ADDITIVE MAPS PRESERVING m-NORMAL EIGENVALUES ON $\mathscr{B}(\mathscr{H})$

Weiduan Shi and Guoxing Ji

(Communicated by N.-C. Wong)

Abstract

Let \mathscr{H} be an infinite-dimensional complex Hilbert space and $\mathscr{B}(\mathscr{H})$ the algebra of all bounded linear operators on \mathscr{H}. For an operator $T \in \mathscr{B}(\mathscr{H})$ and a fixed non-negative integer m, an m-normal eigenvalue λ of T is the normal eigenvalue satisfying $\operatorname{dim} N(T-\lambda I)>m$. In this paper, we prove that, if an additive surjective map φ on $\mathscr{B}(\mathscr{H})$ preserves m as well as $m+1$-normal eigenvalues, then there is an invertible operator $A \in \mathscr{B}(\mathscr{H})$ such that $\varphi(T)=$ $A T A^{-1}$ for all $T \in \mathscr{B}(\mathscr{H})$ or $\varphi(T)=A T^{t r} A^{-1}$ for all $T \in \mathscr{B}(\mathscr{H})$, where $T^{t r}$ denotes the transpose of T with respect to an arbitrary but fixed orthonormal basis of \mathscr{H}.

1. Introduction

Linear or additive preserver problems are to characterize those linear or additive maps on operator algebras preserving certain properties, subsets or relations. Most important of all, we need to find certain properties which are isomorphism or antiisomorphism invariants. The study of the problem has attracted the attention of many authors in the last decades $[2,3,5,6,7,11]$. As we know, spectrum is a very fundamental and key concept in operator theory. Hence many authors have studied linear or additive maps preserving the spectrum as well as certain parts of the spectrum $[1,4,9,10]$. For example, the author showed that additive maps on standard operator algebras preserving parts of the spectrum is either an isomorphism or anti-isomorphism in [4]. It is remarkable that various parts of the spectrum may be regarded as invariants of an automorphism or an anti-automorphism on the algebra of all bounded linear operators on a Banach (or Hilbert) space. It is known that certain parts of spectrum of operators are introduced to analyze the structure of operators. For example, the set of normal eigenvalues of an operator is given (cf. [8]). Note that the set of normal eigenvalues is at most countable and is a very "small" subset of spectrum in general. Thus how may the normal eigenvalues influence the structure of automorphisms on the algebra of all bounded linear operators on a Banach (or Hilbert) space? In this paper, we consider parts of the set of the normal eigenvalues as an invariant of an automorphism or an anti-automorphism on the algebra of all bounded linear operators on a complex infinite-dimensional Hilbert space.

Let \mathscr{H} be a complex infinite-dimensional Hilbert space and $\mathscr{B}(\mathscr{H})$ the algebra of all bounded linear operators on \mathscr{H}. For $x, y \in \mathscr{H}$, we denote by $\langle x, y\rangle$ and $x \otimes y$ the

[^0]inner product of x and y and the rank one operator defined by $(x \otimes y) z=\langle z, y\rangle x, \forall z \in$ \mathscr{H}, respectively. The operator $x \otimes y$ is an idempotent if and only if $\langle x, y\rangle=1$. Let $T \in$ $\mathscr{B}(\mathscr{H})$, we denote by $N(T)$ and $R(T)$ the null space and range of T respectively. For a subset M of $\mathscr{H}, \bigvee\{M\}$ denotes the closed subspace spanned by M. Let $\operatorname{dim} M$ (resp. $\operatorname{codim} M)$ is the dimension of $M\left(\right.$ resp. M^{\perp}, the orthogonal complement of $\left.M\right)$ if M is a closed subspace. Recall that an operator T is called Fredholm if it has closed range such that $\operatorname{dim} N(T)<\infty$ and $\operatorname{codim} R(T)<\infty$. The index of a Fredholm operator $T \in \mathscr{B}(\mathscr{H})$ is given by $\operatorname{ind}(T)=\operatorname{dim} N(T)-\operatorname{codim} R(T)$. The ascent $\operatorname{asc}(T)$ of T is the least non-negative integer n such that $N\left(T^{n}\right)=N\left(T^{n+1}\right)$ and the descent $\operatorname{des}(T)$ is the least non-negative integer n such that $R\left(T^{n}\right)=R\left(T^{n+1}\right)$. An operator T is said to be Browder if it is Fredholm with finite ascent and descent. It is known that T is a Browder operator if and only if T is a Fredholm operator of index zero and $\operatorname{asc}(T)<\infty$.

Let $T \in \mathscr{B}(\mathscr{H})$. If σ is a clopen subset of the spectrum $\sigma(T)$, then there exists an analytic Cauchy domain Ω such that $\sigma \subseteq \Omega$ and $[\sigma(T) \backslash \sigma] \cap \bar{\Omega}=\emptyset$. We let $E(\sigma ; T)$ denote the Riesz idempotent of T corresponding to σ, that is,

$$
E(\sigma ; T)=\frac{1}{2 \pi i} \int_{\Gamma}(\lambda-T)^{-1} d \lambda
$$

where $\Gamma=\partial \Omega$ is positively oriented with respect to Ω in the sense of complex variable theory. In this case, we denote $H(\sigma ; T)=R(E(\sigma ; T))$. If $\lambda \in \operatorname{iso} \sigma(T)$, the isolate points of $\sigma(T)$, then $\{\lambda\}$ is a clopen subset of $\sigma(T)$ and we simply write $H(\lambda ; T)$ instead of $H(\{\lambda\} ; T)$. If, in addition, $\operatorname{dim} H(\lambda ; T)<\infty$, then λ is called a normal eigenvalue of T. The set of all normal eigenvalues of T will be denoted by $\sigma_{0}(T)$ (cf. [8]). Clearly, $\sigma_{0}(T)$ is contained in the point spectrum $\sigma_{p}(T)$. From Corollary 1.14 in [8], we can get

$$
\begin{aligned}
\sigma_{0}(T) & =\{\lambda \in \sigma(T): T-\lambda I \text { is Browder }\} \\
& =\{\lambda \in \operatorname{iso} \sigma(T): T-\lambda I \text { is Fredholm }\}
\end{aligned}
$$

Given a non-negative integer m, we call an m-normal eigenvalue λ of T is the normal eigenvalue satisfying $\operatorname{dim} N(T-\lambda I)>m$. The set of all m-normal eigenvalues of T will be denoted by $\sigma_{m}(T)$.

That is

$$
\sigma_{m}(T)=\left\{\lambda \in \sigma_{0}(T): \operatorname{dim} N(T-\lambda I)>m\right\}
$$

Then we obtain that

$$
\ldots \subseteq \sigma_{m}(T) \ldots \subseteq \sigma_{2}(T) \subseteq \sigma_{1}(T) \subseteq \sigma_{0}(T)
$$

In this paper, we characterize an additive surjective map φ on $\mathscr{B}(\mathscr{H})$ preserves m as well as $m+1$-normal eigenvalues for some fixed non-negative integer m, that is $\sigma_{m}(\varphi(T))=\sigma_{m}(T)$ and $\sigma_{m+1}(\varphi(T))=\sigma_{m+1}(T)$ for all $T \in \mathscr{B}(\mathscr{H})$. And we show that such a surjective map is an automorphism or an anti-automorphism.

2. Main results

We firstly need some auxiliary results.

Lemma 1. Let $m \geqslant 0$ and $T \in \mathscr{B}(\mathscr{H})$. If $0 \in \sigma_{m+1}(T)$, then for every rank one operator $F \in \mathscr{B}(\mathscr{H})$, either $0 \in \sigma_{m}(T+F)$ or $0 \in \sigma_{m}(T-F)$.

Proof. Suppose that $0 \in \sigma_{m+1}(T)$. Then both $T+F$ and $T-F$ are Fredholm of index zero for every rank one operator F. Thus $\operatorname{dim} N(T+F)=\operatorname{codim} R(T+F)$ and $\operatorname{dim} N(T-F)=\operatorname{codim} R(T-F)$. Note that $R(T+F) \subseteq R(T)+R(F)$ and $\operatorname{dim} N(T)=$ $\operatorname{codim} R(T)>m+1$. Then $\operatorname{codim} R(T+F)>m$, and $\operatorname{dim} N(T+F)>m$. Similarly, we have $\operatorname{dim} N(T-F)>m$. Since $\operatorname{asc}(T)<\infty$, we have for every rank one operator F, either $\operatorname{asc}(T+F)<\infty$ or $\operatorname{asc}(T-F)<\infty$ by Proposition 2.7 in [12]. This implies that either $T+F$ or $T-F$ is Browder. Hence we get either $0 \in \sigma_{m}(T+F)$ or $0 \in$ $\sigma_{m}(T-F)$.

Proposition 1. Let $k, m \geqslant 0$ and $T \in \mathscr{B}(\mathscr{H})$. If $\operatorname{dim} R(T) \geqslant 2$, then there exists an operator S satisfying $0 \in \sigma_{k}(S)$ such that $0 \notin \sigma_{m}(S+T)$ and $0 \notin \sigma_{m}(S-T)$.

Proof. We will complete this proof by three cases:
Case (i) $\operatorname{dim} N(T)=\infty$.
Assume that $\operatorname{dim} R(T) \geqslant 2$. Then there exist two vectors x_{0}, y_{0} such that $T x_{0}, T y_{0}$ are linearly independent. We can choose suitable vectors of $N(T)$ to perturb x_{0}, y_{0}, then there exist two vectors u_{0}, v_{0} such that the vectors $u_{0}, v_{0}, T u_{0}, T v_{0}$ are linearly independent. Since $\operatorname{dim} N(T)=\infty$, we have $\left\{u_{0}, v_{0}, T u_{0}, T v_{0}\right\}^{\perp} \cap N(T)$ is infinite-dimensional. It follows that there is an orthonormal subset $\left\{u_{i}, v_{i}: i \geqslant 1\right\}$ of $\left\{u_{0}, v_{0}, T u_{0}, T v_{0}\right\}^{\perp} \cap$ $N(T)$ with an infinite-dimensional orthogonal complement. Let $H_{1}=\bigvee\left\{u_{i}, v_{i}: i \geqslant 0\right\}$ and $H_{2}=\bigvee\left(\left\{T u_{0}, T v_{0}\right\} \cup\left\{u_{i}, v_{i}: i \geqslant 0\right\}\right)$. We can choose an orthonormal subset $\left\{\xi_{i}\right\}_{i=0}^{k} \subseteq H_{2}^{\perp}$ such that $H_{2}^{\perp}=\bigvee\left\{\xi_{i}: i=0,1, \cdots, k\right\} \oplus M$, where M is an infinitedimensional subspace. Take any two unit orthogonal vectors $\eta_{1}, \eta_{2} \in H_{1}^{\perp}$ such that

$$
H_{1}^{\perp}=\bigvee\left\{\eta_{1}, \eta_{2}\right\} \oplus H_{2}^{\perp}=\bigvee\left\{\eta_{1}, \eta_{2}\right\} \oplus M \oplus \bigvee\left\{\xi_{i}: i=0,1, \cdots, k\right\}
$$

We define an operator $S \in \mathscr{B}(\mathscr{H})$ by:

$$
\left\{\begin{array}{l}
S u_{0}=-T u_{0}, S v_{0}=T v_{0} \\
S u_{i+1}=u_{i}, S v_{i+1}=v_{i}, \quad \forall i \geqslant 0 \\
S \xi_{i}=0, \quad i=0,1, \cdots, k ; \\
S: \bigvee\left\{\eta_{1}, \eta_{2}\right\} \oplus M \rightarrow M \text { is a bounded invertible linear operator. }
\end{array}\right.
$$

It follows that $0 \in \sigma_{k}(S)$ and $(S+T) u_{0}=(S-T) v_{0}=0,(S+T)^{i} u_{i}=u_{0},(S-$ $T)^{i} v_{i}=v_{0}$ for all $i \geqslant 0$. This implies that $\operatorname{asc}(S+T)=\operatorname{asc}(S-T)=\infty$, and thus $0 \notin$ $\sigma_{m}(S+T)$ and $0 \notin \sigma_{m}(S-T)$.

Case (ii) $T=\lambda I+F$ for some non-zero complex number $\lambda \in \mathbb{C}$ and F is a finite rank operator.

Note that $\operatorname{dim} N(F)=\infty$. Then there exist two separable infinite-dimensional subspaces $H_{1}, H_{2} \subseteq N(F)$ such that $H_{1} \perp H_{2}$ and $\left(H_{1} \oplus H_{2}\right)^{\perp}$ is also infinite-dimensional. Let $\left\{\omega_{i}\right\}_{i=0}^{k} \subseteq\left(H_{1} \oplus H_{2}\right)^{\perp}$ be an orthonormal subset such that $\left(H_{1} \oplus H_{2}\right)^{\perp}=\bigvee\left\{\omega_{i}: i=\right.$ $0,1, \cdots, k\} \oplus H_{3}$, where H_{3} is an infinite-dimensional subspace. We define an operator $S \in \mathscr{B}(\mathscr{H})$ by:

$$
\left\{\begin{array}{l}
\left.S\right|_{H_{1}}=-\lambda I_{H_{1}}+\frac{\lambda}{3} A_{1}, \text { where } A_{1} \text { is a backward shift operator on } H_{1} \\
\left.S\right|_{H_{2}}=\lambda I_{H_{2}}+\frac{\lambda}{3} A_{2}, \text { where } A_{2} \text { is a backward shift operator on } H_{2} \\
\left.S\right|_{H_{3}}=I \\
S \omega_{i}=0, i=0,1,2, \cdots, k
\end{array}\right.
$$

Then $0 \in \sigma_{k}(S)$. Moreover, $S+\left.T\right|_{H_{1}}=\frac{\lambda}{3} A_{1}, S-\left.T\right|_{H_{2}}=\frac{\lambda}{3} A_{2}$. Hence $\operatorname{asc}(S+$ $T)=\operatorname{asc}(S-T)=\infty$. We obtain that $0 \notin \sigma_{m}(S+T)$ and $0 \notin \sigma_{m}(S-T)$.

Case (iii) $\operatorname{dim} N(T)<\infty$ and $T \neq \lambda I+F$ for any non-zero complex number $\lambda \in \mathbb{C}$ and for any finite rank operator F.

According to this hypothesis, we have for every closed subspace $N \subseteq H$ with finite codimension, there exists a vector $x \in N \cap T^{-1} N$ such that the vectors $x, T x$ are linearly independent. Without loss of generality, let $\|T\| \leqslant \frac{1}{2}$. Find a unit vector z_{0} such that z_{0} and $T z_{0}$ are linearly independent. Let $H_{0}=\left\{z_{0}, T z_{0}\right\}^{\perp}$. Then there exists a unit vector $z_{1} \in H_{0} \cap T^{-1} H_{0}$ such that z_{1} and $T z_{1}$ are linearly independent. Let $H_{1}=\left\{z_{0}, z_{1}, T z_{0}, T z_{1}\right\}^{\perp}$. Then we can choose a unit vector $z_{2} \in H_{1} \cap T^{-1} H_{1}$ such that z_{2} and $T z_{2}$ are linearly independent. Continuing this process, we can get a sequence of unit vectors $\left\{z_{i}\right\}_{i=0}^{\infty}$ such that z_{i} and $T z_{i}$ are linearly independent and $\left\{z_{i+1}, T z_{i+1}\right\} \perp\left\{z_{j}, T z_{j}: j=0,1,2, \ldots, i\right\}$ for all $i \geqslant 0$. We can also assume that the orthogonal complement of $\bigvee\left\{z_{i}, T z_{i}: i \geqslant 0\right\}$ is infinite-dimensional. Otherwise we can replace $\left\{z_{i}\right\}_{i=0}^{\infty}$ by $\left\{z_{2 i}\right\}_{i=0}^{\infty}$. Let $\left\{y_{i}\right\}_{i=0}^{k} \cup\left\{x_{i}\right\}_{i=0}^{\infty}$ be an orthonormal sequence of $\bigvee\left\{z_{i}, T z_{i}: i \geqslant 0\right\}^{\perp}$. For all $i \geqslant 0$, let $\zeta_{i} \in \bigvee\left\{z_{i}, T z_{i}\right\}$ be a unit vector such that $\zeta_{i} \perp z_{i}$. Then $T z_{i}=\alpha_{i} z_{i}+\beta_{i} \zeta_{i}$, where $\alpha_{i}, \beta_{i} \in \mathbb{C}$ satisfy $\left|\alpha_{i}\right| \leqslant \frac{1}{2}, 0<\left|\beta_{i}\right| \leqslant \frac{1}{2}$. Let $M_{1}=\bigvee\left\{T z_{0}, T z_{1}, x_{i}, \zeta_{i+2}: i \geqslant 0\right\}, M_{2}=\bigvee\left\{z_{i}: i \geqslant 0\right\}, M_{3}=\bigvee\left\{y_{i}: i=0,1, \cdots, k\right\}$ and $M_{4}=\left(M_{1} \oplus M_{2} \oplus M_{3}\right)^{\perp}$. We define an operator $S \in \mathscr{B}(\mathscr{H})$ by:

$$
\left\{\begin{array}{l}
S z_{0}=-T z_{0}, S z_{1}=T z_{1} \\
S z_{i}=z_{i-2}-(-1)^{i} T z_{i}, \forall i \geqslant 2 \\
S \zeta_{0}=x_{0}, S \zeta_{1}=x_{1} \\
S \zeta_{i+2}=\zeta_{i+2}, \quad S x_{i}=x_{i+2} \forall i \geqslant 0 \\
S y_{i}=0, \quad \forall 0 \leqslant i \leqslant k \\
\left.S\right|_{M_{4}}=I
\end{array}\right.
$$

We next prove that $\left.S\right|_{M_{1} \oplus M_{2}}$ is invertible. It is known that $\left.S\right|_{M_{1} \oplus M_{2}}$ is injective and $M_{1} \subseteq R\left(\left.S\right|_{M_{1} \oplus M_{2}}\right)$. Let P be the projection on M_{2} and $B_{1}, B_{2} \in \mathscr{B}\left(M_{2}\right)$ such that $B_{1} z_{0}=B_{1} z_{1}=0, B_{1} z_{i+2}=z_{i}$ and $B_{2} z_{i}=(-1)^{i+1} \alpha_{i} z_{i}$ for all $i \geqslant 0$. Then $\left\|B_{1}\right\|=1$ and $\left\|B_{2}\right\| \leqslant \frac{1}{2}$. Note that B_{1} is surjective. So is $B_{1}+B_{2}$. However, we now have $\left.P S\right|_{M_{2}}=B_{1}+B_{2}$. It follows that $\left.S\right|_{M_{1} \oplus M_{2}}$ is surjective. Moreover, $S y_{i}=0$ for $0 \leqslant i \leqslant k$ and $\left.S\right|_{M_{4}}=I$. Then $0 \in \sigma_{k}(S)$. Also, $(S+T) z_{0}=(S-T) z_{1}=0,(S+T)^{i} z_{2 i}=z_{0}$, $(S-T)^{i} z_{2 i+1}=z_{1}$ for all $i \geqslant 0$. This implies that $\operatorname{asc}(S+T)=\operatorname{asc}(S-T)=\infty$, and so $0 \notin \sigma_{m}(S+T)$ and $0 \notin \sigma_{m}(S-T)$.

According to the three cases, we get that there exists an operator S satisfying $0 \in \sigma_{k}(S)$ such that $0 \notin \sigma_{m}(S+T)$ and $0 \notin \sigma_{m}(S-T)$.

COROLLARY 1. Let $m \geqslant 0$ and $T \in \mathscr{B}(\mathscr{H})$ be a non-zero operator. Then there exists an operator $S \in \mathscr{B}(\mathscr{H})$ such that $0 \in \sigma_{m}(S)$ but $0 \notin \sigma_{m}(S+T)$.

Proof. It is sufficient to assume that $T=x \otimes y$ is a rank one operator by Proposition 1. Without loss of generality, we may assume that x and y are unit vectors. Note that $\sigma_{m}(\cdot)$ is similarity invariant. We now can assume that $x=y$ or $\langle x, y\rangle=0$, that is, T is a rank one projection or a rank one nilpotent operator. Let $T=x \otimes x$ be a rank one projection. Put $\mathscr{H}=\bigvee\{x\} \oplus H_{1} \oplus H_{2}$, where $\operatorname{dim} H_{1}=m$. Let S be the projection on H_{2}. Then $0 \in \sigma_{m}(S)$ but $0 \notin \sigma_{m}(S+T)$. If $\langle x, y\rangle=0$, then we let $\mathscr{H}=\bigvee\{x, y\} \oplus H_{1} \oplus H_{2}$, where $\operatorname{dim} H_{1}=m$. In this case, let P be the projection on H_{2} and $S=y \otimes x+P$. Then S is what we require.

LEMMA 2. Let $T=\sum_{i=0}^{m} e_{i} \otimes f_{i}$ be a rank-($m+1$) operator and $\lambda \in \mathbb{C}-\{0\}$. If $\lambda \in \sigma_{m}(T)$, then $\left\langle e_{i}, f_{j}\right\rangle=\lambda \delta_{i j}$ for all $i, j=0,1,2, \cdots, m$, where $\delta_{i j}$ is the Kronecker number.

Proof. Suppose that $\lambda \in \sigma_{m}(T)$. Then we have $\operatorname{dim} N(T-\lambda I)>m$. It is known that $N(T-\lambda I) \subseteq R(T)$ and $\operatorname{dim} R(T)=m+1$. Hence, $\operatorname{dim} N(T-\lambda I)=m+1$, that is $N(T-\lambda I)=R(T)=\bigvee\left\{e_{i}: i=0,1,2, \cdots, m\right\}$. Then $T e_{j}=\lambda e_{j}$ for every $j=0,1,2, \cdots, m$. Now $T e_{j}=\sum_{i=0}^{m}\left\langle e_{j}, f_{i}\right\rangle e_{i}$. So $\sum_{i=0}^{m}\left\langle e_{j}, f_{i}\right\rangle e_{i}=\lambda e_{j}$, this implies that $\left\langle e_{i}, f_{j}\right\rangle=0$ for $i \neq j$ and $\left\langle e_{i}, f_{i}\right\rangle=\lambda$, where $0 \leqslant i, j \leqslant m$.

Lemma 3. Let $m \geqslant 0$ and $A, B \in \mathscr{B}(\mathscr{H})$. If $\sigma_{m}(A+F)=\sigma_{m}(B+F)$ for all operator $F \in \mathscr{B}(\mathscr{H})$ with rank not greater than $m+1$, then $A=B$.

Proof. Let $x \in \mathscr{H}$, fix a scalar $\alpha \in \mathbb{C}$ such that $|\alpha|>\|A\|+\|B\|$. We define an operator

$$
F_{x}=\left\{\begin{array}{l}
\|x\|^{-2}(A-\alpha I) x \otimes x, \quad \text { if } x \neq 0 \\
0, \quad \text { if } x=0
\end{array}\right.
$$

Then we have $F_{x} x=A x-\alpha x$. If $x \neq 0$, then $\alpha \in \sigma_{p}\left(A-F_{x}\right) \subseteq \sigma\left(A-F_{x}\right)$. It follows that $\alpha \in \sigma_{0}\left(A-F_{x}\right)$ from the fact that $\left\|A-F_{x}\right\| \geqslant|\alpha|>\|A\| \geqslant\|A\|_{e}=\left\|A-F_{x}\right\|_{e}$, where $\|A\|_{e}$ is the essential norm of A.

In the following, we will prove that $\alpha \in \sigma_{0}\left(B-F_{x}\right)$ if $x \neq 0$. There are two cases:
Case (1) $\operatorname{dim} N\left(A-F_{x}-\alpha I\right)>m$.
Now, we have $\alpha \in \sigma_{m}\left(A-F_{x}\right)$, so $\alpha \in \sigma_{m}\left(B-F_{x}\right) \subseteq \sigma_{0}\left(B-F_{x}\right)$.
Case (2) $\operatorname{dim} N\left(A-F_{x}-\alpha I\right) \leqslant m$.
Assume that $\alpha \notin \sigma_{0}\left(B-F_{x}\right)$. Note that $|\alpha|>\|B\| \geqslant\|B\|_{e}=\left\|B-F_{x}\right\|_{e}$. We obtain that $B-F_{x}-\alpha I$ is invertible. Choose $m+1$ orthogonal vectors $x_{0}=x, x_{1}, x_{2}, \cdots, x_{m}$ and let $F_{m}=F_{x_{0}}+F_{x_{1}}+\cdots+F_{x_{m}}$. Then $\left(A-F_{m}\right) x_{i}=\alpha x_{i}$ for all $0 \leqslant i \leqslant m$. It implies
that $\operatorname{dim} N\left(A-F_{m}-\alpha I\right)>m$. Now, $\left\|A-F_{m}\right\| \geqslant|\alpha|>\|A\| \geqslant\|A\|_{e}=\left\|A-F_{m}\right\|_{e}$. Hence $\alpha \in \sigma_{m}\left(A-F_{m}\right)$ and hence $\alpha \in \sigma_{m}\left(B-F_{m}\right)$. We know that

$$
B-F_{m}-\alpha I=\left(B-F_{x_{0}}-\alpha I\right)-\left(F_{x_{1}}+\cdots+F_{x_{m}}\right)
$$

Since $B-F_{x_{0}}-\alpha I$ is invertible and $F_{x_{1}}+\cdots+F_{x_{m}}$ is a rank- m operator, we have $\operatorname{dim} N\left(B-F_{m}-\alpha I\right) \leqslant m$. This is a contradiction. Therefore, we get that $\alpha \in \sigma_{0}(B-$ F_{x}).

It follows that there exists a non-zero vector $y_{x} \in \mathscr{H}$ such that $\left(B-F_{x}\right) y_{x}=\alpha y_{x}$ for any non-zero vector $x \in \mathscr{H}$. We claim that if there exist two vectors $y_{1}, y_{2} \in$ \mathscr{H} such that $\left(B-F_{x}\right) y_{1}=\alpha y_{1}$ and $\left(B-F_{x}\right) y_{2}=\alpha y_{2}$, then y_{1} and y_{2} are linearly dependent. According to the assumption, we have $(B-\alpha I) y_{1}=F_{x} y_{1}$ and $(B-\alpha I) y_{2}=$ $F_{x} y_{2}$. Then $F_{x} y_{1}$ and $F_{x} y_{2}$ are linearly dependent since F_{x} is rank one. We may assume that $F_{x} y_{1}=\mu F_{x} y_{2}$ for some constant $\mu \in \mathbb{C}$. Then $(B-\alpha I) y_{1}=\mu(B-\alpha I) y_{2}$, that is, $(B-\alpha I)\left(y_{1}-\mu y_{2}\right)=0$. We know that y_{1} and y_{2} are linearly independent. Then $\alpha \in \sigma_{p}(B)$. But $B-\alpha I$ is invertible since $|\alpha|>\|B\|$. This is a contradiction. Thus y_{1} and y_{2} are linearly dependent.

Note that $(A-\alpha I) x=F_{x} x$ and $(B-\alpha I) y_{x}=F_{x} y_{x}$ for any non-zero vector $x \in \mathscr{H}$. Then there is an unique non-zero vector y_{x} such that $(A-\alpha I) x=F_{x} x=(B-\alpha I) y_{x}=$ $F_{x} y_{x}$ for any nonzero $x \in \mathscr{H}$. We define $y_{x}=0$ if $x=0$. Thus, we can define a map T on \mathscr{H} such that $T x=y_{x}$. Moreover, we have that $(A-\alpha I) x=F_{x} x=(B-\alpha I) T x=$ $F_{x} T x$ for all $x \in \mathscr{H}$. This implies that $T=(B-\alpha I)^{-1}(A-\alpha I)$.

If $x \neq 0$, then $F_{x}=\|x\|^{-2}(A-\alpha I) x \otimes x$ and $F_{x} T x=F_{x} x$, thus

$$
\|x\|^{-2}\langle T x, x\rangle(A-\alpha I) x=(A-\alpha I) x
$$

We obtain that $\langle T x, x\rangle=\|x\|^{2}=\langle x, x\rangle$. Note that if $x=0$, then $T x=0$. So we get that

$$
\langle T x, x\rangle=\langle x, x\rangle, \quad \forall x \in \mathscr{H} .
$$

Therefore, $T=I$. That is, we have $(B-\alpha I)^{-1}(A-\alpha I)=I$, and so $A=B$.
THEOREM 1. Let φ be a surjective additive map on $\mathscr{B}(\mathscr{H})$ and $m \geqslant 0$. If $\sigma_{m}(\varphi(T))=\sigma_{m}(T)$ and $\sigma_{m+1}(\varphi(T))=\sigma_{m+1}(T)$ for all $T \in \mathscr{B}(\mathscr{H})$, then there is an invertible operator $A \in \mathscr{B}(\mathscr{H})$ such that $\varphi(T)=A T A^{-1}$ for all $T \in \mathscr{B}(\mathscr{H})$ or $\varphi(T)=A T^{t r} A^{-1}$ for all $T \in \mathscr{B}(\mathscr{H})$, where $T^{\text {tr }}$ denotes the transpose of T with respect to an arbitrary but fixed orthonormal basis of \mathscr{H}.

Proof. We first show φ is injective. Let $\varphi(T)=0$. If $T \neq 0$, then by Corollary 1 , there exists an operator S such that $0 \in \sigma_{m}(S)$ but $0 \notin \sigma_{m}(S+T)$. Note that

$$
\sigma_{m}(S+T)=\sigma_{m}(\varphi(S+T))=\sigma_{m}(\varphi(S))=\sigma_{m}(S)
$$

It is a contradiction. Thus, $T=0$.
Let $T \in \mathscr{B}(\mathscr{H})$ with $\operatorname{dim} R(T) \geqslant 2$. By Proposition 1, there exists an operator S satisfying $0 \in \sigma_{m+1}(S)$ such that $0 \notin \sigma_{m}(S+T)$ and $0 \notin \sigma_{m}(S-T)$. Then
$0 \notin \sigma_{m}(\varphi(S)+\varphi(T))$ and $0 \notin \sigma_{m}(\varphi(S)-\varphi(T))$. We know that $0 \in \sigma_{m+1}(S)=$ $\sigma_{m+1}(\varphi(S))$ by the assumption. Then by Lemma 1, we have that $\operatorname{dim} R(\varphi(T)) \geqslant 2$. Since φ is bijective and φ^{-1} has the same property as φ, it follows that φ preserves the set of operators of rank one in both directions.

We claim that φ preserves idempotents of rank one and their linear spans in both directions. That is $\varphi(\mathbb{C} P) \subseteq \mathbb{C} \varphi(P)$ for every idempotent of rank one P. Let $e_{0} \otimes f_{0}$ be a rank one idempotent and let $P=\sum_{i=0}^{m} e_{i} \otimes f_{i}$ be a rank- $(m+1)$ idempotent. For any non-zero $\lambda \in \mathbb{C}$, then $\varphi(\lambda P)=\sum_{i=0}^{m} \varphi\left(\lambda e_{i} \otimes f_{i}\right)$ is also a rank- $(m+1)$ operator. Note that $\lambda \in \sigma_{m}(\lambda P)$. Then $\lambda \in \sigma_{m}(\varphi(\lambda P))$. It follows from Lemma 2 that $\varphi\left(\lambda e_{0} \otimes f_{0}\right)=$ $\lambda y_{\lambda} \otimes g_{\lambda}$, where $y_{\lambda} \otimes g_{\lambda}$ is a rank one idempotent. In particular, let $\lambda=1$ and let $\varphi\left(e_{0} \otimes f_{0}\right)=y \otimes g$, then we can get $y \otimes g$ is a rank one idempotent. Thus φ preserves idempotents of rank one in both directions. We claim that $\varphi\left(\mathbb{C} e_{0} \otimes f_{0}\right) \subseteq \mathbb{C} \varphi\left(e_{0} \otimes f_{0}\right)$.

Since $\varphi\left(e_{0} \otimes f_{0}\right)=y \otimes g$ and $\langle y, g\rangle=1$, then we can find two vectors $z, h \in \mathscr{H}$ such that $\langle z, g\rangle=0,\langle y, h\rangle=0$ and $\langle z, h\rangle=1$. For $y \otimes h$ and $z \otimes g$, there exist two rank one operators $u \otimes k$ and $v \otimes p$ such that $\varphi(u \otimes k)=y \otimes h$ and $\varphi(v \otimes p)=z \otimes g$ as φ is surjective. We know that

$$
\varphi\left(e_{0} \otimes f_{0}+u \otimes k\right)=y \otimes g+y \otimes h, \varphi\left(e_{0} \otimes f_{0}+v \otimes p\right)=y \otimes g+z \otimes g .
$$

Then both $e_{0} \otimes f_{0}+u \otimes k$ and $e_{0} \otimes f_{0}+v \otimes p$ are rank one operators. It implies that $\lambda e_{0} \otimes f_{0}+u \otimes k$ and $\lambda e_{0} \otimes f_{0}+v \otimes p$ are also rank one operator for any non-zero $\lambda \in \mathbb{C}$. Fix a non-zero complex number λ, we have $\varphi\left(\lambda e_{0} \otimes f_{0}\right)=\lambda y_{\lambda} \otimes g_{\lambda}$, where $y_{\lambda} \otimes g_{\lambda}$ is a rank one idempotent. Then $\varphi\left(\lambda e_{0} \otimes f_{0}+u \otimes k\right)=\lambda y_{\lambda} \otimes g_{\lambda}+y \otimes h$ is also rank one. We obtain that y_{λ} and y are linearly dependent or the same is true for g_{λ} and h.

We assert that y_{λ} and y are linearly dependent. Otherwise, we have g_{λ} and h are linearly dependent. Then there exists some non-zero $\alpha_{\lambda} \in \mathbb{C}$ such that $g_{\lambda}=\overline{\alpha_{\lambda}} h$. Thus

$$
\varphi\left(\lambda e_{0} \otimes f_{0}+v \otimes p\right)=\alpha_{\lambda} \lambda y_{\lambda} \otimes h+z \otimes g
$$

Since h and g are linearly independent, there is some non-zero $\beta_{\lambda} \in \mathbb{C}$ such that $y_{\lambda}=\beta_{\lambda} z$, and so $\varphi\left(\lambda e_{0} \otimes f_{0}\right)=\alpha_{\lambda} \beta_{\lambda} \lambda z \otimes h$, where $z \otimes h$ is a rank one idempotent. We also know that $\varphi\left(\lambda e_{0} \otimes f_{0}\right)=\lambda y_{\lambda} \otimes g_{\lambda}$, where $y_{\lambda} \otimes g_{\lambda}$ is a rank one idempotent. It follows that $\alpha_{\lambda} \beta_{\lambda} \lambda=\lambda$. Therefore,

$$
\varphi\left(\lambda e_{0} \otimes f_{0}\right)=\lambda z \otimes h
$$

As φ is surjective, we can find two vectors $w, l \in \mathscr{H}$ such that $\varphi(w \otimes l)=z \otimes h$ and $\langle w, l\rangle=1$. It is clear that $y \otimes g+z \otimes h$ is a projection of rank two. Then $e_{0} \otimes f_{0}+w \otimes l$ is a rank two operator, and then the operator $\lambda e_{0} \otimes f_{0}+w \otimes l$ is also rank two. Thus

$$
\varphi\left(\lambda e_{0} \otimes f_{0}+w \otimes l\right)=(\lambda+1) z \otimes h
$$

This is a contradiction since φ preserves the set of operators of rank one in both directions. Therefore, we get that y_{λ} and y are linearly dependent. Then there exists some
non-zero $\gamma_{\lambda} \in \mathbb{C}$ such that $y_{\lambda}=\gamma_{\lambda} y$. Note that $\varphi\left(\lambda e_{0} \otimes f_{0}+v \otimes p\right)=\gamma_{\lambda} \lambda y \otimes g_{\lambda}+z \otimes$ g, which is also rank one. Thus we can find some non-zero $\mu_{\lambda} \in \mathbb{C}$ such that $g_{\lambda}=\overline{\mu_{\lambda}} g$ because y and z are linearly independent. So $\varphi\left(\lambda e_{0} \otimes f_{0}\right)=\gamma_{\lambda} \mu_{\lambda} \lambda y \otimes g$, where $y \otimes g$ is a rank one idempotent. We also know that $\varphi\left(\lambda e_{0} \otimes f_{0}\right)=\lambda y_{\lambda} \otimes g_{\lambda}$, where $y_{\lambda} \otimes g_{\lambda}$ is also a rank- 1 idempotent. Thus $\gamma_{\lambda} \mu_{\lambda} \lambda=\lambda$. Therefore,

$$
\varphi\left(\lambda e_{0} \otimes f_{0}\right)=\lambda y \otimes g=\lambda \varphi\left(e_{0} \otimes f_{0}\right)
$$

According to the above, we have that φ preserves idempotents of rank one and their linear spans in both directions. It follows from Theorem 4.4 in [13] that there is a bounded invertible linear or conjugate-linear operator A on \mathscr{H} such that one of the following assertions holds.
(1) $\varphi(F)=A F A^{-1}$ for all finite rank operators $F \in \mathscr{B}(\mathscr{H})$;
(2) $\varphi(F)=A F^{t r} A^{-1}$ for all finite rank operators $F \in \mathscr{B}(\mathscr{H})$, where $F^{t r}$ is the transpose of F with respect to an arbitrary but fixed orthonormal basis of \mathscr{H}. If A is conjugate-linear, then $\varphi(i P)=A(i P) A^{-1}=-i \varphi(P)$ or $\varphi(i P)=A(i P)^{t r} A^{-1}=$ $-i \varphi(P)$ for any rank- $(m+1)$ idempotent P, which means that $\sigma_{m}(i P)=\{i\}$ while $\sigma_{m}(\varphi(i P))=\{-i\}$. This is a contradiction. Thus A must be linear.

Assume that (1) holds. Let $T \in \mathscr{B}(\mathscr{H})$ and for any finite rank operator F, we have

$$
\begin{aligned}
\sigma_{m}(T+F) & =\sigma_{m}(\varphi(T)+\varphi(F)) \\
& =\sigma_{m}\left(\varphi(T)+A F A^{-1}\right) \\
& =\sigma_{m}\left(A\left(A^{-1} \varphi(T) A+F\right) A^{-1}\right) \\
& =\sigma_{m}\left(A^{-1} \varphi(T) A+F\right)
\end{aligned}
$$

Then we get that $T=A^{-1} \varphi(T) A$ by Lemma 3. Therefore, $\varphi(T)=A T A^{-1}$ for all $T \in \mathscr{B}(\mathscr{H})$.

If (2) holds, then we similarly have that $\varphi(T)=A T^{t r} A^{-1}$ for all $T \in \mathscr{B}(\mathscr{H})$.
Acknowledgement. The authors would like to thank the referees for many comments to improve the original draft. And the authors also would like to thank Professor Xiaohong Cao for her valuable suggestions.

This research was supported by National Natural Science Foundation of China (Grant No. 11371233, Grant No. 11471200) and by the Fundamental Research Funds for the Central Universities (Grant No. GK201601004).

REFERENCES

[1] B. Aupetit, Spectrum-preserving linear mapping between Banach algebra or Jordan Banach algebras, J. London Math. Soc. 62, (2000), 917-924.
[2] M. Bendaoud, A. Bourhim, M. Burgos and M. Sarih, Linear maps preservig Fredholm and Atkinson elements of C^{*}-algebra, Linear Multilinear Alg. 57, (2009), 823-838.
[3] X. CaO, S. Chen, Linear maps between operator algebras preserving certain spectral functions, Banach J. Math. Anal. 8, (2014), 39-46.
[4] J. CuI AND J. Hou, Additive maps on standard operator algebras preserving parts of the spectrum, J. Math. Anal. Appl. 282, (2003), 266-278.
[5] J. DIEUDONNÉ, Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. (Basel) 1, (1949), 282-287.
[6] G. Ji, Y. GaO, Maps preserving operator pairs whose products are projections, Linear Algebra Appl. 433, (2010), 1348-1364.
[7] L. LiU, G. Ji, Maps preserving product $X^{*} Y+Y X^{*}$ on factor von Neumann algebras, Linear and Multilinear Algebra. 59, (2011), 950-955.
[8] D. A. Herrero, Approximation of Hilbert space operators, Vol. 1, 2nd ed., Pitman Res. Notes Math. Ser., Vol. 224, Longman Scientific and Technical, Harlow, 1989.
[9] J. Hou, Spectrum-preserving elementary operators on $B(X)$, Chinese Annals of Mathematics. 19, (1998), 511-516.
[10] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66, (1986), 255-261.
[11] M. Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Canad. J. Math. 11, (1959), 383-396.
[12] M. Mbekhta, V. Müller, M. Oudghiri, Additive preservers of the ascent, descent and related subsets, to appear in journal of Operator Theory, 2012.
[13] M. OmLadi, P. ŠEMRL, Additive mappings preserving operators of rank one, Linear Alg. Appl. 182, (1993), 239-256.

Weijuan Shi
School of Mathematics and Information Science
Shaanxi Normal University
Xi'an 710062, China
e-mail: shiweijuan1016@163.com
Guoxing Ji
School of Mathematics and Information Science Shaanxi Normal University Xi’an 710062, China
e-mail: gxji@snnu.edu.cn

[^0]: Mathematics subject classification (2010): 47B48, 47A10.
 Keywords and phrases: Normal eigenvalues, additive map, additive preserver.

