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(Communicated by N.-C. Wong)

Abstract. Let H be an infinite-dimensional complex Hilbert space and B(H ) the algebra of
all bounded linear operators on H . For an operator T ∈B(H ) and a fixed non-negative integer
m , an m -normal eigenvalue λ of T is the normal eigenvalue satisfying dimN(T − λ I) > m .
In this paper, we prove that, if an additive surjective map ϕ on B(H ) preserves m as well as
m + 1-normal eigenvalues, then there is an invertible operator A ∈ B(H ) such that ϕ(T ) =
ATA−1 for all T ∈ B(H ) or ϕ(T) = ATtrA−1 for all T ∈ B(H ) , where T tr denotes the
transpose of T with respect to an arbitrary but fixed orthonormal basis of H .

1. Introduction

Linear or additive preserver problems are to characterize those linear or additive
maps on operator algebras preserving certain properties, subsets or relations. Most
important of all, we need to find certain properties which are isomorphism or anti-
isomorphism invariants. The study of the problem has attracted the attention of many
authors in the last decades [2, 3, 5, 6, 7, 11]. As we know, spectrum is a very fun-
damental and key concept in operator theory. Hence many authors have studied lin-
ear or additive maps preserving the spectrum as well as certain parts of the spectrum
[1, 4, 9, 10]. For example, the author showed that additive maps on standard operator
algebras preserving parts of the spectrum is either an isomorphism or anti-isomorphism
in [4]. It is remarkable that various parts of the spectrum may be regarded as invari-
ants of an automorphism or an anti-automorphism on the algebra of all bounded linear
operators on a Banach (or Hilbert) space. It is known that certain parts of spectrum of
operators are introduced to analyze the structure of operators. For example, the set of
normal eigenvalues of an operator is given (cf. [8]). Note that the set of normal eigen-
values is at most countable and is a very “small” subset of spectrum in general. Thus
how may the normal eigenvalues influence the structure of automorphisms on the alge-
bra of all bounded linear operators on a Banach (or Hilbert) space? In this paper, we
consider parts of the set of the normal eigenvalues as an invariant of an automorphism
or an anti-automorphism on the algebra of all bounded linear operators on a complex
infinite-dimensional Hilbert space.

Let H be a complex infinite-dimensional Hilbert space and B(H ) the algebra
of all bounded linear operators on H . For x,y ∈H , we denote by 〈x,y〉 and x⊗y the
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inner product of x and y and the rank one operator defined by (x⊗ y)z = 〈z,y〉x , ∀z ∈
H , respectively. The operator x⊗y is an idempotent if and only if 〈x,y〉= 1. Let T ∈
B(H ) , we denote by N(T ) and R(T ) the null space and range of T respectively. For
a subset M of H ,

∨{M} denotes the closed subspace spanned by M . Let dimM (resp.
codimM ) is the dimension of M ( resp. M⊥ , the orthogonal complement of M ) if M
is a closed subspace. Recall that an operator T is called Fredholm if it has closed
range such that dimN(T ) < ∞ and codimR(T ) < ∞ . The index of a Fredholm operator
T ∈ B(H ) is given by ind(T ) = dimN(T )− codimR(T ) . The ascent asc(T ) of T is
the least non-negative integer n such that N(Tn) = N(T n+1) and the descent des(T )
is the least non-negative integer n such that R(Tn) = R(Tn+1) . An operator T is said
to be Browder if it is Fredholm with finite ascent and descent. It is known that T is a
Browder operator if and only if T is a Fredholm operator of index zero and asc(T )< ∞ .

Let T ∈ B(H ) . If σ is a clopen subset of the spectrum σ(T ) , then there exists
an analytic Cauchy domain Ω such that σ ⊆Ω and [σ(T )\σ ]∩Ω = /0 . We let E(σ ;T )
denote the Riesz idempotent of T corresponding to σ , that is,

E(σ ;T ) =
1

2π i

∫
Γ
(λ −T )−1dλ ,

where Γ = ∂Ω is positively oriented with respect to Ω in the sense of complex variable
theory. In this case, we denote H(σ ;T ) = R(E(σ ;T )) . If λ ∈ isoσ(T ) , the isolate
points of σ(T ) , then {λ} is a clopen subset of σ(T ) and we simply write H(λ ;T )
instead of H({λ};T ) . If, in addition, dimH(λ ;T ) < ∞ , then λ is called a normal
eigenvalue of T . The set of all normal eigenvalues of T will be denoted by σ0(T ) (cf.
[8]). Clearly, σ0(T ) is contained in the point spectrum σp(T ) . From Corollary 1.14 in
[8], we can get

σ0(T ) = {λ ∈ σ(T ) : T −λ I is Browder}
= {λ ∈ isoσ(T ) : T −λ I is Fredholm}.

Given a non-negative integer m , we call an m-normal eigenvalue λ of T is the normal
eigenvalue satisfying dimN(T −λ I) > m . The set of all m-normal eigenvalues of T
will be denoted by σm(T ) .

That is

σm(T ) = {λ ∈ σ0(T ) : dimN(T −λ I) > m}.

Then we obtain that

... ⊆ σm(T )... ⊆ σ2(T ) ⊆ σ1(T ) ⊆ σ0(T ).

In this paper, we characterize an additive surjective map ϕ on B(H ) preserves m
as well as m + 1-normal eigenvalues for some fixed non-negative integer m , that is
σm(ϕ(T )) = σm(T ) and σm+1(ϕ(T )) = σm+1(T ) for all T ∈ B(H ) . And we show
that such a surjective map is an automorphism or an anti-automorphism.
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2. Main results

We firstly need some auxiliary results.

LEMMA 1. Let m � 0 and T ∈ B(H ) . If 0 ∈ σm+1(T ) , then for every rank one
operator F ∈ B(H ) , either 0 ∈ σm(T +F) or 0 ∈ σm(T −F) .

Proof. Suppose that 0 ∈ σm+1(T ) . Then both T +F and T −F are Fredholm of
index zero for every rank one operator F . Thus dimN(T +F) = codimR(T +F) and
dimN(T −F) = codimR(T −F) . Note that R(T +F)⊆ R(T )+R(F) and dimN(T ) =
codimR(T ) > m+ 1. Then codimR(T +F) > m , and dimN(T +F) > m . Similarly,
we have dimN(T −F) > m . Since asc(T ) < ∞ , we have for every rank one operator
F , either asc(T +F) < ∞ or asc(T −F) < ∞ by Proposition 2.7 in [12]. This implies
that either T + F or T −F is Browder. Hence we get either 0 ∈ σm(T + F) or 0 ∈
σm(T −F) . �

PROPOSITION 1. Let k,m � 0 and T ∈ B(H ) . If dimR(T ) � 2 , then there
exists an operator S satisfying 0 ∈ σk(S) such that 0 /∈ σm(S+T ) and 0 /∈ σm(S−T ) .

Proof. We will complete this proof by three cases:
Case (i) dimN(T ) = ∞ .
Assume that dimR(T ) � 2. Then there exist two vectors x0,y0 such that Tx0,Ty0

are linearly independent. We can choose suitable vectors of N(T ) to perturb x0,y0 , then
there exist two vectors u0,v0 such that the vectors u0,v0,Tu0,Tv0 are linearly indepen-
dent. Since dimN(T )= ∞ , we have {u0,v0,Tu0,Tv0}⊥∩N(T ) is infinite-dimensional.
It follows that there is an orthonormal subset {ui,vi : i � 1} of {u0,v0,Tu0,Tv0}⊥ ∩
N(T ) with an infinite-dimensional orthogonal complement. Let H1 =

∨{ui,vi : i � 0}
and H2 =

∨
({Tu0,Tv0} ∪ {ui,vi : i � 0}) . We can choose an orthonormal subset

{ξi}k
i=0 ⊆ H⊥

2 such that H⊥
2 =

∨{ξi : i = 0,1, · · · ,k} ⊕M , where M is an infinite-
dimensional subspace. Take any two unit orthogonal vectors η1,η2 ∈ H⊥

1 such that

H⊥
1 =

∨
{η1,η2}⊕H⊥

2 =
∨
{η1,η2}⊕M⊕

∨
{ξi : i = 0,1, · · · ,k}.

We define an operator S ∈ B(H ) by:
⎧⎪⎪⎨
⎪⎪⎩

Su0 = −Tu0, Sv0 = Tv0;
Sui+1 = ui, Svi+1 = vi, ∀ i � 0;
Sξi = 0, i = 0,1, · · · ,k;
S :

∨{η1,η2}⊕M → M is a bounded invertible linear operator.

It follows that 0 ∈ σk(S) and (S+T )u0 = (S−T )v0 = 0, (S+T )iui = u0 , (S−
T )ivi = v0 for all i � 0. This implies that asc(S+T ) = asc(S−T ) = ∞ , and thus 0 /∈
σm(S+T ) and 0 /∈ σm(S−T ) .

Case (ii) T = λ I +F for some non-zero complex number λ ∈ C and F is a finite
rank operator.
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Note that dimN(F) = ∞ . Then there exist two separable infinite-dimensional sub-
spaces H1,H2 ⊆N(F) such that H1 ⊥H2 and (H1⊕H2)⊥ is also infinite-dimensional.
Let {ωi}k

i=0 ⊆ (H1⊕H2)⊥ be an orthonormal subset such that (H1⊕H2)⊥ =
∨{ωi : i =

0,1, · · · ,k}⊕H3 , where H3 is an infinite-dimensional subspace. We define an operator
S ∈ B(H ) by:

⎧⎪⎪⎨
⎪⎪⎩

S|H1 = −λ IH1 + λ
3 A1, where A1 is a backward shift operator on H1;

S|H2 = λ IH2 + λ
3 A2, where A2 is a backward shift operator on H2;

S|H3 = I;
Sωi = 0, i = 0,1,2, · · · ,k.

Then 0 ∈ σk(S) . Moreover, S + T |H1 = λ
3 A1 , S− T |H2 = λ

3 A2. Hence asc(S +
T ) = asc(S−T) = ∞ . We obtain that 0 /∈ σm(S+T) and 0 /∈ σm(S−T) .

Case (iii) dimN(T ) < ∞ and T = λ I+F for any non-zero complex number λ ∈C

and for any finite rank operator F .
According to this hypothesis, we have for every closed subspace N ⊆ H with

finite codimension, there exists a vector x ∈ N ∩T−1N such that the vectors x,Tx are
linearly independent. Without loss of generality, let ‖T‖ � 1

2 . Find a unit vector z0

such that z0 and Tz0 are linearly independent. Let H0 = {z0,Tz0}⊥ . Then there
exists a unit vector z1 ∈ H0 ∩T−1H0 such that z1 and Tz1 are linearly independent.
Let H1 = {z0,z1,Tz0,Tz1}⊥ . Then we can choose a unit vector z2 ∈ H1 ∩ T−1H1

such that z2 and Tz2 are linearly independent. Continuing this process, we can get
a sequence of unit vectors {zi}∞

i=0 such that zi and Tzi are linearly independent and
{zi+1,Tzi+1} ⊥ {z j,Tz j : j = 0,1,2, ..., i} for all i � 0. We can also assume that the
orthogonal complement of

∨{zi,Tzi : i � 0} is infinite-dimensional. Otherwise we
can replace {zi}∞

i=0 by {z2i}∞
i=0 . Let {yi}k

i=0 ∪ {xi}∞
i=0 be an orthonormal sequence

of
∨{zi,Tzi : i � 0}⊥ . For all i � 0, let ζi ∈ ∨{zi,Tzi} be a unit vector such that

ζi ⊥ zi . Then Tzi = αizi + βiζi , where αi,βi ∈ C satisfy |αi| � 1
2 , 0 < |βi| � 1

2 . Let
M1 =

∨{Tz0,Tz1,xi,ζi+2 : i � 0} , M2 =
∨{zi : i � 0} , M3 =

∨{yi : i = 0,1, · · · ,k} and
M4 = (M1 ⊕M2⊕M3)⊥ . We define an operator S ∈ B(H ) by:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Sz0 = −Tz0, Sz1 = Tz1;
Szi = zi−2 − (−1)iT zi, ∀ i � 2;
Sζ0 = x0, Sζ1 = x1;
Sζi+2 = ζi+2, Sxi = xi+2 ∀ i � 0;
Syi = 0, ∀ 0 � i � k;
S|M4 = I.

We next prove that S|M1⊕M2 is invertible. It is known that S|M1⊕M2 is injective
and M1 ⊆ R(S|M1⊕M2) . Let P be the projection on M2 and B1,B2 ∈ B(M2) such that
B1z0 = B1z1 = 0, B1zi+2 = zi and B2zi = (−1)i+1αizi for all i � 0. Then ‖B1‖ = 1
and ‖B2‖ � 1

2 . Note that B1 is surjective. So is B1 + B2 . However, we now have
PS|M2 = B1 +B2 . It follows that S|M1⊕M2 is surjective. Moreover, Syi = 0 for 0 � i � k
and S|M4 = I . Then 0 ∈ σk(S) . Also, (S + T )z0 = (S−T )z1 = 0, (S + T )iz2i = z0 ,
(S−T )iz2i+1 = z1 for all i � 0. This implies that asc(S+T ) = asc(S−T ) = ∞ , and so
0 /∈ σm(S+T ) and 0 /∈ σm(S−T ) .
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According to the three cases, we get that there exists an operator S satisfying
0 ∈ σk(S) such that 0 /∈ σm(S+T ) and 0 /∈ σm(S−T) . �

COROLLARY 1. Let m � 0 and T ∈ B(H ) be a non-zero operator. Then there
exists an operator S ∈ B(H ) such that 0 ∈ σm(S) but 0 /∈ σm(S+T) .

Proof. It is sufficient to assume that T = x⊗ y is a rank one operator by Propo-
sition 1. Without loss of generality, we may assume that x and y are unit vectors.
Note that σm(·) is similarity invariant. We now can assume that x = y or 〈x,y〉 = 0,
that is, T is a rank one projection or a rank one nilpotent operator. Let T = x⊗ x
be a rank one projection. Put H =

∨{x}⊕H1 ⊕H2 , where dimH1 = m . Let S be
the projection on H2 . Then 0 ∈ σm(S) but 0 /∈ σm(S +T ) . If 〈x,y〉 = 0, then we let
H =

∨{x,y}⊕H1⊕H2 , where dimH1 = m . In this case, let P be the projection on
H2 and S = y⊗ x+P. Then S is what we require. �

LEMMA 2. Let T =
m
∑
i=0

ei ⊗ fi be a rank-(m+1) operator and λ ∈ C−{0} . If

λ ∈ σm(T ) , then 〈ei, f j〉 = λ δi j for all i, j = 0,1,2, · · · ,m, where δi j is the Kronecker
number.

Proof. Suppose that λ ∈ σm(T ) . Then we have dimN(T −λ I) > m . It is known
that N(T − λ I) ⊆ R(T ) and dimR(T ) = m + 1. Hence, dimN(T − λ I) = m + 1,
that is N(T − λ I) = R(T ) =

∨{ei : i = 0,1,2, · · · ,m} . Then Te j = λe j for every

j = 0,1,2, · · · ,m . Now Te j =
m
∑
i=0

〈e j, fi〉ei . So
m
∑
i=0

〈e j, fi〉ei = λe j , this implies that

〈ei, f j〉 = 0 for i = j and 〈ei, fi〉 = λ , where 0 � i, j � m . �

LEMMA 3. Let m � 0 and A,B ∈ B(H ) . If σm(A + F) = σm(B + F) for all
operator F ∈ B(H ) with rank not greater than m+1, then A = B.

Proof. Let x ∈ H , fix a scalar α ∈ C such that |α| > ‖A‖+‖B‖ . We define an
operator

Fx =
{ ‖x‖−2(A−αI)x⊗ x, if x = 0;

0, if x = 0.

Then we have Fxx = Ax−αx . If x = 0, then α ∈ σp(A−Fx) ⊆ σ(A−Fx). It follows
that α ∈ σ0(A−Fx) from the fact that ‖A−Fx‖ � |α| > ‖A‖ � ‖A‖e = ‖A−Fx‖e ,
where ‖A‖e is the essential norm of A .

In the following, we will prove that α ∈ σ0(B−Fx) if x = 0. There are two cases:
Case (1) dimN(A−Fx−αI) > m .
Now, we have α ∈ σm(A−Fx) , so α ∈ σm(B−Fx) ⊆ σ0(B−Fx) .
Case (2) dimN(A−Fx−αI) � m .
Assume that α /∈σ0(B−Fx) . Note that |α|> ‖B‖� ‖B‖e = ‖B−Fx‖e . We obtain

that B−Fx −αI is invertible. Choose m+ 1 orthogonal vectors x0 = x,x1,x2, · · · ,xm

and let Fm = Fx0 +Fx1 + · · ·+Fxm . Then (A−Fm)xi = αxi for all 0 � i � m . It implies
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that dimN(A− Fm −αI) > m . Now, ‖A− Fm‖ � |α| > ‖A‖ � ‖A‖e = ‖A− Fm‖e .
Hence α ∈ σm(A−Fm) and hence α ∈ σm(B−Fm) . We know that

B−Fm−αI = (B−Fx0 −αI)− (Fx1 + · · ·+Fxm).

Since B− Fx0 −αI is invertible and Fx1 + · · ·+ Fxm is a rank-m operator, we have
dimN(B−Fm −αI) � m . This is a contradiction. Therefore, we get that α ∈ σ0(B−
Fx) .

It follows that there exists a non-zero vector yx ∈ H such that (B−Fx)yx = αyx

for any non-zero vector x ∈ H . We claim that if there exist two vectors y1,y2 ∈
H such that (B−Fx)y1 = αy1 and (B− Fx)y2 = αy2 , then y1 and y2 are linearly
dependent. According to the assumption, we have (B−αI)y1 = Fxy1 and (B−αI)y2 =
Fxy2 . Then Fxy1 and Fxy2 are linearly dependent since Fx is rank one. We may assume
that Fxy1 = μFxy2 for some constant μ ∈ C . Then (B−αI)y1 = μ(B−αI)y2 , that
is, (B−αI)(y1 − μy2) = 0. We know that y1 and y2 are linearly independent. Then
α ∈ σp(B) . But B−αI is invertible since |α| > ‖B‖ . This is a contradiction. Thus y1

and y2 are linearly dependent.
Note that (A−αI)x = Fxx and (B−αI)yx = Fxyx for any non-zero vector x∈H .

Then there is an unique non-zero vector yx such that (A−αI)x = Fxx = (B−αI)yx =
Fxyx for any nonzero x ∈ H . We define yx = 0 if x = 0. Thus, we can define a map
T on H such that Tx = yx . Moreover, we have that (A−αI)x = Fxx = (B−αI)Tx =
FxTx for all x ∈ H . This implies that T = (B−αI)−1(A−αI) .

If x = 0, then Fx = ‖x‖−2(A−αI)x⊗ x and FxTx = Fxx , thus

‖x‖−2〈Tx,x〉(A−αI)x = (A−αI)x.

We obtain that 〈Tx,x〉 = ‖x‖2 = 〈x,x〉 . Note that if x = 0, then Tx = 0. So we get that

〈Tx,x〉 = 〈x,x〉, ∀x ∈ H .

Therefore, T = I . That is, we have (B−αI)−1(A−αI) = I , and so A = B . �

THEOREM 1. Let ϕ be a surjective additive map on B(H ) and m � 0 . If
σm(ϕ(T )) = σm(T ) and σm+1(ϕ(T )) = σm+1(T ) for all T ∈ B(H ) , then there is
an invertible operator A ∈ B(H ) such that ϕ(T ) = ATA−1 for all T ∈ B(H ) or
ϕ(T ) = ATtrA−1 for all T ∈ B(H ) , where T tr denotes the transpose of T with re-
spect to an arbitrary but fixed orthonormal basis of H .

Proof. We first show ϕ is injective. Let ϕ(T ) = 0. If T = 0, then by Corollary
1, there exists an operator S such that 0 ∈ σm(S) but 0 /∈ σm(S+T ) . Note that

σm(S+T ) = σm(ϕ(S+T )) = σm(ϕ(S)) = σm(S).

It is a contradiction. Thus, T = 0.
Let T ∈ B(H ) with dimR(T ) � 2. By Proposition 1, there exists an opera-

tor S satisfying 0 ∈ σm+1(S) such that 0 /∈ σm(S + T ) and 0 /∈ σm(S− T ) . Then
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0 /∈ σm(ϕ(S) + ϕ(T )) and 0 /∈ σm(ϕ(S)− ϕ(T )) . We know that 0 ∈ σm+1(S) =
σm+1(ϕ(S)) by the assumption. Then by Lemma 1, we have that dimR(ϕ(T )) � 2.
Since ϕ is bijective and ϕ−1 has the same property as ϕ , it follows that ϕ preserves
the set of operators of rank one in both directions.

We claim that ϕ preserves idempotents of rank one and their linear spans in both
directions. That is ϕ(CP) ⊆ Cϕ(P) for every idempotent of rank one P . Let e0 ⊗ f0

be a rank one idempotent and let P =
m
∑
i=0

ei⊗ fi be a rank-(m+1) idempotent. For any

non-zero λ ∈ C , then ϕ(λP) =
m
∑
i=0

ϕ(λei ⊗ fi) is also a rank-(m+ 1) operator. Note

that λ ∈ σm(λP) . Then λ ∈ σm(ϕ(λP)) . It follows from Lemma 2 that ϕ(λe0⊗ f0) =
λyλ ⊗ gλ , where yλ ⊗ gλ is a rank one idempotent. In particular, let λ = 1 and let
ϕ(e0⊗ f0) = y⊗g , then we can get y⊗g is a rank one idempotent. Thus ϕ preserves
idempotents of rank one in both directions. We claim that ϕ(Ce0⊗ f0) ⊆Cϕ(e0⊗ f0) .

Since ϕ(e0 ⊗ f0) = y⊗ g and 〈y,g〉 = 1, then we can find two vectors z,h ∈ H
such that 〈z,g〉 = 0, 〈y,h〉= 0 and 〈z,h〉 = 1. For y⊗h and z⊗g , there exist two rank
one operators u⊗k and v⊗ p such that ϕ(u⊗k) = y⊗h and ϕ(v⊗ p) = z⊗g as ϕ is
surjective. We know that

ϕ(e0 ⊗ f0 +u⊗ k) = y⊗g+ y⊗h, ϕ(e0⊗ f0 + v⊗ p) = y⊗g+ z⊗g.

Then both e0 ⊗ f0 + u⊗ k and e0 ⊗ f0 + v⊗ p are rank one operators. It implies that
λe0 ⊗ f0 + u⊗ k and λe0 ⊗ f0 + v⊗ p are also rank one operator for any non-zero
λ ∈ C . Fix a non-zero complex number λ , we have ϕ(λe0 ⊗ f0) = λyλ ⊗gλ , where
yλ ⊗gλ is a rank one idempotent. Then ϕ(λe0⊗ f0 +u⊗k) = λyλ ⊗gλ +y⊗h is also
rank one. We obtain that yλ and y are linearly dependent or the same is true for gλ
and h .

We assert that yλ and y are linearly dependent. Otherwise, we have gλ and h
are linearly dependent. Then there exists some non-zero αλ ∈ C such that gλ = αλ h .
Thus

ϕ(λe0⊗ f0 + v⊗ p) = αλ λyλ ⊗h+ z⊗g.

Since h and g are linearly independent, there is some non-zero βλ ∈ C such that
yλ = βλ z , and so ϕ(λe0 ⊗ f0) = αλ βλ λ z⊗ h , where z⊗ h is a rank one idempotent.
We also know that ϕ(λe0 ⊗ f0) = λyλ ⊗gλ , where yλ ⊗gλ is a rank one idempotent.
It follows that αλ βλ λ = λ . Therefore,

ϕ(λe0⊗ f0) = λ z⊗h.

As ϕ is surjective, we can find two vectors w, l ∈ H such that ϕ(w⊗ l) = z⊗ h and
〈w, l〉 = 1. It is clear that y⊗g+ z⊗h is a projection of rank two. Then e0⊗ f0 +w⊗ l
is a rank two operator, and then the operator λe0⊗ f0 +w⊗ l is also rank two. Thus

ϕ(λe0⊗ f0 +w⊗ l) = (λ +1)z⊗h.

This is a contradiction since ϕ preserves the set of operators of rank one in both direc-
tions. Therefore, we get that yλ and y are linearly dependent. Then there exists some
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non-zero γλ ∈ C such that yλ = γλ y . Note that ϕ(λe0⊗ f0 +v⊗ p) = γλ λy⊗gλ + z⊗
g , which is also rank one. Thus we can find some non-zero μλ ∈C such that gλ = μλ g
because y and z are linearly independent. So ϕ(λe0⊗ f0) = γλ μλ λy⊗g , where y⊗g
is a rank one idempotent. We also know that ϕ(λe0 ⊗ f0) = λyλ ⊗gλ , where yλ ⊗gλ
is also a rank-1 idempotent. Thus γλ μλ λ = λ . Therefore,

ϕ(λe0⊗ f0) = λy⊗g = λ ϕ(e0⊗ f0).

According to the above, we have that ϕ preserves idempotents of rank one and their
linear spans in both directions. It follows from Theorem 4.4 in [13] that there is a
bounded invertible linear or conjugate-linear operator A on H such that one of the
following assertions holds.

(1) ϕ(F) = AFA−1 for all finite rank operators F ∈ B(H );
(2) ϕ(F) = AFtrA−1 for all finite rank operators F ∈ B(H ), where Ftr is the

transpose of F with respect to an arbitrary but fixed orthonormal basis of H . If
A is conjugate-linear, then ϕ(iP) = A(iP)A−1 = −iϕ(P) or ϕ(iP) = A(iP)trA−1 =
−iϕ(P) for any rank-(m+ 1) idempotent P , which means that σm(iP) = {i} while
σm(ϕ(iP)) = {−i} . This is a contradiction. Thus A must be linear.

Assume that (1) holds. Let T ∈ B(H ) and for any finite rank operator F , we
have

σm(T +F) = σm(ϕ(T )+ ϕ(F))
= σm(ϕ(T )+AFA−1)
= σm(A(A−1ϕ(T )A+F)A−1)
= σm(A−1ϕ(T )A+F).

Then we get that T = A−1ϕ(T )A by Lemma 3. Therefore, ϕ(T ) = ATA−1 for all
T ∈ B(H ) .

If (2) holds, then we similarly have that ϕ(T ) = ATtrA−1 for all T ∈B(H ) . �
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