out to be an invariant subspace of $A \otimes B$. It then follows that $A \odot B$, being unitarily equivalent to the restriction of $A \otimes B$ on an invariant subspace, is m-isometric as well.

As another interesting application of Theorem 2.1, we show that any element in the semigroup (\mathscr{W}, \odot) can be written as a product of elements that are 2 -isometric or 3-isometric.

Recall that \mathbb{Z}^{+}denotes the set of all positive integers. We need the following elementary facts about polynomials with real coefficients.

LEMMA 3.2. Let $p \in \mathbb{R}[x]$ be a monic polynomial such that $p(n)>0$ for all $n \in \mathbb{Z}^{+}$. Then the following statements hold.
(1) Given any integer $n \in \mathbb{Z}^{+}$, the polynomial p has an even number of roots (counted with multiplicity) in the interval $(n, n+1)$.
(2) There are linear and quadratic monic polynomials p_{1}, \ldots, p_{v} in $\mathbb{R}[x]$ which assumes positive values on \mathbb{Z}^{+}such that $p=p_{1} \cdots p_{v}$.

Proof. (1) Let n be a positive integer such that p has at least a root in the interval $(n, n+1)$. Let $\alpha_{1}, \ldots, \alpha_{\ell}$ be these roots, listed with multiplicity. Write $p(x)=(x-$ $\left.\alpha_{1}\right) \cdots\left(x-\alpha_{\ell}\right) r(x)$, where the polynomial $r(x)$ has no roots in $(n, n+1)$. Since $r(n+$ 1) and $r(n)$ have the same sign, we see that $\operatorname{sgn}(p(n+1))=(-1)^{\ell} \operatorname{sgn}(p(n))$. But $p(n+1)$ and $p(n)$ are both positive, so ℓ must be even.
(2) We know that p can be factored as a product of monic linear and irreducible quadratic (not necessarily distinct) polynomials in $\mathbb{R}[x]$. The proof of the statement is completed once we notice the following facts. Firstly, any monic irreducible quadratic factor is positive over \mathbb{R}, hence over \mathbb{Z}^{+}. Secondly, any linear factor of the form $q(x)=x-b$ with $b<1$ has positive values over $[1, \infty)$, hence over \mathbb{Z}^{+}as well. Lastly, by (1), the remaining linear factors can be grouped into pairs of the form $(x-\alpha)(x-\beta)$, where α and β lie between two consecutive positive integers. Any such quadratic polynomial also assumes positive values on \mathbb{Z}^{+}.

We are now in a position to prove a factorization theorem for non-isometric elements of (\mathscr{W}, \odot).

THEOREM 3.3. Any non-isometric element in (\mathscr{W}, \odot) is a \odot-product of elements that are either strictly 2-isometric or strictly 3-isometric.

Proof. Let S be a non-isometric element in (\mathscr{W}, \odot). Assume that S is strictly m isometric with $m \geqslant 2$. By Theorem 2.1, there is a monic polynomial p such that $p(n)>$ 0 and $\left|w_{n}\right|^{2}=p(n+1) / p(n)$ for all integers $n \geqslant 1$. Using Lemma 3.2, we obtain a
factorization $p=p_{1} \cdots p_{V}$, where each polynomial p_{j} is either linear or quadratic. Now for each integer $n \geqslant 1$, set $\gamma_{n}=w_{n} /\left|w_{n}\right|$ and write

$$
w_{n}=\gamma_{n}\left|w_{n}\right|=\gamma_{n} \sqrt{\frac{p_{1}(n+1)}{p_{1}(n)}} \cdots \sqrt{\frac{p_{v}(n+1)}{p_{v}(n)}} .
$$

Let S_{1} be the unilateral weighted shift operator whose weight sequence is

$$
\left\{\gamma_{n} \sqrt{p_{1}(n+1) / p_{1}(n)}\right\}_{n \geqslant 1}
$$

For $2 \leqslant j \leqslant v$, let S_{j} be the unilateral weighted shift operator whose weight sequence is $\left\{\sqrt{p_{j}(n+1) / p_{j}(n)}\right\}_{n \geqslant 1}$. We then have $S=S_{1} \odot \cdots \odot S_{V}$ and each S_{j} is either strictly 2 -isometric or strictly 3 -isometric by Corollary 2.3. This completes the proof of the theorem.

REMARK 3.4. It should be noted that any strictly 2 -isometric element in (\mathscr{W}, \odot) cannot be trivially written as a product of non-isometric elements. On the other hand, some strictly 3 -isometric elements may be written as a product of strict 2 -isometries. These elements arise from Case (3) in Example 2.5.

We close this section with a corollary to Theorem 3.3.
Corollary 3.5. Let S be a unilateral weighted shift operator. Then S is m isometric for some $m \geqslant 2$ if and only if it can be written as the Hadamard product of unilateral weighted shift operators each of which is strictly 2 -isometric or 3-isometric.

4. Unilateral weighted shifts whose powers are m-isometric

Let $\alpha \geqslant 2$ be a positive integer. It is well known that if A is an m-isometry then A^{α} is an m-isometry as well. The converse, on the other hand, does not hold (see [7, Examples 3.3 and 3.5] and also Examples 4.2 and 4.3 that we shall discuss below).

In this section, we would like to characterize the weights of a given unilateral weighted shift S such that S^{α} is m-isometric. Our approach relies on the characterization of m-isometric unilateral weighted shifts obtained in Section 2. Let S be a unilateral weighted shift with weight sequence $\left\{w_{n}\right\}_{n \geqslant 1}$. Recall that $\left\{e_{n}\right\}_{n \geqslant 1}$ is an orthonormal basis of H such that $S e_{n}=w_{n} e_{n+1}$ for all $n \geqslant 1$. Then S^{α} is a shift of multiplicity α, that is, for all integers $n \geqslant 1$,

$$
S^{\alpha} e_{n}=u_{n} e_{n+\alpha}
$$

where $u_{n}=w_{n} \cdots w_{n+\alpha-1}$.
For each $1 \leqslant r \leqslant \alpha$, let \mathscr{X}_{r} denote the closed subspace spanned by

$$
\left\{e_{r}, e_{r+\alpha}, e_{r+2 \alpha}, \ldots\right\}
$$

Then \mathscr{X}_{r} is a reducing subspace of S^{α} and S^{α} is unitarily equivalent to the direct sum $T_{1} \oplus \cdots \oplus T_{\alpha}$, where each $T_{r}=\left.S^{\alpha}\right|_{\mathscr{X}_{r}}$ is a unilateral weighted shift with weight
sequence $\left\{u_{\ell \alpha+r}\right\}_{\ell \geqslant 0}$. Consequently, S^{α} is m-isometric on H if and only if T_{r} is m isometric on \mathscr{X}_{r} for all $1 \leqslant r \leqslant \alpha$. By Theorem 2.1, this is equivalent to the existence of polynomials $f_{1}, \ldots, f_{\alpha}$ of degree at most $m-1$ such that $f_{r}(\ell)>0$ and

$$
\begin{equation*}
\left|u_{\ell \alpha+r}\right|^{2}=\frac{f_{r}(\ell+1)}{f_{r}(\ell)} \text { for all } \ell \geqslant 0 \text { and } 1 \leqslant r \leqslant \alpha \tag{4.1}
\end{equation*}
$$

Note that S^{α} is a strict m-isometry if and only if one of the polynomials $f_{1}, \ldots, f_{\alpha}$ has degree exactly $m-1$. With the above characterization, we would like to recover a formula for determining the weights $\left\{w_{n}\right\}_{n \geqslant 1}$ of S. The following theorem is our main result in this section.

THEOREM 4.1. Let S be a unilateral weighted shift with weight sequence $\left\{w_{n}\right\}_{n \geqslant 1}$. Then S^{α} is m-isometric if and only if there exists a function $g: \mathbb{Z}^{+} \rightarrow \mathbb{R}_{>0}$ such that the following conditions hold
(a) For each $1 \leqslant r \leqslant \alpha$, the function $\ell \mapsto g(\ell \alpha+r)$ is a polynomial of degree at most $m-1$ in ℓ.
(b) We have $\left|w_{n}\right|^{2}=\frac{g(n+1)}{g(n)}$ for all integers $n \geqslant 1$.

Proof. Suppose first that S^{α} is m-isometric. Then we have (4.1). We define a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}_{>0}$ by

$$
f(n)=f_{r}(\ell)
$$

where ℓ and r are unique integer values satisfying $1 \leqslant r \leqslant \alpha, \ell \geqslant 0$ and $n=\ell \alpha+r$. Equation (4.1) can be written as

$$
\left|u_{n}\right|^{2}=\left|u_{\ell \alpha+r}\right|^{2}=\frac{f_{r}(\ell+1)}{f_{r}(\ell)}=\frac{f(n+\alpha)}{f(n)}
$$

Now for $n>\alpha$, we have

$$
\frac{u_{n-\alpha+1}}{u_{n-\alpha}}=\frac{w_{n-\alpha+1} \cdots w_{n}}{w_{n-\alpha} \cdots w_{n-1}}=\frac{w_{n}}{w_{n-\alpha}}
$$

which implies

$$
\frac{\left|w_{n}\right|^{2}}{\left|w_{n-\alpha}\right|^{2}}=\frac{\left|u_{n-\alpha+1}\right|^{2}}{\left|u_{n-\alpha}\right|^{2}}=\frac{f(n+1)}{f(n-\alpha+1)} \cdot \frac{f(n-\alpha)}{f(n)}=\frac{f(n+1) / f(n)}{f(n-\alpha+1) / f(n-\alpha)}
$$

Consequently, if $n=\ell \alpha+r$ with $1 \leqslant r \leqslant \alpha$, then

$$
\frac{\left|w_{n}\right|^{2}}{f(n+1) / f(n)}=\frac{\left|w_{n-\alpha}\right|^{2}}{f(n-\alpha+1) / f(n-\alpha)}=\cdots=\frac{\left|w_{r}\right|^{2}}{f(r+1) / f(r)}
$$

Denoting this positive common ratio by c_{r}, we obtain the formula

$$
\left|w_{n}\right|^{2}=c_{r} \frac{f(n+1)}{f(n)} \quad \text { for } n=\ell \alpha+r
$$

Since $\left|w_{1}\right|^{2} \cdots\left|w_{\alpha}\right|^{2}=\left|u_{1}\right|^{2}=f(\alpha+1) / f(1)$ we conclude that $c_{1} \cdots c_{\alpha}=1$. Now set $c_{0}=1$ and define $g(\ell \alpha+r)=c_{0} \cdots c_{r-1} f(\ell \alpha+r)$ for $\ell \geqslant 0$ and $1 \leqslant r \leqslant \alpha$. It is clear that condition (a) is satisfied.

For $n=\ell \alpha+r$ with $1 \leqslant r \leqslant \alpha-1$ and $\ell \geqslant 0$, we compute

$$
\frac{g(n+1)}{g(n)}=\frac{g(\ell \alpha+r+1)}{g(\ell \alpha+r)}=\frac{c_{0} \cdots c_{r} f(n+1)}{c_{0} \cdots c_{r-1} f(n)}=c_{r} \frac{f(n+1)}{f(n)}=\left|w_{n}\right|^{2}
$$

On the other hand, if $n=\ell \alpha+\alpha$ for some $\ell \geqslant 0$, then

$$
\frac{g(n+1)}{g(n)}=\frac{g((\ell+1) \alpha+1)}{g(\ell \alpha+\alpha)}=\frac{\left.c_{0} f(n+1)\right)}{c_{0} \cdots c_{\alpha-1} f(n)}=c_{\alpha} \frac{f(n+1)}{f(n)}=\left|w_{n}\right|^{2}
$$

In the second last equality, we used the fact that $c_{1} \cdots c_{\alpha-1}=c_{\alpha}^{-1}$. Thus, we have shown that condition (b) is satisfied for any positive integer n.

Conversely, suppose there is a function $g: \mathbb{Z}^{+} \rightarrow \mathbb{R}_{>0}$ such that both (a) and (b) hold. Then for any integer n, condition (b) gives

$$
\left|u_{n}\right|^{2}=\prod_{j=0}^{\alpha-1}\left|w_{n+j}\right|^{2}=\prod_{j=0}^{\alpha-1} \frac{g(n+j+1)}{g(n+j)}=\frac{g(n+\alpha)}{g(n)} .
$$

For integers $1 \leqslant r \leqslant \alpha$ and $\ell \geqslant 0$, put $f_{r}(\ell)=g(\ell \alpha+r)$. Then we have $\left|u_{\ell \alpha+r}\right|^{2}=$ $f_{r}(\ell+1) / f_{r}(\ell)$ and each f_{r} is a polynomial of degree at most $m-1$ in ℓ by (a). Consequently, condition (4.1) is satisfied and hence, S^{α} is m-isometric.

We now use Theorem 4.1 to investigate several examples.
Example 4.2. Define $g(2 \ell+2)=g(2 \ell+1)=\ell+1$ for all integers $\ell \geqslant 0$. Consider the unilateral weighted shift S with weights given by

$$
\begin{aligned}
w_{n} & =\sqrt{\frac{g(n+1)}{g(n)}}= \begin{cases}\sqrt{\frac{g(2 \ell+2)}{g(2 \ell+1)}} & \text { if } n=2 \ell+1 \\
\sqrt{\frac{g(2 \ell+3)}{g(2 \ell+2)}} & \text { if } n=2 \ell+2\end{cases} \\
& = \begin{cases}1 & \text { if } n=2 \ell+1 \\
\sqrt{\frac{\ell+2}{\ell+1}} & \text { if } n=2 \ell+2 .\end{cases}
\end{aligned}
$$

Since conditions (a) and (b) in Theorem 4.1 are satisfied with $\alpha=2$ and $m=2$, we conclude that S^{2} is 2 -isometric. However, S is not 2 -isometric by Theorem 2.1.

Example 4.3. The above example can be generalized in the following way. Let $\alpha \geqslant 2$ and $m \geqslant 2$ be integers. Let p be a polynomial of degree $m-1$ such that $p(k)>0$ for all integers $k \geqslant 0$. Consider a unilateral weighted shift S with weights defined by

$$
w_{n}=\sqrt{\frac{p(\lfloor(n+1) / \alpha\rfloor)}{p(\lfloor n / \alpha\rfloor)}}= \begin{cases}1 & \text { if } n=\ell \alpha+r \text { with } 0 \leqslant r \leqslant \alpha-2 \\ \sqrt{\frac{p(\ell+1)}{p(\ell)}} & \text { if } n=\ell \alpha+(\alpha-1)\end{cases}
$$

Here $\lfloor x\rfloor$ denotes the greatest integer smaller than or equal to x. It can be checked that conditions (a) and (b) in Theorem 4.1 are satisfied by the function $g(n)=p(\lfloor n / \alpha\rfloor)$. We conclude that S^{α} is m-isometric. As before, S is not m-isometric by Theorem 2.1.

Example 4.4. We now consider [6, Example 3.5]. Let S be a unilateral weighted shift with weights $w_{2 \ell+1}=4$ and $w_{2 \ell+2}=\left(\frac{3 \ell+4}{6 \ell+2}\right)^{2}$ for all integers $\ell \geqslant 0$. Define

$$
g(n)= \begin{cases}(3 \ell+1)^{4} & \text { if } n=2 \ell+1 \\ 16(3 \ell+1)^{4} & \text { if } n=2 \ell+2\end{cases}
$$

It can be checked that $\left|w_{n}\right|^{2}=g(n+1) / g(n)$ for all positive integers n and that both $g(2 \ell+1)$ and $g(2 \ell+2)$ are polynomials in ℓ of degree 4 . Theorem 4.1 shows that S^{2} is a 5 -isometry. (The statement that S^{2} is a 2 -isometry in [6, Example 3.5] is in fact inaccurate.)

Using Theorem 4.1, one can obtain other interesting examples. We leave this to the interested reader.

5. m-isometric bilateral weighted shift operators

In this section we discuss bilateral weighted shift operators that are m-isometric. It turns out that the characterization of m-isometric unilateral shift operators in Theorem 2.1 plays a crucial role.

Let us fix an orthonormal basis $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ of H indexed by the integers \mathbb{Z}. A bilateral weighted shift operator T is a linear operator on H such that

$$
T f_{n}=w_{n} f_{n+1}, \quad \text { for } n \in \mathbb{Z}
$$

As before, the sequence $\left\{w_{n}\right\}_{n \in \mathbb{Z}}$ of complex numbers is called the weight sequence of T. We assume that $\left\{w_{n}\right\}_{n \in \mathbb{Z}}$ is bounded so that T is a bounded operator. We shall obtain a description of the weight sequence of any m-isometric bilateral weighted shift operator.

REMARK 5.1. We have already noticed that any m-isometry is injective and has a closed range. Since the range of an injective bilateral weighted shift operator is dense, it follows that any m-isometric bilateral weighted shift operator is automatically invertible.

Our first result in this section characterizes bilateral weighted shift operators that are m-isometric.

THEOREM 5.2. Let T be a bilateral weighted shift operator with the weight sequence $\left\{w_{n}\right\}_{n \in \mathbb{Z}}$. Then T is an m-isometric operator if and only if there exists a polynomial p of degree at most $m-1$ such that for any integer n, we have $p(n)>0$ and

$$
\left|w_{n}\right|^{2}=\frac{p(n+1)}{p(n)}
$$

Furthermore, the degree of p must be even.

Proof. For any positive integer $k \geqslant 0$, let H_{k} be the closed subspace of H that is spanned by $\left\{f_{n}\right\}_{n \geqslant-k}$. It is clear that $\left\{H_{k}\right\}_{k \geqslant 0}$ is an increasing sequence of invariant subspaces of T and $H=\overline{\cup_{k=0}^{\infty} H_{k}}$. Put $T_{k}=\left.T\right|_{H_{k}}$. It then follows from the definition of m-isometries that T is an m-isometry on H if and only if T_{k} is an m-isometry on H_{k} for all k. Note that each T_{k} is a unilateral weighted shift on H_{k} with respect to the orthonormal basis $\left\{e_{n}\right\}_{n \geqslant-k}$. The weight sequence of T_{k} is $\left\{w_{n}\right\}_{n \geqslant-k}$.

We first suppose that T is m-isometric. Then each operator T_{k} is m-isometric on H_{k}. By Theorem 2.1, there is a monic polynomial p_{k} of degree at most $m-1$ with real coefficients such that for all $n \geqslant-k$, we have $p_{k}(n)>0$ and

$$
\left|w_{n}\right|^{2}=\frac{p_{k}(n+1)}{p_{k}(n)}
$$

Note that we have actually applied a version of Theorem 2.1 with the index n starting from $-k$ instead of 1 . Since $\left.T_{k}\right|_{H_{0}}=T_{0}$, the uniqueness established in Remark 2.2 shows that the polynomials p_{k} are all the same. Let us call this polynomial p. Then p is monic and for any integer $n \in \mathbb{Z}$, we have $p(n)>0$ and $\left|w_{n}\right|^{2}=p(n+1) / p(n)$. The positivity of p on \mathbb{Z} shows that its degree must be even.

Conversely, suppose p is a polynomial of degree at most $m-1$ with real coefficients such that $p(n)>0$ and $\left|w_{n}\right|^{2}=p(n+1) / p(n)$ for all $n \in \mathbb{Z}$. By Theorem 2.1, each unilateral weighted shift operator $T_{k}=\left.T\right|_{H_{k}}$ is m-isometric on H_{k}. It follows that T is m-isometric on H.

With the same argument as in the proof of Corollary 2.3, we obtain a characterization of strict m-isometric bilateral weighted shift operator.

COROLLARY 5.3. The bilateral weighted shift operator T is strictly m-isometric if and only if the degree of p is exactly $m-1$ and m is an odd integer.

REMARK 5.4. Corollary 5.3 shows that there only exist strict m-isometric bilateral weighted shift operators when m is odd. This fact is not surprising since it actually follows from Remark 5.1 and a general result [2, Proposition 1.23] (see also [10, Proposition A]) which asserts that if L is an invertible k-isometry and k is even, then L is a ($k-1$)-isometry.

EXAMPLE 5.5. A bilateral weighted shift operator T is a strict 3 -isometry if and only if there is a monic polynomial p of degree 2 such that $p(n)>0$ and $\left|w_{n}\right|^{2}=$ $p(n+1) / p(n)$ for all $n \in \mathbb{Z}$. Write $p(x)=(x-\alpha)(x-\beta)$ for some complex numbers α and β. Since p assumes positive values on \mathbb{Z}, one of the following two cases must occur:
(1) Both α and β belong to $\mathbb{C} \backslash \mathbb{R}$.
(2) There exists an integer n_{0} such that both α and β belong to the open interval $\left(n_{0}, n_{0}+1\right)$.

It should be noted that quadratic polynomials that give rise to 3 -isometric bilateral weighted shift operators are more restrictive than quadratic polynomials that give rise to 3 -isometric unilateral weighted shift operators (see Example 2.5).

Example 5.6. Let $\ell \geqslant 2$ be an even integer and b be a positive number. Define $p(x)=x(x+1) \cdots(x+\ell-1)+b$. Then p has degree ℓ and $p(n)>0$ for all $n \in \mathbb{Z}$. Let T be the bilateral weighted shift operator with weights

$$
w_{n}=\sqrt{\frac{p(n+1)}{p(n)}} \quad \text { for } n \in \mathbb{Z}
$$

By Corollary 5.3, the operator T is a strict $(\ell+1)$-isometry. This example was discussed in [10, Theorem 1].

As in the case of unilateral weighted shift operators, we also have a factorization theorem for m-isometric bilateral weighted shift operators.

THEOREM 5.7. Any bilateral weighted shift operator that is strictly m-isometric for some odd integer $m \geqslant 3$ can be written as a Hadamard product of strictly 3isometric bilateral weighted shift operators.

Proof. For any strictly m-isometric bilateral weighted shift operator, let p be the monic polynomial given in Theorem 5.2. With an argument similar to that in the proof of Lemma 3.2, one can factor $p=p_{1} \cdots p_{v}$, where each p_{j} is a monic quadratic polynomial having positive values over \mathbb{Z}. The remaining of the proof is now the same as the proof of Theorem 3.3.

Using the techniques in this section together with the approach in Section 4, we obtain a characterization of bilateral weighted shifts whose powers are m-isometric. We state here the result and leave the details of the proof to the interested reader.

THEOREM 5.8. Let T be a bilateral weighted shift with weight sequence $\left\{w_{n}\right\}_{n \in \mathbb{Z}}$ and let $\alpha \geqslant 2$ be an integer. Then T^{α} is m-isometric if and only if there exists a function $g: \mathbb{Z} \rightarrow \mathbb{R}_{>0}$ such that the following conditions hold
(a) For each $1 \leqslant r \leqslant \alpha$, the function $\ell \mapsto g(\ell \alpha+r)$ is a polynomial in ℓ of even degree, which is at most $m-1$.
(b) We have $\left|w_{n}\right|^{2}=\frac{g(n+1)}{g(n)}$ for all integers n.

REFERENCES

[1] Jim Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112 (1990), no. 1, 1-14.
[2] Jim Agler and Mark Stankus, m-isometric transformations of Hilbert space, I, Integral Equations Operator Theory 21 (1995), no. 4, 383-429.
[3] Jim Agler and Mark Stankus, m-isometric transformations of Hilbert space, II, Integral Equations Operator Theory 23 (1995), no. 1, 1-48.
[4] Jim Agler and Mark Stankus, m-isometric transformations of Hilbert space, III, Integral Equations Operator Theory 24 (1996), no. 4, 379-421.
[5] Ameer Athavale, Some operator-theoretic calculus for positive definite kernels, Proc. Amer. Math. Soc. 112 (1991), no. 3, 701-708.
[6] Teresa Bermúdez, Carlos Díaz Mendoza, and Antonio Martinón, Powers of m isometries, Studia Math. 208 (2012), no. 3, 249-255.
[7] Teresa Bermúdez, Antonio Martinón, Vladimir Müller, and Juan Agustín Noda, Perturbation of m-isometries by nilpotent operators, Abstr. Appl. Anal., 2014, Art. ID 745479.
[8] Teresa Bermúdez, Antonio Martinón, and Emilio Negrín, Weighted shift operators which are m-isometries, Integral Equations Operator Theory 68 (2010), no. 3, 301-312.
[9] Fernanda Botelho and James Jamison, Isometric properties of elementary operators, Linear Algebra Appl. 432 (2010), no. 1, 357-365.
[10] Muneo Chō, Schôichi ÔTA, and Kôtarô Tanahashi, Invertible weighted shift operators which are m-isometries, Proc. Amer. Math. Soc. 141 (2013), no. 12, 4241-4247.
[11] B. P. Duggal, Tensor product of n-isometries, Linear Algebra Appl. 437 (2012), no. 1, 307-318.
[12] Saber Elaydi, An introduction to difference equations, third ed., Undergraduate Texts in Mathematics, Springer, New York, 2005.
[13] M. Faghih-Ahmadi and K. Hedayatian, m-isometric weighted shifts and reflexivity of some operators, Rocky Mountain J. Math. 43 (2013), no. 1, 123-133.
[14] S. M. Patel, 2-isometric operators, Glas. Mat. Ser. III 37(57) (2002), no. 1, 141-145.
[15] Stefan Richter, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328 (1991), no. 1, 325-349.
[16] AlLEN L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 49-128. Math. Surveys, no. 13.
e-mail: trieu.le2@utoledo.edu

[^0]: Mathematics subject classification (2010): 47B37, 47A65.
 Keywords and phrases: m-isometry, weighted shift operators, Hadamard product.

