NONLINEAR MAPS PRESERVING HIGHER-DIMENSIONAL NUMERICAL RANGE OF SKEW LIE PRODUCT OF OPERATORS

Chaoqun Chen and Fangyan Lu

(Communicated by C.-K. Li)

Abstract

Let k be a positive integer. Let H and K be complex Hilbert spaces of dimensions greater than k. By $W_{k}(A)$ denote the k-dimensional numerical range of an operator A. In this paper we prove that a surjective map $\phi: B(H) \rightarrow B(K)$ satisfies $W_{k}\left(A B-B A^{*}\right)=$ $W_{k}\left(\phi(A) \phi(B)-\phi(B) \phi(A)^{*}\right)$ for all $A, B \in B(H)$ if and only if there exists a unitary operator $U \in B(H, K)$ such that $\phi(A)=\gamma U A U^{*}$ for all $A \in B(H)$, where $\gamma \in\{-1,1\}$.

1. Introduction

Let H be a complex Hilbert space with the product $\langle\cdot, \cdot\rangle$ and denote by $B(H)$ the algebra of all bounded linear operators on H. A projection P on H is an operator in $B(H)$ which is self-adjoint and idempotent. For non-zero vectors $x, y \in H$, the rank-1 operator $x \otimes y$ is defined by the map $z \mapsto\langle z, y\rangle x$ for $z \in H$. For a finite rank operator A, we use $\operatorname{tr}(A)$ to denote its trace.

Recall that the numerical range of an operator $A \in B(H)$ is defined by

$$
W(A)=\{\langle A x, x\rangle: x \in H,\|x\|=1\} .
$$

This is useful in studying operators and matrices; for example, see [12]. Motivated by theory and applications, there are many generalizations of the numerical range [12]. Among others, Halmos introduced the higher-dimensional numerical range, which have been studied by many authors $[9,15,20,21,13,1,2,17,11]$. Let k be a positive integer which is strictly smaller than the dimension of H. For $A \in B(H)$, the k-dimensional numerical range $W_{k}(A)$ of A is defined by

$$
W_{k}(A)=\left\{\frac{1}{k} \operatorname{tr}(P A P): P \text { is projection on } H \text { with rank } k\right\}
$$

which is equivalent to

$$
W_{k}(A)=\left\{\frac{1}{k} \sum_{j=1}^{k}\left\langle A x_{j}, x_{j}\right\rangle: x_{1}, \cdots, x_{k} \text { are orthonormal vectors }\right\} .
$$

[^0]It is obvious that $W_{1}(A)=W(A)$. Generally, to compute the higher-dimensional numerical range is more difficult than to do the numerical range. Moreover, from the viewpoint of operator theory, the closure of $W_{k}(A)$ does not necessarily contain the spectrum of A and the condition $W_{k}(A) \subseteq[0,+\infty]$ does not imply that A is positive.

There has been a great deal of interest in studying preservers of a given generalized numerical range, i.e., maps which leave invariant the given generalized numerical ranges, see [15]. Pierce and Watkins [21] characterized linear operators preserving k dimensional numerical range on $\mathbb{C}_{n \times n}$ with $n \neq 2 k$. C. K. Li [14] completed the work of Pierce and Watkins and characterized the unital linear operators on matrix spaces that preserve higher-dimensional numerical radius. In [20], Omladič considered the surjective linear maps between the algebras $B(H)$ and $B(K)$ that preserve higher-dimensional numerical range.

The purpose of this paper is to characterize nonlinear maps preserving higherdimensional numerical range of skew Lie product of operators. For any $A, B \in B(H)$, the product $A B-B A^{*}$ is called the skew Lie product of A and B. This product is playing a more and more important role in some research topics, and its study has recently attracted many authors' attention (see, for example, [3, 4, 5, 6, 8, 22, 24, 23, 18]). In this paper, we will study the map ϕ that satisfies

$$
W_{k}\left(A B-B A^{*}\right)=W_{k}\left(\phi(A) \phi(B)-\phi(B) \phi(A)^{*}\right)
$$

for all A, B in the domain. We will show that such a map is a C^{*}-isomorphism. This was obtained in [7] for the numerical range setting; however our approach is very different from that because of the difference between the numerical range and the higherdimensional numerical range.

2. Preliminaries

Throughout this section, k is a positive integer and H is a complex Hilbert space of dimension greater than k. By $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ denote the subspace spanned by vectors $x_{1}, x_{2}, \ldots, x_{n}$ in H. The symbol i will stand for the imaginary unit.

We first recall some basic properties on higher-dimensional numerical range. One may see $[9,13]$ for more information.

Proposition 2.1. ([13]) Let $A \in B(H)$.
(1) $W_{k}(A)$ is convex.
(2) If U is unitary, then $W_{k}\left(U A U^{*}\right)=W_{k}(A)$; if U is conjugate unitary, then $W_{k}\left(U A U^{*}\right)$ $=\mathfrak{C o n}\left(W_{k}(A)\right)$, where $\mathfrak{C o n}\left(W_{k}(A)\right)=\left\{\bar{\lambda}: \lambda \in W_{k}(A)\right\}$.
(3) $W_{k}(\lambda A)=\lambda W_{k}(A)$ for any $\lambda \in \mathbb{C}$.
(4) $W_{k}(\lambda I+A)=\lambda+W_{k}(A)$ for any $\lambda \in \mathbb{C}$.

The following proposition is well-known; however we can't find the proof. For the sake of completeness, we include a proof.

Proposition 2.2. Let $A \in B(H)$ and $\lambda \in \mathbb{C}$.
(1) $W_{k}(A)=\{\lambda\}$ if and only if $A=\lambda I$.
(2) $W_{k}(A) \subseteq \mathbb{R}$ if and only if A is self-adjoint.

Proof. (1) The sufficiency is obvious. We verify the necessity as follows.
Fix orthonormal vectors $e_{1}, e_{2}, \cdots, e_{k-1}$. For a unit vector $x \in\left[e_{1}, \cdots, e_{k-1}\right]^{\perp}$, we have

$$
\frac{1}{k}\left(\langle A x, x\rangle+\left\langle A e_{1}, e_{1}\right\rangle+\cdots+\left\langle A e_{k-1}, e_{k-1}\right\rangle\right)=\lambda
$$

So $\langle A x, x\rangle=c$ for all unit vectors $x \in\left[e_{1}, \cdots, e_{k-1}\right]^{\perp}$, where $c:=k \lambda-\sum_{j=1}^{k-1}\left\langle A e_{j}, e_{j}\right\rangle$ is a constant.

Let y in H be a unit vector. Since the dimension of $\left[e_{1}, \cdots, e_{k-1}\right]$ is $k-1$, there exist $k-2$ orthonormal vectors $x_{1}, \cdots, x_{k-2} \in\left[e_{1}, \cdots, e_{k-1}\right] \cap[y]^{\perp}$. Since the dimension of $\left[e_{1}, \cdots, e_{k-1}\right]^{\perp}$ is at least 2 , we can take a unit vector $x_{k-1} \in\left[e_{1}, \cdots, e_{k-1}\right]^{\perp} \cap[y]^{\perp}$, and then take a unit vector $x_{k} \in\left[e_{1}, \cdots, e_{k-1}\right]^{\perp} \cap\left[x_{k-1}\right]^{\perp}$. Thus x_{1}, \cdots, x_{k} as well as $x_{1}, \cdots, x_{k-1}, y$ are orthonormal. Now we have

$$
\lambda=\frac{1}{k} \sum_{j=1}^{k}\left\langle A x_{j}, x_{j}\right\rangle \text { and } \lambda=\frac{1}{k}\left(\sum_{j=1}^{k-1}\left\langle A x_{j}, x_{j}\right\rangle+\langle A y, y\rangle\right) .
$$

The former equation together with the previous result yields that

$$
\sum_{j=1}^{k-2}\left\langle A x_{j}, x_{j}\right\rangle=k \lambda-\left\langle A x_{k-1}, x_{k-1}\right\rangle-\left\langle A x_{k}, x_{k}\right\rangle=k \lambda-2 c .
$$

Hence

$$
\langle A y, y\rangle=k \lambda-\sum_{j=1}^{k-1}\left\langle A x_{j}, x_{j}\right\rangle=k \lambda-\sum_{j=1}^{k-2}\left\langle A x_{j}, x_{j}\right\rangle-\left\langle A x_{k-1}, x_{k-1}\right\rangle=c
$$

for all unit vectors y. This implies that $A=c I$. Since $W_{k}(A)=\{\lambda\}$, we have $c=\lambda$, showing (1).
(2) If A is self-adjoint, by the definition, $W_{k}(A) \subseteq \mathbb{R}$.

Now suppose that $W_{k}(A) \subseteq \mathbb{R}$. Decompose $A=A_{1}+i A_{2}$, where A_{1} and A_{2} are self-adjoint. Since $W_{k}(A) \subseteq \mathbb{R}$, we have $W_{k}\left(A_{2}\right)=0$. Thus $A_{2}=0$ by (1). So A is self-adjoint.

It is not difficult to compute the higher-dimensional numerical range of a projection. It is surprising that the higher-dimensional numerical range can determine the rank of a projection.

Proposition 2.3. Let P be a projection in $B(H)$ with rank r.
(1) If $r<k$, then the biggest in $W_{k}(P)$ is $\frac{r}{k}$.
(2) If $r \geqslant k$, then the biggest in $W_{k}(P)$ is 1 .

Proposition 2.4. Let $x \in H$ and $A \in B(H)$. Then the center of the rectangular box from the vertical and horizontal support lines of $W_{k}(A x \otimes x+x \otimes x A)$ is $\frac{\langle A x, x\rangle}{k}$.

Proof. Without loss of generality, we may assume $\|x\|=1$. For simplicity, we write $T=A x \otimes x+x \otimes x A$. Then T has rank two at most.

First suppose that A is self-adjoint. Then T is self-adjoint. If $A x$ and x are linearly dependent, then $A x=\langle A x, x\rangle x$. A simple computation gives that $T=2\langle A x, x\rangle x \otimes x$. It follows that $W_{k}(T)=\left[0, \frac{2\langle A x, x\rangle}{k}\right]$, whose mid-point is obviously $\frac{\langle A x, x\rangle}{k}$. We now assume that $A x$ and x are linearly independent. Then T only has two non-zero eigenvalues $\mu_{1}=a+\sqrt{a^{2}+b^{2}}$ and $\mu_{2}=a-\sqrt{a^{2}+b^{2}}$, where $a=\langle A x, x\rangle$ and $b=\|A x-a x\|$. Since $b \neq 0$, we have $\mu_{2}<0<\mu_{1}$. Let e_{j} be the normalized eigenvector of T corresponding to $\mu_{j}, j=1,2$. Then under the decomposition $H=\left[e_{1}\right] \oplus\left[e_{2}\right] \oplus\left[e_{1}, e_{2}\right]^{\perp}$,

$$
T=\left[\begin{array}{ccc}
\mu_{1} & 0 & 0 \\
0 & \mu_{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Let $\left\{f_{\lambda}\right\}_{\lambda \in \Lambda}$ be an orthonormal basis for $\left[e_{1}, e_{2}\right]^{\perp}$. For orthonormal vectors $x_{1}, x_{2}, \ldots, x_{k}$, write

$$
x_{j}=\alpha_{j 1} e_{1}+\alpha_{j 2} e_{2}+\sum_{\lambda \in \Lambda} \beta_{j \lambda} f_{\lambda}, \quad j=1,2, \ldots, k
$$

Then with $r=1,2$,

$$
\begin{equation*}
\sum_{j=1}^{k}\left|\alpha_{j r}\right|^{2}=\sum_{j=1}^{k}\left|\left\langle x_{j}, e_{r}\right\rangle\right|^{2} \leqslant\left\|e_{r}\right\|^{2}=1 \tag{2.1}
\end{equation*}
$$

A computation shows that

$$
\sum_{j=1}^{k}\left\langle T x_{j}, x_{j}\right\rangle=\mu_{1} \sum_{j=1}^{k}\left|\alpha_{j 1}\right|^{2}+\mu_{2} \sum_{j=1}^{k}\left|\alpha_{j 2}\right|^{2}
$$

This together with (2.1) gives

$$
\mu_{2} \leqslant \sum_{j=1}^{k}\left\langle T x_{j}, x_{j}\right\rangle \leqslant \mu_{1}
$$

(Recall that $\mu_{2}<0<\mu_{1}$.) On the other hand, if $x_{1}=e_{r}, x_{2}, \ldots x_{k} \in\left[e_{1}, e_{2}\right]^{\perp}$, then $\sum_{j=1}^{k}\left\langle T x_{j}, x_{j}\right\rangle=\mu_{r}, r=1,2$. So by the convexity, $W_{k}(T)=\left[\frac{\mu_{2}}{k}, \frac{\mu_{1}}{k}\right]$. The mid-point of this interval is $\frac{\mu_{1}+\mu_{2}}{2 k}=\frac{\langle A x, x\rangle}{k}$.

Now for the general A, write $A=A_{1}+i A_{2}$, where A_{1} and A_{2} are self-adjoint. By the previous result, the mid-point of $W_{k}\left(A_{j} x \otimes x+x \otimes x A_{j}\right)$ is $\frac{\left\langle A_{j} x, x\right\rangle}{k}$ for $j=1,2$. So the center of the rectangular box from the vertical and horizontal support lines of $W_{k}(A x \otimes x+x \otimes x A)$ is $\frac{\left\langle A_{1} x, x\right\rangle}{k}+\frac{i\left\langle A_{2} x, x\right\rangle}{k}=\frac{\langle A x, x\rangle}{k}$.

Corollary 2.5. Let A and B be in $B(H)$ and suppose that $W_{k}(A x \otimes x+x \otimes$ $x A)=W_{k}(B x \otimes x+x \otimes x B)$ for all $x \in H$. Then $A=B$. In particular, if $W_{k}\left(C A-A C^{*}\right)=$ $W_{k}\left(C B-B C^{*}\right)$ for all $C \in B(H)$, then $A=B$.

Proof. For $x \in H$, putting $C=i x \otimes x$, we get

$$
i W_{k}(A x \otimes x+x \otimes x A)=i W_{k}(B x \otimes x+x \otimes x B)
$$

By Proposition 2.4, the centers of the rectangular box from by the vertical and horizontal support lines of $W_{k}(A x \otimes x+x \otimes x A)$ and $W_{k}(B x \otimes x+x \otimes x B)$ are $\frac{\langle A x, x\rangle}{k}$ and $\frac{\langle B x, x\rangle}{k}$, respectively. So $\langle A x, x\rangle=\langle B x, x\rangle$ for all $x \in H$. This implies that $A=B$.

Proposition 2.6. Let A and B be in $B(H)$ and suppose that $\|A x-\langle A x, x\rangle x\|=$ $\|B x-\langle B x, x\rangle x\|$ for all unit vectors x in H. Then $A=\mu I+v B$ or $A=\mu I+v B^{*}$ for $\mu, v \in \mathbb{C}$ with $|v|=1$.

Proof. For a unit vector x, from $\|A x-\langle A x, x\rangle x\|=\|B x-\langle B x, x\rangle x\|$ we get that

$$
\|A x\|^{2}-|\langle A x, x\rangle|^{2}=\|B x\|^{2}-|\langle B x, x\rangle|^{2}
$$

Then for a pair of orthonormal vectors x, y in H and a scalar λ with $|\lambda|=1$, by replacing x with $\frac{\sqrt{2}}{2}(x+\lambda y)$, we have

$$
\begin{aligned}
& 2\|A x+\lambda A y\|^{2}-|\langle A x, x\rangle+\langle A y, y\rangle+\bar{\lambda}\langle A x, y\rangle+\lambda\langle A y, x\rangle|^{2} \\
& =2\|B x+\lambda B y\|^{2}-|\langle B x, x\rangle+\langle B y, y\rangle+\bar{\lambda}\langle B x, y\rangle+\lambda\langle B y, x\rangle|^{2} .
\end{aligned}
$$

Since this equation also holds for $-\lambda$, it follows from the parallelogram law that

$$
\begin{aligned}
& 2\|A x\|^{2}+2\|A y\|^{2}-|\langle A x, x\rangle+\langle A y, y\rangle|^{2}-|\bar{\lambda}\langle A x, y\rangle+\lambda\langle A y, x\rangle|^{2} \\
& =2\|B x\|^{2}+2\|B y\|^{2}-|\langle B x, x\rangle+\langle B y, y\rangle|^{2}-|\bar{\lambda}\langle B x, y\rangle+\lambda\langle B y, x\rangle|^{2} .
\end{aligned}
$$

By replacing λ with $i \lambda$ and by the parallelogram law, we have

$$
\begin{aligned}
& 2\|A x\|^{2}+2\|A y\|^{2}-|\langle A x, x\rangle+\langle A y, y\rangle|^{2}-|\langle A x, y\rangle|^{2}-|\langle A y, x\rangle|^{2} \\
& =2\|B x\|^{2}+2\|B y\|^{2}-|\langle B x, x\rangle+\langle B y, y\rangle|^{2}-|\langle B x, y\rangle|^{2}-|\langle B y, x\rangle|^{2}
\end{aligned}
$$

Comparing the last two equations, we get that

$$
\operatorname{Re} \lambda^{2}\langle A y, x\rangle \overline{\langle A x, y\rangle}=\operatorname{Re} \lambda^{2}\langle B y, x\rangle \overline{\langle B x, y\rangle}
$$

for all $\lambda \in \mathbb{C}$ with $|\lambda|=1$. So $\langle A y, x\rangle \overline{\langle A x, y\rangle}=\langle B y, x\rangle \overline{\langle B x, y\rangle}$ for all pairs of orthonormal vectors x, y. Now the desired result follows from [16, Proposition 2.3].

We will close this section by computing the higher-dimensional numerical radius of a rank-2 operator. For $A \in B(H)$, the k-dimensional numerical radius of A is defined as

$$
w_{k}(A)=\sup \left\{|\lambda|: \lambda \in W_{k}(A)\right\}
$$

Example 2.7. Let A be a self-adjoint operator in $B(H)$ and x is a unit vector in H. Then $w_{k}(x \otimes x A-A x \otimes x)=\frac{1}{k}\|A x-\langle A x, x\rangle x\|$.

Proof. A simple computation shows that

$$
x \otimes x A-A x \otimes x=b(x \otimes y-y \otimes x)
$$

where $b=\|A x-\langle A x, x\rangle x\|$ and y is a unit vector which is a multiple of $A x-\langle A x, x\rangle x$ and is orthogonal to x.

Let P be a projection in $B(H)$. Then since $\langle P x, P y\rangle+\left\langle P^{\perp} x, P^{\perp} y\right\rangle=\langle x, y\rangle=0$, we have that

$$
\operatorname{tr}(P(x \otimes y-y \otimes x) P)=\langle P x, P y\rangle-\langle P y, P x\rangle=\left\langle P^{\perp} y, P^{\perp} x\right\rangle-\left\langle P^{\perp} x, P^{\perp} y\right\rangle
$$

If $\|P x\|^{2}+\|P y\|^{2} \leqslant 1$, then

$$
|\operatorname{tr}(P(x \otimes y-y \otimes x) P)| \leqslant 2|\langle P x, P y\rangle| \leqslant 1
$$

if $\|P x\|^{2}+\|P y\|^{2} \geqslant 1$, then $\left\|P^{\perp} x\right\|^{2}+\left\|P^{\perp} y\right\|^{2}=\|x\|^{2}+\|y\|^{2}-\left(\|P x\|^{2}+\|P y\|^{2}\right) \leqslant 1$ and hence

$$
|\operatorname{tr}(P(x \otimes y-y \otimes x) P)| \leqslant 2\left|\left\langle P^{\perp} x, P^{\perp} y\right\rangle\right| \leqslant 1
$$

Consequently, $w_{k}(x \otimes y-y \otimes x) \leqslant \frac{1}{k}$.
On the other hand, with $e_{1}=\frac{\sqrt{2}}{2}(i x+y)$ and e_{2}, \ldots, e_{k} being orthonormal vectors in $[x, y]^{\perp}$, we have

$$
\sum_{j=1}^{k}\left\langle(x \otimes y-y \otimes x) e_{j}, e_{j}\right\rangle=-i
$$

So $w_{k}(x \otimes y-y \otimes x) \geqslant \frac{1}{k}$. Thus, $w_{k}(x \otimes y-y \otimes x)=\frac{1}{k}$ and then $w_{k}(x \otimes x A-A x \otimes x)=$ $\frac{b}{k}$.

3. Higher-dimensional numerical range preservers

In this section, we characterize nonlinear maps which preserve the higher-numerical range of skew Lie product of operators. The main result is as follows.

THEOREM 3.1. Let k be a positive integer. Let H and K be two complex Hilbert spaces with the dimensions greater than k. Suppose that $\phi: B(H) \rightarrow B(K)$ is a surjective map. Then ϕ satisfies

$$
\begin{equation*}
W_{k}\left(A B-B A^{*}\right)=W_{k}\left(\phi(A) \phi(B)-\phi(B) \phi(A)^{*}\right) \tag{3.2}
\end{equation*}
$$

for all $A, B \in B(H)$ if and only if there is a real number $\gamma \in\{-1,1\}$ and a unitary operator $U \in B(H, K)$ such that $\phi(A)=\gamma U A U^{*}$ for all $A \in B(H)$.

The sufficiency part is clear. To prove the necessity part, we need several lemmas, in which we will keep the notations in the statement of the theorem.

Lemma 3.2. ϕ is injective.
Proof. Let $A, B \in B(H)$ and suppose that $\phi(A)=\phi(B)$. Then for any $C \in B(H)$, we have

$$
\begin{aligned}
W_{k}\left(C A-A C^{*}\right) & =W_{k}\left(\phi(C) \phi(A)-\phi(A) \phi(C)^{*}\right) \\
& =W_{k}\left(\phi(C) \phi(B)-\phi(B) \phi(C)^{*}\right) \\
& =W_{k}\left(C B-B C^{*}\right) .
\end{aligned}
$$

It follows from Corollary 2.5 that $A=B$.
Lemma 3.3. ϕ is homogeneous.
Proof. Let $A \in B(H)$ and $\lambda \in \mathbb{C}$. Then for all $B \in B(H)$, we have that

$$
\begin{aligned}
& W_{k}\left(\phi(B) \phi(\lambda A)-\phi(\lambda A) \phi(B)^{*}\right)=\lambda W_{k}\left(B A-A B^{*}\right) \\
& =\lambda W_{k}\left(\phi(B) \phi(A)-\phi(A) \phi(B)^{*}\right)=W_{k}\left(\phi(B)(\lambda \phi(A))-(\lambda \phi(A)) \phi(B)^{*}\right)
\end{aligned}
$$

Since ϕ is surjective, it follows from Corollary 2.5 that $\phi(\lambda A)=\lambda \phi(A)$.
Lemma 3.4. The following statements are true.
(1) ϕ preserves self-adjoint operators in both directions and preserves the commutativity of self-adjoint operators.
(2) Either $\phi(I)=I$ and $W_{k}(\phi(A))=W_{k}(A)$ for all $A \in B(H)$, or $\phi(I)=-I$ and $W_{k}(\phi(A))=-W_{k}(A)$ for all $A \in B(H)$.

Proof. From

$$
W_{k}\left(\phi(I) \phi(A)-\phi(A) \phi(I)^{*}\right)=W_{k}\left(I A-A I^{*}\right)=\{0\}
$$

it follows that

$$
\begin{equation*}
\phi(I) \phi(A)=\phi(A) \phi(I)^{*} \tag{3.3}
\end{equation*}
$$

for all $A \in B(H)$. Since ϕ is surjective, this implies that $\phi(I)=\lambda I$ for some non-zero real number λ. Now, if A is self-adjoint, from (3.2) we see that $\phi(A)$ is also selfadjoint. Further, if A and B are commuting self-adjoint operators, by (3.2) we know that $\phi(A)$ and $\phi(B)$ commute. This proves (1).

To prove (2), we notice that $\phi(i I)=i \lambda I$ by Lemma 3.3. Then we have that

$$
\{2 i\}=W_{k}\left((i I) I-I(i I)^{*}\right)=W_{k}((i \lambda I)(\lambda I)+(\lambda I)(i \lambda I))=\left\{2 i \lambda^{2}\right\}
$$

So $\lambda= \pm 1$ and then $\phi(I)= \pm I$. If $\phi(I)=I$, then for $A \in B(H)$, there holds

$$
\begin{aligned}
2 i W_{k}(A) & =W_{k}\left((i I) A-A(i I)^{*}\right) \\
& =W_{k}\left(\phi(i I) \phi(A)-\phi(A) \phi(i I)^{*}\right) \\
& =W_{k}\left((i I) \phi(A)-\phi(A)(i I)^{*}\right) \\
& =2 i W_{k}(\phi(A)) .
\end{aligned}
$$

It follows that $W_{k}(\phi(A))=W_{k}(A)$. Similarly, if $\phi(I)=-I$, then $W_{k}(\phi(A))=-W_{k}(A)$ for all $A \in B(H)$.

Lemma 3.5. Suppose that $\phi(I)=I$. Let P be a non-zero projection in $B(H)$. Then $\phi(P)$ is a projection in $B(K)$.

Proof. Since

$$
\begin{aligned}
2 i W_{k}(P) & =W_{k}\left((i P) P-P(i P)^{*}\right)=W_{k}\left(\phi(i P) \phi(P)-\phi(P) \phi(i P)^{*}\right) \\
& =W_{k}(i \phi(P) \phi(P)+i \phi(P) \phi(P))=2 i W_{k}\left(\phi(P)^{2}\right)
\end{aligned}
$$

we have that $W_{k}\left(\phi(P)^{2}\right)=W_{k}(P)=W_{k}(\phi(P))$.
Since

$$
\begin{aligned}
\{0\} & =W_{k}\left((i P)(I-P)-(I-P)(i P)^{*}\right) \\
& =W_{k}\left(\phi(i P) \phi(I-P)-\phi(I-P) \phi(i P)^{*}\right) \\
& =i W_{k}(\phi(P) \phi(I-P)+\phi(I-P) \phi(P)),
\end{aligned}
$$

we have that $\phi(P) \phi(I-P)+\phi(I-P) \phi(P)=0$. Hence, since $\phi(P) \phi(I-P)=\phi(I-$ $P) \phi(P)$ by Lemma 3.4, we have that $\phi(P) \phi(I-P)=0$.

For any $A \in B(H)$, we have

$$
\begin{aligned}
& W_{k}(\phi(P-I) \phi(A)-\phi(A) \phi(P-I))=W_{k}((P-I) A-A(P-I)) \\
& =W_{k}(P A-A P)=W_{k}(\phi(P) \phi(A)-\phi(A) \phi(P))
\end{aligned}
$$

In particular, for any unit vector $y \in K$, we have

$$
W_{k}(\phi(P-I) y \otimes y-y \otimes y \phi(P-I))=W_{k}(\phi(P) y \otimes y-y \otimes y \phi(P))
$$

By Proposition 2.6 and Example 2.7, there are scalars μ and v with $v \in\{-1,1\}$ such that

$$
\phi(P-I)=\mu I+v \phi(P)
$$

It follows from $\phi(P) \phi(P-I)=0$ that $\phi(P)^{2}=\lambda \phi(P)$ for some scalar λ. Hence, since $W_{k}\left(\phi(P)^{2}\right)=W_{k}(\phi(P))$ and $\phi(P) \neq 0$, we have that $\lambda=1$. So $\phi(P)^{2}=\phi(P)$.

We are now in a position to prove the main result.
Proof of Theorem. It was showed in [7] in the case $k=1$ and the dimension of H is greater than 3. In the sequel, we assume that $k>1$ or $k=1$ and the dimension is equal to 2 . Furthermore, we will suppose that $\phi(I)=I$; otherwise, consider $-\phi$ instead of ϕ.

Thus by Lemmas 3.4, 3.5 and Proposition 2.3, for $P \in B(H), \phi(P)$ is a projection in $B(K)$ with rank one if and only if P is a projection in $B(H)$ with rank one.

Our first aim is to show that ϕ is additive. For this, let A and B be in $B(H)$. For a unit vector y in K, there is a unit vector x in H such that $\phi(x \otimes x)=y \otimes y$. Then we have that

$$
i W_{k}(y \otimes y \phi(A+B)+\phi(A+B) y \otimes y)=i W_{k}(x \otimes x(A+B)+(A+B) x \otimes x)
$$

$$
i W_{k}(y \otimes y \phi(A)+\phi(A) y \otimes y)=i W_{k}(x \otimes x A+A x \otimes x)
$$

and

$$
i W_{k}(y \otimes y \phi(B)+\phi(B) y \otimes y)=i W_{k}(x \otimes x B+B x \otimes x)
$$

By Proposition 2.4, we have that $\langle\phi(A+B) y, y\rangle=\langle(A+B) x, x\rangle,\langle\phi(A) y, y\rangle=\langle A x, x\rangle$ and $\langle\phi(B) y, y\rangle=\langle B x, x\rangle$. Consequently, $\langle\phi(A+B) y, y\rangle=\langle(\phi(A)+\phi(B)) y, y\rangle$ for all unit vectors y in K. It follows that $\phi(A+B)=\phi(A)+\phi(B)$.

So far, taking into account Lemmas 3.3, we know that ϕ is a linear bijection from $B(H)$ onto $B(K)$ which preserves the k-dimensional numerical range. Now by the main result in [20] (Theorems 3.5, 4.2, 4.4 and the remark followed theorem 3.5), one of the following holds:
(1) there is a unitary U from H onto K such that $\phi(A)=U A U^{*}$ for all $A \in B(H)$.
(2) there is a conjugate unitary U from H onto K such that $\phi(A)=U A^{*} U^{*}$ for all $A \in B(H)$; or in the case the dimension of H is equal to $2 k, \phi(A)=\frac{1}{k} \operatorname{tr}(A) I-$ $U A^{*} U^{*}$.
(3) $k>1$ and the dimension of H is equal to $2 k$, there is a unitary U from H onto K such that $\phi(A)=\frac{1}{k} \operatorname{tr}(A) I-U A U^{*}$ for all $A \in B(H)$.
(4) $k>1$ and the dimension of H is equal to $2 k$, there is a conjugate unitary U from H onto K such that $\phi(A)=\frac{1}{k} \operatorname{tr}(A) I-U A^{*} U^{*}$ for all $A \in B(H)$.

Possibilities (3) and (4) are impossible. This is because that $\phi(P)$ would be not a projection with rank-1 for a projection P with rank-1. To complete the proof, we have to show that possibility (2) is impossible too. Suppose on the contrary that (2) holds. Then for all $A, B \in B(H)$, we have that

$$
\begin{aligned}
& W_{k}\left(A B-B A^{*}\right)=W_{k}\left(U A^{*} B^{*} U^{*}-U B^{*} A U^{*}\right) \\
& =\operatorname{Con}\left(W_{k}\left(A^{*} B^{*}-B^{*} A\right)\right)=W_{k}\left(B A-A^{*} B\right)
\end{aligned}
$$

This is not true; for example, by taking $A=x \otimes y$ and $B=y \otimes z$ for orthonormal vectors x, y, z in H, it would yield that $x \otimes z=0$.

REFERENCES

[1] C. Akemann and J. Anderson, The spectral scale and the numerical range, Internat. J. Math. 14 (2003), 171-189.
[2] C. Akemann and J. Anderson, The spectral scale and the k-numerical range, Glasg. Math. J. 45 (2003), 225-238.
[3] M. BREŠAR AND M. FOŠNER, On rings with involution equipped with some new product, Publ. Math. Debrecen. 57 (2000), 121-134.
[4] M. A. Chebotar, Y. Fong and P. H. Lee, On maps preserving zeros of the polynomial $x y-y x^{*}$, Linear Algebra Appl. 408 (2005), 230-243.
[5] J. L. CuI and J. C. Hou, Linear maps preserving elements annihilated by a polynomial $X Y-Y X^{\dagger}$, Studia Math. 174 (2006), 183-199.
[6] J. L. CUI And C. K. Li, Maps preserving product $X Y-Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), 833-842.
[7] J. L. Cui, Q. Li, J. Hou and X. Qi, Some unitary similarity invariant sets preserves of skew Lie products, Linear Algebra Appl. 457 (2014), 76-92.
[8] J. L. Cui and C. Park, Maps preserving strong skew Lie product on factor von Neumann algebras, Acta Math. Sci. 32 (2012), 531-538.
[9] P. A. Fillmore and J. P. William, Some convexity theorems for matrices, Glasgow Math. J. 12 (1971), 110-117.
[10] H. Gau and C. K. Li, C^{*}-isomorphisms, Jordan isomorphisms, and numerical range preserving maps, Proc. Amer. Math. Soc. 135 (2007), 2907-2914.
[11] M. Goldberg and E. Straus, Inclusion relations involving k-numerical ranges, Linear Algebra Appl. 15 (1976), 261-270.
[12] K. GUSTAFSON AND D. RaO, Numerical ranges: The field of values of linear operators and matrices, Springer, New York, 1997.
[13] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer Verlag, New York. 1982.
[14] C. K. Li, Linear operators preserving the higher numerical radius of matrices, Linear and Multilinear Algebra. 21 (1987), 63-73.
[15] C. K. Li, A survey on linear preservers of numerical ranges and radii, Taiwanese J. Math. 5 (2001), 477-496.
[16] F. Lu, Linear dependence of operators characterized by trace functionals, Linear Algebra Appl. 434 (2011), 343-355.
[17] M. Marcus, N. Moyls and I. Filippenko, Normality and the higher numerical range, Canad. J. Math. 30 (1978), 419-430.
[18] L. MolnáR, A condition for a subspace of $B(H)$ to be an ideal, Linear Algebra Appl. 235 (1996), 229-234.
[19] L. MolnÁr and P. ŠEmrl, Nonlinear commutativity preserving maps on self-adjoint operators, Quart. J. Math. 56 (2005), 589-595.
[20] M. OmLadič, On operators preserving the numerical range, Linear Algebra Appl. 134 (1990), 3151.
[21] S. Pierce and W. Watkins, Invariants of linear maps on matrix algebras, Linear and Multilinear Algebra. 6 (1978), 185-200.
[22] X. QI and J. Hou, Strong skew commutativity preserving maps on von Neumann algebras, J. Math. Anal. Appl. 397 (2013), 362-370.
[23] P. ŠEMRL, On Jordan*-derivations and an application, Colloq. Math. 59 (1990), 241-251.
[24] P. ŠEMRL, Quadratic functionals and Jordan*-derivations, Studia Math. 97 (1991), 157-165.

Chaoqun Chen
Department of Mathematics, Soochow University Suzhou 215006, P. R. China

Fangyan Lu
Department of Mathematics, Soochow University
Suzhou 215006, P. R. China
e-mail: fylu@suda.edu.cn

[^0]: Mathematics subject classification (2010): 47B48, 46L10.
 Keywords and phrases: Higher-dimensional numerical range, skew Lie product.
 This work is supported by the National Natural Science Foundation of China (No. 11571247).

