
Operators
and

Matrices

Volume 10, Number 2 (2016), 345–377 doi:10.7153/oam-10-19

MULTIPLICATIVE LIE HIGHER DERIVATIONS

OF UNITAL ALGEBRAS WITH IDEMPOTENTS

DONG HAN AND FENG WEI

(Communicated by M. Omladič)

Abstract. Let R be a commutative ring with identity and A be a unital algebra with nontrivial
idempotent e over R . Motivated by Benkovič’s systematic and powerful work [2, 3, 4, 5, 6, 7,
8], we will study multiplicative Lie higher derivations (i.e. those Lie higher derivations without
additivity assumption) on A in this article. Let D = {Lk}k∈N be a multiplicative Lie higher
derivation on A . It is shown that under suitable assumptions, D = {Lk}k∈N is of standard form;
i.e. each component Lk (k � 1) can be expressed through an additive higher derivation and a
central mapping vanishing on all commutators of A .

1. Introduction

Throughout this paper, R always denotes a commutative ring with an identity and
A is a unital algebra over R which is 2 torsion-free. Suppose that A contains an
idempotent e �= 0,1. We denote the idempotent 1− e by f . According to the well-
known Peirce decomposition formula, A can be represented in the following form

A = eA e+ eA f + fA e+ fA f , (1.1)

where eA e and fA f are subalgebras with unitary elements e and f , respectively.
The subalgebra eA f is an (eA e, fA f )-bimodule and another subalgebra fA e is a
( fA f ,eA e)-bimodule. We will assume that A satisfies

exe · eA f = {0} = fA e · exe implies exe = 0,

eA f · f x f = {0} = f x f · fA e implies f x f = 0
(1.2)

for all x ∈ A . In particular, if fA e = {0} , then A degenerates to a triangular alge-
bra. Some unital algebras with nontrivial idempotents share the property (1.2), such as
triangular algebras, full matrix algebras, (semi-)simple algebras, prime algebras with
nontrivial idempotents.
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Let us first recall some basic facts related to Lie higher derivations of associa-
tive algebras. Various higher derivations, which consist of a family of some addi-
tive mappings, frequently appear in commutative and noncommutative contexts, see
[15, 16, 21, 22, 23, 28, 29, 33, 34, 35, 36, 40, 41, 42, 46] and the references therein. Let
A be a unital associative algebra over a commutative ring R . Let N be the set of all
non-negative integers and D = {Lk}k∈N be a family of R -linear mappings of A such
that L0 = idA . D is called:

(i) a higher derivation if
Lk(xy) = ∑

i+ j=k

Li(x)Lj(y)

for all x,y ∈ A and for each k ∈ N ;

(ii) a Lie higher derivation if

Lk([x,y]) = ∑
i+ j=k

[Li(x),Lj(y)]

for all x,y ∈ A and for each k ∈ N .

If the additivity assumption in the above definition is removed, then the corresponding
higher derivation (resp. Lie higher derivation) is said to be multiplicative higher deriva-
tion (resp. multiplicative Lie higher derivation). Note that L1 is always a Lie derivation
if D = {Lk}k∈N is a Lie higher derivation. Obviously, every higher derivation is a Lie
higher derivation. But the converse statements are in general not true. Assume that
{dk}k∈N is a higher derivation (resp. multiplicative higher derivation) on A . We can
construct a sequence of R -linear (resp. multiplicative) mappings

Lk = dk + fk, (♠)

where fk(k ∈ N) is a mapping from A into its center vanishing all commutators of
A . It is not difficult to see that {Lk}k∈N is a Lie higher derivation (resp. multiplicative
Lie higher derivation) on A , but not a higher derivation (resp. multiplicative higher
derivation) if fk �= 0 for some k ∈ N . A Lie higher derivation (resp. multiplicative
Lie higher derivation) D = {Lk}k∈N is said to be standard if it has the property (♠) .
Correspondingly, the fk(k ∈ N) is called a linear functional.

Many authors have made essential contributions to the related topics, see [2, 3, 4,
5, 6, 9, 10, 11, 14, 20, 24, 30, 31, 32, 35, 36, 37, 38, 39, 42, 43, 44, 45] and their refer-
ences. Cheung in [11] presented sufficient conditions such that every Lie derivation on
a triangular algebra T =

[
A M
O B

]
is the sum of a derivation on T and a linear mapping

from T into its center. Chen and Zhang [9] studied multiplicative Lie derivations of up-
per triangular matrix algebras and showed that each multiplicative Lie derivation from
the k× k upper triangular matrix algebra Tk(R) into the full matrix algebra Mk(R)
is of the form T −→ TS−ST +Tφ + f (T )I for all T ∈ Tk(R) , where S ∈ Mk(R) , φ
is an additive derivation of R , Tφ is the image of T under φ applied entrywise, f is
a nonlinear mapping from Tk(R) into R with f ([U,W ]) = 0 for all U,W ∈ Tk(R) .
Yu and Zhang [44] extended this result to much more common triangular algebras and
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proved that under certain conditions every multiplicative Lie derivation on triangular
algebras is the sum of an additive derivation and a mapping into its center vanishing
on all commutators. Ji et al. [24] characterized multiplicative Lie triple derivations
of 2 torsion-free triangular algebras and showed that every multiplicative Lie triple
derivation on a 2 torsion-free triangular algebra T =

[
A M
O B

]
is the sum of an additive

derivation and a mapping into its center vanishing on all second commutators. Benkovič
and Eremita [6] proved that each multiplicative Lie k -derivation on a triangular algebra
T =

[
A M
O B

]
has standard form if T satisfies the usual condition on projections of its

center and if either A or B does not have nonzero central inner derivations. Wang and
Wang [39] provided a characterization of multiplicative Lie k -derivations for a certain
class of generalized matrix algebra. As a consequence, multiplicative Lie k -derivations
of full matrix algebras are determined, which solves a conjecture due to Benkovič and
Eremita in [6]. Benkovič [5] described Lie triple derivations of unital algebras with
idempotents. Let A be a unital algebra with a nontrivial idempotent e over a uni-
tal commutative ring R . He showed that under suitable assumptions, every Lie triple
derivation Δ on A is of the form Δ = d +δ + γ , where d is a derivation of A , δ is a
singular Jordan derivation of A and γ is a linear mapping from A to its centre Z (A )
that vanishes on [A , [A ,A ]] . This result is further extended to Lie k -derivations of
unital algebras with idempotents [38]. Fošner, Wei and Xiao [17] jointly investigated
multiplicative Lie-type derivations of von Neumann algebras. Let A be a von Neu-
mann algebra without abelian central summands of type I1 . It is shown that every
multiplicative Lie k -derivation of A has the standard form, that is, can be expressed
as a sum of an additive derivation and a central-valued mapping which annihilates each
(k−1)-th commutator of A .

In [40] Wei and Xiao addressed the question of when every higher derivation on
a triangular algebra T =

[
A M
O B

]
is an inner higher derivation. They also gave some

characterizations on (generalized-)Jordan (triple-)higher derivations of triangular alge-
bras. Xaio and Wei [42] extended the above mentioned Yu and Zhang’s result [44]
to multiplicative Lie higher derivation on triangular algebras and proved that under
mild conditions, every multiplicative Lie high derivation on triangular algebras is of the
standard form. Qi and Hou [36] described Lie higher derivations on nest algebras and
obtained the following result. Let N be a nest on a Banach space X over the real or
complex field F . If there exists a non-trivial element in N which is complemented in
X , then D = {Lk}k∈N is a Lie higher derivation of the nest algebra τ(N ) if and only
if each Lk has the form Lk(T ) = dk(T )+ fk(T )I for all T ∈ τ(N ) , where {dk}k∈N is
a higher derivation and { fk}k∈N is a sequence of linear functionals satisfying the con-
dition fk([U,W ]) = 0 for all U,W ∈ τ(N ) and for each k ∈ N . Qi [35] generalized
this result to the case of more general triangular algebras. Li and Guo [28] proved that
every Jordan higher derivation on a commutative subspace lattice algebra A is a higher
derivation.

This article is aimed at studying multiplicative Lie higher derivations of a unital
algebra A with the property (1.2) . The organization of our paper is as follows. The
second section is to present some basic properties and examples of unital algebras with
nontrivial idempotents. We describe the form of multiplicative Lie derivations of A in
section three. In last section, we give our main theorem which states that under certain
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conditions, every multiplicative Lie higher derivation on A is of the standard form
(♠) .

2. Unital algebras with idempotents and examples

Let A = eA e+ eA f + fA e+ fA f be a unital algebra with nontrivial idempo-
tents e and f = 1− e , which satisfies the condition (1.2). It should be pointed out that
the above more general condition of faithfulness was introduced by Benkovič in [8]. If
we set A = eA e, M = eA f , N = fA e and B = fA f , then

A = eA e+ eA f + fA e+ fA f = A+M+N +B.

Thus an arbitrary element x ∈ A can be represented in the form

x = exe+ ex f + f xe+ f x f = a+m+n+b,

where a = exe∈ A, m = ex f ∈M, n = f xe ∈N and b = f x f ∈ B . Since e2 = e, f 2 = f
and e f = 0 = f e , we know that

an = ab = ma = mm′ = nn′ = nb = ba = bm = 0

and
aa′,mn ∈ A,am,mb ∈ M,na,bn ∈ N,bb′,nm ∈ B

for all a,a′ ∈ A , m,m′ ∈ M , n,n′ ∈ N and b,b′ ∈ B .
The center Z (A ) of A is of the form given below.

Z (A ) = { a+b∈ A+B | am = mb,na = bn for all m ∈ M,n ∈ N }.

Indeed, it follows from [27, Lemma 1] that the center Z (A ) consists of all elements
a + b where a ∈ Z (A) , b ∈ Z (B) and am = mb , na = bn for all m ∈ M,n ∈ N .
However, we must indicate that in our situation of assumption (1.2), one can easily
conclude that a ∈ Z (A) and b ∈ Z (B) can be deleted. Now if am = mb,na = bn for
all m ∈ M,n ∈ N , then for any a′ ∈ A , we get

(aa′ −a′a)m = a(a′m)−a′(am) = (a′m)b−a′(mb) = 0

and
n(aa′ −a′a) = (na)a′ − (na′)a = (bn)a′ −b(na′) = 0.

By (1.2) we have aa′ − a′a = 0 and hence a ∈ Z (A) . Likewise, we also have b ∈
Z (B) .

Let us define two natural R -linear projections πA : A → A and πB : A → B by

πA : a+m+n+b �−→ a and πB : a+m+n+b �−→ b.

It is easy to see that πA (Z (A )) is a subalgebra of Z (A) and that πB (Z (A )) is a
subalgebra of Z (B) . Give an element a∈ πA (Z (A )) . If a+b, a+b′ ∈Z (A ) , then
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we have am = mb = mb′ and na = bn = b′n for all m ∈ M,n ∈ N . So b = b′ by the
assumption (1.2). That implies there exists a unique b∈ πB (Z (A )) , which is denoted
by σ(a) , such that a+b ∈ Z (A ) . It is easy to verify that the map σ : πA (Z (A )) →
πB (Z (A )) is an algebraic isomorphism such that am = mσ(a) and na = σ(a)n for
all a ∈ πA (Z (A )) , m ∈ M,n ∈ N .

Benkovič has provided some nice examples of unital algebras with nontrivial
idempotents in [5]. We would like to add some further examples which belong to this
category.

(i) There are a number of operators algebras which are unital algebras with idempo-
tents and satisfy the condition (1.2). A standard example is B(X) , the algebra of
all bounded linear operators of a Banach space X . Each infinite von Neumann-
algebra factor [25, Definition 6.3.1 and Lemma 6.3.3] is covered in this case. The
Cuntz C∗ -algebra Ok [12] is an algebra of this kind whenever 2 � k � ∞ . In ad-
dition, certain Cuntz-Krieger algebra [13] and some graph C∗ -algebras [19] also
satisfy the condition (1.2).

(ii) Each simple unital algebra A with a nontrivial idempotent e satisfies the prop-
erty (1.2). It should be remarked that I = eA f · fA e+ eA f + fA e+ fA e ·
eA f is an ideal of the algebra A . This implies that I = A , which is due to
the simplicity of A . It follows from the fact exe · eA f = {0} = fA e · exe that
exe ·I = exe ·A = {0} . Let us take 1∈A . One immediately gets that exe = 0.
Similarly, we can verify that the second assumption from (1.2) is also fulfilled.

(iii) Let A be a unital algebra over a commutative ring R and A =Mk(A) (k � 2) be
the algebra of all k×k matrices over A . Let {Ei j|i, j = 1,2, · · · ,k} be the system
of matrix units of A and 1 be the identity of A . We denote the idempotent
e = E11 and f = 1− e . We assert that A and e satisfy the condition (1.2).
Note that the subalgebra eA e is isomorphic to A and that the subalgebra fA f
is isomorphic to the matrix algebra Mk−1(A) . Clearly, (eA e, fA f )-bimodule
eA f ∼= M1×(k−1)(A) is faithful as a left eA e-module and as a right fA f -
module. Another example mentioned is the so-called inflated algebras, which is
actually isomorphic to the Mk(A) [26, Lemma 4.1].

(iv) Let A be a unital prime algebra with a nontrivial idempotent e . Let us take
the idempotents e and f = 1− e . In light of the primeness of A , it follows
from exe · eA f = {0} = (exe)A f that exe = 0. Similarly, applying the fact
eA f · f x f = {0} = eA ( f x f ) yields f x f = 0 for all x ∈ A . This shows that
the algebra A satisfies the condition (1.2). Apart from the algebra B(X) of
all bounded linear operators of a Banach space X , we would like to provide
two additional wonderful examples of this case. Let G be a compact p -adic
analytic group without non-trivial finite normal subgroups. Then the Iwasawa
algebras ΛG and ΩG are both unital prime algebras with nontrivial idempotents
[1, Theorem 4.2]. The graded Hecke algebras [18, Proposition 4.1.6] are also
prime and share the property (1.2).
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(v) Let A be a unital algebra with a nontrivial idempotent e . Suppose that fA e =
{0} and that the bimodule eA f is faithful as a left eA e-module and also as a
right fA f -module. Then the algebra A is a triangular algebra. In fact, every
triangular algebra is an example satisfying the condition (1.2). The standard
examples of triangular algebras include upper triangular matrix algebras, block
upper triangular matrix algebras and Hilbert space nest algebras.

3. Multiplicative Lie derivations of unital algebras with idempotents

Let A be a unital algebra with a nontrivial idempotent e over a unital commuta-
tive ring R . In this section, we show that under mild assumptions, every multiplicative
Lie derivation of A has the standard form.

We are ready to state the first main result of this article.

THEOREM 3.1. Let A be a 2 torsion-free unital algebra with a notrivial idem-
potent e and L : A −→ A be a multiplicative Lie derivation. Suppose that

(1) A satisfies (1.2);

(2) πA(Z (A )) = Z (A) and πB(Z (A )) = Z (B);

(3) either A or B does not contain nonzero central ideals;

(4) for each n ∈ N , the condition nM = 0 or Mn = 0 implies n = 0 ;

(5) for each m ∈ M, the condition mN = 0 or Nm = 0 implies m = 0 .

Then L = d +g, where d : A −→ A is an additive derivation and g : A −→ Z (A )
is a central mapping vanishing on all commutators.

REMARK 3.2. Let us first define a mapping ν : A −→ A by

ν(x) = L(x)− [L( f ),x].

One can easily check that [L( f ),x] is an inner derivation of A and that ν is a multi-
plicative Lie derivation of A . Moreover,

ν( f ) = L( f )− [L( f ), f ] = L( f )− eL( f ) f + f L( f )e.

Left-multiplication by e and right-multiplication by f in the above equality yields that
eν( f ) f = 0. Therefore, without loss of generality we can assume that eL( f ) f = 0.

The proof of Theorem 3.1 can be reached via a series of lemmas.

LEMMA 3.3. L(0) = 0 and eL(x) f = 0 for all x ∈ A+B.
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Proof. First we have

L(0) = L([0,0]) = [L(0),0]+ [0,L(0)] = 0.

Note that [x, f ] = 0 for all x ∈ A+B . Therefore,

0 = L([x, f ])
= [L(x), f ]+ [x,L( f )]
= eL(x) f − f L(x)e+[x,L( f )]

(3.1)

for all x ∈ A+B . Left-multiplication by e and right-multiplication by f in (3.1) gives
that

0 = eL(x) f + e[x,L( f )] f
= eL(x) f + exL( f ) f − eL( f )x f

(3.2)

for all x ∈ A + B . Applying the fact eL( f ) f = 0 to (3.2) yields eL(x) f = 0 for all
x ∈ A+B . �

REMARK 3.4. Now we establish a new mapping ξ : A −→ A as follows.

ξ (x) = L(x)− [L(e),x].

It is not difficult to verify that [L(e),x] is an inner derivation of A and that ξ is a
multiplicative Lie derivation of A . Note that eL(x) f = 0 for all x ∈ A+B . Hence

eξ (x) f = eL(x) f − e[L(e),x] f = 0

for all x ∈ A+B . In particular, we have

ξ (e) = L(e)− [L(e),e] = L(e)− f L(e)e+ eL(e) f .

Left-multiplication by f and right-multiplication by e in the above equality yields
fξ (e)e = 0. Replacing L by ξ we may further assume that f L(e)e = 0.

LEMMA 3.5. f L(x)e = 0 and L(x) = eL(x)e+ f L(x) f for all x ∈ A+B.

Proof. By symmetry and Lemma 3.3 we get f L(x)e = 0 for all x ∈ A+B . The
relation eL(x) f = 0 together with f L(x)e = 0 gives L(x) = eL(x)e + f L(x) f for all
x ∈ A+B . �

LEMMA 3.6. L(e),L( f ) ∈ Z (A ) , L(m) = eL(m) f and L(n) = f L(n)e for all
m ∈ M, n ∈ N .

Proof. For each m ∈ M , we have

L(m) = L([e,m])
= [L(e),m]+ [e,L(m)]
= eL(m)−L(m)e+L(e)m−mL(e)
= − f L(m)e+ eL(m) f +L(e)m−mL(e).
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Multiplying by e from the left and by f from the right hand side and using Lemma
3.5 we see that mL(e)− L(e)m = 0 for all m ∈ M . Analogously, we can prove that
L(e)n− nL(e) = 0 for all n ∈ N . These imply that L(e) = eL(e)e+ f L(e) f ∈ Z (A )
and

L(m) = − f L(m)e+ eL(m) f , L(n) = −eL(n) f + f L(n)e

for all m ∈ M , n ∈ N . Since A is 2 torsion-free, we have f L(m)e = eL(n) f = 0 for
all m ∈ M , n ∈ N . Therefore L(m) = eL(m) f , L(n) = f L(n)e for all m ∈ M , n ∈ N .
Then L( f ) ∈ Z (A ) is obvious by symmetry. �

REMARK 3.7. Let us set T = A+M +B , then T is a subalgebra of A . Triv-
ially, Z (A ) ⊆ Z (T ) . Note that here T is not a triangular algebra, since M is not
a faithful left A-module or a faithful right B-module. Similarly, we denote A+N +B
by T ′ .

LEMMA 3.8. L(ex f ) = eL(x) f and f L(x)e = 0 for all x ∈ T ; L( f xe) = f L(x)e
and eL(x) f = 0 for all x ∈ T ′ .

Proof. For an arbitrary x ∈ T , we have

L(ex f ) = L([x, f ]) = L(x) f − f L(x) = eL(x) f − f L(x)e.

Since L(ex f ) ∈ M for all x ∈ T by Lemma 3.6, we assert from the above relation that
L(ex f ) = eL(x) f and so f L(x)e = 0. By symmetry, L( f xe) = f L(x)e and eL(x) f = 0
for all x ∈ T ′ . �

LEMMA 3.9. For any a ∈ A, n ∈ N, m ∈ M and b ∈ B, we have

L(a+m)−L(a)−L(m)∈ Z (A ),
L(b+m)−L(b)−L(m)∈ Z (A ),
L(a+n)−L(a)−L(n)∈ Z (A ),
L(b+n)−L(b)−L(n)∈ Z (A ).

Proof. We first claim that [L(a+m)−L(a)−L(m),m′] = 0 for all a ∈ A, m,m′ ∈
M . In light of Lemma 3.6 we arrive at

L(am′) = L([a+m,m′])
= [L(a+m),m′]+ [a+m,L(m′)]
= [L(a+m),m′]+ [a,L(m′)]

for all a ∈ A,m,m′ ∈ M . On the other hand, we obtain

L(am′) = L([a,m′]) = [L(a),m′]+ [a,L(m′)]

for all a ∈ A, m′ ∈ M . Combining the above two relations, we get

[L(a+m)−L(a)−L(m),m′] = 0
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for all a ∈ A, m,m′ ∈ M .
Now let us prove that [L(a+m)−L(a)−L(m),b] = 0 for all a ∈ A, m ∈ M and

b ∈ B . It is easy to check that

L(mb) = L([a+m,b])
= [L(a+m),b]+ [a+m,L(b)]
= L(a+m)b−bL(a+m)+aL(b)+mL(b)−L(b)a−L(b)m

and
L(mb) = L(m)b+mL(b)−bL(m)−L(b)m

for all a ∈ A, m ∈ M and b ∈ B . Combining the last two relations we have

L(a+m)b−bL(a+m)+aL(b)−L(b)a= L(m)b−bL(m)

for all a ∈ A, m ∈ M and b ∈ B . That is,

L(a+m)b+[a,L(b)]−L(m)b = bL(a+m)−bL(m)

for all a ∈ A, m ∈ M and b ∈ B . This implies that

L(a+m)b−L(m)b−L(a)b = bL(a+m)−bL(m)−bL(a),

and hence [L(a+m)−L(a)−L(m),b] = 0 for all a ∈ A, m ∈ M and b ∈ B .
For convenience, let us denote L(a+m)−L(a)−L(m) by x . Thus x ∈ A+B by

Lemma 3.8. Let us take m′ ∈ M . Then for each n ∈ N , we get

(xn−nx)m′ = xnm′ −nxm′ = nm′x−nm′x = 0,

which leads to xn−nx = 0 by the assumption. It follows that

[L(a+m)−L(a)−L(m),n] = [x,n] = 0

for all a∈A, m∈M and n∈N . Now one can see that L(a+m)−L(a)−L(m)∈Z (A )
for all a ∈ A, m ∈ M . The rest follows by symmetry. �

LEMMA 3.10. L is additive on M and N .

Proof. Considering Lemma 3.6 and Lemma 3.9, we arrive at

L(m+m′) = L([e+m, f +m′])
= [L(e+m), f +m′]+ [e+m,L( f +m′)]
= [L(e)+L(m), f +m′]+ [e+m,L( f )+L(m′)]
= [L(m), f ]+ [e,L(m′)]
= L(m)+L(m′)

for all m′,m ∈ M . Similarly, we can also prove that L(n + n′) = L(n)+ L(n′) for all
n′,n ∈ N . �
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LEMMA 3.11. For any a ∈ A, m ∈ M, n ∈ N and b ∈ B, we have

L(a+m+b)−L(a)−L(b)−L(m)∈ Z (A ),
L(a+n+b)−L(a)−L(b)−L(n)∈ Z (A ).

Proof. By Lemma 3.6 we compute that

L([m′,a+m+b]) = [L(m′),a+m+b]+ [m′,L(a+m+b)]
= [L(m′),a]+ [L(m′),b]+ [m′,L(a+m+b)]

for all a ∈ A, m,m′ ∈ M and b ∈ B . However, due to Lemma 3.10 we can also get

L([m′,a+m+b]) = L([m′,a]+ [m′,b])
= L([m′,a])+L([m′,b])
= [L(m′),a]+ [m′,L(a)]+ [L(m′),b]+ [m′,L(b)]

for all a ∈ A, m,m′ ∈ M and b ∈ B . Hence we have

[m′,L(a+m+b)−L(a)−L(b)] = 0

for all a ∈ A, m,m′ ∈ M and b ∈ B . This implies that

[m′,L(a+m+b)−L(a)−L(b)−L(m)]= 0

for all a ∈ A, m,m′ ∈ M and b ∈ B .
Now let us show that [L(a+m+b)−L(a)−L(m)−L(b),b′] = 0 for all a∈A, m∈

M and b,b′ ∈ B . By a simple computation we have

L(mb′ +[b,b′]) = L([a+m+b,b′])
= [L(a+m+b),b′]+ [a+m+b,L(b′)]
= L(a+m+b)b′−b′L(a+m+b)+aL(b′)+mL(b′)

+bL(b′)−L(b′)a−L(b′)m−L(b′)b.

On the other hand, by Lemma 3.9 we also get

L(mb′ +[b,b′]) = L(mb′)+L([b,b′])+ x

= L(mb′)+ [L(b),b′]+ [b,L(b′)]+ x

= L(m)b′ +mL(b′)−b′L(m)−L(b′)m+L(b)b′

−b′L(b)+bL(b′)−L(b′)b+ x

for all m ∈ M , b,b′ ∈ B and some x ∈ Z (A ) . Comparing the last two relations give
that

L(m)b′ −b′L(m)+L(b)b′ −b′L(b)+ x

= L(a+m+b)b′−b′L(a+m+b)+aL(b′)−L(b′)a
= L(a+m+b)b′−b′L(a+m+b)+b′L(a)−L(a)b′
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for all a ∈ A, m ∈ M and b,b′ ∈ B . That is,

b′L(a+m+b)−b′L(m)−b′L(b)−b′L(a)+ x

= L(a+m+b)b′−L(m)b′ −L(b)b′ −L(a)b′,

which can be rewritten as

[b′,L(a+m+b)−L(a)−L(b)−L(m)]∈ Z (A )

for all a∈ A, m∈M and b,b′ ∈ B . By Lemma 3.8 we know that L(a+m+b)−L(a)−
L(b)−L(m) ∈ A+B . Note that

[b′,L(a+m+b)−L(a)−L(b)−L(m)]∈ B,

hence we have
[b′,L(a+m+b)−L(a)−L(b)−L(m)]= 0

for all a ∈ A, m ∈ M and b,b′ ∈ B . The rest of the proof is similar to the proof of
Lemma 3.9. The other assertion can also be reached in a similar way. �

LEMMA 3.12. For any a ∈ A, m ∈ M, n ∈ N and b ∈ B, we have L(a+m+n+
b)−L(a)−L(b)−L(m)−L(n)∈ Z (A ) .

Proof. In view of Lemma 3.6, we routinely compute that

L([m′′, [m′,a+m+n+b]])= [L(m′′), [m′,a+m+n+b]]
+ [m′′, [L(m′),a+m+n+b]]
+ [m′′, [m′,L(a+m+n+b)]]

= [L(m′′), [m′,n]]+ [m′′, [L(m′),n]]
+ [m′′, [m′,L(a+m+n+b)]]

and

L([m′′, [m′,a+m+n+b]])= [L(m′′), [m′,n]]+ [m′′, [L(m′),n]]+ [m′′, [m′,L(n)]]

for all a ∈ A, m,m′,m′′ ∈ M , n ∈ N and b ∈ B . Hence we have

[m′′, [m′,L(a+m+n+b)−L(n)]]= 0,

or
[m′′, [m′, f L(a+m+n+b)e−L(n)]]= 0 (3.3)

for all a ∈ A, m,m′,m′′ ∈ M , n ∈ N and b ∈ B .
By a simple calculation we can also get

L([b′, [m′,a+m+n+b]])= [L(b′), [m′,a+m+n+b]]
+ [b′, [L(m′),a+m+n+b]]
+ [b′, [m′,L(a+m+n+b)]]
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and

L([b′, [m′,a+m+n+b]])= L([b′, [m′,a+n+b]])
= [L(b′), [m′,a+n+b]]+ [b′, [L(m′),a+n+b]]

+ [b′, [m′,L(a+n+b)]]

for all a ∈ A, m,m′ ∈ M , n ∈ N and b,b′ ∈ B . Comparing the last two relations, we
obtain

[b′, [m′,L(a+m+n+b)−L(a+n+b)]]= 0

for all a ∈ A, m,m′ ∈ M , n ∈ N and b,b′ ∈ B . Thus

[b′, [m′, f L(a+m+n+b)e− f L(a+n+b)e]]= 0

for all a ∈ A, m,m′ ∈ M , n ∈ N and b,b′ ∈ B . In view of Lemma 3.8 we can further
get

[b′, [m′, f L(a+m+n+b)e−L(n)]]= 0

for all a ∈ A, m,m′ ∈ M , n ∈ N and b,b′ ∈ B . Applying the same arguments as in
Lemma 3.9 we can show that

[n′, [m′, f L(a+m+n+b)e−L(n)]]= 0 (3.4)

for all a ∈ A, m,m′ ∈ M , n,n′ ∈ N and b ∈ B . Combining (3.3) with (3.4), we obtain

[m′, f L(a+m+n+b)e−L(n)]∈ Z (A )

for all a ∈ A, m,m′ ∈ M , n ∈ N and b ∈ B . Hence, ( f L(a+m+n+b)e−L(n))M ⊆
Z (B) and M( f L(a +m + n+ b)e−L(n)) ⊆ Z (A) by the condition (2) of Theorem
3.1. Without loss of generality, we may assume that A does not contain nonzero cen-
tral ideals. Since M( f L(a + m + n + b)e− L(n)) is a central ideal of A , we arrive at
M( f L(a+m+n+b)e−L(n))= 0. Applying the condition (4) yields

f L(a+m+n+b)e−L(n)= 0 (3.5)

for all a ∈ A, m ∈ M , n ∈ N and b ∈ B .
Repeating the same procedure we can also prove that

eL(a+m+n+b) f −L(m) = 0 (3.6)

for all a ∈ A, m ∈ M , n ∈ N and b ∈ B .
By a calculation we obtain

L([m′,a+m+n+b])= [L(m′),a+m+n+b]+ [m′,L(a+m+n+b)]
= [L(m′),a+n+b]+ [m′,L(a+m+n+b)]

and
L([m′,a+m+n+b])= [L(m′),a+n+b]+ [m′,L(a+n+b)]
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for all a ∈ A, m,m′ ∈ M , n ∈ N and b ∈ B . The previous two equalities mean that

[m′,L(a+m+n+b)−L(a+n+b)]= 0

for all a ∈ A, m,m′ ∈ M , n ∈ N and b ∈ B . Furthermore, Lemma 3.11 implies that

[m′,L(a+m+n+b)−L(a)−L(b)−L(m)−L(n)]= 0 (3.7)

for all a ∈ A, m,m′ ∈ M , n ∈ N and b ∈ B . Likewise, we can also prove that

[n′,L(a+m+n+b)−L(a)−L(b)−L(m)−L(n)]= 0 (3.8)

for all a∈ A, m ∈M , n,n′ ∈N and b∈ B . Equalities (3.5), (3.6), (3.7) and (3.8) jointly
lead to

L(a+m+n+b)−L(a)−L(b)−L(m)−L(n)∈ Z (A )

for all a ∈ A, m ∈ M , n ∈ N and b ∈ B . �

LEMMA 3.13. f L(a) f ∈ Z (B) for all a ∈ A and eL(b)e ∈ Z (A) for all b ∈ B.

Proof. It follows from Lemma 3.5 that

L(a) = eL(a)e+ f L(a) f and L(b) = eL(b)e+ f L(b) f (3.9)

for all a ∈ A and b ∈ B . On the other hand

L(0) = L([a,b]) = L(a)b−bL(a)+aL(b)−L(b)a

for all a ∈ A and b ∈ B . This together with (3.9) gives that

f L(a) f b−b f L(a) f +aeL(b)e− eL(b)ea = 0,

and hence
f L(a) f b−b f L(a) f = aeL(b)e− eL(b)ea = 0

for all a ∈ A and b ∈ B . We complete the proof. �

REMARK 3.14. Lemma 3.13 and assumption (2) of Theorem 3.1 imply that we
can define a mapping

g′(x) = f L(exe) f + σ−1( f L(exe) f )+ eL( f x f )e+ σ(eL( f x f )e)

so that g′(x) ∈ Z (A ) for all x ∈ A . It is easy to check that g′([x,y]) = 0 for all x,y ∈
T . Then the mapping χ : A → A defined by χ(x) = L(x)−g′(x) is a multiplicative
Lie derivation of T or T ′ .

LEMMA 3.15. Let χ be as in Remark 3.14. Then

χ(am) = χ(a)m+aχ(m), χ(mb) = χ(m)b+mχ(b),
χ(na) = χ(n)a+nχ(a), χ(bn) = χ(b)n+bχ(n)

for all a ∈ A, m ∈ M, n ∈ N and b ∈ B.
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Proof. Taking into account the fact that χ(a) = L(a)−g′(a) ∈ A , we have

χ(am) = [χ(a),m]+ [a,χ(m)] = χ(a)m+aχ(m)

for all a∈ A and m∈M . Similarly, we can show that the rest of the relations hold. �

REMARK 3.16. Let x ∈ A . We define d : A → A by

d(x) = χ(exe)+ χ(ex f )+ χ( f xe)+ χ( f x f )

Then L(x) = d(x)+g′(x)+χ(x)−d(x)= d(x)+g(x) , where g(x)= g′(x)+χ(x)−d(x)
is a mapping from A to its center by Lemma 3.12 and Remark 3.14.

Observe that on A , M , N and B the map d coincides with χ , and on M and N
the map χ coincides with L .

LEMMA 3.17. Let d be as in Remark 3.16. Then d is an additive derivation on
A and B.

Proof. First we have

d(b) = χ(b) = L(b)−g′(b) ∈ B,

d(a) = χ(a) = L(a)−g′(a) ∈ A

for all a ∈ A and b ∈ B .
Let a,c ∈ A and m ∈ M . By Lemma 3.10 and Lemma 3.15 we know that

d(acm) = d(ac)m+acd(m),
d(acm) = d(a)cm+ad(cm) = d(a)cm+ad(c)m+acd(m),
d((a+ c)m) = d(a+ c)m+(a+ c)d(m),
d((a+ c)m) = d(am)+d(cm) = d(a)m+ad(m)+d(c)m+ cd(m).

It follows that

(d(ac)−d(a)c−ad(c))m = 0 and (d(a+ c)−d(a)−d(c))m = 0. (3.10)

Let a,c ∈ A and n ∈ N . Similarly, we have

n(d(ac)−d(a)c−ad(c))= 0 and n(d(a+ c)−d(a)−d(c))= 0. (3.11)

Combining (3.10) with (3.11), we obtain

d(ac)−d(a)c−ad(c) = 0 and d(a+ c)−d(a)−d(c)= 0.

Hence d is an additive derivation on A . In the same way, we can show that d is also
an additive derivation on B . The proof is completed. �

LEMMA 3.18. For any a ∈ A, m ∈ M, n ∈ N and b ∈ B, we have

d(a+m+n+b)= d(a)+d(m)+d(n)+d(b).
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Proof. According to Remark 3.16, we can compute that

ed(x)e = e(χ(exe)+ χ(ex f )+ χ( f xe)+ χ( f x f ))e = d(exe),
ed(x) f = e(χ(exe)+ χ(ex f )+ χ( f xe)+ χ( f x f )) f = d(ex f ),
f d(x)e = f (χ(exe)+ χ(ex f )+ χ( f xe)+ χ( f x f ))e = d( f xe),
f d(x) f = f (χ(exe)+ χ(ex f )+ χ( f xe)+ χ( f x f )) f = d( f x f )

for all x ∈ A . It follows that

d(a+m+n+b)= d(a)+d(m)+d(n)+d(b)

for all a ∈ A, m ∈ M , n ∈ N and b ∈ B . �

LEMMA 3.19. d is an additive derivation of A .

Proof. Let x = xa + xm + xn + xb , y = ya + ym + yn + yb ∈ A . In view of Lemma
3.10, Lemma 3.17 and Lemma 3.18, we compute that

d(x+ y) = d(xa + xm + xn + xb + ya + ym + yn + yb)
= d(xa + ya)+d(xm + ym)+d(xn + yn)+d(xb + yb)
= d(xa)+d(xm)+d(xn)+d(xb)+d(ya)+d(ym)+d(yn)+d(yb)
= d(xa + xm + xn + xb)+d(ya + ym + yn + yb)
= d(x)+d(y).

(3.12)

Considering Lemma 3.15, we have

d(am) = d(a)m+ad(m), d(mb) = d(m)b+md(b),
d(na) = d(n)a+nd(a), d(bn) = d(b)n+bd(n)

(3.13)

for all a ∈ A, m ∈ M , n ∈ N and b ∈ B .
Next let us show that d(mn) = d(m)n+md(n) and d(nm) = d(n)m+nd(m) . For

any m, m0 ∈ M and n ∈ N , we have

d([[m,n],m0]) = [[L(m),n],m0]+ [[m,L(n)],m0]+ [[m,n],L(m0)]−g([[m,n],m0])
= [[d(m),n],m0]+ [[m,d(n)],m0]+ [[m,n],d(m0)]−g([[m,n],m0])

and

d([[m,n],m0]) = L([mn−nm,m0])−g([[m,n],m0])
= [L(mn−nm),m0]+ [mn−nm,L(m0)]−g([[m,n],m0])
= [d(mn−nm),m0]+ [mn−nm,L(m0)]−g([[m,n],m0])
= [d(mn)−d(nm),m0]+ [mn−nm,d(m0)]−g([[m,n],m0]),

where we used (3.12) in the last step. Therefore,

[d(mn)−d(nm)− [d(m),n]− [m,d(n)],m0] = 0 (3.14)
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for all m,m0 ∈ M and n ∈ N . Repeating the same computational process, we can also
get

[d(mn)−d(nm)− [d(m),n]− [m,d(n)],n0] = 0 (3.15)

for all m ∈ M and n, n0 ∈ N . It follows from (3.14) and (3.15) that

(d(mn)−d(m)n−md(n))− (d(nm)−d(n)m−nd(m))∈ Z (A ) (3.16)

for all m ∈ M and n ∈ N . We may assume that A does not contain nonzero central
ideals. Set

ε(m,n) = d(mn)−d(m)n−md(n).

Let a ∈ A . Then by (3.13) and Lemma 3.17 we have

ε(am,n) = d(amn)−d(am)n−amd(n)
= d(a)mn+ad(mn)−d(a)mn−ad(m)n−amd(n)
= aε(m,n)

for all m∈M and n∈ N . Note that ε(m,n) ∈Z (A) for all m∈M,n ∈N . So Aε(m,n)
is a central ideal of A . Consequently, ε(m,n) = 0 for all m ∈M and n ∈ N . This gives

d(mn)−d(m)n−md(n) = 0 (3.17)

for all m ∈ M and n ∈ N . This fact together with (3.16) leads to

d(nm)−d(n)m−nd(m) = 0 (3.18)

for all m ∈ M and n ∈ N .
It follows from the equalities (3.12), (3.13), (3.17), (3.18) and Lemma 3.17 that

d(xy) = d(xaya + xaxm + xbyb + xbyn + xmyb + xmyn + xnya + xnym)
= d(xaya)+d(xaym)+d(xbyb)+d(xbyn)+d(xmyb)+d(xmyn)+d(xnya)+d(xnym)
= d(xa)ya+d(xa)ym+d(xb)yb+d(xb)yn+d(xm)yb+d(xm)yn+d(xn)ya+d(xn)ym

+xad(ya)+xad(ym)+xbd(yb)+xbd(yn)+xmd(yb)+xmd(yn)+xnd(ya)+xnd(ym)
= d(x)y+ xd(y),

and hence d is an additive derivation of A . �
Now we are in a position to prove the main theorem of this section.

Proof of Theorem 3.1. First we have L = d +g . By Lemma 3.19 we know that d
is an additive derivation of A . Note that g(x) ∈ Z (A ) for all x ∈ A . It remains to
show that g([x,y]) = 0 for all x,y ∈ A .

g([x,y]) = L([x,y])−d([x,y])
= [L(x),y]+ [x,L(y)]− [d(x),y]− [x,d(y)]
= [d(x),y]+ [x,d(y)]− [d(x),y]− [x,d(y)] = 0

for all x,y ∈ A . �
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4. Multiplicative Lie higher derivations of unital algebras with idempotents

THEOREM 4.1. Let A be a 2 torsion-free unital algebra with a notrivial idem-
potent e and {Lk}k∈N be a multiplicative Lie higher derivation of A . If the following
conditions are satisfied:

(1) A satisfies (1.2);

(2) πA(Z (A )) = Z (A) and πB(Z (B)) = Z (B);

(3) either A or B does not contain nonzero central ideals;

(4) for each n ∈ N , the condition nM = 0 or Mn = 0 implies n = 0 ;

(5) for each m ∈ M, the condition mN = 0 or Nm = 0 implies m = 0 ;

(6) for each k ∈ N , eLk(e) f = 0 and f Lk(e)e = 0 ,

then Lk = dk +gk , where {dk}k∈N is an additive higher derivation of A and {gk}k∈N

is a sequence of central mapping such that gk[x,y] = 0 for all x,y ∈ A .

REMARK 4.2. Notice that the condition (6) in the above Theorem is equivalent
to the fact that [Lk(e),e] = 0, and so [Lk(e), f ] = 0. Taking k = 1, this together with
L1([e, f ]) = 0 further implies that L1( f ) also commutes with e and consequently f .

In order to obtain this theorem, we will use an induction method for the component
index k . When k = 1, L1 is clearly a multiplicative Lie derivation on A . It follows
from Theorem 3.1 that there exist an additive derivation d1 and a central mapping g1

vanishing on all commutators such that L1 = d1 +g1 . By Remark 3.2 and Remark 3.4
we know that

ξ (x) = ν(x)− [ν(e),x]
= L1(x)− [L1( f ),x]− [L1(e)− [L1( f ),e],x]
= L1(x)− [L1( f ),x]− [L1(e),x]+ [[L1( f ),e],x]

for all x ∈ A . Using Remark 4.2, we can easily get ξ ( f ) = L1( f ) and ξ (e) = L1(e) .
It follow from the proof of Theorem 3.1 that L1( f ) ∈ Z (A ) and L1(e) ∈ Z (A ) .
Correspondingly, we have ξ (x) = L1(x) for all x ∈ A . By the previous facts it is not
difficult to see that L1 satisfies the following properties:

L1(0) = 0, L1(e) ∈ Z (A ), L1( f ) ∈ Z (A ),
L1(a) ∈ A+Z (A ), L1(b) ∈ B+Z (A ),
L1(m) ∈ M, L1(n) ∈ N

for all a ∈ A, m ∈ M , n ∈ N and b ∈ B . By Lemma 3.17 and Remark 3.16 we know
that

d1(e) = 0, d1( f ) = 0,

d1(a) ∈ A, d1(b) ∈ B,

d1(m) ∈ M, d1(n) ∈ N
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for all a ∈ A, m ∈ M , n ∈ N and b ∈ B .
Now let s ∈ N with k � 1 and we assume that Theorem 4.1 holds for all s < k .

This implies there exist an additive mapping {di}s
i=0 and a nonlinear central mapping

gs vanishing on all commutators such that Ls(x) = ds(x)+ gs(x) for all x ∈ A . The
sequence ds(s < k) is an additive higher derivation of order s and the mappings Ls and
ds satisfy the following properties:

Ls(0) = 0, Ls(e) ∈ Z (A ), Ls( f ) ∈ Z (A ),
Ls(a) ∈ A+Z (A ), Ls(b) ∈ B+Z (A ),
Ls(m) ∈ M, Ls(n) ∈ N

and
ds(e) = 0, ds( f ) = 0,

ds(a) ∈ A, ds(b) ∈ B,

ds(m) ∈ M, ds(n) ∈ N

for all a ∈ A, m ∈ M , n ∈ N and b ∈ B .
The induction process can be realized through a series of lemmas. We must indi-

cate that the proofs in the induction step are essentially the same as those in Section 3,
but they are done in a slightly different way.

LEMMA 4.3. Lk(0) = 0 .

Proof. By the induction hypothesis we have

Lk(0) = Lk([0,0]) = ∑
i+ j=k

0<i, j<k

[Li(0),Lj(0)] = 0. �

LEMMA 4.4. For each k ∈ N , we have eLk( f ) f = 0 and f Lk( f )e = 0 .

Proof. Using the induction hypothesis and assumption (6), we obtain

Lk([e, f ]) = [Lk(e), f ]+ ∑
i+ j=k

0<i, j<k

[Li(e),Lj( f )]+ [e,Lk( f )]

= eLk( f )−Lk( f )e = eLk( f ) f − f Lk( f )e = 0.

So eLk( f ) f = 0 and f Lk( f )e = 0. �

LEMMA 4.5. Lk(e) ∈ Z (A ) , Lk( f ) ∈ Z (A ) , Lk(m) ∈ M and Lk(n) ∈ N for
all m ∈ M and n ∈ N .

Proof. First we have

Lk([e,m]) = [Lk(e),m]+ ∑
i+ j=k

0<i, j<k

[Li(e),Lj(m)]+ [e,Lk(m)],

Lk([n,e]) = [Lk(n),e]+ ∑
i+ j=k

0<i, j<k

[Li(n),Lj(e)]+ [n,Lk(e)]
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for all m ∈ M and n ∈ N . According to the induction hypothesis we get

Lk(m) = Lk(e)m−mLk(e)+ eLk(m)−Lk(m)e,
Lk(n) = Lk(n)e− eLk(n)+nLk(e)−Lk(e)n

for all m ∈ M and n ∈ N . Furthermore, we obtain

eLk(e)em = mfLk(e) f , neLk(e)e = f Lk(e) f n

and
eLk(m)e = 0, f Lk(m) f = 0, f Lk(m)e = 0,

eLk(n)e = 0, f Lk(n) f = 0, eLk(n) f = 0

for all m ∈ M and n ∈ N . These facts together with assumption (6) and Lemma 4.4
imply that Lk(e) ∈ Z (A ) , Lk(m) ∈ M and Lk(n) ∈ N for all m ∈ M and n ∈ N .
Similarly, Lk( f ) ∈ Z (A ) . �

LEMMA 4.6. Lk(a) ∈ A+Z (A ) , Lk(b) ∈ B+Z (A ) for all a ∈ A and b ∈ B.

Proof. In view of Lemma 4.3 we have

Lk([a,b]) = [Lk(a),b]+ ∑
i+ j=k

0<i, j<k

[Li(a),Lj(b)]+ [a,Lk(b)] = 0

for all a ∈ A and b ∈ B . Applying the induction hypothesis yields

[Lk(a),b]+ [a,Lk(b)] = 0,

or

[ f Lk(a) f + eLk(a) f + f Lk(a)e,b]+ [a,eLk(b)e+ eLk(b) f + f Lk(b)e] = 0 (4.1)

for all a ∈ A and b ∈ B . This means that [ f Lk(a) f ,b] = [a,eLk(b)e] = 0. Replacing b
with f in (4.1) and using Lemma 4.4, we obtain

eLk(a) f = f Lk(a)e = 0

for all a ∈ A . Note that there exists a unique algebraic isomorphism σ : eZ (A )e →
fZ (A ) f such that a+ σ(a)∈ Z (A ) for all a ∈ eZ (A )e , so

Lk(a) = eLk(a)e−σ−1( f Lk(a) f )+ f Lk(a) f + σ−1( f Lk(a) f )

for all a ∈ A . Therefore, Lk(a) ∈ A+Z (A ) for all a ∈ A . Similarly, one can show
that Lk(b) ∈ B+Z (A ) for all b ∈ B . �

REMARK 4.7. For any x ∈ A , we define

g′k(x) := f Lk(exe) f + σ−1( f Lk(exe) f )+ eLk( f x f )e+ σ(eLk( f x f )e).
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Obviously, g′k(x) ∈ Z (A ) . Now a new mapping χk : A → A from A to itself can
be defined by χk(x) = Lk(x)−g′k(x) for all x ∈ A . By Lemma 4.5 and Lemma 4.6 we
obtain

χk(m) = Lk(m)−g′k(m) = Lk(m) ∈ M,

χk(n) = Lk(n)−g′k(n) = Lk(n) ∈ N,

χk(a) = Lk(a)−g′k(a) = eLk(a)e−σ−1( f Lk(a) f ) ∈ A,

χk(b) = Lk(b)−g′k(b) = f Lk(b) f −σ(eLk(b)e) ∈ B

(4.2)

for all a ∈ A,m ∈ M,n ∈ N and b ∈ B .

LEMMA 4.8. For any a ∈ A,m ∈ M,n ∈ N and b ∈ B, we have

χk(am) = χk(a)m+aχk(m)+ ∑
i+ j=k

0<i, j<k

di(a)d j(m),

χk(bn) = χk(b)n+bχk(n)+ ∑
i+ j=k

0<i, j<k

di(b)d j(n),

χk(mb) = χk(m)b+mχk(b)+ ∑
i+ j=k

0<i, j<k

di(m)d j(b),

χk(na) = χk(n)a+nχk(a)+ ∑
i+ j=k

0<i, j<k

di(n)d j(a).

Proof. For any a ∈ A and m ∈ M , applying the induction hypothesis yields

χk(am) = Lk([a,m]) = [Lk(a),m]+ ∑
i+ j=k

0<i, j<k

[Li(a),Lj(m)]+ [a,Lk(m)]

= [χk(a),m]+ ∑
i+ j=k

0<i, j<k

[di(a),d j(m)]+ [a,χk(m)]

= χk(a)m+ ∑
i+ j=k

0<i, j<k

di(a)d j(m)+aχk(m).

The rest can be proved in an analogous manner. �

LEMMA 4.9. For any a1,a2 ∈ A and b1,b2 ∈ B we have

χk(a1a2) = χk(a1)a2 +a1χk(a2)+ ∑
i+ j=k

0<i, j<k

di(a1)d j(a2),

χk(b1b2) = χk(b1)b2 +b1χk(b2)+ ∑
i+ j=k

0<i, j<k

di(b1)d j(b2).
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Proof. For any a1,a2 ∈ A and m ∈ M , we deduce from Lemma 4.8 that

χk(a1a2m) = χk(a1a2)m+ ∑
i+ j=k

0<i, j<k

di(a1a2)d j(m)+a1a2χk(m)

= χk(a1a2)m+ ∑
i+ j+l=k
0<l<k

di(a1)d j(a2)dl(m)+a1a2χk(m).

By Lemma 4.8 again we obtain

χk(a1a2m) = χk(a1)a2m+ ∑
i+ j=k

0<i, j<k

di(a1)d j(a2m)+a1χk(a2m)

= χk(a1)a2m+ ∑
i+ j+l=k
0<i<k

di(a1)d j(a2)dl(m)

+a1χk(a2)m+ ∑
i+ j=k

0<i, j<k

a1di(a2)d j(m)+a1a2χk(m)

= χk(a1)a2m+ ∑
i+ j+l=k
0<l<k

di(a1)d j(a2)dl(m)

+a1χk(a2)m+ ∑
i+ j=k
0<i<k

di(a1)d j(a2)m+a1a2χk(m)

for all a1,a2 ∈ A and m ∈ M .
Combining the last two relations, we arrive at

χk(a1a2)m = (χk(a1)a2 +a1χk(a2)+ ∑
i+ j=k

0<i, j<k

di(a1)d j(a2))m (4.3)

for all a1,a2 ∈ A and m ∈ M . In an analogous way one can show that

nχk(a1a2) = n(χk(a1)a2 +a1χk(a2)+ ∑
i+ j=k

0<i, j<k

di(a1)d j(a2)) (4.4)

for all a1,a2 ∈ A and n ∈ N . Therefore, equalities (4.3), (4.4) and assumption (1.2)
imply that

χk(a1a2) = χk(a1)a2 +a1χk(a2)+ ∑
i+ j=k

0<i, j<k

di(a1)d j(a2)

for all a1,a2 ∈ A . Similarly, we can show

χk(b1b2) = b1χk(b2)+ χk(b1)b2 + ∑
i+ j=k

0<i, j<k

di(b1)d j(b2)

for all b1,b2 ∈ A . �
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LEMMA 4.10. For any a ∈ A,m ∈ M, n ∈ N and b ∈ B, we have

χk(a+m)− χk(a)− χk(m) ∈ Z (A ),
χk(b+m)− χk(b)− χk(m) ∈ Z (A ),
χk(a+n)− χk(a)− χk(n) ∈ Z (A ),
χk(b+n)− χk(b)− χk(n) ∈ Z (A ).

Proof. Let a ∈ A and m,m′ ∈ M . Considering the induction hypothesis, we get

χk(am′) = Lk([a+m,m′])

= [Lk(a+m),m′]+ [a+m,Lk(m′)]+ ∑
i+ j=k

0<i, j<k

[Li(a+m),Lj(m′)]

= [χk(a+m),m′]+ [a+m,χk(m′)]+ ∑
i+ j=k

0<i, j<k

[di(a+m),d j(m′)]

= [χk(a+m),m′]+aχk(m′)+ ∑
i+ j=k

0<i, j<k

[di(a),d j(m′)].

Applying Lemma 4.8, we can further get

[χk(a+m)− χk(a),m′] = 0

for all a ∈ A and m,m′ ∈ M .

Let a∈A and m∈M . To determine the term e(χk(a+m)−χk(a)) f and f (χk(a+
m)− χk(a))e , we do the following computation using Lemma 4.5 and Lemma 4.6.

[e,χk(a+m)− χk(a)]
= [e,Lk(a+m)]− [e,Lk(a)]

= Lk([e,a+m])− [Lk(e),a+m]− ∑
i+ j=k

0<i, j<k

[Li(e),Lj(a+m)]

= Lk([e,m]) = χk(m).

This implies that

e(χk(a+m)− χk(a)) f = χk(m), f (χk(a+m)− χk(a))e = 0 (4.5)

for all a ∈ A and m ∈ M .

Next we will prove that [χk(a+m)− χk(a)− χk(m),b] = 0 for all a ∈ A, m ∈ M
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and b ∈ B . In view of the induction hypothesis, we routinely compute that

χk(mb) = Lk([a+m,b])

= [Lk(a+m),b]+ [a+m,Lk(b)]+ ∑
i+ j=k

0<i, j<k

[di(a+m),d j(b)]

= [χk(a+m),b]+ [a+m,χk(b)]+ ∑
i+ j=k

0<i, j<k

[di(a+m),d j(b)]

= [χk(a+m),b]+ [m,χk(b)]+ ∑
i+ j=k

0<i, j<k

di(m)d j(b).

Applying Lemma 4.8 again, we obtain

[χk(a+m)− χk(m),b] = 0

for all a ∈ A, m ∈ M and b ∈ B . Then by (4.2) we have

[χk(a+m)− χk(m)− χk(a),b] = 0

for all a ∈ A, m ∈ M and b ∈ B .
Now let us denote χk(a+m)−χk(m)−χk(a) by x . Then due to the relation (4.5)

we know that x ∈ A+B . Let us choose m′ ∈ M . Then for arbitrary element n ∈ N , we
have

(xn−nx)m′ = xnm′ −nxm′ = nm′x−nm′x = 0.

This leads to xn− nx = [x,n] = 0 for n ∈ N by the assumption. Now we can see that
χk(a+m)− χk(m)− χk(a) ∈ Z (A ) for all a ∈ A and m ∈ M . We can also show the
rest in a similar way. �

LEMMA 4.11. χk is additive on A, M , N and B, respectively.

Proof. By the induction hypothesis and applying Lemma 4.10 we immediately
compute that

χk(m+m′) = χk([e+m, f +m′])
= [χk(e+m), f +m′]+ [e+m,χk( f +m′)]

+ ∑
i+ j=k

0<i, j<k

[di(e+m),d j( f +m′)]

= [χk(e)+ χk(m), f +m′]+ [e+m,χk( f )+ χk(m′)]
= χk(m)+ χk(m′)

(4.6)
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and
χk(n+n′) = χk([ f +n,e+n′])

= [χk( f +n),e+n′]+ [ f +n,χk(e+n′)]

+ ∑
i+ j=k

0<i, j<k

[di( f +n),d j(e+n′)]

= [χk( f )+ χk(n),e+n′]+ [ f +n,χk(e)+ χk(n′)]
= χk(n)+ χk(n′)

(4.7)

for all m,m′ ∈ M and n,n′ ∈ N .
In view of Lemma 4.8 and (4.6) one can get

χk((a1 +a2)m) = χk(a1m)+ χk(a2m)

= χk(a1)m+a1χk(m)+ ∑
i+ j=k

0<i, j<k

di(a1)d j(m)

+ χk(a2)m+a2χk(m)+ ∑
i+ j=k

0<i, j<k

di(a2)d j(m)

(4.8)

for all a1,a2 ∈ A and m ∈ M . On the other hand, using Lemma 4.8 again, we arrive at

χk((a1 +a2)m) = χk(a1 +a2)m+(a1 +a2)χk(m)+ ∑
i+ j=k

0<i, j<k

di(a1 +a2)d j(m) (4.9)

for all a1,a2 ∈ A and m ∈ M . Combining (4.8) with (4.9) gives

χk(a1 +a2)m = χk(a1)m+ χk(a2)m

for all a1,a2 ∈ A and m ∈ M . Likewise, we can also get

nχk(a1 +a2) = nχk(a1)+nχk(a2)

for all a1,a2 ∈ A and n ∈ N . The last two relations jointly imply that

χk(a1 +a2)− χk(a1)− χk(a2) = 0

for all a1,a2 ∈ A , which is the desired result. Similarly, we also have the additivity of
χk on B . �

LEMMA 4.12. For any a ∈ A,m ∈ M,n ∈ N and b ∈ B, we have

χk(a+m+b)− χk(a)− χk(b)− χk(m) ∈ Z (A ),
χk(a+n+b)− χk(a)− χk(b)− χk(n) ∈ Z (A ).
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Proof. In light of Lemma 4.8 and Lemma 4.11 we have

χk(am′ −m′b) = χk(am′)− χk(m′b)

= χk(a)m′ + ∑
i+ j=k

0<i, j<k

di(a)d j(m′)+aχk(m′)

− χk(m′)b− ∑
i+ j=k

0<i, j<k

di(m′)d j(b)−m′χk(b)

for all a ∈ A , m′ ∈ M and b ∈ B . On the other hand,

χk(am′ −m′b) = Lk([a+m+b,m′])

= [χk(a+m+b),m′]+ ∑
i+ j=k

0<i, j<k

[di(a+m+b),d j(m′)]

+ [a+m+b,χk(m′)]

= [χk(a+m+b),m′]+ ∑
i+ j=k

0<i, j<k

di(a)d j(m′)

− ∑
i+ j=k

0<i, j<k

d j(m′)di(b)+aχk(m′)− χk(m′)b

for all a ∈ A , m,m′ ∈ M and b ∈ B . Comparing the last two relations we assert

[χk(a+m+b)− χk(a)− χk(b),m′] = 0 (4.10)

for all a ∈ A , m,m′ ∈ M and b ∈ B .

Taking into account Lemma 4.5 and (4.2), we obtain

[e,χk(a+m+b)− χk(a)− χk(b)]

= Lk([e,a+m+b])− [Lk(e),a+m+b]− ∑
i+ j=k

0<i, j<k

[Li(e),Lj(a+m+b)]

= Lk([e,m]) = χk(m)

for all a ∈ A , m ∈ M and b ∈ B . Hence we have

e(χk(a+m+b)− χk(a)− χk(b)) f = χk(m),
f (χk(a+m+b)− χk(a)− χk(b))e = 0

(4.11)

for all a ∈ A , m ∈ M and b ∈ B .

Next we will prove that [χk(a + m + b)− χk(a)− χk(m)− χk(b),b] = 0 for all
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a ∈ A, m ∈ M and b ∈ B . It is easy to compute that

χk(mb′ +[b,b′]) = Lk([a+m+b,b′])−g′k(mb′ +[b,b′])
= [Lk(a+m+b),b′]+ [a+m+b,Lk(b′)]

+ ∑
i+ j=k

0<i, j<k

[Li(a+m+b),Lj(b′)]−g′k(mb′ +[b,b′])

= χk(a+m+b)b′−b′χk(a+m+b)
+mχk(b′)+bχk(b′)− χk(b′)b

+ ∑
i+ j=k

0<i, j<k

[di(a+m+b),d j(b′)]−g′k([b,b′])

for all a∈ A, m ∈ M and b,b′ ∈ B . On the other hand, by Lemma 4.10 and Lemma 4.8
we know that

χk(mb′ +[b,b′]) = χk(mb′)+ χk([b,b′])+ x

= χk(mb′)+[χk(b),b′]+[b,χk(b′)]+ ∑
i+ j=k

0<i, j<k

[di(b),d j(b′)]−g′k([b,b′])+x

= χk(m)b′ +mχk(b′)+ ∑
i+ j=k

0<i, j<k

[di(m),d j(b′)]+ χk(b)b′ −b′χk(b)

+bχk(b′)− χk(b′)b+ ∑
i+ j=k

0<i, j<k

[di(b),d j(b′)]−g′k([b,b′])+ x

for all m ∈M and b,b′ ∈ B and some x ∈Z (A ) . Comparing the last two relations we
have

χk(m)b′ + χk(b)b′ −b′χk(b)+ x

= χk(a+m+b)b′−b′χk(a+m+b)

for all a ∈ A, m ∈ M and b,b′ ∈ B . Furthermore, the above relation can be rewritten as

b′χk(a+m+b)−b′χk(m)−b′χk(b)−b′χk(a)+ x

= χk(a+m+b)b′− χk(m)b′ − χk(b)b′ − χk(a)b′

for all a ∈ A, m ∈ M and b,b′ ∈ B . That is,

[b′,χk(a+m+b)− χk(a)− χk(b)− χk(m)] ∈ Z (A ),

for all a ∈ A, m ∈ M and b,b′ ∈ B . By (4.11) we can see that χk(a+m+b)−χk(a)−
χk(b)− χk(m) ∈ A+B , so we can further get

[b′,χk(a+m+b)− χk(a)− χk(b)− χk(m)] = 0 (4.12)

for all a∈ A, m∈M and b,b′ ∈ B . Taking into account (4.10) and (4.12) and repeating
the same procedure in Lemma 3.9 we can prove that χk(a+m+b)− χk(a)− χk(b)−
χk(m) ∈ Z (A ) . Similarly, we can also get χk(a+ n+ b)− χk(a)− χk(b)− χk(n) ∈
Z (A ) . �
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LEMMA 4.13. For any a ∈ A,m ∈ M,n ∈ N and b ∈ B, we have

χk(a+m+n+b)−χk(a)− χk(b)− χk(m)− χk(n) ∈ Z (A ).

Proof. By the induction hypothesis we obtain

χk([m′,a+m+n+b])= [χk(m′),a+m+n+b]+ [m′,χk(a+m+n+b)]

+ ∑
i+ j=k

0<i, j<k

[di(m′),d j(a+m+n+b)]−g′k([m
′,a+m+n+b])

= [χk(m′),a+n+b]+ [m′,χk(a+m+n+b)]

+ ∑
i+ j=k

0<i, j<k

[di(m′),d j(a+n+b)]−g′k([m
′,a+m+n+b])

for all a ∈ A, m,m′ ∈ M , n ∈ N and b ∈ B . However, we can also get

χk([m′,a+m+n+b])= [χk(m′),a+n+b]+ [m′,χk(a+n+b)]

+ ∑
i+ j=k

0<i, j<k

[di(m′),d j(a+n+b)]−g′k([m
′,a+m+n+b])

for all a ∈ A, m,m′ ∈ M , n ∈ N and b ∈ B . The last two relations imply that

[m′,χk(a+m+n+b)− χk(a+n+b)] = 0

for all a ∈ A, m,m′ ∈ M , n ∈ N and b ∈ B . In view of Lemma 4.12 the above relation
can be rewritten as

[m′,χk(a+m+n+b)−χk(a)− χk(b)− χk(m)− χk(n)] = 0 (4.13)

for all a ∈ A, m,m′ ∈ M , n ∈ N and b ∈ B . Because of symmetry we also have

[n′,χk(a+m+n+b)−χk(a)− χk(b)− χk(m)− χk(n)] = 0 (4.14)

for all a ∈ A, m ∈ M , n,n′ ∈ N and b ∈ B . From equalities (4.13), (4.14) and assump-
tions (4) and (5) we can see that

f χk(a+m+n+b)e−χk(n) = 0,

eχk(a+m+n+b) f − χk(m) = 0
(4.15)

for all a∈ A, m∈M , n∈ N and b∈ B . Equalities (4.13), (4.14) and (4.15) jointly lead
to

χk(a+m+n+b)−χk(a)− χk(b)− χk(m)− χk(n) ∈ Z (A )

for all a ∈ A, m ∈ M , n ∈ N and b ∈ B . �
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LEMMA 4.14. For any a ∈ A,m ∈ M,n ∈ N and b ∈ B, we have

χk(mn) = χk(m)n+mχk(n)+ ∑
i+ j=k

0<i, j<k

di(m)d j(n),

χk(nm) = χk(n)m+nχk(m)+ ∑
i+ j=k

0<i, j<k

di(n)d j(m).

Proof. Let us choose arbitrary elements m,m0 ∈ M and n ∈ N . We routinely
compute that

χk([[m,n],m0]) = [Lk[m,n],m0]+ [[m,n],Lk(m0)]

+ ∑
i+ j=k

0<i, j<k

[di([m,n]),d j(m0)]−g′k([[m,n],m0])

= [[Lk(m),n]+ [m,Lk(n)],m0]

+ ∑
i+ j=k

0<i, j<k

[[di(m),d j(n)],m0]+ [[m,n],Lk(m0)]

+ ∑
i+ j=k

0<i, j<k

[di([m,n]),d j(m0)]−g′k([[m,n],m0])

= [[χk(m),n],m0]+ [[m,χk(n)],m0]+ [[m,n],χk(m0)]

+ ∑
i+ j=k

0<i, j<k

[[di(m),d j(n)],m0]+ ∑
i+ j=k

0<i, j<k

[di([m,n]),d j(m0)]

(4.16)

and
χk([[m,n],m0]) = Lk([mn−nm,m0])−g′k([[m,n],m0])

= [Lk(mn−nm),m0]+ [mn−nm,Lk(m0)]

+ ∑
i+ j=k

0<i, j<k

[di([m,n]),d j(m0)]

= [χk(mn−nm),m0]+ [mn−nm,Lk(m0)]

+ ∑
i+ j=k

0<i, j<k

[di([m,n]),d j(m0)]

= [χk(mn)− χk(nm),m0]+ [mn−nm,χk(m0)]

+ ∑
i+ j=k

0<i, j<k

[di(mn−nm),d j(m0)],

(4.17)

where Lemma 4.11 and Lemma 4.13 are used in the second calculation. From the last
two relations we have

[χk(mn)− χk(nm)− [χk(m),n]− [m,χk(n)],m0]− ∑
i+ j=k

0<i, j<k

[[di(m),d j(n)],m0] = 0

(4.18)
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for all m,m0 ∈ M and n ∈ N . In the same way we also obtain

[χk(mn)−χk(nm)− [χk(m),n]− [m,χk(n)],n0]− ∑
i+ j=k

0<i, j<k

[[di(m),d j(n)],n0] = 0 (4.19)

for all m ∈ M and n,n0 ∈ N . It follows from (4.18) and (4.19) that

(χk(mn)−χk(m)n−mχk(n))−(χk(nm)−χk(n)m−nχk(m))− ∑
i+ j=k

0<i, j<k

[di(m),d j(n)]∈Z (A )

(4.20)
for all m ∈ M and n ∈ N . We might as will assume that A does not contain nonzero
central ideals. Set

ε(m,n) = χk(mn)− χk(m)n−mχk(n)− ∑
i+ j=k

0<i, j<k

di(m)d j(n)

for all m ∈ M and n ∈ N . Applying Lemma 4.8 and Lemma 4.9, we can get

ε(am,n) = χk(amn)− χk(am)n−amχk(n)− ∑
i+ j=k

0<i, j<k

di(am)d j(n)

= χk(a)mn+aχk(mn)+ ∑
i+ j=k

0<i, j<k

di(a)d j(mn)− χk(a)mn−aχk(m)n

− ∑
i+ j=k

0<i, j<k

di(a)d j(m)n−amχk(n)− ∑
i+ j=k

0<i, j<k

di(am)d j(n)

= aχk(mn)−aχk(m)n−amχk(n)

− ∑
i+ j=k

0<i, j<k

di(a)d j(m)n− ∑
i+ j=k

0<i, j<k

di(am)d j(n)+ ∑
i+ j=k

0<i, j<k

di(a)d j(mn)

= aχk(mn)−aχk(m)n−amχk(n)

− ∑
i+ j=k

0<i, j<k

di(a)d j(m)n− ∑
s+t+ j=k
0< j<k

ds(a)dt(m)d j(n)+ ∑
i+s+t=k
0<i<k

di(a)ds(m)dt(n)

= aχk(mn)−aχk(m)n−amχk(n)

− ∑
i+ j=k

0<i, j<k

adi(m)d j(n)− ∑
s+t+ j=k
0<s<k

ds(a)dt(m)d j(n)+ ∑
i+s+t=k
0<i<k

di(a)ds(m)dt(n)

= aε(m,n)

for all m ∈ M , n ∈ N and a ∈ A . Note that ε(m,n) ∈ Z (A) for all m ∈ M and n ∈ N .
So Aε(m,n) is a central ideal of A . Consequently, ε(m,n) = 0 for all m ∈ M and
n ∈ N . This gives the fact that

χk(mn)− χk(m)n−mχk(n)− ∑
i+ j=k

0<i, j<k

di(m)d j(n) = 0 (4.21)
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for all m ∈ M and n ∈ N . By the previous fact and (4.21) we obtain

χk(nm)− χk(n)m−nχk(m)− ∑
i+ j=k

0<i, j<k

di(n)d j(m) = 0

for all m ∈ M and n ∈ N . �

REMARK 4.15. Let χk be as in Remark 4.7. Let us define

dk(a+m+n+b)= χk(a)+ χk(m)+ χk(n)+ χk(b)

for all a ∈ A, m ∈ M , n ∈ N and b ∈ B .

Proof of Theorem 4.1. It follows from the definitions of g′k and dk that

Lk = dk +g′k + χk−dk = dk +gk.

Then Lemma 4.13 implies that gk = g′k + χk −dk is a mapping from A into its centre
Z (A ) .

Let us choose arbitrary elements x,y ∈ A . Assume that x = xa +xb +xm +xn and
y = ya +yb +ym +yn , where xa,ya ∈ A , xb,yb ∈ B , xm,ym ∈M and xn,yn ∈ N . In view
of Lemma 4.11 we have

dk(x+ y) = χk(xa + ya)+ χk(xm + ym)+ χk(xn + yn)+ χk(xb + yb)
= χk(xa)+ χk(xm)+ χk(xn)+ χk(xb)

+ χk(ya)+ χk(ym)+ χk(yn)+ χk(yb)
= dk(x)+dk(y).

Thus dk is additive.
Now let us show that {ds}k

s=0 is a higher derivation of order k . In view of Lemma
4.8, 4.9, 4.14 and Remark 4.15, we can do the following computation.

dk(xy) = dk(xaya + xaxm + xbyb + xbyn + xmyb + xmyn + xnya + xnym)
= dk(xaya)+dk(xaym)+dk(xbyb)+dk(xbyn)

+dk(xmyb)+dk(xmyn)+dk(xnya)+dk(xnym)
= χk(xaya)+ χk(xaym)+ χk(xbyb)+ χk(xbyn)

+ χk(xmyb)+ χk(xmyn)+ χk(xnya)+ χk(xnym)

= χk(xa)ya + xaχk(ya)+ ∑
i+ j=k

0<i, j<k

di(xa)d j(ya)

+ · · ·
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On the other hand, we observe that

dk(x)y+ xdk(y)+ ∑
i+ j=k

0<i, j<k

di(x)d j(y)

= dk(xa + xb + xm + xn)y+ xdk(ya + yb + ym + yn)+ ∑
i+ j=k

0<i, j<k

di(x)d j(y)

= (dk(xa)+dk(xb)+dk(xm)+dk(xn))y

+ x(dk(ya)+dk(yb)+dk(ym)+dk(yn))+ ∑
i+ j=k

0<i, j<k

di(x)d j(y)

= (χk(xa)+ χk(xb)+ χk(xm)+ χk(xn))y

+ x(χk(ya)+ χk(yb)+ χk(ym)+ χk(yn))+ ∑
i+ j=k

0<i, j<k

di(x)d j(y)

= χk(xa)ya + χk(xa)ym + χk(xb)yb + χk(xb)yn + χk(xm)yn + χk(xm)yb

+ χk(xn)ya + χk(xn)ym + xaχk(ya)+ xaχk(ym)+ xbχk(yb)
+ xbχk(yn)+ xmχk(yn)+ xmχk(yb)+ xnχk(ya)+ xnχk(ym)

+ ∑
i+ j=k

0<i, j<k

di(xa)d j(ya)+ ∑
i+ j=k

0<i, j<k

di(xa)d j(ym)

+ ∑
i+ j=k

0<i, j<k

di(xb)d j(yb)+ ∑
i+ j=k

0<i, j<k

di(xb)d j(yn)

+ ∑
i+ j=k

0<i, j<k

di(xm)d j(yn)+ ∑
i+ j=k

0<i, j<k

di(xm)d j(yb)

+ ∑
i+ j=k

0<i, j<k

di(xn)d j(ya)+ ∑
i+ j=k

0<i, j<k

di(xn)d j(ym).

Now we have
dk(xy) = dk(x)y+ xdk(y)+ ∑

i+ j=k
0<i, j<k

di(x)d j(y)

for all x,y ∈ A .
It remains to show that gk([x,y]) = 0 for all x,y ∈ A .

gk([x,y]) = Lk([x,y])−dk([x,y])
= [Lk(x),y]+ [x,Lk(y)]

+ ∑
i+ j=k

0<i, j<k

[Li(x),Lj(y)]− [dk(x),y]− [x,dk(y)]− ∑
i+ j=k

0<i, j<k

[di(x),d j(y)]

= [dk(x),y]+ [x,dk(y)]− [dk(x),y]− [x,dk(y)]
= 0
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for all x,y ∈ A .
Finally, the other properties of dk follow from what was already proved. �
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[4] D. BENKOVIČ, Lie triple derivations on triangular matrices, Algebra Colloq., 18 (2011), Special
Issue No. 1, 819–826.

[5] D. BENKOVIČ, Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra,
63 (2015), 141–165.
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[17] A. FOŠNER, F. WEI AND Z.-K. XIAO, Nonlinear Lie-type derivations of von Neumann algebras and

related topics, Colloq. Math., 132 (2013), 53–71.
[18] K. E. GEHLES, Properties of Cherednik algebras and graded Hecke algebras, Ph. D. Thesis, Univer-

sity of Glasgow, 2006.
[19] P. GOLDSTEIN, On graph C∗ -algebras, J. Aust. Math. Soc., 72 (2002), 153–160.
[20] D. HAN, Lie-type higher derivations on operator algebras, Bull. Iran Math. Soc., 40 (2014), 1169–

1194.
[21] H. HASSE AND F. K. SCHMIDT, Noch eine Begründung der Theorie der höheren Differentialquotien-
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