SINGULAR VALUE INEQUALITIES RELATED TO THE AUDENAERT-ZHAN INEQUALITY

Hongliang Zuo, Masatoshi Fujii, Junichi Fujii and Yuki Seo

(Communicated by R. Bhatia)

Abstract

In this paper, we refine the Heinz mean inequality for singular values and give some generalizations of Audenaert-Zhan inequality for singular values and Zhan's conjecture for the case of negative t. Among others, we show that if $A, B \in \mathbb{M}_{n}$ are positive semidefinite and f, g are real valued continuous functions on $[0, \infty)$ such that g is monotone and $f\left(g^{-1}(\sqrt{t})\right)^{2}$ is operator monotone on $[0, \infty)$, then

$$
s_{j}\left(f(A)\left(g(A)^{2}+g(B)^{2}\right) f(B)\right) \leqslant \frac{1}{2} s_{j}\left(f(A)^{2} g(A)^{2}+f(B)^{2} g(B)^{2}\right)
$$

for $j=1, \ldots, n$, where s_{j} are the singular values in decreasing order.

1. Introduction

A capital letter means an $n \times n$ matrix in the matrix algebra \mathbb{M}_{n}. Let A, B be Hermitian matrices in \mathbb{M}_{n}, then the order relation $A \geqslant B$ means, as usual, that $A-B$ is positive semidefinite. We always denote by $\lambda_{j}(A)$ and $s_{j}(A)$ its eigenvalues and singular values, respectively, arranged in non-increasing order, and denote by $|A|$ the absolute value operator of A, that is, $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$, where A^{*} is the adjoint operator of A.

The arithmetic-geometric mean inequality was proved by Bhatia and Kittaneh [3] to hold for singular values of arbitrary matrices $A, B \in \mathbb{M}_{n}$:

$$
\begin{equation*}
2 s_{j}\left(A B^{*}\right) \leqslant s_{j}\left(A^{*} A+B^{*} B\right) \quad \text { for } j=1,2, \cdots, n . \tag{1.1}
\end{equation*}
$$

Afterwards Bhatia and Kittaneh [2] proved that for positive semidefinite $A, B \in$ \mathbb{M}_{n},

$$
\begin{equation*}
s_{j}\left(A^{\frac{1}{2}} B^{\frac{3}{2}}+A^{\frac{3}{2}} B^{\frac{1}{2}}\right) \leqslant \frac{1}{2} s_{j}\left((A+B)^{2}\right) \quad \text { for } j=1, \ldots, n \tag{1.2}
\end{equation*}
$$

In [1, Theorem 2], Audenaert showed a singular value inequality for Heinz means, which is the affirmative answer to Zhan's conjecture [6, Conjecture 4]:

[^0]Theorem A. Let $A, B \in \mathbb{M}_{n}$ be positive semidefinite. Then for $0 \leqslant r \leqslant 1$

$$
\begin{equation*}
s_{j}\left(A^{r} B^{1-r}+A^{1-r} B^{r}\right) \leqslant s_{j}(A+B) \quad \text { for } j=1,2, \cdots, n \tag{1.3}
\end{equation*}
$$

Moreover, Zhan posed the following conjecture in [6, Conjecture 3] that if $A, B \in$ \mathbb{M}_{n} are positive semidefinite, then for each $1 \leqslant 2 r \leqslant 3$ and $-2<t \leqslant 2$,

$$
\begin{equation*}
s_{j}\left(A^{r} B^{2-r}+A^{2-r} B^{r}\right) \leqslant \frac{2}{t+2} s_{j}\left(A^{2}+t A B+B^{2}\right) \quad \text { for } j=1, \ldots, n \tag{1.4}
\end{equation*}
$$

The inequality (1.4) has been proved to hold for $r=\frac{1}{2}, 1, \frac{3}{2}$ and all $-2<t \leqslant 2$ by Dumitru, Levanger and Visinescu [4].

Furthermore, it was shown that the function $f(t)=\frac{2}{t+2} \lambda_{j}\left(A^{2}+B^{2}+\frac{t}{2} A B+\frac{t}{2} B A\right)$ is non-increasing on $(-2, \infty)$.

In this viewpoint we are tempted to show general singular value inequality for Audenaert-Zhan inequality (1.3) and refine the Heinz mean inequality for singular values as well. Also, we give a partial affirmative answer to Zhan's conjecture (1.4).

2. Main results

In this section, we show a unified form of Heinz means inequalities for singular values. The following results due to Tao [5, Theorem 1] and Audenaert [1, Corollary 1] play an important role in what follows.

THEOREM B. (Tao) Given any positive semidefinite block matrix $\left(\begin{array}{cc}M & K \\ K^{*} & N\end{array}\right)$, where $M, N \in \mathbb{M}_{n}$. Then

$$
2 s_{j}(K) \leqslant s_{j}\left(\begin{array}{cc}
M & K \\
K^{*} & N
\end{array}\right) \quad \text { for } j=1,2, \ldots, n
$$

Theorem C. (Audenaert) If $A, B \in \mathbb{M}_{n}$ are positive semidefinite, then

$$
\begin{equation*}
\frac{1}{2} \lambda_{j}\left((A+B)(f(A)+f(B)) \leqslant \lambda_{j}(A f(A)+B f(B)) \quad \text { for } j=1, \ldots, n\right. \tag{2.1}
\end{equation*}
$$

for any matrix monotone function f.
We need the following known fact [7, Theorem 2.8]:
Lemma 2.1. For any matrices $X, Y \in \mathbb{M}_{n}, \lambda_{j}(X Y)=\lambda_{j}(Y X)$ for $j=1, \ldots, n$.
Now we state our main theorem:

THEOREM 2.2. Let $A, B \in \mathbb{M}_{n}$ be positive semidefinite and f, g be real valued continuous functions on $[0, \infty)$. Further suppose that f and g satisfy either of the following conditions:
(i) g is monotone on $[0, \infty)$ and $h_{1}(t)=f\left(g^{-1}(\sqrt{t})\right)^{2}$ is operator monotone.
(ii) f is monotone on $[0, \infty)$ and $h_{2}(t)=g\left(f^{-1}(\sqrt{t})\right)^{2}$ is operator monotone.

Then

$$
\begin{equation*}
s_{j}\left(f(A)\left(g(A)^{2}+g(B)^{2}\right) f(B)\right) \leqslant s_{j}\left(f(A)^{2} g(A)^{2}+f(B)^{2} g(B)^{2}\right) \tag{2.2}
\end{equation*}
$$

for $j=1,2, \ldots, n$.
Proof. By symmetry of (2.2), it suffices to prove the case of (i) only. Let us define the matrices $T=\binom{f(A)}{f(B)}$ and $S=(g(A) g(B))$. Then

$$
0 \leqslant(T S)(T S)^{*}=\left(\begin{array}{cc}
f(A)^{2} g(A)^{2}+f(A) g(B)^{2} f(A) & f(A)\left(g(A)^{2}+g(B)^{2}\right) f(B) \\
f(B)\left(g(A)^{2}+g(B)^{2}\right) f(A) & f(B)^{2} g(B)^{2}+f(B) g(A)^{2} f(B)
\end{array}\right)
$$

Hence it follows from Theorem B that for $j=1, \ldots, n$

$$
2 s_{j}\left(f(A)\left(g(A)^{2}+g(B)^{2}\right) f(B)\right) \leqslant s_{j}\left((T S)(T S)^{*}\right)
$$

and Lemma 2.1 implies that
$s_{j}\left((T S)(T S)^{*}\right)=\lambda_{j}\left(T S S^{*} T^{*}\right)=\lambda_{j}\left(S S^{*} T^{*} T\right)=\lambda_{j}\left(\left(g(A)^{2}+g(B)^{2}\right)\left(f(A)^{2}+f(B)^{2}\right)\right)$.
We put $A_{1}=g(A)^{2}$ and $B_{1}=g(B)^{2}$. By Theorem C it follows from the operator monotonicity of h_{1} that

$$
\begin{aligned}
\lambda_{j}\left(\left(g(A)^{2}+g(B)^{2}\right)\left(f(A)^{2}+f(B)^{2}\right)\right) & =\lambda_{j}\left(\left(A_{1}+B_{1}\right)\left(h\left(A_{1}\right)+h\left(B_{1}\right)\right)\right. \\
& \leqslant 2 \lambda_{j}\left(A_{1} h\left(A_{1}\right)+B_{1} h\left(B_{1}\right)\right) \\
& =2 \lambda_{j}\left(f(A)^{2} g(A)^{2}+f(B)^{2} g(B)^{2}\right) \\
& =2 s_{j}\left(f(A)^{2} g(A)^{2}+f(B)^{2} g(B)^{2}\right)
\end{aligned}
$$

Combining the above, we have the desired singular value inequality (2.2).
If we put $f(t)=t$ or $g(t)=t$ in Theorem 2.2, then we have the following corollary:

COROLLARY 2.3. Let $A, B \in \mathbb{M}_{n}$ be positive semidefinite and $f(\sqrt{t})^{2}$ is an operator monotone function on $[0, \infty)$. Then

$$
\begin{align*}
& s_{j}\left(f(A)\left[A^{2}+B^{2}\right] f(B)\right) \leqslant s_{j}\left(A^{2} f(A)^{2}+B^{2} f(B)^{2}\right) \tag{i}\\
& s_{j}\left(A\left[f(A)^{2}+f(B)^{2}\right] B\right) \leqslant s_{j}\left(A^{2} f(A)^{2}+B^{2} f(B)^{2}\right) \tag{ii}
\end{align*}
$$

for $j=1, \ldots, n$.
By Theorem 2.2 we have the generalized Heinz mean inequality for singular values, which is a generalization of Audenaert-Zhan inequality (1.3):

THEOREM 2.4. Let $A, B \in \mathbb{M}_{n}$ be positive definite and $r, s \in \mathbb{R}$ such that $r s \geqslant 0$. Then

$$
\begin{equation*}
s_{j}\left(A^{\frac{r}{2}}\left(A^{s}+B^{s}\right) B^{\frac{r}{2}}\right) \leqslant \frac{1}{2} \lambda_{j}\left(\left(A^{r}+B^{r}\right)\left(A^{s}+B^{s}\right)\right) \leqslant s_{j}\left(A^{r+s}+B^{r+s}\right) \tag{2.3}
\end{equation*}
$$

for $j=1, \ldots, n$.
Proof. Put $f(t)=t^{r}$ and $g(t)=t^{s}$ in Theorem 2.2. Then $h_{1}(t)=t^{r / s}$ is operator monotone if and only if $0 \leqslant r \leqslant s$ or $0 \geqslant r \geqslant s$, and $h_{2}(t)=t^{s / r}$ is operator monotone if and only if $0 \leqslant s \leqslant r$ or $0 \geqslant s \geqslant r$. Hence the case of $r s \geqslant 0$ implies (2.3) by Theorem 2.2.

If we put $s=\frac{1}{2}-r$ in Theorem 2.4, then we have the Audenaert-Zhan inequality for singular values (1.3):

Corollary 2.5. Let $A, B \in \mathbb{M}_{n}$ be positive semidefinite. Then for $0 \leqslant r \leqslant 1$

$$
s_{j}\left(A^{r} B^{1-r}+A^{1-r} B^{r}\right) \leqslant \frac{1}{2} \lambda_{j}\left(\left(A^{2 r_{0}}+B^{2 r_{0}}\right)\left(A^{1-2 r_{0}}+B^{1-2 r_{0}}\right)\right) \leqslant s_{j}(A+B)
$$

for $j=1, \ldots, n$, where $r_{0}=\min \{r, 1-r\}$.
Proof. It suffices to prove it for $0 \leqslant r \leqslant \frac{1}{2}$. If we put $s=\frac{1}{2}-r$ in Theorem 2.4, then the condition $r\left(\frac{1}{2}-r\right) \geqslant 0$ implies $0 \leqslant r \leqslant \frac{1}{2}$ and Corollary 2.5 follows from Theorem 2.4.

REMARK 2.6. If we put $r=\frac{1}{4}$ in Corollary 2.5 and replace A and B by A^{2} and B^{2} respectively, then we have the result (1.2) due to Bhatia-Kittaneh.

REMARK 2.7. For $r=\frac{1}{2}$ we can obtain the following equality for singular values:

$$
s_{j}(A+B)=\frac{1}{2} s_{j}^{2}\left(\begin{array}{cc}
A^{\frac{1}{2}} & A^{\frac{1}{2}} \\
B^{\frac{1}{2}} & B^{\frac{1}{2}}
\end{array}\right) \text { for } j=1,2, \cdots, n
$$

Note that 2×2 matrices $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)$ are unitarily similar, then take the Kronecker product with $A+B$, we have $\binom{A+B A+B}{A+B A+B}$ and $\left(\begin{array}{cc}2(A+B) & 0 \\ 0 & 0\end{array}\right)$ are unitarily similar. And also

$$
\left(\begin{array}{ll}
A^{\frac{1}{2}} & A^{\frac{1}{2}} \\
B^{\frac{1}{2}} & B^{\frac{1}{2}}
\end{array}\right)^{*}\left(\begin{array}{ll}
A^{\frac{1}{2}} & A^{\frac{1}{2}} \\
B^{\frac{1}{2}} & B^{\frac{1}{2}}
\end{array}\right)=\binom{A+B A+B}{A+B A+B}
$$

If we put $s=1-r$ in Theorem 2.4, then we generalize Zhan's conjecture (1.4) for the case of negative t :

Corollary 2.8. Let $A, B \in \mathbb{M}_{n}$ be positive semidefinite. Then for $0 \leqslant r \leqslant 2$ and $-2<t \leqslant 0$

$$
\begin{aligned}
s_{j}\left(A^{r} B^{2-r}+A^{2-r} B^{r}\right) & \leqslant \frac{1}{2} \lambda_{j}\left(\left(A^{2 r_{1}}+B^{2 r_{1}}\right)\left(A^{2-2 r_{1}}+B^{2-2 r_{1}}\right)\right) \\
& \leqslant \frac{2}{2+t} s_{j}\left(A^{2}+t A B+B^{2}\right)
\end{aligned}
$$

for $j=1, \ldots, n$, where $r_{1}=\min \{r, 2-r\}$.
Proof. If we put $s=1-r$ in Theorem 2.4, then the condition $r(1-r) \geqslant 0$ implies $0 \leqslant r \leqslant 1$, and by Theorem 2.4 we have

$$
s_{j}\left(A^{r} B^{2-r}+A^{2-r} B^{r}\right) \leqslant \frac{1}{2} \lambda_{j}\left(\left(A^{2 r}+B^{2 r}\right)\left(A^{2(1-r)}+B^{2(1-r)}\right) \leqslant s_{j}\left(A^{2}+B^{2}\right) .\right.
$$

For the case of $1 \leqslant r \leqslant 2$, since $0 \leqslant 2-r \leqslant 1$, we have

$$
\begin{aligned}
s_{j}\left(A^{r} B^{2-r}+A^{2-r} B^{r}\right) & =s_{j}\left(A^{2-(2-r)} B^{2-r}+A^{2-r} B^{2-(2-r)}\right) \\
& \leqslant \frac{1}{2} \lambda_{j}\left(\left(A^{2(2-r)}+B^{2(2-r)}\right)\left(A^{2 r-2}+B^{2 r-2}\right)\right) \\
& \leqslant s_{j}\left(A^{2}+B^{2}\right)
\end{aligned}
$$

for $j=1, \ldots, n$, and we have the first inequality of Corollary 2.8.
The second inequality follows from non-increase of $f(t)=\frac{2}{2+t} \lambda_{j}\left(A^{2}+B^{2}+\frac{t}{2} A B+\right.$ $\left.\frac{t}{2} B A\right)$ and for $-2<t \leqslant 0$

$$
s_{j}\left(A^{2}+B^{2}+\frac{t}{2} A B+\frac{t}{2} B A\right)=\lambda_{j}\left(A^{2}+B^{2}+\frac{t}{2} A B+\frac{t}{2} B A\right) \leqslant s_{j}\left(A^{2}+t A B+B^{2}\right)
$$

also see [4, Theorem 4.1]

3. Generalization of Bhatia-Kittaneh inequality

In [5], Tao proved the following generalization of Bhatia-Kittaneh inequality (1.2): If A and B are positive semidefinite and m is a positive integer, then

$$
\begin{equation*}
2 s_{j}\left(A^{\frac{1}{2}}(A+B)^{m-1} B^{\frac{1}{2}}\right) \leqslant s_{j}\left((A+B)^{m}\right) \quad \text { for } j=1, \ldots, n \tag{3.1}
\end{equation*}
$$

In this section, based on Tao's technique, we show a variant of Tao' inequality (3.1):

Theorem 3.1. Let $A, B \in \mathbb{M}_{n}$ be positive definite and $r, s \in \mathbb{R}$. Then for $j=$ $1,2, \cdots, n$,

$$
\begin{aligned}
& 2 s_{j}\left(A^{r}\left(A^{r+s}+B^{r+s}\right)^{m-1}\left(A^{2 s}+B^{2 s}\right)\left(A^{r+s}+B^{r+s}\right)^{m-1} B^{r}\right) \\
\leqslant & \lambda_{j}\left(\left(A^{r+s}+B^{r+s}\right)^{m-1}\left(A^{2 s}+B^{2 s}\right)\left(A^{r+s}+B^{r+s}\right)^{m-1}\left(A^{2 r}+B^{2 r}\right)\right), m=1,2, \cdots
\end{aligned}
$$

Proof. Let us define the matrices $T=\binom{A^{r}}{B^{r}}$ and $S=\left(A^{s} B^{s}\right)$, then

$$
T S=\left(\begin{array}{ll}
A^{r+s} & A^{r} B^{s} \\
B^{r} A^{s} & B
\end{array}\right) \text { and }(S T)^{m}=\left(A^{r+s}+B^{r+s}\right)^{m}
$$

Note that

$$
(T S)^{m}=T(S T)^{m-1} S=\binom{A^{r}\left(A^{r+s}+B^{r+s}\right)^{m-1} A^{s} A^{r}\left(A^{r+s}+B^{r+s}\right)^{m-1} B^{s}}{B^{r}\left(A^{r+s}+B^{r+s}\right)^{m-1} A^{s} B^{r}\left(A^{r+s}+B^{r+s}\right)^{m-1} B^{s}}
$$

Hence we have

$$
(T S)^{m}\left((T S)^{m}\right)^{*}=\left(\begin{array}{cc}
Y & P \\
P^{*} & Z
\end{array}\right) \geqslant 0
$$

where $P=A^{r}\left(A^{r+s}+B^{r+s}\right)^{m-1}\left(A^{2 s}+B^{2 s}\right)\left(A^{r+s}+B^{r+s}\right)^{m-1} B^{r}$, the exact forms of Y and Z is not needed. Put $X=\left(A^{r+s}+B^{r+s}\right)^{m-1}\left(A^{2 r}+B^{2 r}\right)\left(A^{r+s}+B^{r+s}\right)^{m-1}$. Then Theorem B and Lemma 2.1 imply that for $m=1,2, \ldots$

$$
\begin{aligned}
& 2 s_{j}\left(A^{r}\left(A^{r+s}+B^{r+s}\right)^{m-1}\left(A^{2 s}+B^{2 s}\right)\left(A^{r+s}+B^{r+s}\right)^{m-1} B^{r}\right) \\
\leqslant & s_{j}\left((T S)^{m}\left((T S)^{m}\right)^{*}\right)=s_{j}\left(\left((T S)^{m}\right)^{*}(T S)^{m}\right) \\
= & s_{j}\left(S^{*} X S\right)=\lambda_{j}\left(X S S^{*}\right) \\
= & \lambda_{j}\left(\left(A^{r+s}+B^{r+s}\right)^{m-1}\left(A^{2 r}+B^{2 r}\right)\left(A^{r+s}+B^{r+s}\right)^{m-1}\left(A^{2 s}+B^{2 s}\right)\right)
\end{aligned}
$$

for $j=1,2, \cdots, n$.

REMARK 3.2. (i) If we put $m=1$ in Theorem 3.1 and replace A and B by $A^{1 / 2}$ and $B^{1 / 2}$ respectively, then we get the first inequality in Theorem 2.4 for all $r, s \in \mathbb{R}$.
(ii) If we put $r=s=\frac{1}{2}$ in Theorem 3.1, then we have $T^{*}=S$ and this implies Tao' inequality (3.1) because $\left(T T^{*}\right)^{m}$ is positive semidefinite.
(iii) If we moreover put $r=s=\frac{1}{2}$ and $m=1$ in Theorem 3.1, then we have Bhatia-Kittaneh inequality (1.2).

REFERENCES

[1] K. M. R. Audenaert, A singular value inequality for Heinz means, Linear Algebra Appl., 422 (2007), 279-283.
[2] R. Bhatia and F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl., 308 (2000), 203-211.
[3] R. Bhatia and F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl., 11 (1990), 272-277.
[4] R. Dumitru, R. Levanger and B. Visinescu, On singular value inequalities for matrix means, Linear Algebra Appl., 439 (2013), 2405-2410.
[5] Y. X. TAO, More results on singular value inequalities of matrices, Linear Algebra Appl., 416 (2006), 724-729.
[6] X. Z. ZHAN, Some research problems on the Hadamard product and singular values of matrices, Linear Multilinear Algebra, 47 (2000), 191-194.
[7] F. Z. Zhang, Matrix Inequalities-Basic Results and Techniques, Springer, New York, 1999.

Hongliang Zuo
College of Mathematics and Information Science
Henan Normal University Xinxiang, Henan, 453007, China
e-mail: zuodke@yahoo.com
Masatoshi Fujii
Department of Mathematics, Osaka Kyoiku University
Asahigaoka, Kashiwara, Osaka 582-8582, Japan
e-mail: mfujii@cc.osaka-kyoiku.ac.jp
Junichi Fujii
Department of Mathematics, Osaka Kyoiku University Asahigaoka, Kashiwara, Osaka 582-8582, Japan
e-mail: fujii@cc.osaka-kyoiku.ac.jp
Yuki Seo
Department of Mathematics, Osaka Kyoiku University Asahigaoka, Kashiwara, Osaka 582-8582, Japan
e-mail: yukis@cc.osaka-kyoiku.ac.jp

[^0]: Mathematics subject classification (2010): Primary 15A18; Secondary 15A42.
 Keywords and phrases: Heinz means, Zhan's conjecture, singular value inequalities.
 This research was partially supported by the NNSF of China (11271112) and Science and Technology Planning Project of the Education Department of Henan Province (No. 14B110009).

