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(Communicated by R. Bhatia)

Abstract. In this paper, we refine the Heinz mean inequality for singular values and give some
generalizations of Audenaert-Zhan inequality for singular values and Zhan’s conjecture for the
case of negative t . Among others, we show that if A,B ∈ Mn are positive semidefinite and f ,g
are real valued continuous functions on [0,∞) such that g is monotone and f (g−1(

√
t))2 is

operator monotone on [0,∞) , then

s j( f (A)(g(A)2 +g(B)2) f (B)) � 1
2
s j( f (A)2g(A)2 + f (B)2g(B)2)

for j = 1, . . . ,n , where s j are the singular values in decreasing order.

1. Introduction

A capital letter means an n× n matrix in the matrix algebra Mn . Let A,B be
Hermitian matrices in Mn , then the order relation A � B means, as usual, that A−B
is positive semidefinite. We always denote by λ j(A) and s j(A) its eigenvalues and
singular values, respectively, arranged in non-increasing order, and denote by |A| the

absolute value operator of A , that is, |A|= (A∗A)
1
2 , where A∗ is the adjoint operator of

A .
The arithmetic-geometric mean inequality was proved by Bhatia and Kittaneh [3]

to hold for singular values of arbitrary matrices A,B ∈ Mn :

2s j(AB∗) � s j(A∗A+B∗B) for j = 1,2, · · · ,n . (1.1)

Afterwards Bhatia and Kittaneh [2] proved that for positive semidefinite A,B ∈
Mn ,

s j(A
1
2 B

3
2 +A

3
2 B

1
2 ) � 1

2
s j((A+B)2) for j = 1, . . . ,n . (1.2)

In [1, Theorem 2], Audenaert showed a singular value inequality for Heinz means,
which is the affirmative answer to Zhan’s conjecture [6, Conjecture 4]:
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THEOREM A. Let A,B ∈ Mn be positive semidefinite. Then for 0 � r � 1

s j(ArB1−r +A1−rBr) � s j(A+B) for j = 1,2, · · · ,n. (1.3)

Moreover, Zhan posed the following conjecture in [6, Conjecture 3] that if A,B ∈
Mn are positive semidefinite, then for each 1 � 2r � 3 and −2 < t � 2,

s j(ArB2−r +A2−rBr) � 2
t +2

s j(A2 + tAB+B2) for j = 1, . . . ,n . (1.4)

The inequality (1.4) has been proved to hold for r = 1
2 ,1, 3

2 and all −2 < t � 2 by
Dumitru, Levanger and Visinescu [4].

Furthermore, it was shown that the function f (t) = 2
t+2 λ j(A2 +B2 + t

2AB+ t
2BA)

is non-increasing on (−2,∞) .
In this viewpoint we are tempted to show general singular value inequality for

Audenaert-Zhan inequality (1.3) and refine the Heinz mean inequality for singular val-
ues as well. Also, we give a partial affirmative answer to Zhan’s conjecture (1.4).

2. Main results

In this section, we show a unified form of Heinz means inequalities for singular
values. The following results due to Tao [5, Theorem 1] and Audenaert [1, Corollary
1] play an important role in what follows.

THEOREM B. (Tao) Given any positive semidefinite block matrix

(
M K
K∗ N

)
, where

M,N ∈ Mn . Then

2s j(K) � s j

(
M K
K∗ N

)
for j = 1,2, . . . ,n.

THEOREM C. (Audenaert) If A,B ∈ Mn are positive semidefinite, then

1
2

λ j((A+B)( f (A)+ f (B)) � λ j(A f (A)+B f (B)) for j = 1, . . . ,n. (2.1)

for any matrix monotone function f .

We need the following known fact [7, Theorem 2.8]:

LEMMA 2.1. For any matrices X ,Y ∈ Mn , λ j(XY ) = λ j(YX) for j = 1, . . . ,n.

Now we state our main theorem:

THEOREM 2.2. Let A,B ∈ Mn be positive semidefinite and f ,g be real valued
continuous functions on [0,∞) . Further suppose that f and g satisfy either of the
following conditions:



SINGULAR VALUE INEQUALITIES RELATED TO THE A-Z INEQUALITY 391

( i) g is monotone on [0,∞) and h1(t) = f (g−1(
√

t))2 is operator monotone.

( ii) f is monotone on [0,∞) and h2(t) = g( f−1(
√

t))2 is operator monotone.

Then
s j( f (A)(g(A)2 +g(B)2) f (B)) � s j( f (A)2g(A)2 + f (B)2g(B)2) (2.2)

for j = 1,2, . . . ,n.

Proof. By symmetry of (2.2), it suffices to prove the case of (i) only. Let us define

the matrices T =
(

f (A)
f (B)

)
and S =

(
g(A) g(B)

)
. Then

0 � (TS)(TS)∗ =
(

f (A)2g(A)2 + f (A)g(B)2 f (A) f (A)(g(A)2 +g(B)2) f (B)
f (B)(g(A)2 +g(B)2) f (A) f (B)2g(B)2 + f (B)g(A)2 f (B)

)
.

Hence it follows from Theorem B that for j = 1, . . . ,n

2s j( f (A)(g(A)2 +g(B)2) f (B)) � s j((TS)(TS)∗)

and Lemma 2.1 implies that

s j((TS)(TS)∗) = λ j(TSS∗T ∗) = λ j(SS∗T ∗T ) = λ j((g(A)2 +g(B)2)( f (A)2 + f (B)2)).

We put A1 = g(A)2 and B1 = g(B)2 . By Theorem C it follows from the operator
monotonicity of h1 that

λ j((g(A)2 +g(B)2)( f (A)2 + f (B)2)) = λ j((A1 +B1)(h(A1)+h(B1))
� 2λ j(A1h(A1)+B1h(B1))

= 2λ j( f (A)2g(A)2 + f (B)2g(B)2)

= 2s j( f (A)2g(A)2 + f (B)2g(B)2).

Combining the above, we have the desired singular value inequality (2.2). �

If we put f (t) = t or g(t) = t in Theorem 2.2, then we have the following corol-
lary:

COROLLARY 2.3. Let A,B ∈ Mn be positive semidefinite and f (
√

t)2 is an oper-
ator monotone function on [0,∞) . Then

s j( f (A)[A2 +B2] f (B)) � s j(A2 f (A)2 +B2 f (B)2) (i)

s j(A[ f (A)2 + f (B)2]B) � s j(A2 f (A)2 +B2 f (B)2) (ii)

for j = 1, . . . ,n.

By Theorem 2.2 we have the generalized Heinz mean inequality for singular val-
ues, which is a generalization of Audenaert-Zhan inequality (1.3):
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THEOREM 2.4. Let A,B ∈ Mn be positive definite and r,s ∈ R such that rs � 0 .
Then

s j(A
r
2 (As +Bs)B

r
2 ) � 1

2
λ j((Ar +Br)(As +Bs)) � s j(Ar+s +Br+s) (2.3)

for j = 1, . . . ,n.

Proof. Put f (t) = tr and g(t) = ts in Theorem 2.2. Then h1(t) = tr/s is operator
monotone if and only if 0 � r � s or 0 � r � s , and h2(t) = ts/r is operator monotone
if and only if 0 � s � r or 0 � s � r . Hence the case of rs � 0 implies (2.3) by
Theorem 2.2. �

If we put s = 1
2 − r in Theorem 2.4, then we have the Audenaert-Zhan inequality

for singular values (1.3):

COROLLARY 2.5. Let A,B ∈ Mn be positive semidefinite. Then for 0 � r � 1

s j(ArB1−r +A1−rBr) � 1
2

λ j((A2r0 +B2r0)(A1−2r0 +B1−2r0)) � s j(A+B)

for j = 1, . . . ,n, where r0 = min{r,1− r} .

Proof. It suffices to prove it for 0 � r � 1
2 . If we put s = 1

2 − r in Theorem 2.4,
then the condition r( 1

2 − r) � 0 implies 0 � r � 1
2 and Corollary 2.5 follows from

Theorem 2.4. �

REMARK 2.6. If we put r = 1
4 in Corollary 2.5 and replace A and B by A2 and

B2 respectively, then we have the result (1.2) due to Bhatia-Kittaneh.

REMARK 2.7. For r = 1
2 we can obtain the following equality for singular values:

s j(A+B) =
1
2
s2

j

(
A

1
2 A

1
2

B
1
2 B

1
2

)
for j = 1,2, · · · ,n.

Note that 2×2 matrices

(
1 1
1 1

)
and

(
2 0
0 0

)
are unitarily similar, then take the Kro-

necker product with A+B , we have

(
A+B A+B
A+B A+B

)
and

(
2(A+B) 0

0 0

)
are unitarily

similar. And also (
A

1
2 A

1
2

B
1
2 B

1
2

)∗(
A

1
2 A

1
2

B
1
2 B

1
2

)
=
(

A+B A+B
A+B A+B

)
.

If we put s = 1− r in Theorem 2.4, then we generalize Zhan’s conjecture (1.4) for
the case of negative t :
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COROLLARY 2.8. Let A,B ∈ Mn be positive semidefinite. Then for 0 � r � 2
and −2 < t � 0

s j(ArB2−r +A2−rBr) � 1
2

λ j((A2r1 +B2r1)(A2−2r1 +B2−2r1))

� 2
2+ t

s j(A2 + tAB+B2)

for j = 1, . . . ,n, where r1 = min{r,2− r} .

Proof. If we put s = 1−r in Theorem 2.4, then the condition r(1−r) � 0 implies
0 � r � 1, and by Theorem 2.4 we have

s j(ArB2−r +A2−rBr) � 1
2

λ j((A2r +B2r)(A2(1−r) +B2(1−r)) � s j(A2 +B2).

For the case of 1 � r � 2, since 0 � 2− r � 1, we have

s j(ArB2−r +A2−rBr) = s j(A2−(2−r)B2−r +A2−rB2−(2−r))

� 1
2

λ j((A2(2−r) +B2(2−r))(A2r−2 +B2r−2))

� s j(A2 +B2)

for j = 1, . . . ,n , and we have the first inequality of Corollary 2.8.
The second inequality follows from non-increase of f (t)= 2

2+t λ j(A2+B2+ t
2AB+

t
2BA) and for −2 < t � 0

s j(A2 +B2 +
t
2
AB+

t
2
BA) = λ j(A2 +B2 +

t
2
AB+

t
2
BA) � s j(A2 + tAB+B2),

also see [4, Theorem 4.1] �

3. Generalization of Bhatia-Kittaneh inequality

In [5], Tao proved the following generalization of Bhatia-Kittaneh inequality (1.2):
If A and B are positive semidefinite and m is a positive integer, then

2s j(A
1
2 (A+B)m−1B

1
2 ) � s j((A+B)m) for j = 1, . . . ,n . (3.1)

In this section, based on Tao’s technique, we show a variant of Tao’ inequality (3.1):

THEOREM 3.1. Let A,B ∈ Mn be positive definite and r,s ∈ R . Then for j =
1,2, · · · ,n,

2s j(Ar(Ar+s +Br+s)m−1(A2s +B2s)(Ar+s +Br+s)m−1Br)

� λ j((Ar+s +Br+s)m−1(A2s +B2s)(Ar+s +Br+s)m−1(A2r +B2r)), m = 1,2, · · ·
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Proof. Let us define the matrices T =
(

Ar

Br

)
and S =

(
As Bs

)
, then

TS =
(

Ar+s ArBs

BrAs B

)
and (ST )m = (Ar+s +Br+s)m.

Note that

(TS)m = T (ST )m−1S =
(

Ar(Ar+s +Br+s)m−1As Ar(Ar+s +Br+s)m−1Bs

Br(Ar+s +Br+s)m−1As Br(Ar+s +Br+s)m−1Bs

)
.

Hence we have

(TS)m((TS)m)∗ =
(

Y P
P∗ Z

)
� 0,

where P = Ar(Ar+s +Br+s)m−1(A2s +B2s)(Ar+s + Br+s)m−1Br , the exact forms of Y
and Z is not needed. Put X = (Ar+s + Br+s)m−1(A2r +B2r)(Ar+s +Br+s)m−1 . Then
Theorem B and Lemma 2.1 imply that for m = 1,2, · · ·

2s j(Ar(Ar+s +Br+s)m−1(A2s +B2s)(Ar+s +Br+s)m−1Br)
� s j((TS)m((TS)m)∗) = s j(((TS)m)∗(TS)m)
= s j(S∗XS) = λ j(XSS∗)

= λ j((Ar+s +Br+s)m−1(A2r +B2r)(Ar+s +Br+s)m−1(A2s +B2s))

for j = 1,2, · · · ,n . �

REMARK 3.2. ( i) If we put m = 1 in Theorem 3.1 and replace A and B by A1/2

and B1/2 respectively, then we get the first inequality in Theorem 2.4 for all r,s ∈ R .
( ii) If we put r = s = 1

2 in Theorem 3.1, then we have T ∗ = S and this implies
Tao’ inequality (3.1) because (TT ∗)m is positive semidefinite.

( iii) If we moreover put r = s = 1
2 and m = 1 in Theorem 3.1, then we have

Bhatia-Kittaneh inequality (1.2).
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