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THE STRUCTURE OF m-ISOMETRIC WEIGHTED SHIFT OPERATORS

BELAL ABDULLAH AND TRIEU LE

(Communicated by R. Curto)

Abstract. We obtain simple characterizations of unilateral and bilateral weighted shift operators
that are m-isometric. We show that any such operator is a Hadamard product of 2-isometries
and 3-isometries. We also study weighted shift operators whose powers are m-isometric.

1. Introduction

Throughout the paper, H denotes a separable infinite dimensional complex Hilbert
space. Let m > 1 be an integer. A bounded linear operator 7 on H is said to be m-
isometric if it satisfies the operator equation

i(—l)’“"‘ (’Z) 7Tk — 0, (1.1)

k=0

where T* denotes the adjoint of T and T** = T° = I, the identity operator on H . It is
immediate that 7' is m-isometric if and only if

S o (3Tt o (12)
k=0

for all x € H. Itis well known and not difficult to check that any m-isometric operator
is k-isometric for any k > m. We say that T is strictly m-isometric (or equivalently, T
is a strict m-isometry) if 7 is m-isometric but it is not (m — 1)-isometric. Clearly, any
1 -isometric operator is isometric. This notion of m-isometries was introduced by Agler
[1] back in the early nineties in connection with the study of disconjugacy of Toeplitz
operators. The general theory of m-isometric operators was later investigated in great
details by Agler and Stankus in a series of three papers [2, 3, 4].

In this paper, we are investigating unilateral as well as bilateral weighted shift op-
erators that are m-isometric. Examples of such unilateral weighted shifts were given
by Athavale [5] in his study of multiplication operators on certain reproducing kernel
Hilbert spaces over the unit disk. In [9], Botelho and Jamison provided other examples
of strictly 2-isometric and 3-isometric unilateral weighted shifts. The papers [14, 13]
discuss some necessary and sufficient conditions for a unilateral weighted shift to be
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an m-isometry. Recently, Bermudez et al. [8] obtained a complete characterization of
such operators. However, their characterization appears difficult to apply. In fact, com-
binatorial identities are often involved in checking whether a given unilateral weighted
shift satisfies their criterion to be an m-isometry. See [8, Corollary 3.8]. Here, we offer
a more simplified characterization of m-isometric weighted shifts. Our approach works
not only for unilateral shifts but also for bilateral shifts. Even though our characteriza-
tion is equivalent to the characterization given in [8], it is more transparent and useful.
We shall see how our result quickly recovers several known examples. We further ob-
tain an interesting structural result which says that for m > 2, any strictly m-isometric
weighted shift is the Hadamard product (also known as the Schur product) of strictly
2-isometric or 3-isometric weighted shifts. We shall also study weighted shifts whose
powers are m-isometric. Similar results will be proven for weighted bilateral shifts.
Our characterization of m-isometric weighted bilateral shifts offers several examples
which include the examples considered in a recent paper [10].

The paper is organized as follows. In Section 2, we provide a detailed study of
unilateral weighted shifts which are m-isometric. The main result in this section gives
a complete characterization of such operators. Several examples will be given. In
Section 3, we discuss Hadamard products of m-isometric weighted shifts. We prove a
factorization theorem for these operators. We then study weighted shifts whose powers
are m-isometric in Section 4. Several examples are discussed. Finally, in Section 5, we
investigate bilateral weighted shifts. A characterization and a factorization theorem for
m-isometric bilateral weighted shifts are given.

2. m-isometric unilateral weighted shift operators

Fix an orthonormal basis {e,},>1 of H. For a sequence of complex numbers
{Wntn>1, the associated weighted unilateral shift operator S is a linear operator on H
with

Sepn =wpeyrp foralln>1

It is well known and is not difficult to see that S is a bounded operator if and only if
the weight sequence {wj },>1 is bounded. We shall always assume that S is a bounded
weighted shift operator. The reader is referred to [16] for an excellent source on the
study of these operators. In this paper, we only focus our attention on weighted shifts
that are m-isometric.

Since Se, = wye,41 forall n > 1, we see that Ske, = (HH” ! wy)e, iy for k >
Consequently,

sk 0 < k
S7en = n—1 —
(I, We)en—k n>k+1.

Therefore, S**S* is a diagonal operator with respect to the orthonormal basis {en}r

and
—1

S*kSke o (kﬁ ‘W'F)
n— J4 €n

{=n
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Now assume that S is an m-isometry. That is, S satisfies equation (1.1), and equiva-
lently, equation (1.2). We collect here two well-known facts about the weight sequence
of S. These facts have appeared in [8, Propositions 3.1 and 3.2], [9, Equation (4)], and
also [13, Theorem 1].

(a) From (1.2), it follows that any m-isometry is bounded below, hence, injective.
Consequently, w, # 0 forall n > 1.

(b) S is m-isometric if and only if for any integer n > 1,

g (T e

By studying the infinite system of equations (2.1), Bermidez et al. [8, Theorem 3.4]
gives a characterization of the weight sequence {wjy},>;. Here, using a different ap-
proach, namely, the theory of Difference Equations, we obtain an equivalent but more
transparent characterization. As a consequence, we derive interesting properties of -
isometric weighted shifts which have not been discovered before. The technique of
Difference Equations has been used (but for a different purpose) in the study of m-
isometries in [0, 7].

THEOREM 2.1. Let S be a unilateral weighted shift with weight sequence {wy }n>1.
Then the following statements are equivalent.

(a) S is an m-isometry.

(b) There exists a polynomial p of degree at most m — 1 with real coefficients such
that for all integers n > 1, we have p(n) > 0 and

p(n+l).

|Wn‘2 =
p(n)

(2.2)
The polynomial p may be taken to be monic.

Proof. We define a new sequence of numbers {u, },> as follows. Set u; =1 and
Uy == ’j’;} lwj|? if n>2. Since w; # 0 for any j as we have remarked above, all u,

are positive. We have |w,|> = u,|/u, and more generally,

k+n—1

H ‘ ”k+n

for all integers n > 1 and k >
From (2.1), we see that S is an m-isometry if and only if the sequence {uy},>; is
a solution to the difference equation

m (M Ui
(=" + > (=" X =0 foralln>1.

k=1 Un
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This equation is equivalent to

m

2 ’“"( )mnzo foralln > 1. (2.3)

The characteristic polynomial of this linear difference equation is

)= 3t ()at= -

Since A =1 is the only root of f with multiplicity m, the theory of Linear Difference
Equations (see, for example, [12, Section 2.3]) shows that {u,},> is a solution of (2.3)
if and only if u, is a polynomial in n of degree at most m — 1.

The argument we have so far shows that S is an m-isometry if and only if there is
a polynomial ¢ of degree at most m — 1 with real coefficients such that u, = g(n) for
alln>1.

‘We now prove the implication (a) = (b). Suppose S is an m-isometry. Consider
the polynomial g given in the preceding paragraph. Since ¢ is positive at all positive
integers, the leading coefficient o of ¢ must be positive. Put p = g/cc. Then p is a
monic polynomial and for all n > 1, we have p(n) = ¢g(n)/o > 0 and

_ 1 _qnt1l)  p(n+1)
Uy q(n) p(n)

For the implication (b) = (a), suppose there is a polynomial p of degree at most
m— 1 with real coefficients such that p(n) >0 and |w,|> = p(n+1)/p(n) forall n> 1.
Set g(n) = p(n)/p(1). Then we have u; = 1 =¢(1) and for n > 2,

un—H| 1‘2 HpJ+1 p(n):q(n)

Since ¢ is of degree at most m — 1, we conclude that {u,},>| solves the difference
equation (2.3). Consequently, S is an m-isometry. [

REMARK 2.2. The monic polynomial p satisfying (b) in Theorem 2.1, if exists,
is unique. Indeed, suppose p is another monic polynomial such that |w,|* = p(n +
1)/p(n) and p(n) > 0 for all integers n > 1. Then for any integer k > 2,

(k)
1

Since the polynomials p/p(1) and p/p(l) agree at all integer values k > 2, they
must be the same polynomial. Therefore, p/p(1) = p/p(1), which implies that p =
(p(1)/p(1))p. Because both p and p are monic, it follows that 5(1)/p(1) =1 and
hence, p = p.

k-1
p(k)
— we|* =

1 =1

"Ut

7

"Gz
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As an immediate corollary to Theorem 2.1, we characterize unilateral weighted
shifts that are strictly m-isometric.

COROLLARY 2.3. A unilateral weighted shift S is strictly m-isometric if and only
if there exists a polynomial p of degree m — 1 that satisfies condition (b) in Theorem
2.1.

Proof. We consider first the “only if”” direction. Suppose S is a strict m-isometry.
Then the polynomial p in Theorem 2.1 has degree at most m — 1. If the degree of p
were strictly smaller than m — 1, then another application of Theorem 2.1 shows that §
would be (m — 1)-isometric, which is a contradiction. Therefore, the degree of p must
be exactly m— 1.

Now consider the “if” direction. Suppose |w,|*> = p(n+1)/p(n) for all n > 1,
where p is a polynomial of degree m — 1. We know from Theorem 2.1 that S is m-
isometric. By Remark 2.2, there does not exist a monic polynomial g with degree at
most m — 2 such that |w,|?> = g(n+1)/g(n) for all n > 1. Theorem 2.1 then implies
that S is not an (m — 1)-isometry. Therefore, S is strictly m-isometric. [J

We now apply Corollary 2.3 to investigate several examples.

EXAMPLE 2.4. A unilateral weighted shift S is a strict 2-isometry if and only
if there is a monic polynomial p of degree 1 such that p(n) > 0 and |w,|*> = p(n+
1)/p(n) forall n > 1. Write p(n) =n— b for some real number b. The positivity of
p at the positive integers forces b to be smaller than 1.

We conclude that S is a strict 2-isometry if and only if there exists a real number
b < 1 such that
n+1->

n—>b

Choosing b = 0, we recover the well-known fact [15] that the Dirichlet shift is a
strict 2-isometry.

[wa| = for all integers n > 1.

EXAMPLE 2.5. A unilateral weighted shift S is a strict 3-isometry if and only
if there is a monic polynomial p of degree 2 such that p(n) >0 and |w,|> = p(n+
1)/p(n) forall n > 1. Write p(x) = (x — o) (x— ) for some complex numbers o and
B. Since p is positive at all positive integers, one of the following three cases must
occur:

(1) Both o and B belong to C\R. An example is p(x) = x> — 5x+7. In this case,

» pln+1) n*—3n+3
[wa|” = o) ni—snid foralln > 1.

This example appeared in [9, Section 2.1].

(2) There exists an integer ng > 1 such that both o and 8 belong to the open interval
(no,no + 1) .
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(3) Both o and B belong to the interval (—oo,1).

EXAMPLE 2.6. For each integer m > 1, consider the unilateral weighted shift S
with the weight sequence given by

Wy, = ntm foralln > 1.
V' n

This operator was considered in [5, Proposition 8] and [8, Corollary 3.8], where it was
verified to be a strict (m+ 1)-isometry. We provide here another proof of this fact. Put
p(x) = (x+m—1)---x. Then p is a monic polynomial of degree m and for all integers
n>1, wehave p(n) >0 and

pn+1)  [(n+m)---(n+1) n+m_w
¢p<n> ‘\/<n+m—1>---n VT T

By Corollary 2.3, § is strictly (m+ 1)-isometric.

Theorem 2.1 shows that in order for S to be m-isometric, the values |w,|> must be
a rational function of n and lim, ... [w,|? = 1. This immediately raises the following
question.

QUESTION 1. Suppose S is a unilateral weighted shift with the weight sequence
{Wn}tn>1. Suppose there are two polynomials f and g with real coefficients such that
|wa|> = f(n)/g(n) and that lim, ... f(n)/g(n) = 1. What conditions must f and g
satisfy to ensure that S is an m-isometry for some integer m > 2?

Example 2.6 shows that the relation between f and g is not at all obvious. While
it is possible to obtain a criterion that involves the roots of f and g, such a criterion
may not be useful or practical. On the other hand, we do not know if it is possible
to find a condition that involves only the coefficients of f and g. This may have an
interesting answer.

In the rest of the section, we investigate m-isometric weighted shift operators
whose weight sequence starts with a given finite set of values. More specifically,
let r > 1 be an integer and let ay,...,a, be nonzero complex numbers. We are in-
terested in the question: does there exist an m-isometric unilateral weighted shift S
such that Sey = agep) for all 1 < k < r? By Theorem 2.1, the answer to this ques-
tion hinges on the existence of a polynomial p such that p(n) > 0 for all n > 1 and
lax|?> = p(k+1)/p(k) for 1 < k < r. The following result shows the existence of such
a polynomial.

PROPOSITION 2.7. Let r > 1 be an integer and let ay,...,a, be nonzero complex
numbers. For any m > r+2, there exists a strictly m-isometric unilateral weighted
shift operator whose weight sequence starts with ay,...,a,.
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Proof. By Lagrange interpolation, there exists a polynomial f of degree at most
r such that f(1) =1 and

f) =la)?-- a1 |* for2<k<r+1.
Let m > r+2. We shall look for a polynomial p with degree m — 1 in the form
px) =x"" 2= 1) (x—r=1) +af(x)

such that p(n) > 0 for all integers n > 1. Here ¢ is a positive number that we need to
determine. Note that p(k) = of (k) > 0 forall 1 <k < r+ 1 so we only need to find
o such that p(n) > 0 for n > r+2. This is equivalent to

—f(x) ,x>r+2}'

1 {x’”—’—z(x—l)---(x—r—l)'

— >su
o P

Since the rational function on the right hand is continuous on [r+ 2,c) and its limit
at infinity is zero, the above supremum is finite. Consequently, there exists such an o.
Note that p is a monic polynomial of degree m — 1 and for 1 <k <r,

flk+1) af(k+1) plk+1)

f(k) o.f (k) p(k)

Let S be the unilateral weighted shift operator whose weight sequence {wy},>1 is
given by w, = a, for 1 <n <r and

2
x|

p(n+1)

forn>r+1.
p(n)

Wy =

Since p is a polynomial of degree m — 1 and |w,|*> = p(n+1)/p(n) for all n > 1,
Corollary 2.3 shows that S is strictly m-isometric. [

REMARK 2.8. The condition m > r+ 2 in the above proposition is necessary. In
fact, with an appropriate choice of ay,...,a,, there does not exist an (r+ 1)-isometric
unilateral weighted shift operator whose weight sequence starts with ay,...,a,. For
example, set r = 1 and take |a;| < 1. Example 2.4 shows that there does not exist a
2-isometric weighted shift operator S with Se; = aje; since |a;| < 1.

3. The semigroup of m-isometric unilateral weighted shifts

In this section, we investigate the structure of m-isometric weighted shifts. Let us
define 7 to be the set of all unilateral weighted shifts that are m-isometric for some
integer m > 1. We shall see that % turns out to be a semigroup with an identity. The
multiplication on W is the Hadamard product of operators. We shall also show that any
element in % can be factored as a product of simpler factors.

Let us first recall the Hadamard product, which is also known as the Schur product.
Suppose A and B are bounded operators on H. Let (aj) and (bj), respectively, be
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the matrix representations of A and B with respect to the orthonormal basis {e,};_; .
Then the Hadamard product of A and B, denoted by A ® B, is an operator on H with
matrix (cjx), where cj = ajxbj for all integers j,k > 1. It is well known that A® B
is a bounded operator on H .

It is clear that the Hadamard product of any two unilateral weighted shifts is a
unilateral weighted shift. Corollary 2.3 tells us more.

PROPOSITION 3.1. Let S and T be unilateral weighted shift operators such that
S is strictly k-isometric and T is strictly {-isometric. Then SOT is strictly (k+{¢—1)-
isometric. Consequently, the following statements hold.

(i) The pair (W ,®) is a commutative semigroup with identity U, the unweighted
unilateral shifft.

(ii) If SOT = U, then both S and T are isometric operators. This shows that
invertible elements in (W ,®) are exactly the isometries.

Proof. Let {sp}n>1 and {#,},>1 be the weight sequences of S and T, respec-
tively. Then S® T is a unilateral weighted shift with weights w,, = s,,t,, forn > 1.

Since S is k-isometric, Corollary 2.3 shows the existence of a polynomial p of
degree k — 1 with real coefficients such that p(n) > 0 and |s,|> = p(n+1)/p(n) for
all n > 1. Similarly, there is a polynomial ¢ of degree ¢ — 1 such that g(n) > 0 and
|ta]? = g(n+1)/q(n) forall n > 1. Put h=p-q. Then h is a polynomial with degree
k+{¢—2andforany n>1,

‘2 _ h(n+ l)
h(n)

By Corollary 2.3 again, S® T is strictly (k+ ¢ — 1)-isometric. Therefore, # is closed
under ® and hence, (#,©®) is a semigroup. It is clear that the unweighted unilateral
shift U is the identity of this semigroup.

If SO©T = U, then since U is isometric, we have k+¢—1 = 1. This forces
k = ¢ =1, which means that both S and T are isometric operators. The proof of the
proposition is now completed. [l

h(n) = p(n)q(n) >0, and |wy|* = [su[*|tn

In general, the operator A ® B is usually not m-isometric when A is an arbitrary
k-isometry and B is an arbitrary £-isometry. An obvious example is A = I, the identity
operator, and B any /-isometry whose matrix contains at least one zero on its main
diagonal. Then A ® B is a diagonal operator with at least one zero on its diagonal. Since
A ® B is not injective, it cannot be m-isometric for any m > 1. This shows that the
property in Proposition 3.1 is quite special for m-isometric unilateral weighted shifts.
On the other hand, we would like to explain here that a more general approach can be
used to prove Proposition 3.1, without the need of an explicit characterization. Recall
that the tensor product space H ® H admits the orthonormal basis {e Qe j k=
1}. The “diagonal subspace” Hisa subspace of H ® H with the orthonormal basis
{ej®@ej:j>1}. Itis well known that A © B is unitarily equivalent to the compression
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of the tensor product A ® B on H. Duggal [11] shows that if A is k-isometric and B
is /-isometric, then A ® B is m-isometric on H ® H with m = k+ ¢ — 1. Since the
compression of an m-isometric operator on a subspace may not be m-isometric, the
operator A ® B may not be m-isometric as we have seen above. However, if both A
and B are unilateral weighted shifts, then H turns out to be an invariant subspace of
A ® B. It then follows that A ® B, being unitarily equivalent to the restriction of A®@ B
on an invariant subspace, is m-isometric as well.

As another interesting application of Theorem 2.1, we show that any element in
the semigroup (#',®) can be written as a product of elements that are 2-isometric or
3-isometric.

Recall that Z* denotes the set of all positive integers. We need the following
elementary facts about polynomials with real coefficients.

LEMMA 3.2. Let p € R[x| be a monic polynomial such that p(n) > 0 for all
n € 7. Then the following statements hold.

(1) Given any integer n € 2", the polynomial p has an even number of roots (counted
with multiplicity) in the interval (n,n+1).

(2) There are linear and quadratic monic polynomials py,...,py in R[x] which as-
sumes positive values on 7" such that p = py---py.

Proof. (1) Let n be a positive integer such that p has at least a root in the interval
(n,n+1). Let oy,...,0p be these roots, listed with multiplicity. Write p(x) = (x —
oq) - (x— oy)r(x), where the polynomial r(x) has no roots in (n,n+1). Since r(n+
1) and r(n) have the same sign, we see that sgn(p(n+1)) = (—1)’sgn(p(n)). But
p(n+1) and p(n) are both positive, so ¢ must be even.

(2) We know that p can be factored as a product of monic linear and irreducible
quadratic (not necessarily distinct) polynomials in R[x]. The proof of the statement is
completed once we notice the following facts. Firstly, any monic irreducible quadratic
factor is positive over R, hence over Z*. Secondly, any linear factor of the form
q(x) =x—b with b < 1 has positive values over [1,0), hence over Z" as well. Lastly,
by (1), the remaining linear factors can be grouped into pairs of the form (x— ot)(x—f3),
where o and B lie between two consecutive positive integers. Any such quadratic
polynomial also assumes positive values on Z*. [

We are now in a position to prove a factorization theorem for non-isometric ele-
ments of (#,0).

THEOREM 3.3. Any non-isometric element in (W ,©®) is a ®-product of elements
that are either strictly 2 -isometric or strictly 3-isometric.

Proof. Let S be a non-isometric element in (#,©). Assume that S is strictly m-
isometric with m > 2. By Theorem 2.1, there is a monic polynomial p such that p(n) >
0 and |w,|> = p(n+1)/p(n) for all integers n > 1. Using Lemma 3.2, we obtain a
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factorization p = pi---py, where each polynomial p; is either linear or quadratic.
Now for each integer n > 1, set ¥, = wy/|wy| and write

| =y PLED  py(n 1)
Wi = Yo Wi Yn\/ p1(n) \/pv(n) '

Let S| be the unilateral weighted shift operator whose weight sequence is

pi(n+1)/pi(n)}u=1.

For 2 < j< v, let §; be the unilateral weighted shift operator whose weight sequence is

pj(n+1)/pj(n)},>1. We then have S =S, ©®---© S, and each §; is either strictly
2-isometric or strictly 3-isometric by Corollary 2.3. This completes the proof of the
theorem. [

REMARK 3.4. It should be noted that any strictly 2-isometric element in (#/,®)
cannot be trivially written as a product of non-isometric elements. On the other hand,
some strictly 3-isometric elements may be written as a product of strict 2-isometries.
These elements arise from Case (3) in Example 2.5.

We close this section with a corollary to Theorem 3.3.

COROLLARY 3.5. Let S be a unilateral weighted shift operator. Then S is m-
isometric for some m > 2 if and only if it can be written as the Hadamard product of
unilateral weighted shift operators each of which is strictly 2 -isometric or 3 -isometric.

4. Unilateral weighted shifts whose powers are m -isometric

Let o > 2 be a positive integer. It is well known that if A is an m-isometry then
A% is an m-isometry as well. The converse, on the other hand, does not hold (see [7,
Examples 3.3 and 3.5] and also Examples 4.2 and 4.3 that we shall discuss below).

In this section, we would like to characterize the weights of a given unilateral
weighted shift S such that S* is m-isometric. Our approach relies on the character-
ization of m-isometric unilateral weighted shifts obtained in Section 2. Let S be a
unilateral weighted shift with weight sequence {w,},>1. Recall that {e,},>; is an
orthonormal basis of H such that Se, = wye, 1 for all n > 1. Then S* is a shift of
multiplicity o, that is, for all integers n > 1,

o
S%e, = upenq,

where u, =wy - Wyig_1.
Foreach 1 <r< a, let 2, denote the closed subspace spanned by

{eh Cr+a,€r20s - - }

Then Z; is a reducing subspace of S* and S% is unitarily equivalent to the direct
sum T} @ --- @ Ty, where each T, = §%| 4 is a unilateral weighted shift with weight

Cr
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sequence {ugq+r}e=0. Consequently, S* is m-isometric on H if and only if 7} is m-
isometric on 2, for all 1 < r < a. By Theorem 2.1, this is equivalent to the existence
of polynomials f,..., fo of degree at most m — 1 such that f.(¢) >0 and

fr(L+1)

\WM42=—7@7—mume>0mm1<r<a. (4.1

Note that S* is a strict m-isometry if and only if one of the polynomials fi,..., fq
has degree exactly m — 1. With the above characterization, we would like to recover a
formula for determining the weights {w; },>1 of S. The following theorem is our main
result in this section.

THEOREM 4.1. Let S be a unilateral weighted shift with weight sequence {wy },>1.
Then S% is m-isometric if and only if there exists a function g : 77 — R~ such that
the following conditions hold

(a) Foreach | <r< o, the function ¢ — g(la+r) is a polynomial of degree at most
m—1in (.
1
(b) We have |w,|* = gt 1)
g(n)

Proof. Suppose first that S* is m-isometric. Then we have (4.1). We define a
function f:Z" — R.q by

for all integers n > 1.

f(n) = £:(0),
where ¢ and r are unique integer values satisfying 1 <r< o, £ >0 and n=Llo+r.
Equation (4.1) can be written as

[+l fnta)

|un|2 = ‘Wa+r|2 = =

1+(6) f(n)
Now for n > o, we have
Up—oa+1  Wn—a+1"""Wn  Wn
Un—o  Wn—o'" Wnel Wp—qg

which implies

wal> _ fun-gi1l* _ fn+1)  fln—o) fin+1)/f(n)

Wool®  fun-af*  fli—oa+1)  fn)  fln—a+1)/f(n—a)
Consequently, if n = /lo +r with 1 < r < a, then

boul? el el
fn+1)/f(n)  fln—oa+1)/f(n—a) fr+1)/5(r)
Denoting this positive common ratio by c,, we obtain the formula
1
W, | = c,f(n+ ) forn="Llo+r.

fn)
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Since |wi|?--- |wa|* = |u1|> = f(oc+1)/f(1) we conclude that c; ---cq = 1. Now set
co =1 and define g(foc+r)=co---c,—1f(la+r) for £ >0 and 1 <r< a. Itis clear
that condition (a) is satisfied.

For n=/lo+r with 1 <r<a—1 and ¢ > 0, we compute

gln+1) glla+r+1) co---cf(n+1)  f(n+1)

= = =cr = |wal?.
g(n) gla+r) co---cr—1f(n) f(n)
On the other hand, if n = £ + o for some ¢ > 0, then
gt ) gt ekl _afntl) | fnd )
g(n) gla+a) co-carfn) % fln) "

In the second last equality, we used the fact that ¢;---cq—1 = c&l. Thus, we have

shown that condition (b) is satisfied for any positive integer 7.
Conversely, suppose there is a function g : Z* — R+ such that both (a) and (b)
hold. Then for any integer n, condition (b) gives

u|? w2 = (n+]+l)_ g(n+ o)
|un| = = H| neil” = U gn+j) g(n) -

For integers 1 <r < a and £ > 0, put f,.(¢) = g(fa+r). Then we have |upq,,|> =
fr(+1)/f,(¢) and each f, is a polynomial of degree at most m — 1 in ¢ by (a).
Consequently, condition (4.1) is satisfied and hence, S* is m-isometric. [

We now use Theorem 4.1 to investigate several examples.

EXAMPLE 4.2. Define g(2¢+2) =g(2¢+1) ={+1 for all integers £ > 0. Con-
sider the unilateral weighted shift § with weights given by

g(20+2) ..
Nl 1/g(%ﬂ) ifn=20+1
)
)

T \/(212+3

ifn=2012
Q02 MrEAF
1 ifn=20+1
= (112
" ifn=20+2.
S R

Since conditions (a) and (b) in Theorem 4.1 are satisfied with &« =2 and m = 2, we
conclude that S? is 2-isometric. However, S is not 2-isometric by Theorem 2.1.

EXAMPLE 4.3. The above example can be generalized in the following way. Let
o >2 and m > 2 be integers. Let p be a polynomial of degree m — 1 such that p(k) >0
for all integers k > 0. Consider a unilateral weighted shift S with weights defined by

ifn=flo+rwithO<r<o—-2

p(lntD)/a])
p(ln/al)

Wy =

p(l+1)
p(0)

ifn=">lo+ (o0—1).
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Here |x| denotes the greatest integer smaller than or equal to x. It can be checked that
conditions (a) and (b) in Theorem 4.1 are satisfied by the function g(n) = p(|n/o]).
We conclude that S* is m-isometric. As before, S is not m-isometric by Theorem 2.1.

EXAMPLE 4.4. We now consider [6, Example 3.5]. Let S be a unilateral weighted

shift with weights wysy| =4 and way» = (%)2 for all integers £ > 0. Define
(n) = (Be+1)*  ifn=20+1
1630+ 1)t ifn=20+2.

It can be checked that |w,|> = g(n+1)/g(n) for all positive integers n and that both
g(2¢+1) and g(2¢+2) are polynomials in ¢ of degree 4. Theorem 4.1 shows that S*
is a 5-isometry. (The statement that S is a 2-isometry in [6, Example 3.5] is in fact
inaccurate.)

Using Theorem 4.1, one can obtain other interesting examples. We leave this to
the interested reader.

5. m-isometric bilateral weighted shift operators

In this section we discuss bilateral weighted shift operators that are m-isometric. It
turns out that the characterization of m-isometric unilateral shift operators in Theorem
2.1 plays a crucial role.

Let us fix an orthonormal basis {f;,},cz of H indexed by the integers Z. A
bilateral weighted shift operator 7 is a linear operator on H such that

Tfn=wnfoy1, forneZ.

As before, the sequence {wy },cz of complex numbers is called the weight sequence
of T. We assume that {w, },,cz is bounded so that T is a bounded operator. We shall
obtain a description of the weight sequence of any m-isometric bilateral weighted shift
operator.

REMARK 5.1. We have already noticed that any m-isometry is injective and has
a closed range. Since the range of an injective bilateral weighted shift operator is dense,
it follows that any m-isometric bilateral weighted shift operator is automatically invert-
ible.

Our first result in this section characterizes bilateral weighted shift operators that
are m-isometric.

THEOREM 5.2. Let T be a bilateral weighted shift operator with the weight se-
quence {Wp}ncz. Then T is an m-isometric operator if and only if there exists a
polynomial p of degree at most m — 1 such that for any integer n, we have p(n) >0
and

wnl? = ==
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Furthermore, the degree of p must be even.

Proof. For any positive integer k > 0, let H; be the closed subspace of H that is
spanned by {f,}n>—k. Itis clear that {H;};>0 is an increasing sequence of invariant
subspaces of T and H = Uy_Hy. Put T; = T|y, . It then follows from the definition
of m-isometries that T is an m-isometry on H if and only if 7; is an m-isometry on
H; for all k. Note that each Ty, is a unilateral weighted shift on Hj with respect to the
orthonormal basis {e,},>_. The weight sequence of T; is {wp}n>—«-

We first suppose that T is m-isometric. Then each operator 7; is m-isometric on
H;. By Theorem 2.1, there is a monic polynomial p; of degree at most m — 1 with real
coefficients such that for all n > —k, we have py(n) >0 and

pe(n+1)

|Wn‘2 =
pr(n)

Note that we have actually applied a version of Theorem 2.1 with the index n starting
from —k instead of 1. Since Ti|n, = T, the uniqueness established in Remark 2.2
shows that the polynomials p; are all the same. Let us call this polynomial p. Then p
is monic and for any integer 1 € Z, we have p(n) >0 and |w,|*> = p(n+1)/p(n). The
positivity of p on Z shows that its degree must be even.

Conversely, suppose p is a polynomial of degree at most m — 1 with real coeffi-
cients such that p(n) >0 and |w,|? = p(n+1)/p(n) for all n € Z. By Theorem 2.1,
each unilateral weighted shift operator Ty = T'|y, is m-isometric on Hy. It follows that
T is m-isometricon H. [J

With the same argument as in the proof of Corollary 2.3, we obtain a characteri-
zation of strict m-isometric bilateral weighted shift operator.

COROLLARY 5.3. The bilateral weighted shift operator T is strictly m-isometric
if and only if the degree of p is exactly m — 1 and m is an odd integer.

REMARK 5.4. Corollary 5.3 shows that there only exist strict m-isometric bilat-
eral weighted shift operators when m is odd. This fact is not surprising since it actually
follows from Remark 5.1 and a general result [2, Proposition 1.23] (see also [10, Propo-
sition A]) which asserts that if L is an invertible k-isometry and k is even, then L is a
(k—1)-isometry.

EXAMPLE 5.5. A bilateral weighted shift operator 7 is a strict 3-isometry if and
only if there is a monic polynomial p of degree 2 such that p(n) > 0 and |w,|> =
p(n+1)/p(n) forall n € Z. Write p(x) = (x— a)(x— ) for some complex numbers
o and . Since p assumes positive values on Z, one of the following two cases must
occur:

(1) Both o and 3 belong to C\R.

(2) There exists an integer ny such that both o and 8 belong to the open interval
(no,no + 1) .
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It should be noted that quadratic polynomials that give rise to 3-isometric bilateral
weighted shift operators are more restrictive than quadratic polynomials that give rise
to 3-isometric unilateral weighted shift operators (see Example 2.5).

EXAMPLE 5.6. Let ¢ > 2 be an even integer and b be a positive number. Define
p(x)=x(x+1)---(x+£—1)+b. Then p has degree ¢ and p(n) >0 forall n € Z.
Let T be the bilateral weighted shift operator with weights

p(n+1)

forn e 7Z.
p(n)

Wp =

By Corollary 5.3, the operator T is a strict (¢ + 1)-isometry. This example was dis-
cussed in [10, Theorem 1].

As in the case of unilateral weighted shift operators, we also have a factorization
theorem for m-isometric bilateral weighted shift operators.

THEOREM 5.7. Any bilateral weighted shift operator that is strictly m-isometric
for some odd integer m > 3 can be written as a Hadamard product of strictly 3-
isometric bilateral weighted shift operators.

Proof. For any strictly m-isometric bilateral weighted shift operator, let p be the
monic polynomial given in Theorem 5.2. With an argument similar to that in the proof
of Lemma 3.2, one can factor p = p; --- py, where each p; is a monic quadratic poly-
nomial having positive values over Z. The remaining of the proof is now the same as
the proof of Theorem 3.3. [

Using the techniques in this section together with the approach in Section 4, we
obtain a characterization of bilateral weighted shifts whose powers are m-isometric.
We state here the result and leave the details of the proof to the interested reader.

THEOREM 5.8. Let T be a bilateral weighted shift with weight sequence {wy }nez
and let o0 > 2 be an integer. Then T% is m-isometric if and only if there exists a func-
tion g : 7 — R~ such that the following conditions hold

(a) Foreach | <r< o, the function £+ g(Loc+r) is a polynomial in £ of even degree,
which is at most m — 1.

gn+1)
g(n)

(b) We have |w,|> = Sor all integers n.
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