

NOTE ON SOME OPERATOR EQUATIONS AND LOCAL SPECTRAL PROPERTIES

IL JU AN AND EUNGIL KO

(Communicated by R. Curto)

Abstract. In this paper we define $\mathscr{S}_{k,j}$ by the set of solutions (A,B) of the operator equations $A^kB^{j+1}A^k=A^{2k+j}$ and $B^kA^{j+1}B^k=B^{2k+j}$. Then we observe the set $\mathscr{S}_{k,j}$ is increasing for all integers $k\geqslant 1$ and $j\geqslant 0$.

Now let a pair $(A,B) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and $j \geqslant 0$. We show that if any one of the operators A, AB, BA, and B has Bishop's property (β) , then all others have the same property. Furthermore, we prove that the operators A^{k+j} , A^kB^{j+1} , $A^{j+1}B^k$, $B^{j+1}A^k$, B^kA^{j+1} and B^{k+j} have the same spectra and spectral properties. Finally, we investigate their Weyl type theorems.

1. Introduction

Let $\mathscr X$ and $\mathscr Y$ be infinite dimensional Banach spaces and let $B(\mathscr X,\mathscr Y)$ denote the algebra of bounded linear operators from $\mathscr X$ to $\mathscr Y$, and abbreviate $B(\mathscr X,\mathscr X)$ to $B(\mathscr X)$. Let $K(\mathscr X)$ be the ideal of all compact operators in $B(\mathscr X)$. If $T\in B(\mathscr X)$, we shall write N(T) and R(T) for the null space and range of T. Also, let $\alpha(T):=\dim N(T),\ \beta(T):=\dim N(T^*),\$ and let $\sigma(T),\ \sigma_p(T),\ \sigma_a(T),\ \sigma_r(T),\ \sigma_c(T),\ p_0(T),\$ and $\pi_0(T)$ denote the spectrum, the point spectrum, the approximate point spectrum, the residual spectrum, and the continuous spectrum of T, respectively. For $T\in B(\mathscr X)$, the smallest nonnegative integer p such that $N(T^p)=N(T^{p+1})$ is called the *ascent* of T and denoted by p(T). If no such integer exists, we set $p(T)=\infty$. The smallest nonnegative integer p such that $p(T^q)=p(T^{q+1})$ is called the *descent* of T and denoted by p(T). If no such integer exists, we set $p(T)=\infty$.

The famous "reversal of product" for inverse says that if $A \in B(\mathcal{X}, \mathcal{Y})$ and $C \in B(\mathcal{Y}, \mathcal{Z})$ are invertible, then so is $CA \in B(\mathcal{X}, \mathcal{Z})$, with $(CA)^{-1} = A^{-1}C^{-1}$. In general, the sum of two invertible operators need not be invertible. However it is well known that if A and C are in $B(\mathcal{X})$, then

I-CA is invertible $\iff I-AC$ is invertible.

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2009-0083521). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2009-0093827).

Mathematics subject classification (2010): Primary 47A10, 47A53; Secondary 47B20.

Keywords and phrases: Operator equations, spectrum, single valued extension property.

More generally, we consider that for any integers $k \ge 1$ and $j \ge 0$,

$$I - C^{j+1}A^k$$
 is invertible $\iff I - A^kC^{j+1}$ is invertible.

Indeed, assume that $I-C^{j+1}A^k$ is surjective, that is, $(I-C^{j+1}A^k)\mathcal{X}=\mathcal{X}$. For arbitrary $y\in\mathcal{X}$, there exists $x\in\mathcal{X}$ such that $C^{j+1}y=(I-C^{j+1}A^k)x$. Thus $A^kC^{j+1}y=A^k(I-C^{j+1}A^k)x=(I-A^kC^{j+1})A^kx$, so that

$$\begin{split} y &= A^k C^{j+1} y + (I - A^k C^{j+1}) y = (I - A^k C^{j+1}) A^k x + (I - A^k C^{j+1}) y \\ &= (I - A^k C^{j+1}) (A^k x + y) \in (I - A^k C^{j+1}) \mathscr{X}. \end{split}$$

Hence $(I - A^k C^{j+1}) \mathscr{X} = \mathscr{X}$. Conversely, we have the similar method. It follows that for any integers $k \ge 1$ and $j \ge 0$,

$$I - C^{j+1}A^k$$
 is surjective $\iff I - A^kC^{j+1}$ is surjective.

We now assume that $I-C^{j+1}A^k$ is injective. If $(I-A^kC^{j+1})x=0$, then $x=A^kC^{j+1}x$. Hence $C^{j+1}x=C^{j+1}A^kC^{j+1}x$, so that $(I-C^{j+1}A^k)C^{j+1}x=0$. Since $I-C^{j+1}A^k$ is injective, we have that $C^{j+1}x=0$, which implies that $A^kC^{j+1}x=0$. Since $(I-A^kC^{j+1})x=0$, we get that x=0. Thus $I-A^kC^{j+1}$ is injective. Conversely, we have the similar method. Therefore this means that for any integers $k\geqslant 1$ and $j\geqslant 0$,

$$I - C^{j+1}A^k$$
 is injective $\iff I - A^kC^{j+1}$ is injective.

As mentioned in [2] we replace from $I - A^k C^{j+1}$ to certain $I - A^k B^{j+1}$ and specifically we will suppose that $A^k B^{j+1} A^k = A^k C^{j+1} A^k$. The special case is of interest to us, the case $A^k B^{j+1} A^k = A^{2k+j}$, in which $C^{j+1} = A^j$ for any integer $j \ge 0$.

Now we let a pair (A,B) be the solution of the operator equations

$$A^k B^{j+1} A^k = A^{2k+j}$$
 and $B^k A^{j+1} B^k = B^{2k+j}$. (1.1)

In particular, when k = 1 and j = 0, the operators A and B are solutions of the system of operator equations

$$ABA = A^2$$
 and $BAB = B^2$. (1.2)

This means that if a pair (A,B) of Banach space operators is the solution of the operator equations (1.2), then so is this of the operator equations (1.1). In [10], I. Vidav proved that A and B are self-adjoint operators satisfying the operator equations (1.2) if and only if $A = PP^*$ and $B = P^*P$ for some idempotent operator P. Also, the common spectral properties of the operators A and B satisfying the operator equations (1.2) have been studied by C. Schmoeger [9]. In particular, it is possible to relate the various spectra, the single-valued extension property and Bishop's property (β) of A and B, which has been carried out by [5]. So we extend the previous results for the operator equations (1.2) to those for the operator equations (1.1). We start our program with the following section.

2. Preliminaries

An operator $T \in B(\mathscr{X})$ is called *upper semi-Fredholm* if it has closed range and finite dimensional null space and is called *lower semi-Fredholm* if it has closed range and its range has finite co-dimension. If $T \in B(\mathscr{X})$ is either upper or lower semi-Fredholm, then T is called *semi-Fredholm*, and *index of a semi-Fredholm operator* $T \in B(\mathscr{X})$ is defined by

$$i(T) := \alpha(T) - \beta(T)$$
.

If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called Fredholm. $T \in B(\mathscr{X})$ is called Weyl if it is Fredholm of index zero. The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of $T \in B(\mathscr{X})$ are defined as follows.

$$\sigma_e(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm} \},$$

$$\sigma_w(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\},\$$

and

$$\sigma_b(T) := \{ \lambda \in \mathbb{C} : T - \lambda \text{ is not Browder} \},$$

respectively. Evidently

$$\sigma_e(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \operatorname{acc} \sigma(T)$$
,

where we write acc K for the accumulation points of $K \subseteq \mathbb{C}$.

By definition,

$$\sigma_{ea}(T) := \cap \{\sigma_a(T+K) : K \in K(\mathscr{X})\}$$

is the essential approximate point spectrum,

$$\sigma_{ab}(T) := \bigcap \{ \sigma_a(T+K) : TK = KT \text{ and } K \in K(\mathcal{X}) \}$$

is the Browder essential approximate point spectrum.

If we write iso $K = K \setminus acc K$, then we let

$$\pi_{00}(T) := \{ \lambda \in \text{iso } \sigma(T) : 0 < \alpha(T - \lambda) < \infty \},$$

$$\pi_{00}^{a}(T) := \{ \lambda \in \text{iso } \sigma_{a}(T) : 0 < \alpha(T - \lambda) < \infty \},$$

$$p_{00}(T) := \sigma(T) \setminus \sigma_{b}(T).$$

and

$$p_{00}^a(T) := \sigma_a(T) \setminus \sigma_{ab}(T).$$

We say that Weyl's theorem holds for $T \in B(\mathcal{X})$ if there is equality

$$\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T),$$

that *Browder's theorem holds for* $T \in B(\mathcal{X})$ if there is equality

$$\sigma(T) \setminus \sigma_w(T) = p_{00}(T),$$

that a-Weyl's theorem holds for $T \in B(\mathcal{X})$ if there is equality

$$\sigma_a(T) \setminus \sigma_{ea}(T) = \pi_{00}^a(T),$$

and that *a-Browder's theorem holds for* $T \in B(\mathcal{X})$ if there is equality

$$\sigma_a(T) \setminus \sigma_{ea}(T) = p_{00}^a(T).$$

It is known [3, 4, 6] that we have

a-Weyl's theorem \Rightarrow Weyl's theorem;

a-Weyl's theorem $\Rightarrow a$ -Browder's theorem \Rightarrow Browder's theorem.

Let \mathscr{A} be a unital algebra. We say that an element $x \in \mathscr{A}$ is *Drazin invertible of degree* k if there exists an element $a \in \mathscr{A}$ such that

$$x^k ax = x^k$$
, $axa = a$, and $xa = ax$.

Let $a \in \mathcal{A}$. Then the *Drazin spectrum* is defined by

$$\sigma_D(a) := \{ \lambda \in \mathbb{C} : a - \lambda \text{ is not Drazin invertible} \}.$$

It is well known that T is Drazin invertible if and only if it has finite ascent and descent, which is also equivalent to the fact that

$$T = T_1 \oplus T_2$$
, where T_1 is invertible and T_2 is nilpotent.

In terms of local spectral theory ([1], [8]) recall the following definitions.

DEFINITION 2.1. Let $T \in B(\mathcal{X})$.

- (1) An operator T has Bishop's property (β) if for every open subset U of $\mathbb C$ and every sequence of analytic functions $f_n:U\to\mathscr X$ with the property that $(T-\lambda)f_n(\lambda)\to 0$ as $n\to\infty$, uniformly on all compact subsets of U, it follows that $f_n(\lambda)\to 0$ as $n\to\infty$, uniformly on all compact subsets of U.
- (2) An operator T has the single valued extension property at $\lambda_0 \in \mathbb{C}$, abbreviated T has SVEP at λ_0 if for every open neighborhood U of λ_0 the only analytic function $f: U \longrightarrow \mathscr{X}$ which satisfies the equation

$$(T - \lambda)f(\lambda) = 0$$

is the constant function $f \equiv 0$ on U. The operator T is said to have SVEP if T has SVEP at every $\lambda \in \mathbb{C}$.

In general, the following implications hold:

Bishop's property (
$$\beta$$
) \Longrightarrow SVEP.

Evidently, every operator T, as well as its dual T^* , has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum $\sigma(T)$, in particular, at every isolated point of $\sigma(T)$. We also have (see [1, Theorem 3.8])

$$p(T - \lambda) < \infty \implies T \text{ has SVEP at } \lambda,$$
 (2.1)

and dually

$$q(T - \lambda) < \infty \implies T^* \text{ has SVEP at } \lambda.$$
 (2.2)

It is well known from [1] that if $T - \lambda$ is semi-Fredholm, then the implications (2.1) and (2.2) are equivalent.

3. Local spectral properties and some operator equations

Throughout this paper we define $\mathcal{S}_{k,j}$ by the set of solutions (A,B) of the operator equations

$$A^{k}B^{j+1}A^{k} = A^{2k+j}$$
 and $B^{k}A^{j+1}B^{k} = B^{2k+j}$

for all integers $k \ge 1$ and $j \ge 0$. In particular, if a pair $(A,B) \in \mathcal{S}_{1,0}$, then $ABA = A^2$ and $BAB = B^2$. Then the following inclusions are satisfied.

Proposition 3.1.

- (1) $\mathcal{S}_{1,0} \subset \mathcal{S}_{k,j}$ for all integers $k \ge 1$ and a fixed integer $j \ge 0$.
- (2) $\mathscr{S}_{k,j} \subset \mathscr{S}_{k+1,j}$ for every $k \in \mathbb{N}$ and all integer $j \geqslant 0$.

Proof. (1) Suppose that $(A,B) \in \mathcal{S}_{1,0}$. Then $A^nB = AB^n$ and $B^nA = BA^n$ for $n \ge 2$. Then for all integer $k, j \ge 1$,

$$A^{k}B^{j+1}A^{k} = A^{k-1}AB^{j+1}A^{k} = A^{k-1}A^{j+1}BA^{k} = A^{k+j-1}ABAA^{k-1} = A^{2k+j}$$

and

$$B^k A^{j+1} B^k = B^{k-1} B A^{j+1} B^k = B^{k-1} B^{j+1} A B^k = B^{k+j-1} B A B B^{k-1} = B^{2k+j}.$$

Hence $(A,B) \in \mathscr{S}_{k,j}$, so that this inclusion is satisfied.

(2) Suppose that $(A,B) \in \mathscr{S}_{k,j}$ for every $k \in \mathbb{N}$ and all integer $j \ge 0$. We first fix $j \ge 0$. Then $A^k B^{j+1} A^k = A^{2k+j}$ and $B^k A^{j+1} B^k = B^{2k+j}$. Thus we have that

$$A^{k+1}B^{j+1}A^{k+1} = AA^kB^{j+1}A^kA = A^{2(k+1)+j}$$

and

$$B^{k+1}A^{j+1}B^{k+1} = BB^kA^{j+1}B^kB = B^{2(k+1)+j}$$
.

Thus $(A,B) \in \mathscr{S}_{k+1,j}$ for every $k \in \mathbb{N}$ and a fixed integer $j \geqslant 0$. \square

From Proposition 3.1, it is obvious that the set $\mathcal{S}_{k,j}$ is nonempty. Moreover, we observe the following remark.

REMARK 3.2. Set $\mathscr{S}_{\infty,j} := \bigcup_{k=1}^{\infty} \mathscr{S}_{k,j}$ for a fixed integer $j \ge 0$. Then

$$\mathscr{S}_{1,j} \subset \mathscr{S}_{2,j} \subset \cdots \subset \mathscr{S}_{k,j} \subset \mathscr{S}_{k+1,j} \subset \cdots \subset \mathscr{S}_{\infty,j}$$
.

However, the following example says that $\mathcal{S}_{1,j} \neq \mathcal{S}_{1,j+1}$ holds for integers $j \ge 0$.

EXAMPLE 3.3. If $A = \begin{pmatrix} \omega I & 0 \\ 0 & \overline{\omega} I \end{pmatrix}$ and $B = \begin{pmatrix} \overline{\omega} I & 0 \\ 0 & \omega I \end{pmatrix}$ are in $B(\mathscr{X} \oplus \mathscr{X})$, where $\omega^{2n+1} = 1$ and $\omega \in \mathbb{C} \setminus \{1\}$, then by the induction,

$$(A,B) \in \mathcal{S}_{1,n}$$
 for integers $n \ge 1$.

But, $(A,B) \not\in \mathscr{S}_{1,n-1} \cup \mathscr{S}_{1,n+1}$ for integers $n \geqslant 1$. In fact, assume that there exists some integer $m \geqslant 1$ such that $(A,B) \in \mathscr{S}_{1,m-1} \cup \mathscr{S}_{1,m+1}$. If $(A,B) \in \mathscr{S}_{1,m-1}$, then $AB^mA \neq A^{m+1}$ and $BA^mB \neq B^{m+1}$ since $\omega^{2m+1} = 1$. If $(A,B) \in \mathscr{S}_{1,m+1}$, then $AB^{m+2}A \neq A^{m+3}$ and $BA^{m+2}B \neq B^{m+3}$ since $\omega^{2m+1} = 1$. Hence we have a contradiction. Thus $(A,B) \in \mathscr{S}_{1,n-1} \cup \mathscr{S}_{1,n+1}$. Moreover, it follows that $\mathscr{S}_{1,j} \not\subset \mathscr{S}_{1,j+1}$ holds for all integers $j \geqslant 1$.

EXAMPLE 3.4. In general, if $(A,B) \in \mathcal{S}_{1,0}$, then it follows that the equality $A^nB = AB^n$ holds for $n \ge 2$. However, this equality is not satisfied when $(A,B) \in \mathcal{S}_{k,j}$, for any nonnegative integers k and j. Let's consider the operator matrices A and B defined in Example 3.3. Then a pair (A,B) is in $\mathcal{S}_{k,j}$ for k=1 and any integer $j \ge 1$. By the straightforward calculation, we have that $A^nB \ne AB^n$ for $n \ge 2$.

From Example 3.4 we can guess the following proposition.

PROPOSITION 3.5. If $(A,B) \in \mathcal{S}_{n+1,n}$ for any integer $n \ge 0$, then for $k \ge n+1$

$$A^{k+2n+1}B^k = A^kB^{k+2n+1}$$
 and $B^{k+2n+1}A^k = B^kA^{k+2n+1}$.

Proof. Suppose that $(A,B) \in \mathcal{S}_{n+1,n}$ for any integer $n \ge 0$. Then $A^{n+1}B^{n+1}A^{n+1} = A^{3n+2}$ and $B^{n+1}A^{n+1}B^{n+1} = B^{3n+2}$. We show that for every integer $k \ge n+1$, $A^{k+2n+1}B^k = A^kB^{k+2n+1}$ and $B^{k+2n+1}A^k = B^kA^{k+2n+1}$. If k = n+l for $l \ge 1$, $A^{k+2n+1}B^k = A^{l-1}A^{3n+2}B^{n+l} = A^{l-1}A^{n+1}B^{n+1}A^{n+1}B^{n+1}B^{l-1} = A^{n+l}B^{3n+l+1} = A^kB^{k+2n+1}$, and similarly, $B^{k+2n+1}A^k = B^kA^{k+2n+1}$. This proof is complete. □

Now we show that the operators A, AB, BA and B have the property (β) in common. For this we need the following lemma.

LEMMA 3.6. Let $(A,B) \in \mathcal{S}_{k,j}$ for any integer $k \ge 1$ and $j \ge 0$. Then the followings are satisfied.

- (1) A^{k+j} has property (β) if and only if A^kB^{j+1} has property (β) .
- (2) B^{k+j} has property (β) if and only if B^kA^{j+1} has property (β) .

Proof. (1) Suppose that A^kB^{j+1} has property (β) at $\mu \in \mathbb{C}$. Let \mathscr{U} be an open neighborhood of μ and $f_n : \mathscr{U} \to \mathscr{X}$ be a sequence of analytic functions such that $(A^{k+j} - \lambda)f_n(\lambda) \to 0$ in \mathscr{U} .

Then $A^k B^{j+1}(A^{k+j} - \lambda) f_n(\lambda) \to 0$ and $(A^{2k+2j} - \lambda A^k B^{j+1}) f_n(\lambda) \to 0$. Since $A^{2k+2j} f_n(\lambda) = \lambda^2 f_n(\lambda)$ in \mathscr{U} , we have that $(A^k B^{j+1} - \lambda) (-\lambda f_n(\lambda)) \to 0$. But, $A^k B^{j+1}$ has property (β) at $\mu \in \mathbb{C}$, hence $-\lambda f_n(\lambda) \to 0$ so that $f_n(\lambda) \to 0$ for all λ in \mathscr{U} . Thus A^{k+j} has property (β) at μ .

Conversely, assume that A^{k+j} has property (β) at $\mu \in \mathbb{C}$. Let $g_n : \mathscr{U} \to \mathscr{X}$ be a sequence of analytic functions such that $(A^k B^{j+1} - \lambda)g_n(\lambda) \to 0$ in \mathscr{U} . Then $A^k B^{j+1}(A^k B^{j+1} - \lambda)g_n(\lambda) \to 0$, so that $(A^{2k+j}B^{j+1} - \lambda A^k B^{j+1})g_n(\lambda) \to 0$. Hence we have $(A^{k+j} - \lambda)(A^k B^{j+1}g_n(\lambda)) \to 0$. Since A^{k+j} has property (β) at μ , $A^k B^{j+1}g_n(\lambda) \to 0$. But, $(A^k B^{j+1} - \lambda)g_n(\lambda) \to 0$ in \mathscr{U} , thus $g_n(\lambda) \to 0$ for all λ in \mathscr{U} . So $A^k B^{j+1}$ has property (β) at μ . Since μ is arbitrary in \mathbb{C} , this is complete.

(2) The proof is obvious by the similar process as above. \Box

As some applications of Lemma 3.6, we get the following theorem.

THEOREM 3.7. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \ge 1$ and $j \ge 0$. Then the following statements are equivalent.

- (1) A has property (β) .
- (2) AB has property (β) .
- (3) BA has property (β) .
- (4) B has property (β) .

Proof. Suppose that A has property (β) . Then it follows from [1, Theorem 2.40] that A^{k+j} has property (β) . So we first show that B^kA^{j+1} has property (β) . Let $f_n: \mathscr{U} \to \mathscr{X}$ be a sequence of analytic functions for every open neighborhood \mathscr{U} of $\lambda_0 \in \mathbb{C}$. Suppose that $(B^kA^{j+1} - \lambda)f_n(\lambda) \to 0$. Then $A^{j+1}(B^kA^{j+1} - \lambda)f_n(\lambda) \to 0$. Since $(A,B) \in \mathscr{S}_{j+1,k-1}$, we have $(A^{k+j} - \lambda)A^{j+1}f_n(\lambda) \to 0$. And then $A^{j+1}f_n(\lambda) \to 0$. But, $B^kA^{j+1}f_n(\lambda) = \lambda f_n(\lambda)$, hence $\lambda f_n(\lambda) \to 0$. Since λ is arbitrary in \mathscr{U} , we have $f_n(\lambda) \to 0$. Thus B^kA^{j+1} has property (β) . So it follows from Lemma 3.6 that B^{k+j} has property (β) . Therefore B has property (β) .

Conversely, suppose that B has property (β) . Then B^{k+j} has property (β) . So we only need to prove that A^kB^{j+1} has property (β) by Lemma 3.6. Assume that $g: \mathcal{W} \to \mathcal{X}$ is the analytic function for every open neighborhood \mathcal{W} of $\mu_0 \in \mathbb{C}$ and $(A^kB^{j+1} - \mu)f_n(\mu) \to 0$. Then $B^{j+1}(A^kB^{j+1} - \mu)f_n(\mu) \to 0$. Since $(A,B) \in \mathcal{S}_{j+1,k-1}$, we have $(B^{k+j} - \mu)B^{j+1}f_n(\mu) \to 0$. And then $B^{j+1}f_n(\lambda) \to 0$. But, $(A^kB^{j+1} - \mu)f_n(\mu) \to 0$, hence $\mu f_n(\mu) \to 0$. Since μ is arbitrary in \mathcal{W} , we have $f_n(\mu) \to 0$. Thus A^kB^{j+1} has property (β) , so that A^{k+j} has. Consequently, A has property (β) . \square

REMARK 3.8. Similarly, Theorem 3.7 holds for the single-valued extension property. This means that if one of A, AB, BA, or B has SVEP whenever $(A,B) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and $j \geqslant 0$, then all of the operators A, AB, BA, and B have SVEP.

If $(A,B) \in \mathscr{S}_{1,0}$, then the operators A, AB, BA, and B have the spectrum, point spectrum, approximate point spectrum, residual spectrum, essential spectrum, and Weyl spectrum in common (see, [5] and [9]). So we extend these to the operators A^{k+j} , A^kB^{j+1} , $A^{j+1}B^k$, $B^{j+1}A^k$, B^kA^{j+1} , and B^{k+j} when $(A,B) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and $j \geqslant 0$. We shall require the following results.

LEMMA 3.9. Let $(A,B) \in \mathcal{S}_{k,j}$ for any integer $k,j \ge 0$. Then the followings are satisfied for $\lambda \ne 0$.

$$N(A^{k+j} - \lambda I) = N(A^k B^{j+1} - \lambda I)$$
 and $N(B^{k+j} - \lambda I) = N(B^k A^{j+1} - \lambda I)$.

Proof. (1) Let $x \in N(A^{k+j} - \lambda I)$. Then $A^{k+j}x = \lambda x$, so that $A^kB^{j+1}A^{k+j}x = \lambda A^kB^{j+1}x$. Hence $A^{2k+2j}x = \lambda A^kB^{j+1}x$ and $\lambda A^kB^{j+1}x = A^{2k+2j}x = \lambda^2 x$. Since $\lambda \neq 0$, $A^kB^{j+1}x = \lambda x$. So $x \in N(A^kB^{j+1} - \lambda I)$. Thus $N(A^{k+j} - \lambda I) \subseteq N(A^kB^{j+1} - \lambda I)$.

Conversely, suppose that $x \in N(A^k B^{j+1} - \lambda I)$. Then $A^k B^{j+1} x = \lambda x$, so that $A^k B^{j+1} A^k B^{j+1} x = \lambda A^k B^{j+1} x$ and then $A^{k+j} A^k B^{j+1} x = \lambda A^k B^{j+1} x$. Thus $\lambda A^{k+j} x = \lambda^2 x$, which implies that $A^{k+j} x = \lambda x$. Hence $x \in N(A^{k+j} - \lambda I)$. Consequently, The first equality holds. From similar argument, the second statement can be proved. \square

LEMMA 3.10. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \ge 1$ and $j \ge 0$. Then the following properties hold for $\lambda \ne 0$.

- (1) $N(A^{k+j} \lambda I) = N(A^k B^{j+1} \lambda I) = N(A^{j+1} B^k \lambda I).$
- (2) $N(B^{k+j} \lambda I) = N(B^k A^{j+1} \lambda I) = N(B^{j+1} A^k \lambda I).$

Proof. From Lemma 3.9 we only need to show that $N(A^{k+j}-\lambda I)=N(A^{j+1}B^k-\lambda I)$. Let $x\in N(A^{k+j}-\lambda I)$. Then $A^{k+j}x=\lambda x$, so that $\lambda^2x=A^{2k+2j}x=A^{j+1}B^kA^{k+j}x=\lambda A^{j+1}B^kx$. Since $\lambda\neq 0$, we have that $A^{j+1}B^kx=\lambda x$. So $x\in N(A^{j+1}B^k-\lambda I)$. Thus $N(A^{k+j}-\lambda I)\subseteq N(A^{j+1}B^k-\lambda I)$.

Conversely, let $x \in N(A^{j+1}B^k - \lambda I)$. Then $A^{j+1}B^k x = \lambda x$, so that $\lambda A^{k+j} x = A^{k+2j+1}B^k x = A^{j+1}B^k A^{j+1}B^k x = \lambda^2 x$. Hence $N(A^{j+1}B^k - \lambda I) \subseteq N(A^{k+j} - \lambda I)$, which completes the proof. \square

Lemmas 3.9 and 3.10 ensure that the following proposition holds.

PROPOSITION 3.11. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and $j \geqslant 0$. Then the followings are equivalent for $\lambda \neq 0$.

- (1) $N(A^{k+j} \lambda I) = \{0\}.$
- (2) $N(A^kB^{j+1} \lambda I) = \{0\}.$
- (3) $N(A^{j+1}B^k \lambda I) = \{0\}.$
- (4) $N(B^{j+1}A^k \lambda I) = \{0\}.$
- (5) $N(B^k A^{j+1} \lambda I) = \{0\}.$
- (6) $N(B^{k+j} \lambda I) = \{0\}.$

Proof. We only need to show that $(1) \Rightarrow (4)$ and $(6) \Rightarrow (3)$ from Lemma 3.10. Let $N(A^{k+j} - \lambda I) = \{0\}$. Assume that $(B^{j+1}A^k - \lambda)y = 0$ for some nonzero $y \in \mathcal{X}$. Then $0 = A^k(B^{j+1}A^k - \lambda)y = (A^{2k+j} - \lambda A^k)y = (A^{k+j} - \lambda)A^ky$. Hence $A^ky \in N(A^{k+j} - \lambda)A^ky \in N(A^{k+j} - \lambda)A^ky$.

 λI) = $\{0\}$, so that $\lambda y = 0$. Since $\lambda \neq 0$, y = 0, but this is a contradiction. Thus $N(B^{j+1}A^k - \lambda I) = \{0\}$, which completes the implication (1) \Rightarrow (4). By similar way, it is shown that (6) \Rightarrow (3). \square

LEMMA 3.12. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \ge 1$ and $j \ge 0$. Then the followings hold for $\lambda \ne 0$.

- (1) $B^{k}(N(A^{k+j} \lambda I)) = N(B^{k+j} \lambda I).$
- $(2) A^{k}(N(B^{k+j} \lambda I)) = N(A^{k+j} \lambda I).$

Proof. Let $x \in N(A^{k+j} - \lambda I)$. Then $A^{k+j}x = \lambda x$. So $B^{2k+j}A^{k+j}x = \lambda B^{2k+j}x$, and this implies that $B^kA^{j+1}B^kA^{j+1}A^{k-1}x = \lambda B^{2k+j}x$. Hence $B^kA^{2k+2j}x = \lambda B^{2k+j}x$, so that $\lambda^2 B^k x = \lambda B^{2k+j}x$. Since $\lambda \neq 0$, $B^{2k+j}x = \lambda B^k x$ and then $(B^{k+j} - \lambda I)B^k x = 0$. Thus $B^k x \in N(B^{k+j} - \lambda I)$, which implies that $B^k(N(A^{k+j} - \lambda I)) \subseteq N(B^{k+j} - \lambda I)$.

Conversely, if $x \in N(B^{k+j} - \lambda I)$, then $B^k A^{j+1} x = \lambda x$ by Lemma 3.9. So $A^{k+2j+1} x = A^{j+1} B^k A^{j+1} x = \lambda A^{j+1} x$, hence $(A^{k+j} - \lambda)A^{j+1} x = 0$. Thus $A^{j+1} x \in N(A^{k+j} - \lambda I)$, so that $\lambda x = B^k A^{j+1} x \in B^k (N(A^{k+j} - \lambda I))$. Since $\lambda \neq 0$, we get that $x \in B^k (N(A^{k+j} - \lambda I))$. Consequently, $B^k (N(A^{k+j} - \lambda I)) = N(B^{k+j} - \lambda I)$. By the similar way, it is shown that $A^k (N(B^{k+j} - \lambda I)) \subseteq N(A^{k+j} - \lambda I)$. Hence we complete our proof. \square

PROPOSITION 3.13. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and $j \geqslant 0$. Then we have the following equalities for $\lambda \neq 0$.

$$\alpha(A^{k+j} - \lambda I) = \alpha(A^k B^{j+1} - \lambda I) = \alpha(A^{j+1} B^k - \lambda I)$$

= $\alpha(B^{j+1} A^k - \lambda I) = \alpha(B^k A^{j+1} - \lambda I) = \alpha(B^{k+j} - \lambda I).$

Proof. We first show that

$$N(A^k) \cap N(B^{k+j} - \lambda I) = \{0\} \text{ and } N(B^k) \cap N(A^{k+j} - \lambda I) = \{0\}.$$
 (3.1)

Assume that there exists a nonzero $x \in \mathscr{X}$ such that $A^k x = 0$ and $B^{k+j} x = \lambda x$. Then we have that $\lambda^2 x = B^{2k+2j} x = B^{j+1} A^k B^{k+j} x = \lambda B^{j+1} A^k x = 0$. However, x is a nonzero element, so that $\lambda = 0$. This is a contradiction. Thus $N(A^k) \cap N(B^{k+j} - \lambda) = \{0\}$. Similarly, the second equality of (3.1) can be proved, so that the restrictions of A^k to $N(B^{k+j} - \lambda)$ and B^k to $N(A^{k+j} - \lambda)$ are injective. Therefore the proof follows from Lemmas 3.10 and 3.12. \square

LEMMA 3.14. Let $(A,B) \in \mathcal{S}_{k,j}$ for any nonnegative integer k,j. Then we have the following equalities.

(1)
$$\sigma_p(A^{k+j}) \setminus \{0\} = \sigma_p(A^kB^{j+1}) \setminus \{0\}$$
 and $\sigma_p(B^{k+j}) \setminus \{0\} = \sigma_p(B^kA^{j+1}) \setminus \{0\}$.

(2)
$$\sigma_a(A^{k+j})\setminus\{0\} = \sigma_a(A^kB^{j+1})\setminus\{0\}$$
 and $\sigma_a(B^{k+j})\setminus\{0\} = \sigma_a(B^kA^{j+1})\setminus\{0\}$.

Proof. (1) The proof is obvious from Lemma 3.9.

(2) Let $\lambda \in \sigma_a(A^{k+j}) \setminus \{0\}$. Then there exists a sequence $(x_n) \subset \mathscr{X}$ with $||x_n|| = 1$ for all $n \in \mathbb{N}$ such that $(A^{k+j} - \lambda I)x_n \to 0$ as $n \to \infty$. Let $z_n := (A^{k+j} - \lambda I)x_n$. Then $A^{k+j}x_n = \lambda x_n + z_n$ and $z_n \to 0$ as $n \to \infty$. So

$$A^{2k+2j}x_n = \lambda A^{k+j}x_n + A^{k+j}z_n = \lambda^2 x_n + \lambda z_n + A^{k+j}z_n.$$

But, $A^{2k+2j}x_n = A^k B^{j+1} A^{k+j}x_n = \lambda A^k B^{j+1}x_n + A^k B^{j+1}z_n$. Thus

$$(\lambda A^k B^{j+1} - \lambda^2) x_n = (\lambda I + A^{k+j} - A^k B^{j+1}) z_n \longrightarrow 0 \text{ as } n \to \infty.$$
 (3.2)

For $\lambda \neq 0$, $(A^k B^{j+1} - \lambda) x_n \to 0$ as $n \to \infty$, so that $\lambda \in \sigma_a(A^k B^{j+1}) \setminus \{0\}$.

Conversely, let $\lambda \in \sigma_a(A^kB^{j+1}) \setminus \{0\}$. Then there exists a sequence $(y_n) \subset \mathscr{X}$ with $||y_n|| = 1$ for all $n \in \mathbb{N}$ such that $(A^kB^{j+1} - \lambda I)y_n \to 0$ as $n \to \infty$. Let $w_n := (A^kB^{j+1} - \lambda I)y_n$. Then $A^kB^{j+1}y_n = \lambda y_n + w_n$ and $w_n \to 0$ as $n \to \infty$. So

$$A^{2k+j}B^{j+1}y_n = \lambda A^k B^{j+1}y_n + A^k B^{j+1}w_n = \lambda^2 y_n + \lambda w_n + A^k B^{j+1}w_n.$$

However, $A^{2k+j}B^{j+1}y_n = A^{k+j}(\lambda y_n + w_n) = \lambda A^{k+j}y_n + A^{k+j}w_n$. Thus

$$(\lambda A^{k+j} - \lambda^2 I)y_n = (\lambda I + A^k B^{j+1} - A^{k+j})w_n \longrightarrow 0 \text{ as } n \to \infty.$$

For $\lambda \neq 0$, $(A^{k+j} - \lambda I)y_n \to 0$ as $n \to \infty$, so that $\lambda \in \sigma_a(A^{k+j}) \setminus \{0\}$. Therefore $\sigma_a(A^{k+j}) \setminus \{0\} = \sigma_a(A^kB^{j+1}) \setminus \{0\}$. The second equality can be proved by similar process. \square

THEOREM 3.15. Let $(A,B) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and $j \geqslant 0$. Then the following statements hold.

 $(1) \overset{\circ}{\sigma_p}(A^{k+j}) \setminus \{0\} = \sigma_p(A^k B^{j+1}) \setminus \{0\} = \sigma_p(A^{j+1} B^k) \setminus \{0\} = \sigma_p(B^{j+1} A^k) \setminus \{0\} = \sigma_n(B^k A^{j+1}) \setminus \{0\} = \sigma_n(B^{k+j}) \setminus \{0\}.$

(2) $\sigma_a(A^{k+j}) \setminus \{0\} = \sigma_a(A^k B^{j+1}) \setminus \{0\} = \sigma_a(A^{j+1} B^k) \setminus \{0\} = \sigma_a(B^{j+1} A^k) \setminus \{0\} = \sigma_a(B^{k+j}) \setminus \{0\}.$

Proof. (1) The proof follows from Lemma 3.10.

(2) It is sufficient to show that $\sigma_a(A^{j+1}B^k)\setminus\{0\} = \sigma_a(A^{k+j})\setminus\{0\} = \sigma_a(B^{k+j})\setminus\{0\}$ by Lemma 3.14. To show the first equality, we let $\lambda\in\sigma_a(A^{j+1}B^k)\setminus\{0\}$. Then there exists a sequence $(x_n)\subset\mathscr{X}$ with $||x_n||=1$ for all $n\in\mathbb{N}$ such that $(A^{j+1}B^k-\lambda I)x_n\to 0$ as $n\to\infty$. Let $z_n:=(A^{j+1}B^k-\lambda I)x_n$. Then $A^{j+1}B^kx_n=\lambda x_n+z_n$ and $z_n\to 0$ as $n\to\infty$. So

$$A^{k+2j+1}B^{k}x_{n} = \lambda A^{j+1}B^{k}x_{n} + A^{j+1}B^{k}z_{n} = \lambda^{2}x_{n} + \lambda z_{n} + A^{j+1}B^{k}z_{n}.$$

However, $A^{k+2j+1}B^kx_n = A^{k+j}(A^{j+1}B^kx_n) = \lambda A^{k+j}x_n + A^{k+j}z_n$. Thus

$$(\lambda A^{k+j} - \lambda^2 I)x_n = (\lambda I + A^{j+1}B^k - A^{k+j})z_n \longrightarrow 0 \text{ as } n \to \infty.$$

For $\lambda \neq 0$, $(A^{k+j} - \lambda I)x_n \to 0$ as $n \to \infty$, so that $\lambda \in \sigma_a(A^{k+j}) \setminus \{0\}$.

Conversely, let $\lambda \in \sigma_a(A^{k+j}) \setminus \{0\}$. Then there exists a sequence $(y_n) \subset \mathcal{X}$ with $||y_n|| = 1$ for all $n \in \mathbb{N}$ such that $(A^{k+j} - \lambda I)y_n \to 0$ as $n \to \infty$. Let $w_n := (A^{k+j} - \lambda I)y_n$. Then $A^{k+j}y_n = \lambda y_n + w_n$ and $w_n \to 0$ as $n \to \infty$. So

$$A^{2k+2j}y_n = \lambda A^{k+j}y_n + A^{k+j}w_n = \lambda^2 y_n + \lambda w_n + A^{k+j}w_n.$$

But, $A^{2k+2j}y_n = A^{j+1}B^kA^{k+j}y_n = \lambda A^{j+1}B^ky_n + A^{j+1}B^kw_n$. Thus

$$(\lambda A^{j+1}B^k - \lambda^2)y_n = (\lambda I + A^{k+j} - A^{j+1}B^k)w_n \longrightarrow 0 \text{ as } n \to \infty.$$

For $\lambda \neq 0$, $(A^{j+1}B^k - \lambda)y_n \to 0$ as $n \to \infty$, so that $\lambda \in \sigma_a(A^{j+1}B^k) \setminus \{0\}$. Therefore $\sigma_a(A^{j+1}B^k) \setminus \{0\} = \sigma_a(A^{k+j}) \setminus \{0\}$.

Now, we let $\lambda \in \sigma_a(A^{k+j}) \setminus \{0\}$. From (3.2) in the proof of Lemma 3.14, we have that

$$(\lambda B^{k+2j+1} - \lambda^2 B^{j+1})x_n = u_n,$$

where $u_n := (\lambda B^{j+1} + B^{j+1} A^{k+j} - B^{k+2j+1}) z_n \to 0$ as $n \to \infty$. Hence $\lambda (B^{k+j} - \lambda I) B^{j+1} x_n = u_n$, so that for $\lambda \neq 0$,

$$(B^{k+j} - \lambda I)B^{j+1}x_n = \frac{1}{\lambda}u_n. {(3.3)}$$

From this, there is a positive integer m such that $B^{j+1}x_n \neq 0$ for $n \geqslant m$ and $\|B^{j+1}x_n\|^{-1}$ is bounded. Let $y_n := \|B^{j+1}x_n\|^{-1}B^{j+1}x_n$ for $n \geqslant m$. Then $\|y_n\| = 1$. It follows from (3.3) that for $n \geqslant m$,

$$(B^{k+j} - \lambda I)y_n = ||B^{j+1}x_n||^{-1}(B^{k+j} - \lambda I)B^{j+1}x_n$$

= $(\lambda ||B^{j+1}x_n||^{-1})u_n$.

Therefore $(B^{k+j} - \lambda)y_n \to 0$ as $n \to \infty$. So $\lambda \in \sigma_a(B^{k+j}) \setminus \{0\}$. Similarly, the opposite inclusion is satisfied. Consequently, this complete the proof by Lemma 3.14. \square

COROLLARY 3.16. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \ge 1$ and $j \ge 0$. Then we have the following equalities.

- (1) $\sigma_p(A^{k+j}) = \sigma_p(B^k A^{j+1}) = \sigma_p(B^{j+1} A^k).$
- (2) $\sigma_p(B^{k+j}) = \sigma_p(A^k B^{j+1}) = \sigma_p(A^{j+1} B^k).$
- (3) $\sigma_a(A^{k+j}) = \sigma_a(B^k A^{j+1}) = \sigma_a(B^{j+1} A^k).$
- (4) $\sigma_a(B^{k+j}) = \sigma_a(A^k B^{j+1}) = \sigma_a(A^{j+1} B^k).$

Proof. (1) We suppose that $N(A^{k+j}-\lambda I)=\{0\}$. It was already shown by Proposition 3.11 when $\lambda\neq 0$. So we assume that $\lambda=0$. Then we have that for every $x\in \mathscr{X}$,

$$\begin{split} A^{k+j}(B^kA^{j+1}-A^{k+j})x &= (A^{k+j}B^kA^{j+1}-A^{2k+2j})x \\ &= (A^{k-1}A^{j+1}B^kA^{j+1}-A^{2k+2j})x = 0. \end{split}$$

Similarly, $A^{k+j}(B^{j+1}A^k-A^{k+j})x=0$ for every $x\in\mathscr{X}$. Since A^{k+j} is injective, we have that $(B^kA^{j+1}-A^{k+j})x=0$ and $(B^{j+1}A^k-A^{k+j})x=0$ for every $x\in\mathscr{X}$. Thus $A^{k+j}=B^kA^{j+1}=B^{j+1}A^k$ for $k\geqslant 1$ and $j\geqslant 0$.

Therefore $\sigma_p(A^{k+j}) = \sigma_p(B^k A^{j+1}) = \sigma_p(B^{j+1} A^k)$ for $k \ge 1$ and $j \ge 0$.

- (2) It is shown by similar process as the proof of (1).
- (3) Suppose that $\lambda \in \sigma_a(A^{k+j})$. It was already shown by Theorem 3.15 when $\lambda \neq 0$. So we assume that $\lambda = 0$. Then A^{k+j} is bounded below. It follows from the proof in part (1) that these can be proved. \square

Theorem 3.15 shows that the only 0 can fail to be in the point spectrum and approximate point spectrum of the operators A^{k+j} , $A^k B^{j+1}$, $A^{j+1} B^k$, $B^{j+1} A^k$, $B^k A^{j+1}$, and B^{k+j} . Evidently, the operators have the same point spectrum and approximate point spectrum whenever j=0 in Theorem 3.15.

COROLLARY 3.17. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and j = 0. Then the following equalities hold.

(1)
$$\sigma_p(A^{k+j}) = \sigma_p(A^kB^{j+1}) = \sigma_p(A^{j+1}B^k) = \sigma_p(B^{j+1}A^k) = \sigma_p(B^kA^{j+1}) = \sigma_p(B^{k+j}).$$

(2) $\sigma_a(A^{k+j}) = \sigma_a(A^kB^{j+1}) = \sigma_a(A^{j+1}B^k) = \sigma_a(B^{j+1}A^k) = \sigma_a(B^kA^{j+1}) = \sigma_a(B^{k+j}).$

Proof. (1) Suppose that $N(A^kB - \lambda I) = \{0\}$ for any integer $k \ge 1$. If $\lambda \ne 0$, then it is shown by Proposition 3.11. So we assume that $\lambda = 0$. Then $A^kB(A^kB - B^k) = A^kBA^kB - A^kB^{k+1} = 0$. Since A^kB is injective, we have that $A^kB = B^k$ for any integer $k \ge 1$. Thus we get that for every $x \in \mathcal{X}$,

$$A^{k}B(B^{2k-1} - B^{2k-2})x = (A^{k}B^{2k} - A^{k}B^{2k-1})x = (A^{k}B^{k}AB^{k} - A^{2k}B^{k})x = 0$$

Thus $B^{2k-1}=B^{2k-2}$ for any integer $k\geqslant 1$. Since $N(B)\subset N(B^k)=\{0\}$, it follows that B=I. So $B^k=I$ for all integer $k\geqslant 1$. It follows from the equation $B^kAB^k=B^{2k}$ that A=I, which implies that $A^k=I$ for all integer $k\geqslant 1$. This means that $A^{k+j}=A^kB^{j+1}=A^{j+1}B^k=B^{j+1}A^k=B^kA^{j+1}=B^{k+j}=I$. So the proof is complete.

(2) It is immediately shown by the proof in (1) and Theorem 3.15. \Box

Under the similar conditions, we have more results for the residual spectrum, spectrum, and continuous spectrum of the operators A^{k+j} , A^kB^{j+1} , $A^{j+1}B^k$, $B^{j+1}A^k$, B^kA^{j+1} , and B^{k+j} .

PROPOSITION 3.18. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any $k \ge 1$ and $j \ge 0$. Then the following equalities hold.

$$\sigma_r(A^{k+j}) \setminus \{0\} = \sigma_r(A^k B^{j+1}) \setminus \{0\} = \sigma_r(A^{j+1} B^k) \setminus \{0\}$$

= $\sigma_r(B^{j+1} A^k) \setminus \{0\} = \sigma_r(B^k A^{j+1}) \setminus \{0\} = \sigma_r(B^{k+j}) \setminus \{0\}.$

Proof. It suffices to show that

$$\sigma_r(A^{k+j}) \setminus \{0\} \subseteq \sigma_r(A^k B^{j+1}) \setminus \{0\} \subseteq \sigma_r(A^{j+1} B^k) \setminus \{0\} \subseteq \sigma_r(B^{k+j}) \setminus \{0\}. \tag{3.4}$$

Let $\lambda \in \sigma_r(A^{k+j}) \setminus \{0\}$. Then $\lambda \notin \sigma_p(A^{k+j})$ and $\overline{R(A^{k+j} - \lambda I)} \neq \mathcal{X}$. Thus $N(A^{*k+j} - \lambda I^*) \neq \{0\}$. Since $(A^*, B^*) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$, by Proposition 3.11, $N(B^{*k+j} - \lambda I^*) \neq \{0\}$. However, it follows from Lemma 3.10 that

$$N(A^k B^{j+1} - \lambda I)^* = N(B^{*j+1} A^{*k} - \lambda I^*) = N(B^{*k+j} - \lambda I^*) \neq \{0\}.$$

Thus $\overline{R(A^kB^{j+1}-\lambda I)}\neq \mathscr{X}$. By Theorem 3.15, $\lambda\not\in\sigma_p(A^kB^{j+1})$, so that $\lambda\in\sigma_r(A^kB^{j+1})\setminus\{0\}$. Hence $\sigma_r(A^{k+j})\setminus\{0\}\subseteq\sigma_r(A^kB^{j+1})\setminus\{0\}$. Now, let $\lambda\in\sigma(A^kB^{j+1})\setminus\{0\}$. Then $\lambda\not\in\sigma_p(A^kB^{j+1})$ and $\overline{R(A^kB^{j+1}-\lambda I)}\neq\mathscr{X}$. So $N(A^kB^{j+1}-\lambda I)^*\neq\{0\}$. Since $(A^*,B^*)\in\mathscr{S}_{k,j}\cap\mathscr{S}_{j+1,k-1}$, by Lemma 3.10,

$$N(B^{*k}A^{*j+1} - \lambda I^*) = N(B^{*j+1}A^{*k} - \lambda I^*) = N(A^kB^{j+1} - \lambda I)^* \neq \{0\}.$$

Hence $\overline{R(A^{j+1}B^k - \lambda I)} \neq \mathcal{X}$. Since $\lambda \notin \sigma_p(A^{j+1}B^k)$ by Theorem 3.15, we have that $\lambda \in \sigma_r(A^{j+1}B^k) \setminus \{0\}$. Similarly, if $\lambda \in \sigma_r(A^{j+1}B^k) \setminus \{0\}$, then it follows that

$$N(B^{*k+j} - \lambda I^*) = N(B^{*k}A^{*j+1} - \lambda I^*) = N(A^{j+1}B^k - \lambda I)^* \neq \{0\},\$$

and so $\overline{R(B^{k+j}-\lambda I)}\neq \mathscr{X}$. Since $\lambda\not\in\sigma_p(B^{k+j})$, we have that $\lambda\in\sigma_r(B^{k+j})\setminus\{0\}$. Therefore (3.4) is proved. \square

COROLLARY 3.19. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \ge 1$ and $j \ge 0$. Then we have the following equalities.

(1)
$$\sigma_r(A^{k+j}) = \sigma_r(B^k A^{j+1}) = \sigma_r(B^{j+1} A^k).$$

(2)
$$\sigma_r(B^{k+j}) = \sigma_r(A^k B^{j+1}) = \sigma_r(A^{j+1} B^k)$$
.

Proof. The proof follows from Proposition 3.18 and Corollary 3.16. \Box

COROLLARY 3.20. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \ge 1$ and j=0. Then the following equalities hold.

$$\sigma_r(A^{k+j}) = \sigma_r(A^k B^{j+1}) = \sigma_r(A^{j+1} B^k) = \sigma_r(B^{j+1} A^k) = \sigma_r(B^k A^{j+1}) = \sigma_r(B^{k+j}).$$

Proof. The proof is immediately shown by Corollary 3.17 and Proposition 3.18. \Box

We next find the following spectral relations.

THEOREM 3.21. Let $(A,B) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$ for any $k \ge 1$ and $j \ge 0$. Then the following equalities hold.

$$\sigma(A^{k+j}) = \sigma(A^k B^{j+1}) = \sigma(A^{j+1} B^k) = \sigma(B^{j+1} A^k) = \sigma(B^k A^{j+1}) = \sigma(B^{k+j}).$$

Proof. We first show that

$$\sigma(A^{k+j}) \setminus \{0\} \subseteq \sigma(A^k B^{j+1}) \setminus \{0\} \subseteq \sigma(A^{j+1} B^k) \setminus \{0\} \subseteq \sigma(B^{k+j}) \setminus \{0\}. \tag{3.5}$$

Let $\lambda \in \sigma(A^{k+j}) \setminus \{0\}$. Assume that $\lambda \in \rho(A^kB^{j+1})$. Then $\alpha(A^kB^{j+1} - \lambda I) = 0$ and $\lambda \notin \sigma_a(A^kB^{j+1})$. By Proposition 3.13 and Theorem 3.15, we have that $\alpha(A^{k+j} - \lambda I) = 0$ and $\lambda \notin \sigma_a(A^{k+j})$. Therefore

$$\gamma(A^{k+j} - \lambda I) = \inf\{\|(A^{k+j} - \lambda I)x\| : x \in \mathcal{X} \text{ and } \|x\| = 1\} > 0,$$

so that $R(A^{k+j}-\lambda I)$ is closed. From this, $A^{k+j}-\lambda I$ is upper semi-Fredholm. Since $\lambda\in\rho(B^{*j+1}A^{*k})$, we have $\alpha(B^{*j+1}A^{*k}-\lambda I^*)=\{0\}$ and $\lambda\not\in\sigma_a(B^{*j+1}A^{*k})$. But, $(A^*,B^*)\in\mathscr{S}_{k,j}\cap\mathscr{S}_{j+1,k-1}$, hence it follows that $\alpha(B^{*k+j}-\lambda I)=\{0\}$ and $\lambda\not\in\sigma_a(B^{*k+j})$. Thus we get that

$$\beta(A^{k+j} - \lambda I) = \alpha(A^{*k+j} - \lambda I^*) = \alpha(B^{*k+j} - \lambda I^*) = 0.$$

Thus $\lambda \in \rho(A^{k+j})$, but this is a contradiction. Hence $\sigma(A^{k+j}) \setminus \{0\} \subseteq \sigma(A^k B^{j+1}) \setminus \{0\}$.

Now, let $\lambda \in \sigma(A^k B^{j+1}) \setminus \{0\}$ and assume that $\lambda \in \rho(B^{k+j})$. Then $\alpha(B^{k+j} - \lambda I) = 0$ and $\lambda \notin \sigma_a(B^{k+j})$. By Propositions 3.13 and Theorem 3.15, we have $\alpha(A^k B^{j+1} - \lambda I) = 0$ and $\lambda \notin \sigma_a(A^k B^{j+1})$. Therefore $\gamma(A^k B^{j+1} - \lambda I) > 0$, so that $A^k B^{j+1} - \lambda I$ is upper semi-Fredholm. Since $\lambda \in \rho(B^{*k+j})$, we have $\alpha(B^{*k+j} - \lambda I) = \{0\}$ and

 $\lambda \not\in \sigma_a(B^{*j+1}A^{*k})$. So it follows that $\beta(A^kB^{j+1}-\lambda I)=\alpha(B^{*j+1}A^{*k}-\lambda I)=0$. Thus $\lambda \in \rho(A^kB^{j+1})$, but this is a contradiction. Hence $\sigma(A^kB^{j+1})\setminus\{0\}\subseteq\sigma(B^{k+j})\setminus\{0\}$. Therefore (3.5) is proved. Now, we assume that A^{k+j} is invertible. Then it follows from the equation $A^kB^{j+1}A^k=A^{2k+j}$ that B^{j+1} is also invertible, so that $B^{j+1}A^k=A^{k+j}$. Since the equation $B^{j+1}A^kB^{j+1}=B^{k+2j+1}$ holds, we have that $A^kB^{j+1}=B^{j+1}A^k=B^{k+j}$. Also it follows from the equation $A^{j+1}B^kA^{j+1}=A^{k+2j+1}$ that $B^kA^{j+1}=A^{j+1}B^k=A^{k+j}$. Therefore the proof is completed. \square

COROLLARY 3.22. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any $k \ge 1$ and $j \ge 0$. If A has the property (β) and $\sigma(A)$ has nonempty interior in \mathbb{C} , then B, AB, and BA have a nontrivial invariant subspace.

Proof. From Theorems 3.7 and 3.21 we get that B, AB, and BA have the property (β) and their spectra have nonempty interior in \mathbb{C} . Hence the proof follows from [8]. \square

COROLLARY 3.23. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$. Then the following equalities hold for any integer $k \ge 1$ and $j \ge 0$.

$$\sigma_c(A^{k+j}) \setminus \{0\} = \sigma_c(A^k B^{j+1}) \setminus \{0\} = \sigma_c(A^{j+1} B^k) \setminus \{0\}$$

= $\sigma_c(B^{j+1} A^k) \setminus \{0\} = \sigma_c(B^k A^{j+1}) \setminus \{0\} = \sigma_c(B^{k+j}) \setminus \{0\}.$

Moreover, for any integer $k \ge 1$ and j = 0 we have that

$$\sigma_c(A^{k+j}) = \sigma_c(A^k B^{j+1}) = \sigma_c(A^{j+1} B^k) = \sigma_c(B^{j+1} A^k) = \sigma_c(B^k A^{j+1}) = \sigma_c(B^{k+j}).$$

Let \widehat{T} denote the coset in $B(\mathscr{X})/K(\mathscr{X})$. Then it is obvious that for $T \in B(\mathscr{X})$ we have $\sigma_{e}(T) = \sigma(\widehat{T})$. From this argument, we get the following corollary.

COROLLARY 3.24. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any $k \geqslant 1$ and $j \geqslant 0$. Then the following equalities hold.

$$\sigma_e(A^{k+j}) = \sigma_e(A^k B^{j+1}) = \sigma_e(A^{j+1} B^k) = \sigma_e(B^{j+1} A^k) = \sigma_e(B^k A^{j+1}) = \sigma_e(B^{k+j}).$$

Proof. Since
$$(\widehat{A}, \widehat{B}) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$$
, it follows from Theorem 3.21. \square

We next study how Weyl type theorems hold for the operators A^{k+j} , A^kB^{j+1} , $A^{j+1}B^k$, $B^{j+1}A^k$, B^kA^{j+1} , and B^{k+j} in common. We first begin with the following lemma.

LEMMA 3.25. Let $(A,B) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$ for any $k \ge 1$ and $j \ge 0$. If $\lambda \notin \sigma_e(A^{k+j})$, then the following equalities hold.

$$ind(A^{k+j} - \lambda I) = ind(A^k B^{j+1} - \lambda I) = ind(A^{j+1} B^k - \lambda I)$$

= $ind(B^{j+1} A^k - \lambda I) = ind(B^k A^{j+1} - \lambda I) = ind(B^{k+j} - \lambda I).$ (3.6)

Proof. Suppose that $\lambda \neq 0$. Since $(A^*, B^*) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any $k \geqslant 1$ and $j \geqslant 0$, it follows from Proposition 3.13 and Corollary 3.24 that

$$\begin{split} \beta(A^{k+j}-\lambda I) &= \beta(A^kB^{j+1}-\lambda I) = \beta(A^{j+1}B^k-\lambda I) \\ &= \beta(B^{j+1}A^k-\lambda I) = \beta(B^kA^{j+1}-\lambda I) = \beta(B^{k+j}-\lambda I), \end{split}$$

which implies that (3.6) holds for $\lambda \neq 0$. Now we suppose that $\lambda = 0$. Then A^{k+j} is Fredholm, so that $\widehat{A^{k+j}}$ is invertible. Since $(\widehat{A},\widehat{B}) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$, we have that $\widehat{A^{k+j}} = \widehat{A^{k}B^{j+1}} = \widehat{A^{j+1}B^{k}} = \widehat{B^{j+1}A^{k}} = \widehat{B^{k}A^{j+1}} = \widehat{B^{k+j}}$ by the similar argument in the proof of Theorem 3.21. Hence we get that

$$\operatorname{ind}(A^{k+j}) = \operatorname{ind}(A^k B^{j+1}) = \operatorname{ind}(A^{j+1} B^k)$$

= $\operatorname{ind}(B^{j+1} A^k) = \operatorname{ind}(B^k A^{j+1}) = \operatorname{ind}(B^{k+j}).$

Therefore the proof is complete. \Box

LEMMA 3.26. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \ge 1$ and $j \ge 0$. Then the following equalities hold.

$$(I) \ \sigma_{w}(A^{k+j}) = \sigma_{w}(A^{k}B^{j+1}) = \sigma_{w}(A^{j+1}B^{k}) = \sigma_{w}(B^{j+1}A^{k}) = \sigma_{w}(B^{k}A^{j+1}) = \sigma_{w}(B^{k+j}).$$

(2)
$$\sigma_b(A^{k+j}) = \sigma_b(A^k B^{j+1}) = \sigma_b(A^{j+1} B^k) = \sigma_b(B^{j+1} A^k) = \sigma_b(B^k A^{j+1}) = \sigma_b(B^{k+j}).$$

Proof. (1) It follows from Corollary 3.24 and Lemma 3.25.

(2) It is well known that for an operator $T \in B(\mathcal{X})$, $T - \lambda I$ is Browder if and only if $T - \lambda I$ is Weyl and T has SEVP at λ (see [1]). Thus if one of the operators $A^{k+j} - \lambda I$, $A^k B^{j+1} - \lambda I$, $A^{j+1} B^k - \lambda I$, $B^{j+1} A^k - \lambda I$, $B^k A^{j+1} - \lambda I$, and $B^{k+j} - \lambda I$ is Browder, then all of them are Browder by part (1) and the proof in Theorem 3.7. \square

The following proposition is obvious from Lemma 3.26.

PROPOSITION 3.27. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and $j \geqslant 0$. Then the followings are equivalent.

- (1) Browder's theorem holds for A^{k+j} .
- (2) Browder's theorem holds for $A^k B^{j+1}$.
- (3) Browder's theorem holds for $A^{j+1}B^k$.
- (4) Browder's theorem holds for $B^{j+1}A^k$.
- (5) Browder's theorem holds for $B^k A^{j+1}$.
- (6) Browder's theorem holds for B^{k+j} .

Furthermore, we can easily prove from Theorem 3.21 and Proposition 3.13 that

$$\pi_{00}(A^{k+j}) \setminus \{0\} = \pi_{00}(A^k B^{j+1}) \setminus \{0\} = \pi_{00}(A^{j+1} B^k) \setminus \{0\}$$

= $\pi_{00}(B^{j+1} A^k) \setminus \{0\} = \pi_{00}(B^k A^{j+1}) \setminus \{0\} = \pi_{00}(B^{k+j}) \setminus \{0\}.$

Hence we have the following results from these arguments.

THEOREM 3.28. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \ge 1$ and $j \ge 0$. Suppose that the range of T is closed whenever $0 \in iso\sigma(T)$, where $T \in \{A^{k+j}, A^k B^{j+1}, A^{j+1} B^k, B^{j+1} A^k, B^k A^{j+1}, B^{k+j}\}$. Then the following statements are equivalent.

- (1) Weyl's theorem holds for A^{k+j} .
- (2) Weyl's theorem holds for $A^k B^{j+1}$.
- (3) Weyl's theorem holds for $A^{j+1}B^k$.
- (4) Weyl's theorem holds for $B^{j+1}A^k$.
- (5) Weyl's theorem holds for $B^k A^{j+1}$.
- (6) Weyl's theorem holds for B^{k+j} .

Proof. Suppose that Weyl's theorem holds for A^{k+j} . It follows from Proposition 3.13, Theorem 3.21 and Lemma 3.26 that for $\lambda \neq 0$,

$$\lambda \in \sigma(A^k B^{j+1}) \setminus \sigma_w(A^k B^{j+1}) \Leftrightarrow \lambda \in \pi_{00}(A^k B^{j+1}).$$

So we only need to show that the above equivalence holds for $\lambda=0$. Assume that $0\in\sigma(A^kB^{j+1})\setminus\sigma_w(A^kB^{j+1})$. Then $0\in\sigma(A^{k+j})\setminus\sigma_w(A^kB^{j+1})$. Since Weyl's theorem holds for A^{k+j} , we have that $0\in\pi_{00}(A^{k+j})$. Thus $0\in\operatorname{iso}\sigma(A^kB^{j+1})$ and $\alpha(A^kB^{j+1})>0$. Since A^kB^{j+1} is Weyl, $\alpha(A^kB^{j+1})<\infty$. Hence $0\in\pi_{00}(A^kB^{j+1})$. Now, suppose that $0\in\pi_{00}(A^kB^{j+1})$. Then $0\in\operatorname{iso}\sigma(A^kB^{j+1})$ and $0<\alpha(A^kB^{j+1})<\infty$. Since A^kB^{j+1} has closed range by hypothesis, A^kB^{j+1} is upper semi-Fredholm. Since $B^{*j+1}A^{*k}$ has SVEP at 0, we have $\beta(A^kB^{j+1})\leqslant\alpha(A^kB^{j+1})<\infty$. Hence A^kB^{j+1} is Fredholm. Also A^kB^{j+1} has SVEP at 0, hence A^kB^{j+1} has SVEP at 0, hence A^kB^{j+1} has SVEP at 0, hence A^kB^{j+1} has A^kB^{j+1} is Weyl, so that $0\in\sigma(A^kB^{j+1})\setminus\sigma_w(A^kB^{j+1})$. Consequently, Weyl's theorem holds for A^kB^{j+1} . The rest of the equivalences can be proved by the similar process. \square

For an operator $T \in B(\mathcal{X})$, it is well known that $\sigma_{le}(T) = \sigma_a(\widehat{T})$ and $\sigma_{re}(T) = \sigma_a(\widehat{T}^*)$. So we have the following lemma.

LEMMA 3.29. Let $(A,B) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and $j \geqslant 0$. Then the following equalities hold.

- $(1) \ \sigma_{le}(A^{k+j}) \setminus \{0\} = \sigma_{le}(A^k B^{j+1}) \setminus \{0\} = \sigma_{le}(A^{j+1} B^k) \setminus \{0\} = \sigma_{le}(B^{j+1} A^k) \setminus \{0\} = \sigma_{le}(B^k A^{j+1}) \setminus \{0\} = \sigma_{le}(B^{k+j}) \setminus \{0\}.$
- $(2) \ \sigma_{re}(A^{k+j}) \setminus \{0\} = \sigma_{re}(A^k B^{j+1}) \setminus \{0\} = \sigma_{re}(A^{j+1} B^k) \setminus \{0\} = \sigma_{re}(B^{j+1} A^k) \setminus \{0\} = \sigma_{re}(B^k A^{j+1}) \setminus \{0\} = \sigma_{re}(B^{k+j}) \setminus \{0\}.$

In particular, if j = 0 then we have that

- $(3) \sigma_{le}(A^{k+j}) = \sigma_{le}(A^k B^{j+1}) = \sigma_{le}(A^{j+1} B^k) = \sigma_{le}(B^{j+1} A^k) = \sigma_{le}(B^k A^{j+1}) = \sigma_{le}(B^{k+j}).$
- $(4) \stackrel{\frown}{\sigma_{re}}(A^{k+j}) = \sigma_{re}(A^k B^{j+1}) = \sigma_{re}(A^{j+1} B^k) = \sigma_{re}(B^{j+1} A^k) = \sigma_{re}(B^k A^{j+1}) = \sigma_{re}(B^{k+j}).$

Proof. (1) The proof follows from Theorem 3.15. Since $(\widehat{A}^*, \widehat{B}^*) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$ for any integer $k \ge 1$ and $j \ge 0$, (2) holds again from Theorem 3.15. Furthermore, (3) and (4) are immediately shown by Corollary 3.17. \square

THEOREM 3.30. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and j=0. Then the following equalities hold.

$$\sigma_{ea}(A^{k+j}) = \sigma_{ea}(A^k B^{j+1}) = \sigma_{ea}(A^{j+1} B^k)
= \sigma_{ea}(B^{j+1} A^k) = \sigma_{ea}(B^k A^{j+1}) = \sigma_{ea}(B^{k+j}).$$
(3.7)

Furthermore, If the range of T is closed whenever $0 \in iso\sigma_a(T)$, where $T \in \{A^{k+j}, A^k B^{j+1}, A^{j+1} B^k, B^{j+1} A^k, B^k A^{j+1}, B^{k+j}\}$, then the followings are equivalent.

- (1) a-Weyl's theorem holds for A^{k+j} .
- (2) a-Weyl's theorem holds for A^kB^{j+1} .
- (3) a-Weyl's theorem holds for $A^{j+1}B^k$.
- (4) a-Weyl's theorem holds for $B^{j+1}A^k$.
- (5) a-Weyl's theorem holds for B^kA^{j+1} .
- (6) a-Weyl's theorem holds for B^{k+j} .

Proof. Suppose that $\lambda \not\in \sigma_{ea}(A^{k+j})$. Then $A^{k+j}-\lambda I$ is upper semi-Fredholm and $\operatorname{ind}(A^{k+j}-\lambda I)\leqslant 0$. Since $A^kB^{j+1}-\lambda I$ is upper semi-Fredholm by Lemma 3.29 (3), we only need to show that $\operatorname{ind}(A^kB^{j+1}-\lambda I)\leqslant 0$. If $\beta(A^kB^{j+1}-\lambda I)=\infty$, then it is obvious. So we assume that $\beta(A^kB^{j+1}-\lambda I)<\infty$. Then $A^kB^{j+1}-\lambda I$ is Fredholm and hence it follows from Lemma 3.25 that $\operatorname{ind}(A^kB^{j+1}-\lambda I)=\operatorname{ind}(A^{k+j}-\lambda I)\leqslant 0$. Thus $\lambda\not\in\sigma_{ea}(A^kB^{j+1})$. The same process can be applied to the rest, so that (3.7) is proved. Now we observe that from Corollary 3.17 and Proposition 3.13

$$\pi_{00}^{a}(A^{k+j}) \setminus \{0\} = \pi_{00}^{a}(A^{k}B^{j+1}) \setminus \{0\} = \pi_{00}^{a}(A^{j+1}B^{k}) \setminus \{0\}$$

$$= \pi_{00}^{a}(B^{j+1}A^{k}) \setminus \{0\} = \pi_{00}^{a}(B^{k}A^{j+1}) \setminus \{0\} = \pi_{00}^{a}(B^{k+j}) \setminus \{0\}.$$

Suppose that a-Weyl's theorem holds for A^{k+j} . Then it is obvious that for $\lambda \neq 0$,

$$\lambda \in \sigma_a(A^kB^{j+1}) \setminus \sigma_{ea}(A^kB^{j+1}) \Leftrightarrow \lambda \in \pi_{00}^a(A^kB^{j+1}).$$

So we only need to prove that the above equivalence holds for $\lambda=0$. Assume that $0\in\sigma_a(A^kB^{j+1})\setminus\sigma_{ea}(A^kB^{j+1})$. Then $0\in\sigma_a(A^{k+j})\setminus\sigma_{ea}(A^{k+j})$. Since a-Weyl's theorem holds for A^{k+j} , we have that $0\in\pi_{00}^a(A^{k+j})$. Thus $0\in\mathrm{iso}\sigma_a(A^kB^{j+1})$ and $\alpha(A^kB^{j+1})>0$. Since A^kB^{j+1} is upper semi-Fredholm, $\alpha(A^kB^{j+1})<\infty$. Hence $0\in\pi_{00}^a(A^kB^{j+1})$. Now, assume that $0\in\pi_{00}^a(A^kB^{j+1})$. Then $0\in\mathrm{iso}\sigma_a(A^kB^{j+1})$ and $0<\alpha(A^kB^{j+1})<\infty$. Since A^kB^{j+1} has closed range by hypothesis, A^kB^{j+1} is upper semi-Fredholm. Since A^kB^{j+1} has SVEP at 0, we have that $p(A^kB^{j+1})<\infty$, so that $\mathrm{ind}(A^kB^{j+1})\leqslant 0$. Thus $0\in\sigma_a(A^kB^{j+1})\setminus\sigma_{ea}(A^kB^{j+1})$. Consequently, a-Weyl's theorem holds for A^kB^{j+1} . The rest of the equivalences can be proved by similar process. \square

For an operator $T \in B(\mathscr{X})$, a *hole* in $\sigma_e(T)$ is a bounded component of $\mathbb{C} \setminus \sigma_e(T)$. A *pseudohole* in $\sigma_e(T)$ is a component of $\sigma_e(T) \setminus \sigma_{le}(T)$ or $\sigma_e(T) \setminus \sigma_{re}(T)$. The *spectral picture* of an operator $T \in B(\mathscr{X})$ (notation: SP(T)) is the structure consisting of the set $\sigma_e(T)$, the collection of holes and pseudoholes in $\sigma_e(T)$, and the indices associated with these holes and pseudoholes.

THEOREM 3.31. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and j=0. Then the following equalities hold.

$$SP(A^{k+j}) = SP(A^kB^{j+1}) = SP(A^{j+1}B^k) = SP(B^{j+1}A^k) = SP(B^kA^{j+1}) = SP(B^{k+j})$$

Proof. If λ belongs to a hole or pseudohole in $\sigma_e(A^{k+j})$, then all the indices of the operators $A^{k+j} - \lambda I$, $A^k B^{j+1} - \lambda I$, $A^{j+1} B^k - \lambda I$, $B^{j+1} A^k - \lambda I$, $B^k A^{j+1} - \lambda I$, and $B^{k+j} - \lambda I$ are equal by Lemma 3.25. Thus it follows from Corollary 3.24 and Lemma 3.29 that all of the operators A^{k+j} , $A^k B^{j+1}$, $A^{j+1} B^k$, $B^{j+1} A^k$, $B^k A^{j+1}$, and B^{k+j} have the same spectral picture, which completes the proof. \square

PROPOSITION 3.32. If $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any $k \ge 1$ and $j \ge 0$, then the following properties hold.

- (1) $\sigma_{B^{k+j}}(B^{j+1}y) \subseteq \sigma_{A^kB^{j+1}}(y) \subseteq \sigma_{A^{k+j}}(x)$ for $y := A^kx$, and $\sigma_{A^{k+j}}(A^{j+1}z) \subseteq \sigma_{A^kB^{j+1}}(z) \subseteq \sigma_{B^{k+j}}(x)$ for $z := B^kx$ for all $x \in \mathcal{X}$.
- (2) $B^{j+1}\mathscr{X}_{A^kB^{j+1}}(F) \subseteq \mathscr{X}_{B^{j+1}}(F)$, $A^k\mathscr{X}_{A^{k+j}}(F) \subseteq \mathscr{X}_{A^kB^{j+1}}(F)$, $A^{j+1}\mathscr{X}_{B^kA^{j+1}}(F)$ $\subseteq \mathscr{X}_{A^{j+1}}(F)$, and $B^k\mathscr{X}_{B^{k+j}}(F) \subseteq \mathscr{X}_{B^kA^{j+1}}(F)$ for any closed set $F \in \mathbb{C}$.

Proof. (1) It suffices to show the first inclusions. Let $y:=A^kx\in\mathscr{X}$ be given for each $x\in\mathscr{X}$ and let $\mu\in\rho_{A^kB^{j+1}}(y)$. Then we can choose a neighborhood D of μ and an analytic function $f:D\to\mathscr{X}$ such that $(A^kB^{j+1}-\lambda)f(\lambda)=y$ for all $\lambda\in D$. Since

$$(B^{k+j} - \lambda)B^{j+1}f(\lambda) = (B^{k+2j+1} - \lambda B^{j+1})f(\lambda)$$

= $(B^{j+1}A^kB^{j+1} - \lambda B^{j+1})f(\lambda) = B^{j+1}y$

for all $\lambda \in D$, we obtain that $\mu \in \rho_{B^{k+j}}(B^{j+1}y)$. So $\rho_{A^kB^{j+1}}(y) \subseteq \rho_{B^{k+j}}(B^{j+1}y)$, that is, $\sigma_{B^{k+j}}(B^{j+1}y) \subseteq \sigma_{A^kB^{j+1}}(y)$. Similarly, let $\mu_0 \in \rho_{A^{k+j}}(x)$ for all $x \in \mathscr{X}$. Then we consider a neighborhood U of μ_0 and an analytic function $g: U \to \mathscr{X}$ such that $(A^{k+j} - \lambda_0)g(\lambda_0) = x$ for all $\lambda_0 \in U$. Since

$$(A^k B^{j+1} - \lambda_0) A^k g(\lambda_0) = (A^k B^{j+1} A^k - \lambda_0 A^k) g(\lambda_0)$$

= $(A^{2k+j} - \lambda_0 A^k) g(\lambda_0) = A^k x = y$

for all $\lambda_0 \in U$, we have that $\mu_0 \in \rho_{A^kB^{j+1}}(y)$. Therefore $\sigma_{A^kB^{j+1}}(y) \subseteq \sigma_{A^{k+j}}(x)$ for all $x \in \mathscr{X}$.

(2) Let F be any closed set in \mathbb{C} . If $y \in \mathscr{X}_{A^kB^{j+1}}(F)$, then it follows from part (1) that $\sigma_{B^{j+1}}(B^{j+1}y) \subseteq \sigma_{A^kB^{j+1}}(y) \subseteq F$. Thus $B^{j+1}y \in \mathscr{X}_{B^{j+1}}(F)$, and so $B^{j+1}\mathscr{X}_{A^kB^{j+1}}(F) \subseteq \mathscr{X}_{B^{j+1}}(F)$. Similarly, if $x \in \mathscr{X}_{A^{k+j}}(F)$, then it follows from part (1) that $\sigma_{A^kB^{j+1}}(y) \subseteq \sigma_{A^{k+j}}(x) \subseteq F$. Thus $A^kx = y \in \mathscr{X}^{A^kB^{j+1}}(F)$, and so $A^k\mathscr{X}_{A^{k+j}}(F) \subseteq \mathscr{X}_{A^kB^{j+1}}(F)$. By symmetry, we have that $A^{j+1}\mathscr{X}_{B^kA^{j+1}}(F) \subseteq \mathscr{X}_{A^{j+1}}(F)$ and $B^k\mathscr{X}_{B^{k+j}}(F) \subseteq \mathscr{X}_{B^kA^{j+1}}(F)$.

COROLLARY 3.33. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any $k \ge 1$ and $j \ge 0$. Then the following statements hold. If A has SVEP, then

$$\bigcup_{x \in \mathscr{X}} \sigma_{A^k B^{j+1}}(A^k x) \subseteq \bigcup_{x \in \mathscr{X}} \sigma_{A^{k+j}}(x) = \sigma_{su}(A^{k+j}) = \sigma(A^{k+j}) = \sigma(B^{k+j}).$$

LEMMA 3.34. Let $(A,B) \in \mathscr{S}_{k,j} \cap \mathscr{S}_{j+1,k-1}$ for any $k \ge 1$ and $j \ge 0$. Then the following equality holds for $\lambda \ne 0$.

$$\begin{split} p(A^{k+j}-\lambda) &= p(A^kB^{j+1}-\lambda) = p(A^{j+1}B^k-\lambda) \\ &= p(B^{j+1}A^k-\lambda I) = p(B^kA^{j+1}-\lambda) = p(B^{k+j}-\lambda). \end{split}$$

Proof. It suffices to show that

$$p(B^{k+j} - \lambda) \leq p(B^k A^{j+1} - \lambda) \leq p(A^{k+j} - \lambda).$$

Suppose that $p(B^{k+j}-\lambda):=n$ for any integer $n\geqslant 1$. Then $N(B^{k+j}-\lambda)^{n-1}\subsetneq N(B^{k+j}-\lambda)^n=N(B^{k+j}-\lambda)^{n+1}=\cdots$. Thus we can suppose that $(B^{k+j}-\lambda)^nx=0$ and $(B^{k+j}-\lambda)^{n-1}x\neq 0$ for some nonzero $x\in \mathscr{X}$ and some $n\geqslant 1$. Then it follows from $(A,B)\in \mathscr{S}_{k,j}$ that

$$(B^{k}A^{j+1} - \lambda)^{n}B^{k+j}x = \left[\sum_{i=0}^{n} \binom{n}{i} (B^{k}A^{j+1})^{i} (-\lambda)^{n-i}\right]B^{k+j}x$$

= $B^{k+j}(B^{k+j} - \lambda)^{n}x = 0.$

Thus $B^{k+j}x \in N(B^kA^{j+1}-\lambda)^n$. Assume that $B^{k+j}x \in N(B^kA^{j+1}-\lambda)^{n-1}$. Then $(B^kA^{j+1}-\lambda)^{n-1}B^{k+j}x = 0$, so that $B^{k+j}(B^{k+j}-\lambda)^{n-1}x = 0$. Hence $B^{k+j}(B^{k+j}-\lambda)^{n-1}x - \lambda(B^{k+j}-\lambda)^{n-1}x = (B^{k+j}-\lambda)^nx = 0$. So $(B^{k+j}-\lambda)^{n-1}x = 0$ for $\lambda \neq 0$. This is a contradiction. Thus $P(B^kA^{j+1}-\lambda) \geqslant n = P(B^{k+j}-\lambda)$.

Now, suppose that $(B^k A^{j+1} - \lambda)^n x = 0$ and $(B^k A^{j+1} - \lambda)^{n-1} x \neq 0$ for some nonzero $x \in \mathcal{X}$ and some $n \geqslant 1$. Since $(A, B) \in \mathcal{S}_{j+1, k-1}$, we have

$$\begin{split} (A^{k+j} - \lambda)^n A^{j+1} x &= \left[\sum_{i=0}^n \binom{n}{i} (A^{k+j})^i (-\lambda)^{n-i} \right] A^{j+1} x \\ &= A^{j+1} (B^k A^{j+1} - \lambda)^n x = 0. \end{split}$$

Thus $A^{j+1}x \in N(A^{k+j}-\lambda)^n$. Assume that $A^{j+1}x \in N(A^{k+j}-\lambda)^{n-1}$. Then $(A^{k+j}-\lambda)^{n-1}A^{j+1}x = 0$. Since $(A,B) \in \mathscr{S}_{j+1,k-1}$, we have $A^{j+1}(B^kA^{j+1}-\lambda)^{n-1}x = 0$. So $B^kA^{j+1}(B^kA^{j+1}-\lambda)^{n-1}x - \lambda(B^kA^{j+1}-\lambda)^{n-1}x = (B^kA^{j+1}-\lambda)^nx = 0$. Hence $(B^kA^{j+1}-\lambda)^{n-1}x = 0$ for $\lambda \neq 0$. This is a contradiction. Therefore $p(A^{k+j}-\lambda) \geqslant n = p(B^kA^{j+1}-\lambda)$. \square

From Lemma 3.34 we have more result as follows.

THEOREM 3.35. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any integer $k \geqslant 1$ and j=0. Then the following equalities hold.

$$\sigma_{ab}(A^{k+j}) = \sigma_{ab}(A^k B^{j+1}) = \sigma_{ab}(A^{j+1} B^k)
= \sigma_{ab}(B^{j+1} A^k) = \sigma_{ab}(B^k A^{j+1}) = \sigma_{ab}(B^{k+j}).$$
(3.8)

Furthermore, the followings are equivalent.

- (1) a-Browder's theorem holds for A^{k+j} .
- (2) a-Browder's theorem holds for A^kB^{j+1} .
- (3) a -Browder's theorem holds for $A^{j+1}B^k$.
- (4) a -Browder's theorem holds for $B^{j+1}A^k$.
- (5) a -Browder's theorem holds for B^kA^{j+1} .
- (6) a-Browder's theorem holds for B^{k+j} .

Proof. Let $\lambda \in \sigma_{ab}(A^{k+j})$. Then $A^{k+j} - \lambda I$ is upper semi-Fredholm and $p(A^{k+j} - \lambda I) < \infty$. If $\lambda \neq 0$, then it is obvious by Lemmas 3.29 and 3.34 that $\lambda \in \sigma_{ab}(A^k B^{j+1})$. So assume that $\lambda = 0$. Then A^{k+j} has finite ascent, so that it has SVEP at 0. It follows from the proof of Theorem 3.7 that $A^k B^{j+1}$ has SVEP at 0. Since $A^k B^{j+1}$ is upper semi-Fredholm, it has finite ascent. Therefore $0 \in \sigma_{ab}(A^k B^{j+1})$. Throughout this similar way, (3.8) can be proved. Furthermore, we have that if a-Browder's theorem holds for one of the operators A^{k+j} , $A^k B^{j+1}$, $A^{j+1} B^k$, $B^{j+1} A^k$, $B^k A^{j+1}$, and B^{k+j} ,

Finally, the spectral mapping theorem for Drazin spectrum implies the following theorem.

then all of them satisfy a-Browder's theorem from (3.7) in Theorem 3.30. \Box

THEOREM 3.36. Let $(A,B) \in \mathcal{S}_{k,j} \cap \mathcal{S}_{j+1,k-1}$ for any $k \ge 1$ and $j \ge 0$. Then

$$\sigma_D(A^{k+j}) = \sigma_D(A^k B^{j+1}) = \sigma_D(A^{j+1} B^k)
= \sigma_D(B^{j+1} A^k) = \sigma_D(B^k A^{j+1}) = \sigma_D(B^{k+j}).$$

Proof. We observe that $(A^kB^{j+1})^2 = A^{2k+j}B^{j+1}$. Since $\sigma_D(TS) = \sigma_D(ST)$ for every operators T and S, we have $\sigma_D(A^{2k+j}B^{j+1}) = \sigma_D(A^kB^{j+1}A^{k+j})$. By the spectral mapping theorem of the Drazin spectrum,

$$\{\sigma_D(A^k B^{j+1})\}^2 = \sigma_D[(A^k B^{j+1})^2] = \sigma_D(A^{2k+j} B^{j+1})$$

= $\sigma_D(A^k B^{j+1} A A^{k+j}) = \sigma_D(A^{2k+2j}) = \{\sigma_D(A^{k+j})\}^2.$

Since $(A,B) \in \mathcal{S}_{j+1,k-1}$, it holds that $(A^k B^{j+1})^2 = A^k B^{k+2j+1}$. From this, we have that $\{\sigma_D(A^k B^{j+1})\}^2 = \{\sigma_D(B^{k+j})\}^2$. Similarly, it is obvious that $\{\sigma_D(B^k A^{j+1})\}^2 = \{\sigma_D(B^{k+j})\}^2$. Consequently, the proof is completed. \square

REFERENCES

- [1] P. AIENA, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, 2004.
- [2] G. CORACH, B. P. DUGGAL AND R. HARTE, Extensions of Jacobson's lemma, Communications in Algebra 41 (2013), 520–531.
- [3] S. V. DJORDJEVIĆ AND D. S. DJORDJEVIĆ, Weyl's theorem: Continuity of the spectrum and quasihyponormal operators, Acta Sci. Math. (Szeged) 64 (1998), 259–269.
- [4] S. V. DJORDJEVIĆ AND Y. M. HAN, Browder's theorems and spectral continuity, Glasgow Math. J. 42 (2000), 479–486.
- [5] B. P. DUGGAL, Operator equations $ABA = A^2$ and $BAB = B^2$, Funct. Anal. Approx. Comput. 3 (2011), 9–18.

- [6] R. E. HARTE AND W. Y. LEE, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115–2124.
- [7] C. SCHMOEGER, On the operator equations $ABA = A^2$ and $BAB = B^2$, Publications de l'Institut Math. (N. S.) **78** (**92**) (2005), 127–133.
- [8] K. B. LAURSEN AND M. M. NEUMANN, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, 2000.
- [9] C. SCHMOEGER, Common spectral properties of linear operators A and B such that $ABA = A^2$ and $BAB = B^2$, Publications de l'Institut Math. (N. S.) **79** (93) (2006), 109–114.
- [10] I. VIDAV, On idempotent operators in a Hilbert space, Publ. Inst. Math. (Beograd) 4 (18) (1964), 157–163.

(Received April 28, 2015)

Il Ju An
PDE Functional Analysis Research Center
Seoul National University
Seoul, 08826, Korea
e-mail: dlfwn79@khu.ac.kr
Eungil Ko
Department of Mathematics
Ewha Womans University
Seoul, 03760, Korea

e-mail: eiko@ewha.ac.kr