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2–LOCAL LIE ISOMORPHISMS OF NEST ALGEBRAS

CHANGJING LI AND FANGYAN LU

(Communicated by L. Molnár)

Abstract. Let N and M be nests on a separable complex Hilbert space H of dimension
greater than 2 , and AlgN and AlgM be the associated nest algebras. We show that every
additive 2-local Lie isomorphism Φ of AlgN onto AlgM has the form Φ = φ + τ , where
φ is an isomorphism or a negative of an anti-isomorphism of AlgN onto AlgM , and τ is a
linear map from AlgN into CI vanishing on a sum of commutators.

1. Introduction and preliminaries

Let A and B be two associative algebras. Recall that a linear bijection φ : A →
B is called a Lie isomorphism if φ([A,B]) = [φ(A),φ(B)] for all A,B ∈ A , where
[A,B] =AB−BA is the usual Lie product of A and B . The study of Lie isomorphism be-
tween associative algebras or operator algebras, primarily focusing upon their relations
to associative (anti-)isomorphisms, has a long history. See [2, 4, 16, 17, 18] and the
references therein. In [16], Marcoux and Sourour proved that every Lie isomorphism
between nest algebras AlgN and AlgM on a separable complex Hilbert space has
the form Φ = φ + τ , where φ is an isomorphism or a negative of an anti-isomorphism
of AlgN onto AlgM , and τ is a linear map from AlgN into CI vanishing on every
commutator.

A well-known and active direction in the study of the local action of maps is the
local map problem, which was initiated by Kadison [20] and Larson and Sourour [14]
in 1990. Recall that a linear map θ of an algebra A is called a local isomorphism
(respectively, local derivation) if for each A ∈ A , there exists an isomorphism (re-
spectively, a derivation) θA , depending on A such that θ (A) = θA(A). There is a vast
literature on local isomorphisms and local derivations, see for example [5, 11, 12, 19]
and the references therein.

In 1997, S̆emrl [23] introduced the notion of 2-local maps. A map δ on an al-
gebra A (not necessarily linear) is called a 2-local isomorphism (respectively, 2-local
derivation) if for each A,B ∈ A , there exists an isomorphism (respectively, a deriva-
tion) δA,B such that δ (A) = δA,B(A) and δ (B) = δA,B(B) . 2-local maps have been
studied on different operator algebras by many authors [23, 1, 13, 15]. In [23], S̆emrl
studied 2-local isomorphisms and 2-local derivations on the algebra of all bounded lin-
ear operators on an infinite dimensional separable Hilbert space. A similar study for the
finite dimensional case appeared in [13].
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Obviously, we can define 2-local Lie isomorphisms in a natural way. Let A and
B be two associative algebras. We say that a map φ : A → B is a 2-local Lie iso-
morphism if for each A,B ∈ A , there exists a Lie isomorphism δA,B : A → B such
that δ (A) = δA,B(A) and δ (B) = δA,B(B) . In the previous paper [10], Huang and the
second author characterized 2-local Lie isomorphism between operator algebras on Ba-
nach spaces. Let X and Y be complex Banach spaces of dimension greater than 2.
They proved that every 2-local Lie isomorphism Φ of B(X) onto B(Y ) has the form
Φ = φ + τ , where φ is an isomorphism or a negative of an anti-isomorphism of B(X)
onto B(Y ) , and τ is a homogeneous map from B(X) into CI vanishing on every sum
of commutators. In this paper, as the continuity of the previous work, we study 2-local
Lie isomorphisms between nest algebras on Hilbert spaces.

Nest algebras, introduced in 1965 by Ringrose [21], are the most important sub-
class in the class of non-self-adjoint algebras, as von Neumann algebras are in the class
of self-adjoint algebras. Let H be a Hilbert space over the complex field C . Denote by
B(H ) the algebra of all bounded linear operators on H . A nest N on H is a chain
of closed subspaces of H which contains 0 and H and is closed under the formation
of arbitrary closed linear span (denoted by ∨) and intersection (denoted by ∧). The
nest algebra AlgN associated to the nest N is the set of all operators on X leaving
every subspace in N invariant, that is, AlgN = {A ∈ B(H ) : AN ⊆ N,∀N ∈ N }.
We refer the readers to [6] as a basic text on the theory of nest algebras.

We close this section with two well known results (see [16]).

PROPOSITION 1.1. Let N and M be nests on a separable complex Hilbert
space H , and AlgN and AlgM be the associated nest algebras. Suppose that Φ :
AlgN →AlgM is a Lie isomorphism. Then one of the following holds.

(1) There exist an invertible operator T ∈ B(H ) satisfying T (M ) = N and a
linear map τ from AlgN into CI vanishing on each commutator such that
Φ(A) = T−1AT + τ(A) for all A ∈ AlgN .

(2) There exist an invertible operator S ∈ B(H ) satisfying S(M ) = N ⊥ and a
linear map τ from AlgN into CI vanishing on each commutator such that
Φ(A) = −S−1JA∗JS + τ(A) for all A ∈ AlgN , where J is the conjugate lin-
ear involution on H such that J(N ⊥) = N ⊥ .

LEMMA 1.2. Let N be a nest on a complex Hilbert space H and AlgN be the
associated nest algebra. Let A ∈AlgN . Then

(1) A is the sum of a scalar and an idempotent if and only if [A, [A, [A,T ]]] = [A,T ]
for every T ∈AlgN .

(2) A is the sum of a scalar and an idempotent whose range belongs to N if and
only if [A, [A,T ]] = [A,T ] for every T ∈AlgN .
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2. Main result and its proof

The following is our main result.

THEOREM 2.1. Let N and M be nests on a separable complex Hilbert space
H of dimension greater than 2 , and AlgN and AlgM be the associated nest alge-
bras. Suppose that Φ : AlgN →AlgM is an additive surjective 2-local Lie isomor-
phism. Then one of the following holds.

(1) Φ = φ + τ , where φ is an isomorphism from AlgN onto AlgM , and τ is a
linear map from AlgN into CI vanishing on every sum of commutators.

(2) Φ = −φ + τ , where φ is an anti-isomorphism from AlgN onto AlgM , and τ
is a linear map from AlgN into CI vanishing on every sum of commutators.

The proofwill be organized in a series of lemmas. In the following, for A,B∈AlgN ,
the symbol ΦA,B stands for a Lie isomorphism from AlgN onto AlgM such that
Φ(A) = ΦA,B(A) and Φ(B) = ΦA,B(B) .

LEMMA 2.2. Let Φ be an additive surjective 2-local Lie isomorphism from AlgN
onto AlgM . Then

(1) Φ is bijective and linear;

(2) Φ−1 is also an additive 2-local Lie isomorphism;

(3) Φ(CI) = CI ;

(4) Φ preserves the commutativity.

Proof. (1) We only need show that Φ is homogeneous and injective. Let λ ∈ C

and A ∈AlgN . Then

Φ(λA) = ΦA,λA(λA) = λ ΦA,λA(A) = λ Φ(A).

Hence Φ is homogeneous. If Φ(A) = 0, then ΦA,A(A) = 0 and A = 0. Hence Φ is
injective.

(2) For C,D ∈AlgM , there exist A,B ∈AlgN such that Φ(A) =C and Φ(B) =
D . Then there is a Lie isomorphism ΦA,B : AlgN →AlgM such that C = Φ(A) =
ΦA,B(A) and D = Φ(B) = ΦA,B(B) . Hence we have A = Φ−1(C) = Φ−1

A,B(C) and B =
Φ−1(D) = Φ−1

A,B(D) . Note that Φ−1
A,B is a Lie isomorphism from AlgM onto AlgN .

Hence Φ−1 is also a 2-local Lie isomorphism.
(3) Let λ ∈ C . For any A ∈AlgN , we have

[Φ(λ I),Φ(A)] = [Φλ I,A(λ I),Φλ I,A(A)]
= Φλ I,A([λ I,A]) = 0.

Since Φ is surjective, we have Φ(λ I)C = CΦ(λ I) for any C ∈AlgM . By Corollary
19.5 in [6], we have Φ(λ I) ∈ CI, which implies Φ(CI) ⊆ CI . Similarly, by (2), we
can show that Φ−1(CI) ⊆ CI . Hence Φ(CI) = CI .
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(4) Let A,B ∈AlgN and AB = BA . Then

0 = ΦA,B[A,B] = [ΦA,B(A),ΦA,B(B)]
= [Φ(A),Φ(B)],

which implies the commutativity preservation of Φ . �

By Lemma 1.2, the following lemma is obvious.

LEMMA 2.3. (1) If E is an idempotent operator in AlgN , then Φ(E) = F +
λEI , where λE ∈ C and F is an idempotent operator in AlgN . Furthermore,
if ranE ∈ N , then ranF ∈ M . If 0 
= E 
= I , then both the scalar λE and the
idempotent F occurring above are uniquely determined.

(2) If F is an idempotent operator in AlgM , then Φ−1(F) = E + λFI , where λF ∈
C and E is an idempotent operator in AlgM . Furthermore, if ranF ∈ M ,
then ranE ∈ N . If 0 
= F 
= I , then both the scalar λF and the idempotent E
occurring above are uniquely determined.

By Lemma 2.3, if N is trivial, i.e., N = {0,H } , then M = {0,H } , and then
AlgN =AlgM = B(H ) . It follows from the main result of [10] that we can obtain
Theorem 2.1. In the foregoing, we always assume that N is nontrivial, which implies
the existence of a non-trivial subspace N ∈ N and its associated projection P belongs
to AlgN . N is a fixed subspace and both N and its associated projection P are going
to be crucial to obtain Theorem 2.1, concretely in the proof of Lemma 2.10. By Lemma
2.3, we have Φ(P) = Q + λPI, where λP ∈ C and Q is an idempotent operator in
AlgM with ranQ ∈ M .

Let E (N ) and E (M ) denote the sets of all idempotents in AlgN and AlgM ,
respectively. By Lemma 2.3, we can define a map Φ̂ : E (N )\{0, I}→ E (M )\{0, I}
by Φ̂(E) = Φ(E)− λEI. Since Φ and Φ−1 are both surjective 2-local Lie isomor-
phisms, it is easy to prove that Φ̂ is bijective.

Let E1,E2 ∈ AlgN be any two idempotents. We say that E1 � E2 if E1E2 = E1 =
E2E1 , or equivalently, E1 and E2 commute and ranE1 ⊆ ranE2 . We say that E1 < E2

if E1 � E2 and E1 
= E2 . The proofs of the following two lemmas are taken from
the proofs of Lemma 3.8 and Lemma 3.9 in [16]. We include them for completeness
reasons.

LEMMA 2.4. Let E1,E2 ∈ AlgN be two idempotents with 0 < E1 < E2 < I . Set
Φ̂(Ei) = Fi, i = 1,2 . Then either 0 < F1 < F2 < I or 0 < F2 < F1 < I .

Proof. Since E1E2 = E2E1 , we have

0 = ΦE1,E2([E1,E2]) = [ΦE1,E2(E1),ΦE1,E2(E2)]

= [Φ(E1),Φ(E2)] = [Φ̂(E1),Φ̂(E2)] = [F1,F2],

that is F1F2 = F2F1 . Now E1,E2,E1 −E2 /∈ CI implies F1,F2,F1 −F2 /∈ CI , and in
particular, F1 
= F2. We may chose a Hamel basis that diagonalizes F1 and F2 simul-
taneously. Now if F1 and F2 are not comparable, then {−1,1} ⊆ σ(F1 −F2) . But
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F1−F2 = Φ(E1)−λE1I− (Φ(E2)−λE2I) = Φ(E1−E2)+(λE2 −λE1)I = Φ(E1−E2−
I)−Φ(I) + (λ + λE2 − λE1)I ∈ E (M ) + CI . Thus there exists a scalar λ such that
σ(F1−F2) = {λ ,λ +1} , a contradiction. The proof is complete. �

LEMMA 2.5. Let E1,E2,E3 ∈ AlgN be idempotents with 0 < E1 < E2 < E3 < I .
Set Φ̂(Ei) = Fi, i = 1,2,3 .

(1) If F1 < F2 , then F1 < F2 < F3 .

(2) If F2 < F1 , then F1 > F2 > F3 .

Proof. (1) Assume F1 < F2 . By Lemma 2.4, F1,F2,F3 are distinct and mutually
comparable. Since E1 +E3 −E2 ∈ E (N ) , we have F1 +F3−F2 ∈ E (M )+ CI , and
so σ(F1 +F3 −F2) = {λ ,λ + 1} for some λ ∈ C . If F1 < F3 < F2 or F3 < F1 < F2 ,
then (F1 + F3 −F2)3 = F1 + F3 −F2 . It follows that σ(F1 + F3 −F2) = {0,1,−1} , a
contradiction. So we have F1 < F2 < F3 . Similarly, we can show that (2) holds. �

LEMMA 2.6. (1) If there exists an idempotent E1 ∈AlgN such that E1 < P
and Φ̂(E1) < Φ̂(P) = Q (or E1 > P and Φ̂(E1) > Φ̂(P) = Q), then for any
idempotent E ∈AlgN , E <P implies Φ̂(E) < Q and E > P implies Φ̂(E) > Q.

(2) If there exists an idempotent E1 ∈ AlgN such that E1 < P and Φ̂(E1) > Φ̂(P) =
Q (or E1 > P and Φ̂(E1) < Φ̂(P) = Q), then for any idempotent E ∈AlgN ,
E < P implies Φ̂(E) > Q and E > P implies Φ̂(E) < Q.

Proof. We shall prove (1). Part (2) is similar. Assume that there is an idempotent
E1 ∈AlgN such that E1 < P and Φ̂(E1) < Φ̂(P) = Q . Clearly, given an idempotent
E ∈AlgN satisfying E > P , we have E1 < P < E . By Lemma 2.5, we have Φ̂(E1) <
Q < Φ̂(E) . Now assume that E < P . By Lemma 2.4, either Φ̂(E) < Q or Φ̂(E) > Q .
If Φ̂(E) > Q occurs, then we have Φ̂(E) > Q > Φ̂(E1) . Applying Lemma 2.4 and 2.5
to Φ−1 , we get as a contradiction that E1 < P < E . Hence we must have Φ̂(E) < Q .
The case that there exists an idempotent E1 ∈AlgN such that E1 > P and Φ̂(E1) >
Φ̂(P) = Q is dealt with in the same way. �

By Lemma 2.6, we may extend the definition of Φ̂ to the whole set of idempotents,
E (N ), by Φ̂(0) = 0, Φ̂(I) = I if Φ̂ satisfies Lemma 2.6(1), and Φ̂(0) = I , Φ̂(I) = 0
if Φ̂ satisfies Lemma 2.6(2).

Up to now, we have proved that, if Φ satisfies the assumption in Theorem 2.1,
then either Lemma 2.6(1) or Lemma 2.6(2) occurs. In the rest of this section, we deal
with these two cases respectively.

Case 1. If the case of Lemma 2.6(1) occurs, then Φ = φ + τ , where φ is an
isomorphism from AlgN onto AlgM , and τ is a linear map from AlgN into CI
vanishing on every sum of commutators.

We will complete the proof of Case 1 by checking some lemmas. Now, let A11 =
P(AlgN )P , A12=P(AlgN )(I−P) , A22=(I−P)(AlgN )(I−P) , B11=Q(AlgM )Q ,
B12 = Q(AlgM )(I−Q) , B22 = (I−Q)(AlgM )(I−Q). Then AlgN = A11⊕A12⊕
A22, AlgM = B11⊕B12⊕B22 .
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LEMMA 2.7. Let Φ be an additive surjective 2-local Lie isomorphism satisfying
Lemma 2.6(1). Then Φ(A12) = B12.

Proof. For any A12 ∈ A12 , we have

Φ(A12) = ΦP,A12(A12) = ΦP,A12([P,A12]) = [ΦP,A12(P),ΦP,A12(A12)]
= [Φ(P),Φ(A12)] = [Q,Φ(A12)] = QΦ(A12)(I−Q),

which implies that Φ(A12) ⊆ B12.
On the other hand, applying the same argument to Φ−1 , one can prove that Φ(A12)

⊇ B12. �

LEMMA 2.8. Let Φ be an additive surjective 2-local Lie isomorphism satisfying
Lemma 2.6(1). Then there exists a linear map fi : Aii →C such that Φ(Aii)− fi(Aii)I ∈
Bii for all Aii ∈ Aii, i = 1,2. Moreover, for each Bii ∈ Bii there is Aii ∈ Aii such that
Φ(Aii) = Bii + fi(Aii)I

Proof. We only consider the case i = 1. The proof for the other case is analogous.
For any A11 ∈ A11 , let Φ(A11) = T11 +T12 +T22 . Then we have

0 = Φ([P,A11]) = ΦP,A11([P,A11]) = [ΦP,A11(P),ΦP,A11(A11)]
= [Φ(P),Φ(A11)] = [Q,Φ(A11)],

which implies that T12 = 0. Let E ∈ A22 be any idempotent with E 
= I − P. It is
clear that E < I−P , equivalently, I−E > P . Since Φ meets Lemma 2.6(1), we have
Φ̂(I−E) = I− Φ̂(E) > Q , i.e., Φ̂(E) < I−Q . Then

0 = ΦA11,E([A11,E]) = [ΦA11,E(A11),ΦA11,E(E)] = [Φ(A11),Φ(E)]

= [T11 +T22,Φ̂(E)] = [T22,Φ̂(E)].

Since E is arbitrary, T22 commutes with every idempotent in B22 . By Lemma 2.3 of
[8] or Lemma 3.2 of [9], T22 commutes with every finite rank operator of B22 . Hence
T22 ∈ C(I−Q) (see [7]), that is T22 = f1(A11)(I−Q) for some f1(A11) ∈ C . Thus

Φ(A11) = T11 + f1(A11)(I−Q) = T11− f1(A11)Q+ f1(A11)I.

From this, we see that Φ(A11)− f1(A11)I ∈ B11

To see that f1 is linear, let A11,B11 be two elements in A11 and λ be a scalar.
Then

Φ(A11)− f1(A11)I ∈ B11,Φ(λA11)− f1(λA11)I ∈ B11

and

Φ(A11+B11)− f1(A11+B11)I ∈B11,Φ(A11)− f1(A11)I ∈B11,Φ(B11)− f1(B11)I ∈B11.

It follows from the linearity of Φ that ( f1(λA11)−λ f1(A11))I ∈ B11 and ( f1(A11 +
B11)− f1(A11)− f1(B11))I ∈B11 . This forces that f1(λA11) = λ f1(A11) and f1(A11 +
B11) = f1(A11)+ f1(B11) .

Finally, let B11 ∈B11 . Applying the preceding result to Φ−1 , there exist an A11 ∈
A11 and a scalar λ ∈ C such that Φ(A11 + λ I) = B11 . Then Φ(A11) = B11 + μI for
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some μ ∈ C . This implies Φ(A11)− μI ∈ B11 . So μ = f1(A11) , completing the
proof. �

Let Φ be an additive surjective 2-local Lie isomorphism satisfying Lemma 2.6(1).
Now we define the mapping Ψ : AlgN → AlgM given by Ψ(A)= Φ(A)−( f1(PAP)+
f2((I −P)A(I−P)))I for each A ∈ AlgN . Having in mind Lemma 2.7 and Lemma
2.8, Ψ satisfies the following properties.

LEMMA 2.9. Let Ai j ∈ Ai j,1 � i � j � 2. Then

(1) Ψ(Ai j) = Bi j,1 � i � j � 2;

(2) Ψ(A12) = Φ(A12);

(3) Ψ(P) = Q,Ψ(I−P) = I−Q;

(4) Ψ is linear and bijective;

(5) Ψ preserves the commutativity;

(6) For any idempotent P in A11 or A22 , we have Ψ(P) = Φ̂(P) .

LEMMA 2.10. There exist an isomorphism φ :AlgN →AlgM and a linear map
τ1 :AlgN → CI such that Ψ = φ + τ1 .

Proof. Since Ψ is a bijective linear map preserving the commutativity, it follows
from Corollary 5.4 in [3] that

Ψ = αφ + τ1,

where α is a non-zero scalar, φ is an isomorphism or anti-isomorphism of AlgN
onto AlgM , and τ1 is a linear map from AlgN into CI . We will finish the proof by
showing that α = 1 and φ is an isomorphism. We have that

Q = Ψ(P) = αφ(P)+ β I

for some β ∈ C . Since both Q and φ(P) are idempotents, we get

αφ(P)+ β I = (α2 +2αβ )φ(P)+ β 2I.

Since φ(P) /∈ CI , we have that α2 +2αβ −α = 0 and β −β 2 = 0. Hence either α =
1,β = 0 or α = −1,β = 1. Let A ∈ A22 be any non-zero idempotent with A < I −P
(equivalently, P < I−A). Since Φ meets Lemma 2.6(1), we have

Ψ(P) = Φ̂(P) < Φ̂(I−A) = I− Φ̂(A).

We claim that α = 1,β = 0. Otherwise, we have that α = −1,β = 1, it follows from
Lemma 2.9 that

Ψ(A) = Φ̂(A) < I−Ψ(P) = φ(P) = −φ(I−P)+ I.

Therefore
(−φ(A)+ γI)(−φ(I−P)+ I) = −φ(A)+ γI
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for some γ ∈C , which implies that φ(A)= φ(γ(I−P)) , and hence A = γ(I−P) , which
is a contradiction. Let A12 be a non-zero element in A12 . Then Ψ(A12) = φ(A12)+ηI
for some scalar η . Since both Ψ(A12) and φ(A12) are square-zero, it follows that
2ηφ(A12) + η2I = 0. Since φ(A12) /∈ CI , we get that η = 0, so Ψ(A12) = φ(A12).
Finally, if φ is anti-isomorphism, then we get that

Ψ(A12) = QΨ(A12) = φ(P)φ(A12) = φ(A12P) = 0.

This contradiction shows that φ is an isomorphism. �

LEMMA 2.11. Every additive surjective 2-local Lie isomorphism Φ satisfying
Lemma 2.6(1) decomposes as the sum φ + τ , where φ is an isomorphism from AlgN
onto AlgM , and τ is a linear map from AlgN into CI vanishing on every sum of
commutators.

Proof. We define the linear map τ : AlgN → CI given by τ(A) = Φ(A)−φ(A)
for every A ∈AlgN . Then Φ = φ + τ . Since each isomorphism from AlgN onto
AlgM is spatially implemented [22], there exists an invertible operator T ∈ B(H )
such that Φ(A) = T−1AT + τ(A) for all A ∈AlgN .

Since the dimension of H is greater than 2, there exist three non-trivial pro-
jections P1,P2,P3 ∈AlgN such that P1 + P2 + P3 = I and P1P2 = P1P3 = P2P3 = 0.
Indeed, if there exist two non-trivial elements N1,N2 ∈ N satisfying N1 < N2 , then
there exist three projections P1,P2,P3 ∈AlgN such that ranP1 = N1 , ranP2 = N2−N1

and ranP3 = I −N2 . So P1 +P2 +P3 = I and P1P2 = P1P3 = P2P3 = 0. If there only
exists one non-trivial element N ∈ N , either the dimension of N or the dimension
of N⊥ is at least 2, then we can find three projections P1,P2,P3 ∈AlgN such that
P1 + P2 + P3 = I and P1P2 = P1P3 = P2P3 = 0. Now let P0 be P1 + 2P2 + 4P3 . Let
B ∈AlgN be a sum of commutators. Then by Proposition 1.1, either

T−1P0T + τ(P0) = S−1
1 P0S1 + λ1I,T

−1BT + τ(B) = S−1
1 BS1

for some invertible operator S1 ∈ B(H ) and scalar λ1 , or

T−1P0T + τ(P0) = −S−1
2 JP0JS2 + λ2I,T

−1BT + τ(B) = −S−1
2 JB∗JS2

for some invertible operator S2 ∈ B(H ) and scalar λ2 . If the second case occurs, we
have that T−1P0T = −S−1

2 JP0JS2 + μI for some scalar μ . Taking the spectrum, we
have σ(P0) = −σ(P0)+ μ , that is {1,2,4} = {−1+ μ ,−2 + μ ,−4+ μ} , a contra-
diction. So the first case holds. Then we have that T−1BT + τ(B) = S−1

1 BS1 , which
implies that σ(B)+ τ(B) = σ(B) . Since the spectrum σ(B) of B is a compact set, it
follows that τ(B) = 0. �

Case 2. If the case of Lemma 2.6(2) occurs, then Φ = −φ + τ , where φ is an
anti-isomorphism from AlgN onto AlgM , and τ is a linear map from AlgN into
CI vanishing on every sum of commutators.

Consider the map Φ̃ :AlgN →(AlgM )∗=AlgM⊥ defined by Φ̃(A)=−JΦ(A)∗J
for all A∈AlgN , where J is the conjugate-linear involution on H such that J(M⊥)=
M⊥ .
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LEMMA 2.12. Φ̃ is an additive and surjective 2-local Lie isomorphism and sat-
isfies Lemma 2.6(1).

Proof. For A,B∈AlgN , there exists a Lie isomorphism ΦA,B :AlgN →AlgM
such that Φ(A) = ΦA,B(A) and Φ(B) = ΦA,B(B) . Consider the map Φ̃A,B : AlgN →
(AlgM )∗ = AlgM⊥ defined by Φ̃A,B(A) = −JΦA,B(A)∗J for all A ∈ AlgN . Then
Φ̃(A) = Φ̃A,B(A),Φ̃(B) = Φ̃A,B(B) , and Φ̃ is linear bijection. For every C,D ∈AlgN ,
we have

Φ̃A,B([C,D]) = −JΦA,B([C,D])∗J = −J[ΦA,B(C),ΦA,B(D)]∗J
= J(ΦA,B(D)ΦA,B(C)−ΦA,B(C)ΦA,B(D))∗J
= (JΦA,B(C)∗J)(JΦA,B(D)∗J)− (JΦA,B(D)∗J)(JΦA,B(C)∗J)

= [Φ̃A,B(C),Φ̃A,B(D)].

Hence Φ̃ is a 2-local Lie isomorphism. Since Φ is additive and surjective, Φ̃ is an
additive and surjective 2-local Lie isomorphism.

Finally, we prove that Φ̃ meets Lemma 2.6(1). For any nontrivial idempotent
E ∈AlgN , Φ(E) = Φ̂(E)+ λEI for some scalar λE , we have Φ̃(E) = −JΦ̂(E)∗J−
λEI . Now we define the map ˆ̃Φ : E (N )→ E (M )∗ by ˆ̃Φ(E) = I−Φ̂(E)∗ for all idem-
potent E ∈AlgN . Since Φ meets Lemma 2.6(2), for any idempotent E ∈AlgN ,
if E < P , we have ˆ̃Φ(E) = I − Φ̂(E)∗ < I − Φ̂(P)∗ = ˆ̃Φ(P) ; if E > P , we have
ˆ̃Φ(E) = I− Φ̂(E)∗ > I− Φ̂(P)∗ = ˆ̃Φ(P) . Hence Φ̃ meets Lemma 2.6(1). �

By Lemma 2.12, Φ̃ :AlgN →(AlgM )∗=AlgM⊥ is an additive and surjective
2-local Lie isomorphism and meets Lemma 2.6(1). Thus the arguments given for Case
1 ensure that Φ̃ is the sum of an isomorphism δ :AlgN → AlgM⊥ and a linear map
η :AlgN → CI ⊂AlgM⊥ vanishing on every sum of commutator. Now we define
φ :AlgN → AlgM by φ(A) = Jδ (A)∗J and τ :AlgN → CI by τ(A) = −Jη(A)∗J .
Then Φ = −φ + τ , where φ is an anti-isomorphism from AlgN onto AlgM , and
τ is a linear map from AlgN into CI vanishing on every sum of commutators. This
completes the proof of Case 2.

Combining Cases 1 and 2, the proof of Theorem 2.1 is finished.
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