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THE STRUCTURE OF m–ISOMETRIC WEIGHTED SHIFT OPERATORS

BELAL ABDULLAH AND TRIEU LE

(Communicated by R. Curto)

Abstract. We obtain simple characterizations of unilateral and bilateral weighted shift operators
that are m -isometric. We show that any such operator is a Hadamard product of 2 -isometries
and 3-isometries. We also study weighted shift operators whose powers are m -isometric.

1. Introduction

Throughout the paper, H denotes a separable infinite dimensional complex Hilbert
space. Let m � 1 be an integer. A bounded linear operator T on H is said to be m-
isometric if it satisfies the operator equation

m

∑
k=0

(−1)m−k
(

m
k

)
T ∗kT k = 0, (1.1)

where T ∗ denotes the adjoint of T and T ∗0 = T 0 = I , the identity operator on H . It is
immediate that T is m-isometric if and only if

m

∑
k=0

(−1)m−k
(

m
k

)
‖Tkx‖2 = 0 (1.2)

for all x ∈ H . It is well known and not difficult to check that any m-isometric operator
is k -isometric for any k � m . We say that T is strictly m-isometric (or equivalently, T
is a strict m-isometry) if T is m-isometric but it is not (m−1)-isometric. Clearly, any
1-isometric operator is isometric. This notion of m-isometries was introduced by Agler
[1] back in the early nineties in connection with the study of disconjugacy of Toeplitz
operators. The general theory of m-isometric operators was later investigated in great
details by Agler and Stankus in a series of three papers [2, 3, 4].

In this paper, we are investigating unilateral as well as bilateral weighted shift op-
erators that are m-isometric. Examples of such unilateral weighted shifts were given
by Athavale [5] in his study of multiplication operators on certain reproducing kernel
Hilbert spaces over the unit disk. In [9], Botelho and Jamison provided other examples
of strictly 2-isometric and 3-isometric unilateral weighted shifts. The papers [14, 13]
discuss some necessary and sufficient conditions for a unilateral weighted shift to be
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an m-isometry. Recently, Bermúdez et al. [8] obtained a complete characterization of
such operators. However, their characterization appears difficult to apply. In fact, com-
binatorial identities are often involved in checking whether a given unilateral weighted
shift satisfies their criterion to be an m-isometry. See [8, Corollary 3.8]. Here, we offer
a more simplified characterization of m-isometric weighted shifts. Our approach works
not only for unilateral shifts but also for bilateral shifts. Even though our characteriza-
tion is equivalent to the characterization given in [8], it is more transparent and useful.
We shall see how our result quickly recovers several known examples. We further ob-
tain an interesting structural result which says that for m � 2, any strictly m-isometric
weighted shift is the Hadamard product (also known as the Schur product) of strictly
2-isometric or 3-isometric weighted shifts. We shall also study weighted shifts whose
powers are m-isometric. Similar results will be proven for weighted bilateral shifts.
Our characterization of m-isometric weighted bilateral shifts offers several examples
which include the examples considered in a recent paper [10].

The paper is organized as follows. In Section 2, we provide a detailed study of
unilateral weighted shifts which are m-isometric. The main result in this section gives
a complete characterization of such operators. Several examples will be given. In
Section 3, we discuss Hadamard products of m-isometric weighted shifts. We prove a
factorization theorem for these operators. We then study weighted shifts whose powers
are m-isometric in Section 4. Several examples are discussed. Finally, in Section 5, we
investigate bilateral weighted shifts. A characterization and a factorization theorem for
m-isometric bilateral weighted shifts are given.

2. m-isometric unilateral weighted shift operators

Fix an orthonormal basis {en}n�1 of H . For a sequence of complex numbers
{wn}n�1 , the associated weighted unilateral shift operator S is a linear operator on H
with

Sen = wnen+1 for all n � 1.

It is well known and is not difficult to see that S is a bounded operator if and only if
the weight sequence {wn}n�1 is bounded. We shall always assume that S is a bounded
weighted shift operator. The reader is referred to [16] for an excellent source on the
study of these operators. In this paper, we only focus our attention on weighted shifts
that are m-isometric.

Since Sen = wnen+1 for all n � 1, we see that Sken = (∏k+n−1
�=n w�)en+k for k � 1.

Consequently,

S∗ken =

{
0 if n � k

(∏n−1
�=n−k w�)en−k if n � k+1.

Therefore, S∗kSk is a diagonal operator with respect to the orthonormal basis {en}∞
n=1

and

S∗kSken =
( k+n−1

∏
�=n

|w�|2
)
en.
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Now assume that S is an m-isometry. That is, S satisfies equation (1.1), and equiva-
lently, equation (1.2). We collect here two well-known facts about the weight sequence
of S . These facts have appeared in [8, Propositions 3.1 and 3.2], [9, Equation (4)], and
also [13, Theorem 1].

(a) From (1.2), it follows that any m-isometry is bounded below, hence, injective.
Consequently, wn �= 0 for all n � 1.

(b) S is m-isometric if and only if for any integer n � 1,

(−1)m +
m

∑
k=1

(−1)m−k
(

m
k

)( k+n−1

∏
�=n

|w�|2
)

= 0. (2.1)

By studying the infinite system of equations (2.1), Bermúdez et al. [8, Theorem 3.4]
gives a characterization of the weight sequence {wn}n�1 . Here, using a different ap-
proach, namely, the theory of Difference Equations, we obtain an equivalent but more
transparent characterization. As a consequence, we derive interesting properties of m-
isometric weighted shifts which have not been discovered before. The technique of
Difference Equations has been used (but for a different purpose) in the study of m-
isometries in [6, 7].

THEOREM 2.1. Let S be a unilateral weighted shift with weight sequence {wn}n�1 .
Then the following statements are equivalent.

(a) S is an m-isometry.

(b) There exists a polynomial p of degree at most m− 1 with real coefficients such
that for all integers n � 1 , we have p(n) > 0 and

|wn|2 =
p(n+1)

p(n)
. (2.2)

The polynomial p may be taken to be monic.

Proof. We define a new sequence of numbers {un}n�1 as follows. Set u1 = 1 and
un := ∏n−1

j=1 |wj|2 if n � 2. Since wj �= 0 for any j as we have remarked above, all un

are positive. We have |wn|2 = un+1/un and more generally,

k+n−1

∏
�=n

|w�|2 =
uk+n

un
,

for all integers n � 1 and k � 1.
From (2.1), we see that S is an m-isometry if and only if the sequence {un}n�1 is

a solution to the difference equation

(−1)m +
m

∑
k=1

(−1)m−k
(

m
k

)
uk+n

un
= 0 for all n � 1.
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This equation is equivalent to

m

∑
k=0

(−1)m−k
(

m
k

)
uk+n = 0 for all n � 1. (2.3)

The characteristic polynomial of this linear difference equation is

f (λ ) =
m

∑
k=0

(−1)m−k
(

m
k

)
λ k = (λ −1)m.

Since λ = 1 is the only root of f with multiplicity m , the theory of Linear Difference
Equations (see, for example, [12, Section 2.3]) shows that {un}n�1 is a solution of (2.3)
if and only if un is a polynomial in n of degree at most m−1.

The argument we have so far shows that S is an m-isometry if and only if there is
a polynomial q of degree at most m−1 with real coefficients such that un = q(n) for
all n � 1.

We now prove the implication (a) =⇒ (b). Suppose S is an m-isometry. Consider
the polynomial q given in the preceding paragraph. Since q is positive at all positive
integers, the leading coefficient α of q must be positive. Put p = q/α . Then p is a
monic polynomial and for all n � 1, we have p(n) = q(n)/α > 0 and

|wn|2 =
un+1

un
=

q(n+1)
q(n)

=
p(n+1)

p(n)
.

For the implication (b) =⇒ (a), suppose there is a polynomial p of degree at most
m−1 with real coefficients such that p(n)> 0 and |wn|2 = p(n+1)/p(n) for all n � 1.
Set q(n) = p(n)/p(1) . Then we have u1 = 1 = q(1) and for n � 2,

un =
n−1

∏
j=1

|wj|2 =
n−1

∏
j=1

p( j +1)
p( j)

=
p(n)
p(1)

= q(n).

Since q is of degree at most m− 1, we conclude that {un}n�1 solves the difference
equation (2.3). Consequently, S is an m-isometry. �

REMARK 2.2. The monic polynomial p satisfying (b) in Theorem 2.1, if exists,
is unique. Indeed, suppose p̃ is another monic polynomial such that |wn|2 = p̃(n +
1)/ p̃(n) and p̃(n) > 0 for all integers n � 1. Then for any integer k � 2,

p(k)
p(1)

=
k−1

∏
�=1

|w�|2 =
p̃(k)
p̃(1)

.

Since the polynomials p/p(1) and p̃/ p̃(1) agree at all integer values k � 2, they
must be the same polynomial. Therefore, p/p(1) = p̃/ p̃(1) , which implies that p̃ =
(p̃(1)/p(1))p . Because both p and p̃ are monic, it follows that p̃(1)/p(1) = 1 and
hence, p̃ = p .
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As an immediate corollary to Theorem 2.1, we characterize unilateral weighted
shifts that are strictly m-isometric.

COROLLARY 2.3. A unilateral weighted shift S is strictly m-isometric if and only
if there exists a polynomial p of degree m− 1 that satisfies condition (b) in Theorem
2.1.

Proof. We consider first the “only if” direction. Suppose S is a strict m-isometry.
Then the polynomial p in Theorem 2.1 has degree at most m− 1. If the degree of p
were strictly smaller than m−1, then another application of Theorem 2.1 shows that S
would be (m−1)-isometric, which is a contradiction. Therefore, the degree of p must
be exactly m−1.

Now consider the “if” direction. Suppose |wn|2 = p(n + 1)/p(n) for all n � 1,
where p is a polynomial of degree m− 1. We know from Theorem 2.1 that S is m-
isometric. By Remark 2.2, there does not exist a monic polynomial q with degree at
most m− 2 such that |wn|2 = q(n+ 1)/q(n) for all n � 1. Theorem 2.1 then implies
that S is not an (m−1)-isometry. Therefore, S is strictly m-isometric. �

We now apply Corollary 2.3 to investigate several examples.

EXAMPLE 2.4. A unilateral weighted shift S is a strict 2-isometry if and only
if there is a monic polynomial p of degree 1 such that p(n) > 0 and |wn|2 = p(n +
1)/p(n) for all n � 1. Write p(n) = n−b for some real number b . The positivity of
p at the positive integers forces b to be smaller than 1.

We conclude that S is a strict 2-isometry if and only if there exists a real number
b < 1 such that

|wn| =
√

n+1−b
n−b

for all integers n � 1.

Choosing b = 0, we recover the well-known fact [15] that the Dirichlet shift is a
strict 2-isometry.

EXAMPLE 2.5. A unilateral weighted shift S is a strict 3-isometry if and only
if there is a monic polynomial p of degree 2 such that p(n) > 0 and |wn|2 = p(n +
1)/p(n) for all n � 1. Write p(x) = (x−α)(x−β ) for some complex numbers α and
β . Since p is positive at all positive integers, one of the following three cases must
occur:

(1) Both α and β belong to C\R . An example is p(x) = x2−5x+7. In this case,

|wn|2 =
p(n+1)

p(n)
=

n2−3n+3
n2−5n+7

for all n � 1.

This example appeared in [9, Section 2.1].

(2) There exists an integer n0 � 1 such that both α and β belong to the open interval
(n0,n0 +1) .
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(3) Both α and β belong to the interval (−∞,1) .

EXAMPLE 2.6. For each integer m � 1, consider the unilateral weighted shift S
with the weight sequence given by

wn =

√
n+m

n
for all n � 1.

This operator was considered in [5, Proposition 8] and [8, Corollary 3.8], where it was
verified to be a strict (m+1)-isometry. We provide here another proof of this fact. Put
p(x) = (x+m−1) · · ·x . Then p is a monic polynomial of degree m and for all integers
n � 1, we have p(n) > 0 and√

p(n+1)
p(n)

=

√
(n+m) · · ·(n+1)
(n+m−1) · · ·n =

√
n+m

n
= wn.

By Corollary 2.3, S is strictly (m+1)-isometric.

Theorem 2.1 shows that in order for S to be m-isometric, the values |wn|2 must be
a rational function of n and limn→∞ |wn|2 = 1. This immediately raises the following
question.

QUESTION 1. Suppose S is a unilateral weighted shift with the weight sequence
{wn}n�1 . Suppose there are two polynomials f and g with real coefficients such that
|wn|2 = f (n)/g(n) and that limn→∞ f (n)/g(n) = 1. What conditions must f and g
satisfy to ensure that S is an m-isometry for some integer m � 2?

Example 2.6 shows that the relation between f and g is not at all obvious. While
it is possible to obtain a criterion that involves the roots of f and g , such a criterion
may not be useful or practical. On the other hand, we do not know if it is possible
to find a condition that involves only the coefficients of f and g . This may have an
interesting answer.

In the rest of the section, we investigate m-isometric weighted shift operators
whose weight sequence starts with a given finite set of values. More specifically,
let r � 1 be an integer and let a1, . . . ,ar be nonzero complex numbers. We are in-
terested in the question: does there exist an m-isometric unilateral weighted shift S
such that Sek = akek+1 for all 1 � k � r? By Theorem 2.1, the answer to this ques-
tion hinges on the existence of a polynomial p such that p(n) > 0 for all n � 1 and
|ak|2 = p(k+1)/p(k) for 1 � k � r . The following result shows the existence of such
a polynomial.

PROPOSITION 2.7. Let r � 1 be an integer and let a1, . . . ,ar be nonzero complex
numbers. For any m � r + 2 , there exists a strictly m-isometric unilateral weighted
shift operator whose weight sequence starts with a1, . . . ,ar .
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Proof. By Lagrange interpolation, there exists a polynomial f of degree at most
r such that f (1) = 1 and

f (k) = |a1|2 · · · |ak−1|2 for 2 � k � r+1.

Let m � r+2. We shall look for a polynomial p with degree m−1 in the form

p(x) = xm−r−2(x−1) · · ·(x− r−1)+ α f (x)

such that p(n) > 0 for all integers n � 1. Here α is a positive number that we need to
determine. Note that p(k) = α f (k) > 0 for all 1 � k � r + 1 so we only need to find
α such that p(n) > 0 for n � r+2. This is equivalent to

1
α

> sup
{ − f (x)

xm−r−2(x−1) · · ·(x− r−1)
: x � r+2

}
.

Since the rational function on the right hand is continuous on [r + 2,∞) and its limit
at infinity is zero, the above supremum is finite. Consequently, there exists such an α .
Note that p is a monic polynomial of degree m−1 and for 1 � k � r ,

|ak|2 =
f (k+1)

f (k)
=

α f (k+1)
α f (k)

=
p(k+1)

p(k)
.

Let S be the unilateral weighted shift operator whose weight sequence {wn}n�1 is
given by wn = an for 1 � n � r and

wn =

√
p(n+1)

p(n)
for n � r+1.

Since p is a polynomial of degree m− 1 and |wn|2 = p(n + 1)/p(n) for all n � 1,
Corollary 2.3 shows that S is strictly m-isometric. �

REMARK 2.8. The condition m � r +2 in the above proposition is necessary. In
fact, with an appropriate choice of a1, . . . ,ar , there does not exist an (r +1)-isometric
unilateral weighted shift operator whose weight sequence starts with a1, . . . ,ar . For
example, set r = 1 and take |a1| < 1. Example 2.4 shows that there does not exist a
2-isometric weighted shift operator S with Se1 = a1e2 since |a1| < 1.

3. The semigroup of m-isometric unilateral weighted shifts

In this section, we investigate the structure of m-isometric weighted shifts. Let us
define W to be the set of all unilateral weighted shifts that are m-isometric for some
integer m � 1. We shall see that W turns out to be a semigroup with an identity. The
multiplication on W is the Hadamard product of operators. We shall also show that any
element in W can be factored as a product of simpler factors.

Let us first recall the Hadamard product, which is also known as the Schur product.
Suppose A and B are bounded operators on H . Let (a jk) and (b jk) , respectively, be
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the matrix representations of A and B with respect to the orthonormal basis {en}∞
n=1 .

Then the Hadamard product of A and B , denoted by A�B , is an operator on H with
matrix (c jk) , where c jk = a jkb jk for all integers j,k � 1. It is well known that A�B
is a bounded operator on H .

It is clear that the Hadamard product of any two unilateral weighted shifts is a
unilateral weighted shift. Corollary 2.3 tells us more.

PROPOSITION 3.1. Let S and T be unilateral weighted shift operators such that
S is strictly k -isometric and T is strictly � -isometric. Then S�T is strictly (k+�−1)-
isometric. Consequently, the following statements hold.

(i) The pair (W ,�) is a commutative semigroup with identity U , the unweighted
unilateral shift.

(ii) If S � T = U , then both S and T are isometric operators. This shows that
invertible elements in (W ,�) are exactly the isometries.

Proof. Let {sn}n�1 and {tn}n�1 be the weight sequences of S and T , respec-
tively. Then S�T is a unilateral weighted shift with weights wn = sntn for n � 1.

Since S is k -isometric, Corollary 2.3 shows the existence of a polynomial p of
degree k− 1 with real coefficients such that p(n) > 0 and |sn|2 = p(n+ 1)/p(n) for
all n � 1. Similarly, there is a polynomial q of degree �− 1 such that q(n) > 0 and
|tn|2 = q(n+1)/q(n) for all n � 1. Put h = p ·q . Then h is a polynomial with degree
k+ �−2 and for any n � 1,

h(n) = p(n)q(n) > 0, and |wn|2 = |sn|2|tn|2 =
h(n+1)

h(n)
.

By Corollary 2.3 again, S�T is strictly (k+ �−1)-isometric. Therefore, W is closed
under � and hence, (W ,�) is a semigroup. It is clear that the unweighted unilateral
shift U is the identity of this semigroup.

If S� T = U , then since U is isometric, we have k + �− 1 = 1. This forces
k = � = 1, which means that both S and T are isometric operators. The proof of the
proposition is now completed. �

In general, the operator A�B is usually not m-isometric when A is an arbitrary
k -isometry and B is an arbitrary � -isometry. An obvious example is A = I , the identity
operator, and B any � -isometry whose matrix contains at least one zero on its main
diagonal. Then A�B is a diagonal operator with at least one zero on its diagonal. Since
A�B is not injective, it cannot be m-isometric for any m � 1. This shows that the
property in Proposition 3.1 is quite special for m-isometric unilateral weighted shifts.
On the other hand, we would like to explain here that a more general approach can be
used to prove Proposition 3.1, without the need of an explicit characterization. Recall
that the tensor product space H ⊗H admits the orthonormal basis

{
e j ⊗ ek : j,k �

1
}

. The “diagonal subspace” H̃ is a subspace of H ⊗H with the orthonormal basis
{e j ⊗ e j : j � 1} . It is well known that A�B is unitarily equivalent to the compression
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of the tensor product A⊗B on H̃ . Duggal [11] shows that if A is k -isometric and B
is � -isometric, then A⊗B is m-isometric on H ⊗H with m = k + �− 1. Since the
compression of an m-isometric operator on a subspace may not be m-isometric, the
operator A�B may not be m-isometric as we have seen above. However, if both A
and B are unilateral weighted shifts, then H̃ turns out to be an invariant subspace of
A⊗B . It then follows that A�B , being unitarily equivalent to the restriction of A⊗B
on an invariant subspace, is m-isometric as well.

As another interesting application of Theorem 2.1, we show that any element in
the semigroup (W ,�) can be written as a product of elements that are 2-isometric or
3-isometric.

Recall that Z+ denotes the set of all positive integers. We need the following
elementary facts about polynomials with real coefficients.

LEMMA 3.2. Let p ∈ R[x] be a monic polynomial such that p(n) > 0 for all
n ∈ Z+ . Then the following statements hold.

(1) Given any integer n∈Z+ , the polynomial p has an even number of roots (counted
with multiplicity) in the interval (n,n+1) .

(2) There are linear and quadratic monic polynomials p1, . . . , pν in R[x] which as-
sumes positive values on Z

+ such that p = p1 · · · pν .

Proof. (1) Let n be a positive integer such that p has at least a root in the interval
(n,n+ 1) . Let α1, . . . ,α� be these roots, listed with multiplicity. Write p(x) = (x−
α1) · · · (x−α�)r(x) , where the polynomial r(x) has no roots in (n,n+1) . Since r(n+
1) and r(n) have the same sign, we see that sgn(p(n+ 1)) = (−1)� sgn(p(n)) . But
p(n+1) and p(n) are both positive, so � must be even.

(2) We know that p can be factored as a product of monic linear and irreducible
quadratic (not necessarily distinct) polynomials in R[x] . The proof of the statement is
completed once we notice the following facts. Firstly, any monic irreducible quadratic
factor is positive over R , hence over Z+ . Secondly, any linear factor of the form
q(x) = x−b with b < 1 has positive values over [1,∞) , hence over Z+ as well. Lastly,
by (1), the remaining linear factors can be grouped into pairs of the form (x−α)(x−β ) ,
where α and β lie between two consecutive positive integers. Any such quadratic
polynomial also assumes positive values on Z

+ . �

We are now in a position to prove a factorization theorem for non-isometric ele-
ments of (W ,�) .

THEOREM 3.3. Any non-isometric element in (W ,�) is a � -product of elements
that are either strictly 2 -isometric or strictly 3 -isometric.

Proof. Let S be a non-isometric element in (W ,�) . Assume that S is strictly m-
isometric with m � 2. By Theorem 2.1, there is a monic polynomial p such that p(n) >
0 and |wn|2 = p(n + 1)/p(n) for all integers n � 1. Using Lemma 3.2, we obtain a
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factorization p = p1 · · · pν , where each polynomial p j is either linear or quadratic.
Now for each integer n � 1, set γn = wn/|wn| and write

wn = γn|wn| = γn

√
p1(n+1)

p1(n)
· · ·

√
pν(n+1)

pν(n)
.

Let S1 be the unilateral weighted shift operator whose weight sequence is

{γn

√
p1(n+1)/p1(n)}n�1.

For 2 � j � ν , let S j be the unilateral weighted shift operator whose weight sequence is
{√p j(n+1)/p j(n)}n�1 . We then have S = S1�·· ·�Sν and each S j is either strictly
2-isometric or strictly 3-isometric by Corollary 2.3. This completes the proof of the
theorem. �

REMARK 3.4. It should be noted that any strictly 2-isometric element in (W ,�)
cannot be trivially written as a product of non-isometric elements. On the other hand,
some strictly 3-isometric elements may be written as a product of strict 2-isometries.
These elements arise from Case (3) in Example 2.5.

We close this section with a corollary to Theorem 3.3.

COROLLARY 3.5. Let S be a unilateral weighted shift operator. Then S is m-
isometric for some m � 2 if and only if it can be written as the Hadamard product of
unilateral weighted shift operators each of which is strictly 2 -isometric or 3 -isometric.

4. Unilateral weighted shifts whose powers are m-isometric

Let α � 2 be a positive integer. It is well known that if A is an m-isometry then
Aα is an m-isometry as well. The converse, on the other hand, does not hold (see [7,
Examples 3.3 and 3.5] and also Examples 4.2 and 4.3 that we shall discuss below).

In this section, we would like to characterize the weights of a given unilateral
weighted shift S such that Sα is m-isometric. Our approach relies on the character-
ization of m-isometric unilateral weighted shifts obtained in Section 2. Let S be a
unilateral weighted shift with weight sequence {wn}n�1 . Recall that {en}n�1 is an
orthonormal basis of H such that Sen = wnen+1 for all n � 1. Then Sα is a shift of
multiplicity α , that is, for all integers n � 1,

Sαen = unen+α ,

where un = wn · · ·wn+α−1 .
For each 1 � r � α , let Xr denote the closed subspace spanned by

{er,er+α ,er+2α , . . .}.
Then Xr is a reducing subspace of Sα and Sα is unitarily equivalent to the direct
sum T1 ⊕ ·· ·⊕ Tα , where each Tr = Sα |Xr is a unilateral weighted shift with weight
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sequence {u�α+r}��0 . Consequently, Sα is m-isometric on H if and only if Tr is m-
isometric on Xr for all 1 � r � α . By Theorem 2.1, this is equivalent to the existence
of polynomials f1, . . . , fα of degree at most m−1 such that fr(�) > 0 and

|u�α+r|2 =
fr(�+1)

fr(�)
for all � � 0 and 1 � r � α. (4.1)

Note that Sα is a strict m-isometry if and only if one of the polynomials f1, . . . , fα
has degree exactly m−1. With the above characterization, we would like to recover a
formula for determining the weights {wn}n�1 of S . The following theorem is our main
result in this section.

THEOREM 4.1. Let S be a unilateral weighted shift with weight sequence {wn}n�1 .
Then Sα is m-isometric if and only if there exists a function g : Z+ → R>0 such that
the following conditions hold

(a) For each 1 � r � α , the function � �→ g(�α + r) is a polynomial of degree at most
m−1 in � .

(b) We have |wn|2 =
g(n+1)

g(n)
for all integers n � 1 .

Proof. Suppose first that Sα is m-isometric. Then we have (4.1). We define a
function f : Z+ → R>0 by

f (n) = fr(�),

where � and r are unique integer values satisfying 1 � r � α , � � 0 and n = �α + r .
Equation (4.1) can be written as

|un|2 = |u�α+r|2 =
fr(�+1)

fr(�)
=

f (n+ α)
f (n)

.

Now for n > α , we have

un−α+1

un−α
=

wn−α+1 · · ·wn

wn−α · · ·wn−1
=

wn

wn−α
,

which implies

|wn|2
|wn−α |2 =

|un−α+1|2
|un−α |2 =

f (n+1)
f (n−α +1)

· f (n−α)
f (n)

=
f (n+1)/ f (n)

f (n−α +1)/ f (n−α)
.

Consequently, if n = �α + r with 1 � r � α , then

|wn|2
f (n+1)/ f (n)

=
|wn−α |2

f (n−α +1)/ f (n−α)
= · · · = |wr|2

f (r+1)/ f (r)
.

Denoting this positive common ratio by cr , we obtain the formula

|wn|2 = cr
f (n+1)

f (n)
for n = �α + r.
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Since |w1|2 · · · |wα |2 = |u1|2 = f (α +1)/ f (1) we conclude that c1 · · ·cα = 1. Now set
c0 = 1 and define g(�α + r) = c0 · · ·cr−1 f (�α + r) for � � 0 and 1 � r � α . It is clear
that condition (a) is satisfied.

For n = �α + r with 1 � r � α −1 and � � 0, we compute

g(n+1)
g(n)

=
g(�α + r+1)

g(�α + r)
=

c0 · · ·cr f (n+1)
c0 · · ·cr−1 f (n)

= cr
f (n+1)

f (n)
= |wn|2.

On the other hand, if n = �α + α for some � � 0, then

g(n+1)
g(n)

=
g((�+1)α +1)

g(�α + α)
=

c0 f (n+1))
c0 · · ·cα−1 f (n)

= cα
f (n+1)

f (n)
= |wn|2.

In the second last equality, we used the fact that c1 · · ·cα−1 = c−1
α . Thus, we have

shown that condition (b) is satisfied for any positive integer n .
Conversely, suppose there is a function g : Z+ → R>0 such that both (a) and (b)

hold. Then for any integer n , condition (b) gives

|un|2 =
α−1

∏
j=0

|wn+ j|2 =
α−1

∏
j=0

g(n+ j +1)
g(n+ j)

=
g(n+ α)

g(n)
.

For integers 1 � r � α and � � 0, put fr(�) = g(�α + r) . Then we have |u�α+r|2 =
fr(� + 1)/ fr(�) and each fr is a polynomial of degree at most m− 1 in � by (a).
Consequently, condition (4.1) is satisfied and hence, Sα is m-isometric. �

We now use Theorem 4.1 to investigate several examples.

EXAMPLE 4.2. Define g(2�+2) = g(2�+1) = �+1 for all integers � � 0. Con-
sider the unilateral weighted shift S with weights given by

wn =

√
g(n+1)

g(n)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
g(2�+2)
g(2�+1)

if n = 2�+1√
g(2�+3)
g(2�+2)

if n = 2�+2

=

⎧⎨⎩1 if n = 2�+1√
�+2
�+1

if n = 2�+2.

Since conditions (a) and (b) in Theorem 4.1 are satisfied with α = 2 and m = 2, we
conclude that S2 is 2-isometric. However, S is not 2-isometric by Theorem 2.1.

EXAMPLE 4.3. The above example can be generalized in the following way. Let
α � 2 and m � 2 be integers. Let p be a polynomial of degree m−1 such that p(k) > 0
for all integers k � 0. Consider a unilateral weighted shift S with weights defined by

wn =

√
p(�(n+1)/α
)

p(�n/α
) =

⎧⎪⎨⎪⎩
1 if n = �α + r with 0 � r � α −2√

p(�+1)
p(�)

if n = �α +(α −1).



THE STRUCTURE OF m -ISOMETRIC WEIGHTED SHIFT OPERATORS 331

Here �x
 denotes the greatest integer smaller than or equal to x . It can be checked that
conditions (a) and (b) in Theorem 4.1 are satisfied by the function g(n) = p(�n/α
) .
We conclude that Sα is m-isometric. As before, S is not m-isometric by Theorem 2.1.

EXAMPLE 4.4. We now consider [6, Example 3.5]. Let S be a unilateral weighted
shift with weights w2�+1 = 4 and w2�+2 =

( 3�+4
6�+2

)2
for all integers � � 0. Define

g(n) =

{
(3�+1)4 if n = 2�+1

16(3�+1)4 if n = 2�+2.

It can be checked that |wn|2 = g(n+ 1)/g(n) for all positive integers n and that both
g(2�+1) and g(2�+2) are polynomials in � of degree 4. Theorem 4.1 shows that S2

is a 5-isometry. (The statement that S2 is a 2-isometry in [6, Example 3.5] is in fact
inaccurate.)

Using Theorem 4.1, one can obtain other interesting examples. We leave this to
the interested reader.

5. m-isometric bilateral weighted shift operators

In this section we discuss bilateral weighted shift operators that are m-isometric. It
turns out that the characterization of m-isometric unilateral shift operators in Theorem
2.1 plays a crucial role.

Let us fix an orthonormal basis { fn}n∈Z of H indexed by the integers Z . A
bilateral weighted shift operator T is a linear operator on H such that

T fn = wn fn+1, for n ∈ Z.

As before, the sequence {wn}n∈Z of complex numbers is called the weight sequence
of T . We assume that {wn}n∈Z is bounded so that T is a bounded operator. We shall
obtain a description of the weight sequence of any m-isometric bilateral weighted shift
operator.

REMARK 5.1. We have already noticed that any m-isometry is injective and has
a closed range. Since the range of an injective bilateral weighted shift operator is dense,
it follows that any m-isometric bilateral weighted shift operator is automatically invert-
ible.

Our first result in this section characterizes bilateral weighted shift operators that
are m-isometric.

THEOREM 5.2. Let T be a bilateral weighted shift operator with the weight se-
quence {wn}n∈Z . Then T is an m-isometric operator if and only if there exists a
polynomial p of degree at most m− 1 such that for any integer n, we have p(n) > 0
and

|wn|2 =
p(n+1)

p(n)
.
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Furthermore, the degree of p must be even.

Proof. For any positive integer k � 0, let Hk be the closed subspace of H that is
spanned by { fn}n�−k . It is clear that {Hk}k�0 is an increasing sequence of invariant
subspaces of T and H = ∪∞

k=0Hk . Put Tk = T |Hk . It then follows from the definition
of m-isometries that T is an m-isometry on H if and only if Tk is an m-isometry on
Hk for all k . Note that each Tk is a unilateral weighted shift on Hk with respect to the
orthonormal basis {en}n�−k . The weight sequence of Tk is {wn}n�−k .

We first suppose that T is m-isometric. Then each operator Tk is m-isometric on
Hk . By Theorem 2.1, there is a monic polynomial pk of degree at most m−1 with real
coefficients such that for all n � −k , we have pk(n) > 0 and

|wn|2 =
pk(n+1)

pk(n)
.

Note that we have actually applied a version of Theorem 2.1 with the index n starting
from −k instead of 1. Since Tk|H0 = T0 , the uniqueness established in Remark 2.2
shows that the polynomials pk are all the same. Let us call this polynomial p . Then p
is monic and for any integer n ∈ Z , we have p(n) > 0 and |wn|2 = p(n+1)/p(n) . The
positivity of p on Z shows that its degree must be even.

Conversely, suppose p is a polynomial of degree at most m− 1 with real coeffi-
cients such that p(n) > 0 and |wn|2 = p(n+ 1)/p(n) for all n ∈ Z . By Theorem 2.1,
each unilateral weighted shift operator Tk = T |Hk is m-isometric on Hk . It follows that
T is m-isometric on H . �

With the same argument as in the proof of Corollary 2.3, we obtain a characteri-
zation of strict m-isometric bilateral weighted shift operator.

COROLLARY 5.3. The bilateral weighted shift operator T is strictly m-isometric
if and only if the degree of p is exactly m−1 and m is an odd integer.

REMARK 5.4. Corollary 5.3 shows that there only exist strict m-isometric bilat-
eral weighted shift operators when m is odd. This fact is not surprising since it actually
follows from Remark 5.1 and a general result [2, Proposition 1.23] (see also [10, Propo-
sition A]) which asserts that if L is an invertible k -isometry and k is even, then L is a
(k−1)-isometry.

EXAMPLE 5.5. A bilateral weighted shift operator T is a strict 3-isometry if and
only if there is a monic polynomial p of degree 2 such that p(n) > 0 and |wn|2 =
p(n+1)/p(n) for all n ∈ Z . Write p(x) = (x−α)(x−β ) for some complex numbers
α and β . Since p assumes positive values on Z , one of the following two cases must
occur:

(1) Both α and β belong to C\R .

(2) There exists an integer n0 such that both α and β belong to the open interval
(n0,n0 +1) .
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It should be noted that quadratic polynomials that give rise to 3-isometric bilateral
weighted shift operators are more restrictive than quadratic polynomials that give rise
to 3-isometric unilateral weighted shift operators (see Example 2.5).

EXAMPLE 5.6. Let � � 2 be an even integer and b be a positive number. Define
p(x) = x(x+ 1) · · · (x+ �− 1)+ b . Then p has degree � and p(n) > 0 for all n ∈ Z .
Let T be the bilateral weighted shift operator with weights

wn =

√
p(n+1)

p(n)
for n ∈ Z.

By Corollary 5.3, the operator T is a strict (� + 1)-isometry. This example was dis-
cussed in [10, Theorem 1].

As in the case of unilateral weighted shift operators, we also have a factorization
theorem for m-isometric bilateral weighted shift operators.

THEOREM 5.7. Any bilateral weighted shift operator that is strictly m-isometric
for some odd integer m � 3 can be written as a Hadamard product of strictly 3 -
isometric bilateral weighted shift operators.

Proof. For any strictly m-isometric bilateral weighted shift operator, let p be the
monic polynomial given in Theorem 5.2. With an argument similar to that in the proof
of Lemma 3.2, one can factor p = p1 · · · pν , where each p j is a monic quadratic poly-
nomial having positive values over Z . The remaining of the proof is now the same as
the proof of Theorem 3.3. �

Using the techniques in this section together with the approach in Section 4, we
obtain a characterization of bilateral weighted shifts whose powers are m-isometric.
We state here the result and leave the details of the proof to the interested reader.

THEOREM 5.8. Let T be a bilateral weighted shift with weight sequence {wn}n∈Z

and let α � 2 be an integer. Then Tα is m-isometric if and only if there exists a func-
tion g : Z → R>0 such that the following conditions hold

(a) For each 1 � r � α , the function � �→ g(�α +r) is a polynomial in � of even degree,
which is at most m−1 .

(b) We have |wn|2 =
g(n+1)

g(n)
for all integers n.
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