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Abstract. Let k be a positive integer. Let H and K be complex Hilbert spaces of dimen-
sions greater than k. By W;(A) denote the k-dimensional numerical range of an operator
A. In this paper we prove that a surjective map ¢ : B(H) — B(K) satisfies Wy(AB — BA*) =
Wi(9(A)¢(B)— ¢ (B)p(A)*) for all A,B € B(H) if and only if there exists a unitary operator
U € B(H,K) such that ¢(A) = yUAU" for all A € B(H), where y € {—1,1}.

1. Introduction

Let H be a complex Hilbert space with the product (-,-) and denote by B(H) the
algebra of all bounded linear operators on H. A projection P on H is an operator in
B(H) which is self-adjoint and idempotent. For non-zero vectors x,y € H, the rank-1
operator x®y is defined by the map z +— (z,y)x for z € H. For a finite rank operator
A, we use tr(A) to denote its trace.

Recall that the numerical range of an operator A € B(H) is defined by

W(A) ={(Ax,x) :x € H,|x|| = 1}.

This is useful in studying operators and matrices; for example, see [12]. Motivated
by theory and applications, there are many generalizations of the numerical range [12].
Among others, Halmos introduced the higher-dimensional numerical range, which have
been studied by many authors [9, 15,20,21,13,1,2,17,11]. Let k be a positive integer
which is strictly smaller than the dimension of H. For A € B(H), the k-dimensional
numerical range Wy (A) of A is defined by

Wi(A) = {}tr(PAP) : P is projection on H with rank k},
which is equivalent to

k&

1 k
Wi(A) = {— Y (Axj,x;j) : x1,- -, X are orthonormal vectors ¢ .
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It is obvious that W) (A) = W(A). Generally, to compute the higher-dimensional nu-
merical range is more difficult than to do the numerical range. Moreover, from the
viewpoint of operator theory, the closure of W;(A) does not necessarily contain the
spectrum of A and the condition W;(A) C [0, 4] does not imply that A is positive.

There has been a great deal of interest in studying preservers of a given general-
ized numerical range, i.e., maps which leave invariant the given generalized numerical
ranges, see [15]. Pierce and Watkins [21] characterized linear operators preserving k-
dimensional numerical range on C,x, with n # 2k. C. K. Li [14] completed the work
of Pierce and Watkins and characterized the unital linear operators on matrix spaces that
preserve higher-dimensional numerical radius. In [20], Omladi¢ considered the surjec-
tive linear maps between the algebras B(H) and B(K) that preserve higher-dimensional
numerical range.

The purpose of this paper is to characterize nonlinear maps preserving higher-
dimensional numerical range of skew Lie product of operators. For any A,B € B(H),
the product AB — BA* is called the skew Lie product of A and B. This product is
playing a more and more important role in some research topics, and its study has
recently attracted many authors’ attention (see, for example, [3,4,5,6,8,22,24,23, 18]).
In this paper, we will study the map ¢ that satisfies

Wi(AB —BA") = Wi(9(A)9(B) — ¢(B)9(A)")

for all A,B in the domain. We will show that such a map is a C*-isomorphism. This
was obtained in [7] for the numerical range setting; however our approach is very dif-
ferent from that because of the difference between the numerical range and the higher-
dimensional numerical range.

2. Preliminaries

Throughout this section, k is a positive integer and H is a complex Hilbert space
of dimension greater than k. By [x],x2,...,x,] denote the subspace spanned by vectors
X1,X2,...,X, in H. The symbol i will stand for the imaginary unit.

We first recall some basic properties on higher-dimensional numerical range. One
may see [9, 13] for more information.

PROPOSITION 2.1. ([13]) Let A € B(H).
(1) Wi(A) is convex.

(2) If U is unitary, then Wy, (UAU*) =W (A); if U is conjugate unitary, then Wi, (UAU™)
= Con(Wi(A)), where Con(Wi(A)) ={A : A € Wi (A)}.

(3) Wi(AA) = AWi(A) forany A € C.
(4) Wp(AI+A) = A +Wi(A) forany A € C.

The following proposition is well-known; however we can’t find the proof. For
the sake of completeness, we include a proof.
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PROPOSITION 2.2. Let A€ B(H) and A € C.
(1) Wi(A) ={A} ifand only if A = AI.
(2) Wi(A) CR ifand only if A is self-adjoint.

Proof. (1) The sufficiency is obvious. We verify the necessity as follows.
Fix orthonormal vectors ey, ey, -, e;_1 . For a unit vector x € [e},---,er_1]*, we
have

1
%((Axw +(Aer,er) +- -+ (Aex1,e-1)) = 4.

k=1
So (Ax,x) = ¢ for all unit vectors x € [e1,--,e,_1]*, where ¢ :=kA — ¥ (Aej,e;) is
j=1

a constant.

Let y in H be a unit vector. Since the dimension of [ey,---,e;_1] i k— 1, there
exist k—2 orthonormal vectors xy,---,xx_2 € [e1,---,ex_1]N[y]*. Since the dimension
of [er,--+,ex_1]*" is at least 2, we can take a unit vector x;_| € [e1, -, er_1]= N[y]*,
and then take a unit vector x; € [e1,---,e;_1]* N [xx_1]-. Thus x1,---,x; as well as
X1, ,X;_1,y are orthonormal. Now we have

A:

M=

! 1 (k=1
Z 1<qu,»,xj> and A = z (21<ij,xj> + (Ay,y>> .
. J=

j
The former equation together with the previous result yields that

k=2

Y (Axj,xj) = kA — (Axg_1,xk—1) — (Axg, xi) = kA — 2c.
j=1
Hence
k-1 k-2
(Ay,y) = kA — Z<ij7xj> =kA — E(ij,xj> —(Axg_1,x,1) =cC
j=1 j=1

for all unit vectors y. This implies that A = cI. Since W;(A) = {1}, we have ¢ = 4,
showing (1).

(2) If A is self-adjoint, by the definition, W;(A) C R.

Now suppose that W;(A) C R. Decompose A = A| + iA;, where A| and A, are
self-adjoint. Since W;(A) C R, we have W;(A;) = 0. Thus A =0 by (1). So A is
self-adjoint. [

It is not difficult to compute the higher-dimensional numerical range of a projec-
tion. It is surprising that the higher-dimensional numerical range can determine the
rank of a projection.

PROPOSITION 2.3. Let P be a projection in B(H) with rank r.

(1) If r <k, then the biggest in Wi(P) is 1.
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(2) If r > k, then the biggest in Wy (P) is 1.

PROPOSITION 2.4. Let x € H and A € B(H). Then the center of the rectangular
box from the vertical and horizontal support lines of Wi(Ax®x 4+ xR xA) is @.

Proof. Without loss of generality, we may assume ||x|| = 1. For simplicity, we
write 7 = Ax®x+x®xA. Then T has rank two at most.

First suppose that A is self-adjoint. Then T is self-adjoint. If Ax and x are linearly
dependent, then Ax = (Ax,x)x. A simple computation gives that T = 2({Ax,x)x®x. It
follows that Wi.(T) = [0, 2<A,f ’x>] whose mid-point is obviously Ay > . We now assume
that Ax and x are linearly independent. Then T only has two non zero eigenvalues
Ui =a+va*+b? and tr =a—va? + b?, where a= (Ax,x) and b =||Ax—ax]||. Since
b#0,wehave Uy <0 < . Let e; be the normalized eigenvector of T corresponding
to W;, j=1,2. Then under the decomposition H = [e{] & [e2] & [ey, 2] T,

Hr 00
T={0 wo
0 00

Let {3, }1ca be an orthonormal basis for [e;, ;] . For orthonormal vectors xy,x7, ..., Xy,
write

xj=ajer+aper+ Y, Bipfr, j=12,... .k
AEA

Then with r=1,2,

k
> o = 2\ (xj e < ler]* = 1. 2.1)

j=1

A computation shows that

k k k
> (Txj,xj) = 2 o1 [* + 112 > oo .
j=1 j=1 Jj=1

This together with (2.1) gives

=~

o < Y (Txj,xj) < up.
i—1

~
I

(Recall that t < 0 < py.) On the other hand, if x; = e,,x2,...x; € [e1,e2]", then
k
> (Txj,xj) = fy,r = 1,2. So by the convexity, W(T) = [£2, £L]. The mid-point of
j=1
this interval is
Now for the general A, write A = A +iA,, where A; and A, are self-adjoint.
By the previous result, the mid-point of Wi (A x ®x+x®xA;) is “ ’xx) for j=1,2.
So the center of the rectangular box from the vertical and horizontal support lines of
Wk(AX@X"‘X@XA) iS <Al]/:7x> + l<A2kX~,X> — <A/Z7x> . |:|

i+t +H2 _ <A)]C< )
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COROLLARY 2.5. Let A and B be in B(H) and suppose that Wi,(Ax @ x +x &
XA) =Wy (Bx@x+x®xB) forall x € H. Then A= B. Inparticular, if Wi (CA—AC*) =
Wi(CB — BC*) forall C € B(H), then A =B.

Proof. For x € H, putting C = ix®x, we get
W (Ax@x+xRxA) = iWi(BXQ@x+ xR xB).

By Proposition 2.4, the centers of the rectangular box from by the vertical and horizon-

tal support lines of Wi(Ax®@x+x®xA) and Wy(Bx®x+x®xB) are @ and @,

respectively. So (Ax,x) = (Bx,x) for all x € H. This implies that A=B. [

PROPOSITION 2.6. Let A and B be in B(H) and suppose that ||Ax — (Ax,x)x|| =
||Bx — (Bx,x)x|| for all unit vectors x in H. Then A = ul+ vB or A = ul+ vB* for
u,v e C with |v|=1.

Proof. For a unit vector x, from ||Ax — (Ax,x)x|| = ||Bx — (Bx,x)x|| we get that
1Ax][* = [ {Ax,x)|* = || Bx[|* — [(Bx,x) .

Then for a pair of orthonormal vectors x,y in H and a scalar A with |A| =1, by
replacing x with @(}H— Ay), we have

2| Ax + Ady||> — |(Ax,x) + (Ay,y) + A(Ax,y) + A (Ay,x) |
= 2|[Bx+ ABy||* — [(Bx,x) + (By,y) + A(Bx,y) + A (By,x)|*.
Since this equation also holds for —A , it follows from the parallelogram law that
2/|Ax|> + 2[|A]|> = [(Ax,x) + (Ay,y)[* = [ A (Ax, ) + A (Ay,x)
= 2||Bx|[* + 2||By||> — |(Bx,x) + (By,y)|” = |A(Bx,y) + A (By,x)|*.
By replacing A with iA and by the parallelogram law, we have

2[|Ax|[* + 2| Ay[|? — [(Ax, x) -+ (Ay, y)* — [(Ax, y)|* — | {Ay,x)
= 2||Bx||* + 2| By||* — |(Bx,x) + (By,y)|* — |(Bx,y)|* — [(By,x)|*.

Comparing the last two equations, we get that

ReA?(Ay,x)(Ax,y) = ReA?(By,x)(Bx,y)

forall A € C with [A| = 1. So (Ay,x)(Ax,y) = (By,x)(Bx,y) for all pairs of orthonor-
mal vectors x,y. Now the desired result follows from [ 16, Proposition 2.3]. [

We will close this section by computing the higher-dimensional numerical radius
of arank-2 operator. For A € B(H), the k-dimensional numerical radius of A is defined
as

wi(A) = sup{|A]|: A € Wi(A)}.
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EXAMPLE 2.7. Let A be a self adjoint operator in B(H) and x is a unit vector in
H. Then wi(x®xA — Ax®x) = 1[|Ax — (Ax,x)x| .

Proof. A simple computation shows that
XRXA—AxR@x=b(x®y—y®ux),

where b = ||Ax — (Ax,x)x|| and y is a unit vector which is a multiple of Ax — (Ax,x)x
and is orthogonal to x.

Let P be a projection in B(H). Then since (Px,Py) + (Ptx,Pty) = (x,y) =0,
we have that

wr(P(x®y —y@x)P) = (Px,Py) — (Py,Px) = (P*y,P*x) — (P"x,P'y).
If ||Px||? 4 ||Py||> < 1, then
r(P(x®y—y@x)P)[ < 2|(Px,Py)| < 1;

if || Px]|> +[|Pyl|* > 1, then [|Px]|> + [|Py ][> = [lx]|* + [[y]I> — (| Px||* + [|Py]]*) < 1
and hence
w(P(x@y—y@x)P)| < 2|(P1x,Pry)| < 1.
Consequently, wy(x @y —y®x) < %
On the other hand, with e¢; = \/TE(UH- y) and ey, ..., e being orthonormal vectors
in [x,y]*, we have

(x®@y—y®x)ej,ej) = —i.

<.
"M~
L

o wi(x®y—y®x) > +. Thus, wi(x®y —y®x) =+ and then wi(x@xA — Ax®x) =

3. Higher-dimensional numerical range preservers

In this section, we characterize nonlinear maps which preserve the higher-numerical
range of skew Lie product of operators. The main result is as follows.

THEOREM 3.1. Let k be a positive integer. Let H and K be two complex Hilbert
spaces with the dimensions greater than k. Suppose that ¢ : B(H) — B(K) is a surjec-
tive map. Then ¢ satisfies

Wi(AB —BA") = Wi(9(A)9(B) — ¢(B)9(A)") (3.2)

for all A,B € B(H) if and only if there is a real number y € {—1,1} and a unitary
operator U € B(H,K) such that ¢(A) = yUAU* for all A € B(H).

The sufficiency part is clear. To prove the necessity part, we need several lemmas,
in which we will keep the notations in the statement of the theorem.
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LEMMA 3.2. ¢ is injective.

Proof. Let A, B € B(H) and suppose that ¢(A) = ¢(B). Then forany C € B(H),
we have

Wi(CA—AC") = Wi(¢(C)o(A) — 6(4)0(C)")
=Wi(0(C)9(B) —0(B)9(C)")
= Wi (CB — BC").

It follows from Corollary 2.5 that A=B. [

LEMMA 3.3. ¢ is homogeneous.

Proof. Let A€ B(H) and A € C. Then for all B € B(H), we have that
Wi(0(B)O(AA) — 0(RA)D(B)") = AWy (BA — AB')
=AW (¢(B)¢(A) — 0(A)0(B)") = Wi(9(B)(A29(A)) — (A9(A))0(B)").
Since ¢ is surjective, it follows from Corollary 2.5 that $(AA) = A9(A). O

LEMMA 3.4. The following statements are true.

(1) ¢ preserves self-adjoint operators in both directions and preserves the commu-
tativity of self-adjoint operators.

(2) Either ¢(I) =1 and Wy(¢p(A)) = Wi(A) for all A € B(H), or ¢(I) = —I and
Wi(9(A)) = —Wi(A) forall A€ B(H).

Proof. From

Wi(@(1)9(A) —0(A)o(1)") = Wi(IA—AI") = {0},
it follows that
¢(o(A) =0(A)o(I)" (3.3)
forall A € B(H). Since ¢ is surjective, this implies that ¢(7) = AI for some non-zero
real number A. Now, if A is self-adjoint, from (3.2) we see that ¢(A) is also self-
adjoint. Further, if A and B are commuting self-adjoint operators, by (3.2) we know

that ¢(A) and ¢(B) commute. This proves (1).
To prove (2), we notice that ¢ (i) = iAI by Lemma 3.3. Then we have that

{2i} = Wi (DI — 1(i)*) = Wi (GAD)(AT) + (A (GAT)) = {2iA%}.
So A =+1 andthen ¢(I) =+I.If ¢(I) =1, then for A € B(H), there holds
2iW(A) = Wi (DA —A(D)™)
=Wi(9(iD)o(A) — o(A)o(il)")
= Wi((iD)(A) — o(A)(iD)")
=2iW(9(A)).
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It follows that Wy (¢(A)) = Wi(A). Similarly, if ¢(I) = —1I, then Wi (¢ (A)) = —Wi(A)
forall Ae B(H). O

LEMMA 3.5. Suppose that ¢(I) = 1. Let P be a non-zero projection in B(H).
Then ¢ (P) is a projection in B(K).

Proof. Since
2iW(P) = Wi((iP)P — P(iP)") = Wi (¢ (iP)9(P) — ¢(P)9 (iP)")
= Wi(i6(P)$(P) +i¢(P)9(P)) = 2iWi(9(P)?),

we have that Wi (¢ (P)?) = W, (P) = Wi(¢(P)).
Since

{0} =W (iP)(I = P) — (1= P)(iP)")
=Wi(¢(iP)(I —P) = ¢(I—P)¢(iP)")
=W (9(P)(I = P)+o(I—P)¢(P)),
we have that ¢(P)o(I —P)+ ¢(I — P)¢(P) = 0. Hence, since ¢(P)¢p(I —P) = ¢(I —

P)¢(P) by Lemma 3.4, we have that ¢(P)¢ (I —P) =0.
For any A € B(H), we have

Wi(@(P—1)¢(A) — ¢(A)¢(P—1)) = Wi((P—1)A—A(P—1))
= Wi(PA—AP) = Wi (9 (P)9(A) — 9(A)9(P)).

In particular, for any unit vector y € K, we have

We(o(P—Dy®y—y@yp(P—1)) =W (¢(P)y®y—y@yd(P)).

By Proposition 2.6 and Example 2.7, there are scalars pt and v with v € {—1,1} such
that

o(P—1) = ul+vo(P).
It follows from ¢ (P)¢(P—1) =0 that ¢(P)> = A¢(P) for some scalar A . Hence, since
Wi(¢(P)?) = Wi(¢(P)) and ¢(P) #0, we have that A = 1. So ¢(P)> =¢(P). O

We are now in a position to prove the main result.

Proof of Theorem. It was showed in [7] in the case k = 1 and the dimension of
H is greater than 3. In the sequel, we assume that k > 1 or k = 1 and the dimension
is equal to 2. Furthermore, we will suppose that ¢(I) = I; otherwise, consider —¢
instead of ¢ .

Thus by Lemmas 3.4, 3.5 and Proposition 2.3, for P € B(H), ¢(P) is a projection
in B(K) with rank one if and only if P is a projection in B(H) with rank one.

Our first aim is to show that ¢ is additive. For this, let A and B be in B(H). For
a unit vector y in K, there is a unit vector x in H such that ¢ (x®x) =y®y. Then we
have that

W(y@y9p(A+B)+¢(A+B)y®y)=iW(x@x(A+B)+ (A+B)x®x),
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W (y@y9(A) +¢(A)y®y) = iWi(x® XA+ Ax® x),

and
iWe(y®y$(B)+ ¢(B)y®y) = iWy(x®xB + Bx®x).

By Proposition 2.4, we have that (¢(A + B)y,y) = ((A+B)x,x), (¢(A)y,y) = (Ax,x)
and (9(B)y.y) = (Bx.x). Consequently, (¢(A+B)y.y) = ((0(4) + ¢(B))y.y) for all
unit vectors y in K. It follows that ¢(A+ B) = ¢(A) + ¢(B).

So far, taking into account Lemmas 3.3, we know that ¢ is a linear bijection from
B(H) onto B(K) which preserves the k-dimensional numerical range. Now by the
main result in [20] (Theorems 3.5, 4.2, 4.4 and the remark followed theorem 3.5), one
of the following holds:

(1) there is a unitary U from H onto K such that ¢(A) = UAU* forall A € B(H).

(2) there is a conjugate unitary U from H onto K such that ¢(A) = UA*U* for all
A € B(H); or in the case the dimension of H is equal to 2k, ¢(A) = rtr(A)] —
UA*U*.

(3) k> 1 and the dimension of H is equal to 2k, there is a unitary U from H onto
K such that ¢(A) = +tr(A)I — UAU* forall A € B(H).

(4) k> 1 and the dimension of H is equal to 2k, there is a conjugate unitary U from
H onto K such that ¢(A) = ;tr(A)] — UA*U* forall A € B(H).

Possibilities (3) and (4) are impossible. This is because that ¢ (P) would be not a
projection with rank-1 for a projection P with rank-1. To complete the proof, we have
to show that possibility (2) is impossible too. Suppose on the contrary that (2) holds.
Then for all A,B € B(H), we have that

W (AB— BA*) = W, (UA*B*U* — UB*AU*)
= Con(Wi(A*B* — B*A)) = W (BA — A*B).

This is not true; for example, by taking A =x®y and B = y® z for orthonormal vectors
x,y,z in H, it would yield that x®z=0. [
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