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Abstract. Let k be a positive integer. Let H and K be complex Hilbert spaces of dimen-
sions greater than k . By Wk(A) denote the k -dimensional numerical range of an operator
A . In this paper we prove that a surjective map φ : B(H) → B(K) satisfies Wk(AB−BA∗) =
Wk(φ(A)φ(B)− φ(B)φ(A)∗) for all A,B ∈ B(H) if and only if there exists a unitary operator
U ∈ B(H,K) such that φ(A) = γUAU∗ for all A ∈ B(H) , where γ ∈ {−1,1} .

1. Introduction

Let H be a complex Hilbert space with the product 〈·, ·〉 and denote by B(H) the
algebra of all bounded linear operators on H . A projection P on H is an operator in
B(H) which is self-adjoint and idempotent. For non-zero vectors x,y ∈ H , the rank-1
operator x⊗ y is defined by the map z �→ 〈z,y〉x for z ∈ H . For a finite rank operator
A , we use tr(A) to denote its trace.

Recall that the numerical range of an operator A ∈ B(H) is defined by

W (A) = {〈Ax,x〉 : x ∈ H,‖x‖ = 1}.

This is useful in studying operators and matrices; for example, see [12]. Motivated
by theory and applications, there are many generalizations of the numerical range [12].
Among others, Halmos introduced the higher-dimensional numerical range, which have
been studied by many authors [9, 15, 20, 21, 13, 1, 2, 17, 11]. Let k be a positive integer
which is strictly smaller than the dimension of H . For A ∈ B(H) , the k -dimensional
numerical range Wk(A) of A is defined by

Wk(A) = { 1
k tr(PAP) : P is projection on H with rank k},

which is equivalent to

Wk(A) =

{
1
k

k

∑
j=1

〈Ax j,x j〉 : x1, · · · ,xk are orthonormal vectors

}
.
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It is obvious that W1(A) = W (A) . Generally, to compute the higher-dimensional nu-
merical range is more difficult than to do the numerical range. Moreover, from the
viewpoint of operator theory, the closure of Wk(A) does not necessarily contain the
spectrum of A and the condition Wk(A) ⊆ [0,+∞] does not imply that A is positive.

There has been a great deal of interest in studying preservers of a given general-
ized numerical range, i.e., maps which leave invariant the given generalized numerical
ranges, see [15]. Pierce and Watkins [21] characterized linear operators preserving k -
dimensional numerical range on Cn×n with n �= 2k . C. K. Li [14] completed the work
of Pierce and Watkins and characterized the unital linear operators on matrix spaces that
preserve higher-dimensional numerical radius. In [20], Omladič considered the surjec-
tive linear maps between the algebras B(H) and B(K) that preserve higher-dimensional
numerical range.

The purpose of this paper is to characterize nonlinear maps preserving higher-
dimensional numerical range of skew Lie product of operators. For any A,B ∈ B(H) ,
the product AB−BA∗ is called the skew Lie product of A and B . This product is
playing a more and more important role in some research topics, and its study has
recently attracted many authors’ attention (see, for example, [3,4,5,6,8,22,24,23,18]).
In this paper, we will study the map φ that satisfies

Wk(AB−BA∗) = Wk(φ(A)φ(B)−φ(B)φ(A)∗)

for all A,B in the domain. We will show that such a map is a C∗ -isomorphism. This
was obtained in [7] for the numerical range setting; however our approach is very dif-
ferent from that because of the difference between the numerical range and the higher-
dimensional numerical range.

2. Preliminaries

Throughout this section, k is a positive integer and H is a complex Hilbert space
of dimension greater than k . By [x1,x2, . . . ,xn] denote the subspace spanned by vectors
x1,x2, . . . ,xn in H . The symbol i will stand for the imaginary unit.

We first recall some basic properties on higher-dimensional numerical range. One
may see [9, 13] for more information.

PROPOSITION 2.1. ( [13]) Let A ∈ B(H) .

(1) Wk(A) is convex.

(2) If U is unitary, then Wk(UAU∗)=Wk(A); if U is conjugate unitary, then Wk(UAU∗)
= Con(Wk(A)) , where Con(Wk(A)) = {λ : λ ∈Wk(A)} .

(3) Wk(λA) = λWk(A) for any λ ∈ C .

(4) Wk(λ I +A) = λ +Wk(A) for any λ ∈ C .

The following proposition is well-known; however we can’t find the proof. For
the sake of completeness, we include a proof.
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PROPOSITION 2.2. Let A ∈ B(H) and λ ∈ C .

(1) Wk(A) = {λ} if and only if A = λ I .

(2) Wk(A) ⊆ R if and only if A is self-adjoint.

Proof. (1) The sufficiency is obvious. We verify the necessity as follows.
Fix orthonormal vectors e1,e2, · · · ,ek−1 . For a unit vector x ∈ [e1, · · · ,ek−1]⊥ , we

have
1
k
(〈Ax,x〉+ 〈Ae1,e1〉+ · · ·+ 〈Aek−1,ek−1〉) = λ .

So 〈Ax,x〉 = c for all unit vectors x ∈ [e1, · · · ,ek−1]⊥ , where c := kλ −
k−1
∑
j=1

〈Ae j,e j〉 is

a constant.
Let y in H be a unit vector. Since the dimension of [e1, · · · ,ek−1] is k− 1, there

exist k−2 orthonormal vectors x1, · · · ,xk−2 ∈ [e1, · · · ,ek−1]∩ [y]⊥ . Since the dimension
of [e1, · · · ,ek−1]⊥ is at least 2 , we can take a unit vector xk−1 ∈ [e1, · · · ,ek−1]⊥ ∩ [y]⊥ ,
and then take a unit vector xk ∈ [e1, · · · ,ek−1]⊥ ∩ [xk−1]⊥ . Thus x1, · · · ,xk as well as
x1, · · · ,xk−1,y are orthonormal. Now we have

λ =
1
k

k

∑
j=1

〈Ax j,x j〉 and λ =
1
k

(
k−1

∑
j=1

〈Ax j,x j〉+ 〈Ay,y〉
)

.

The former equation together with the previous result yields that

k−2

∑
j=1

〈Ax j,x j〉 = kλ −〈Axk−1,xk−1〉− 〈Axk,xk〉 = kλ −2c.

Hence

〈Ay,y〉 = kλ −
k−1

∑
j=1

〈Ax j,x j〉 = kλ −
k−2

∑
j=1

〈Ax j,x j〉− 〈Axk−1,xk−1〉 = c

for all unit vectors y . This implies that A = cI . Since Wk(A) = {λ} , we have c = λ ,
showing (1).

(2) If A is self-adjoint, by the definition, Wk(A) ⊆ R .
Now suppose that Wk(A) ⊆ R . Decompose A = A1 + iA2 , where A1 and A2 are

self-adjoint. Since Wk(A) ⊆ R , we have Wk(A2) = 0. Thus A2 = 0 by (1). So A is
self-adjoint. �

It is not difficult to compute the higher-dimensional numerical range of a projec-
tion. It is surprising that the higher-dimensional numerical range can determine the
rank of a projection.

PROPOSITION 2.3. Let P be a projection in B(H) with rank r .

(1) If r < k , then the biggest in Wk(P) is r
k .
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(2) If r � k , then the biggest in Wk(P) is 1 .

PROPOSITION 2.4. Let x ∈ H and A ∈ B(H) . Then the center of the rectangular

box from the vertical and horizontal support lines of Wk(Ax⊗ x+ x⊗ xA) is 〈Ax,x〉
k .

Proof. Without loss of generality, we may assume ‖x‖ = 1. For simplicity, we
write T = Ax⊗ x+ x⊗ xA . Then T has rank two at most.

First suppose that A is self-adjoint. Then T is self-adjoint. If Ax and x are linearly
dependent, then Ax = 〈Ax,x〉x . A simple computation gives that T = 2〈Ax,x〉x⊗ x . It

follows that Wk(T ) = [0,
2〈Ax,x〉

k ] , whose mid-point is obviously 〈Ax,x〉
k . We now assume

that Ax and x are linearly independent. Then T only has two non-zero eigenvalues
μ1 = a+

√
a2 +b2 and μ2 = a−√

a2 +b2 , where a= 〈Ax,x〉 and b = ‖Ax−ax‖ . Since
b �= 0, we have μ2 < 0 < μ1 . Let e j be the normalized eigenvector of T corresponding
to μ j , j = 1,2. Then under the decomposition H = [e1]⊕ [e2]⊕ [e1,e2]⊥ ,

T =

⎡
⎣μ1 0 0

0 μ2 0
0 0 0

⎤
⎦ .

Let { fλ}λ∈Λ be an orthonormal basis for [e1,e2]⊥ . For orthonormal vectors x1,x2, . . . ,xk ,
write

x j = α j1e1 + α j2e2 + ∑
λ∈Λ

β jλ fλ , j = 1,2, . . . ,k.

Then with r = 1,2,

k

∑
j=1

|α jr|2 =
k

∑
j=1

|〈x j,er〉|2 � ‖er‖2 = 1. (2.1)

A computation shows that

k

∑
j=1

〈Tx j,x j〉 = μ1

k

∑
j=1

|α j1|2 + μ2

k

∑
j=1

|α j2|2.

This together with (2.1) gives

μ2 �
k

∑
j=1

〈Tx j,x j〉 � μ1.

(Recall that μ2 < 0 < μ1 .) On the other hand, if x1 = er,x2, . . .xk ∈ [e1,e2]⊥ , then
k
∑
j=1

〈Tx j,x j〉 = μr,r = 1,2. So by the convexity, Wk(T ) = [ μ2
k , μ1

k ] . The mid-point of

this interval is μ1+μ2
2k = 〈Ax,x〉

k .
Now for the general A , write A = A1 + iA2 , where A1 and A2 are self-adjoint.

By the previous result, the mid-point of Wk(Ajx⊗ x+ x⊗ xA j) is
〈Ajx,x〉

k for j = 1,2.
So the center of the rectangular box from the vertical and horizontal support lines of
Wk(Ax⊗ x+ x⊗ xA) is 〈A1x,x〉

k + i〈A2x,x〉
k = 〈Ax,x〉

k . �
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COROLLARY 2.5. Let A and B be in B(H) and suppose that Wk(Ax⊗ x + x⊗
xA) =Wk(Bx⊗x+x⊗xB) for all x∈H . Then A = B. In particular, if Wk(CA−AC∗) =
Wk(CB−BC∗) for all C ∈ B(H) , then A = B.

Proof. For x ∈ H , putting C = ix⊗ x , we get

iWk(Ax⊗ x+ x⊗ xA)= iWk(Bx⊗ x+ x⊗ xB).

By Proposition 2.4, the centers of the rectangular box from by the vertical and horizon-
tal support lines of Wk(Ax⊗ x+ x⊗ xA) and Wk(Bx⊗ x+ x⊗ xB) are 〈Ax,x〉

k and 〈Bx,x〉
k ,

respectively. So 〈Ax,x〉 = 〈Bx,x〉 for all x ∈ H . This implies that A = B . �

PROPOSITION 2.6. Let A and B be in B(H) and suppose that ‖Ax−〈Ax,x〉x‖=
‖Bx−〈Bx,x〉x‖ for all unit vectors x in H . Then A = μI + νB or A = μI + νB∗ for
μ ,ν ∈ C with |ν| = 1 .

Proof. For a unit vector x , from ‖Ax−〈Ax,x〉x‖ = ‖Bx−〈Bx,x〉x‖ we get that

‖Ax‖2−|〈Ax,x〉|2 = ‖Bx‖2−|〈Bx,x〉|2.
Then for a pair of orthonormal vectors x,y in H and a scalar λ with |λ | = 1, by

replacing x with
√

2
2 (x+ λy) , we have

2‖Ax+ λAy‖2−|〈Ax,x〉+ 〈Ay,y〉+ λ〈Ax,y〉+ λ 〈Ay,x〉|2

= 2‖Bx+ λBy‖2−|〈Bx,x〉+ 〈By,y〉+ λ〈Bx,y〉+ λ 〈By,x〉|2.
Since this equation also holds for −λ , it follows from the parallelogram law that

2‖Ax‖2 +2‖Ay‖2−|〈Ax,x〉+ 〈Ay,y〉|2−|λ〈Ax,y〉+ λ 〈Ay,x〉|2

= 2‖Bx‖2 +2‖By‖2−|〈Bx,x〉+ 〈By,y〉|2−|λ〈Bx,y〉+ λ 〈By,x〉|2.
By replacing λ with iλ and by the parallelogram law, we have

2‖Ax‖2 +2‖Ay‖2−|〈Ax,x〉+ 〈Ay,y〉|2−|〈Ax,y〉|2−|〈Ay,x〉|2
= 2‖Bx‖2 +2‖By‖2−|〈Bx,x〉+ 〈By,y〉|2−|〈Bx,y〉|2−|〈By,x〉|2.

Comparing the last two equations, we get that

Reλ 2〈Ay,x〉〈Ax,y〉 = Reλ 2〈By,x〉〈Bx,y〉
for all λ ∈ C with |λ | = 1. So 〈Ay,x〉〈Ax,y〉 = 〈By,x〉〈Bx,y〉 for all pairs of orthonor-
mal vectors x,y . Now the desired result follows from [16, Proposition 2.3]. �

We will close this section by computing the higher-dimensional numerical radius
of a rank-2 operator. For A∈ B(H) , the k -dimensional numerical radius of A is defined
as

wk(A) = sup{|λ | : λ ∈Wk(A)}.
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EXAMPLE 2.7. Let A be a self-adjoint operator in B(H) and x is a unit vector in
H . Then wk(x⊗ xA−Ax⊗ x)= 1

k ‖Ax−〈Ax,x〉x‖ .

Proof. A simple computation shows that

x⊗ xA−Ax⊗ x = b(x⊗ y− y⊗ x),

where b = ‖Ax−〈Ax,x〉x‖ and y is a unit vector which is a multiple of Ax−〈Ax,x〉x
and is orthogonal to x .

Let P be a projection in B(H) . Then since 〈Px,Py〉+ 〈P⊥x,P⊥y〉 = 〈x,y〉 = 0,
we have that

tr(P(x⊗ y− y⊗ x)P)= 〈Px,Py〉− 〈Py,Px〉 = 〈P⊥y,P⊥x〉− 〈P⊥x,P⊥y〉.
If ‖Px‖2 +‖Py‖2 � 1, then

|tr(P(x⊗ y− y⊗ x)P)|� 2|〈Px,Py〉| � 1;

if ‖Px‖2 + ‖Py‖2 � 1, then ‖P⊥x‖2 + ‖P⊥y‖2 = ‖x‖2 + ‖y‖2− (‖Px‖2 + ‖Py‖2) � 1
and hence

|tr(P(x⊗ y− y⊗ x)P)|� 2|〈P⊥x,P⊥y〉| � 1.

Consequently, wk(x⊗ y− y⊗ x)� 1
k .

On the other hand, with e1 =
√

2
2 (ix+ y) and e2, . . . ,ek being orthonormal vectors

in [x,y]⊥ , we have
k

∑
j=1

〈(x⊗ y− y⊗ x)e j,e j〉 = −i.

So wk(x⊗ y− y⊗ x)� 1
k . Thus, wk(x⊗ y− y⊗ x)= 1

k and then wk(x⊗ xA−Ax⊗ x)=
b
k . �

3. Higher-dimensional numerical range preservers

In this section, we characterize nonlinearmaps which preserve the higher-numerical
range of skew Lie product of operators. The main result is as follows.

THEOREM 3.1. Let k be a positive integer. Let H and K be two complex Hilbert
spaces with the dimensions greater than k . Suppose that φ : B(H)→ B(K) is a surjec-
tive map. Then φ satisfies

Wk(AB−BA∗) = Wk(φ(A)φ(B)−φ(B)φ(A)∗) (3.2)

for all A,B ∈ B(H) if and only if there is a real number γ ∈ {−1,1} and a unitary
operator U ∈ B(H,K) such that φ(A) = γUAU∗ for all A ∈ B(H) .

The sufficiency part is clear. To prove the necessity part, we need several lemmas,
in which we will keep the notations in the statement of the theorem.
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LEMMA 3.2. φ is injective.

Proof. Let A, B ∈ B(H) and suppose that φ(A) = φ(B) . Then for any C ∈ B(H) ,
we have

Wk(CA−AC∗) = Wk(φ(C)φ(A)−φ(A)φ(C)∗)
= Wk(φ(C)φ(B)−φ(B)φ(C)∗)
= Wk(CB−BC∗).

It follows from Corollary 2.5 that A = B . �

LEMMA 3.3. φ is homogeneous.

Proof. Let A ∈ B(H) and λ ∈ C . Then for all B ∈ B(H) , we have that

Wk(φ(B)φ(λA)−φ(λA)φ(B)∗) = λWk(BA−AB∗)
= λWk(φ(B)φ(A)−φ(A)φ(B)∗) =Wk(φ(B)(λ φ(A))− (λ φ(A))φ(B)∗).

Since φ is surjective, it follows from Corollary 2.5 that φ(λA) = λ φ(A) . �

LEMMA 3.4. The following statements are true.

(1) φ preserves self-adjoint operators in both directions and preserves the commu-
tativity of self-adjoint operators.

(2) Either φ(I) = I and Wk(φ(A)) = Wk(A) for all A ∈ B(H) , or φ(I) = −I and
Wk(φ(A)) = −Wk(A) for all A ∈ B(H) .

Proof. From

Wk(φ(I)φ(A)−φ(A)φ(I)∗) = Wk(IA−AI∗) = {0},
it follows that

φ(I)φ(A) = φ(A)φ(I)∗ (3.3)

for all A ∈ B(H) . Since φ is surjective, this implies that φ(I) = λ I for some non-zero
real number λ . Now, if A is self-adjoint, from (3.2) we see that φ(A) is also self-
adjoint. Further, if A and B are commuting self-adjoint operators, by (3.2) we know
that φ(A) and φ(B) commute. This proves (1).

To prove (2), we notice that φ(iI) = iλ I by Lemma 3.3. Then we have that

{2i} = Wk((iI)I− I(iI)∗) = Wk((iλ I)(λ I)+ (λ I)(iλ I)) = {2iλ 2}.
So λ = ±1 and then φ(I) = ±I . If φ(I) = I , then for A ∈ B(H) , there holds

2iWk(A) = Wk((iI)A−A(iI)∗)
= Wk(φ(iI)φ(A)−φ(A)φ(iI)∗)
= Wk((iI)φ(A)−φ(A)(iI)∗)
= 2iWk(φ(A)).
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It follows that Wk(φ(A)) = Wk(A) . Similarly, if φ(I) = −I , then Wk(φ(A)) = −Wk(A)
for all A ∈ B(H) . �

LEMMA 3.5. Suppose that φ(I) = I . Let P be a non-zero projection in B(H) .
Then φ(P) is a projection in B(K) .

Proof. Since

2iWk(P) = Wk((iP)P−P(iP)∗) = Wk(φ(iP)φ(P)−φ(P)φ(iP)∗)

= Wk(iφ(P)φ(P)+ iφ(P)φ(P)) = 2iWk(φ(P)2),

we have that Wk(φ(P)2) = Wk(P) = Wk(φ(P)) .
Since

{0} = Wk((iP)(I−P)− (I−P)(iP)∗)
= Wk(φ(iP)φ(I −P)−φ(I−P)φ(iP)∗)
= iWk(φ(P)φ(I −P)+ φ(I−P)φ(P)),

we have that φ(P)φ(I −P)+ φ(I −P)φ(P) = 0. Hence, since φ(P)φ(I −P) = φ(I −
P)φ(P) by Lemma 3.4, we have that φ(P)φ(I −P) = 0.

For any A ∈ B(H) , we have

Wk(φ(P− I)φ(A)−φ(A)φ(P− I)) = Wk((P− I)A−A(P− I))
= Wk(PA−AP) = Wk(φ(P)φ(A)−φ(A)φ(P)).

In particular, for any unit vector y ∈ K , we have

Wk(φ(P− I)y⊗ y− y⊗ yφ(P− I)) = Wk(φ(P)y⊗ y− y⊗ yφ(P)).

By Proposition 2.6 and Example 2.7, there are scalars μ and ν with ν ∈ {−1,1} such
that

φ(P− I) = μI + νφ(P).

It follows from φ(P)φ(P− I) = 0 that φ(P)2 = λ φ(P) for some scalar λ . Hence, since
Wk(φ(P)2) = Wk(φ(P)) and φ(P) �= 0, we have that λ = 1. So φ(P)2 = φ(P) . �

We are now in a position to prove the main result.

Proof of Theorem. It was showed in [7] in the case k = 1 and the dimension of
H is greater than 3. In the sequel, we assume that k > 1 or k = 1 and the dimension
is equal to 2. Furthermore, we will suppose that φ(I) = I ; otherwise, consider −φ
instead of φ .

Thus by Lemmas 3.4, 3.5 and Proposition 2.3, for P ∈ B(H) , φ(P) is a projection
in B(K) with rank one if and only if P is a projection in B(H) with rank one.

Our first aim is to show that φ is additive. For this, let A and B be in B(H) . For
a unit vector y in K , there is a unit vector x in H such that φ(x⊗ x) = y⊗ y . Then we
have that

iWk(y⊗ yφ(A+B)+ φ(A+B)y⊗ y)= iWk(x⊗ x(A+B)+ (A+B)x⊗ x),
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iWk(y⊗ yφ(A)+ φ(A)y⊗ y) = iWk(x⊗ xA+Ax⊗ x),

and
iWk(y⊗ yφ(B)+ φ(B)y⊗ y) = iWk(x⊗ xB+Bx⊗ x).

By Proposition 2.4, we have that 〈φ(A+B)y,y〉 = 〈(A+B)x,x〉 , 〈φ(A)y,y〉 = 〈Ax,x〉
and 〈φ(B)y,y〉 = 〈Bx,x〉 . Consequently, 〈φ(A + B)y,y〉 = 〈(φ(A)+ φ(B))y,y〉 for all
unit vectors y in K . It follows that φ(A+B) = φ(A)+ φ(B) .

So far, taking into account Lemmas 3.3, we know that φ is a linear bijection from
B(H) onto B(K) which preserves the k -dimensional numerical range. Now by the
main result in [20] (Theorems 3.5, 4.2, 4.4 and the remark followed theorem 3.5), one
of the following holds:

(1) there is a unitary U from H onto K such that φ(A) = UAU∗ for all A ∈ B(H) .

(2) there is a conjugate unitary U from H onto K such that φ(A) = UA∗U∗ for all
A ∈ B(H) ; or in the case the dimension of H is equal to 2k , φ(A) = 1

k tr(A)I −
UA∗U∗ .

(3) k > 1 and the dimension of H is equal to 2k , there is a unitary U from H onto
K such that φ(A) = 1

k tr(A)I−UAU∗ for all A ∈ B(H) .

(4) k > 1 and the dimension of H is equal to 2k , there is a conjugate unitary U from
H onto K such that φ(A) = 1

k tr(A)I−UA∗U∗ for all A ∈ B(H) .

Possibilities (3) and (4) are impossible. This is because that φ(P) would be not a
projection with rank-1 for a projection P with rank-1. To complete the proof, we have
to show that possibility (2) is impossible too. Suppose on the contrary that (2) holds.
Then for all A,B ∈ B(H) , we have that

Wk(AB−BA∗) = Wk(UA∗B∗U∗ −UB∗AU∗)
= Con(Wk(A∗B∗ −B∗A)) = Wk(BA−A∗B).

This is not true; for example, by taking A = x⊗y and B = y⊗z for orthonormal vectors
x,y,z in H , it would yield that x⊗ z = 0. �
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[3] M. BREŠAR AND M. FOŠNER, On rings with involution equipped with some new product, Publ. Math.
Debrecen. 57 (2000), 121–134.

[4] M. A. CHEBOTAR, Y. FONG AND P. H. LEE, On maps preserving zeros of the polynomial xy− yx∗ ,
Linear Algebra Appl. 408 (2005), 230–243.

[5] J. L. CUI AND J. C. HOU, Linear maps preserving elements annihilated by a polynomial XY −YX† ,
Studia Math. 174 (2006), 183–199.

[6] J. L. CUI AND C. K. LI, Maps preserving product XY −YX∗ on factor von Neumann algebras,
Linear Algebra Appl. 431 (2009), 833–842.



344 C. CHEN AND F. LU

[7] J. L. CUI, Q. LI, J. HOU AND X. QI, Some unitary similarity invariant sets preserves of skew Lie
products, Linear Algebra Appl. 457 (2014), 76–92.

[8] J. L. CUI AND C. PARK, Maps preserving strong skew Lie product on factor von Neumann algebras,
Acta Math. Sci. 32 (2012), 531–538.

[9] P. A. FILLMORE AND J. P. WILLIAM, Some convexity theorems for matrices, Glasgow Math. J. 12
(1971), 110–117.

[10] H. GAU AND C. K. LI, C ∗ -isomorphisms, Jordan isomorphisms, and numerical range preserving
maps, Proc. Amer. Math. Soc. 135 (2007), 2907–2914.

[11] M. GOLDBERG AND E. STRAUS, Inclusion relations involving k -numerical ranges, Linear Algebra
Appl. 15 (1976), 261–270.

[12] K. GUSTAFSON AND D. RAO, Numerical ranges: The field of values of linear operators and matrices,
Springer, New York, 1997.

[13] P. R. HALMOS, A Hilbert Space Problem Book, 2nd ed., Springer Verlag, New York. 1982.
[14] C. K. LI, Linear operators preserving the higher numerical radius of matrices, Linear and Multilinear

Algebra. 21 (1987), 63–73.
[15] C. K. LI, A survey on linear preservers of numerical ranges and radii, Taiwanese J. Math. 5 (2001),

477–496.
[16] F. LU, Linear dependence of operators characterized by trace functionals, Linear Algebra Appl. 434

(2011), 343–355.
[17] M. MARCUS, N. MOYLS AND I. FILIPPENKO,Normality and the higher numerical range, Canad. J.

Math. 30 (1978), 419–430.
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