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FINITE RANK PERTURBATIONS AND SOLUTIONS

TO THE OPERATOR RICCATI EQUATION

JULIAN P. GROSSMANN

(Communicated by B. Jacob)

Abstract. We consider an off-diagonal self-adjoint finite rank perturbation of a self-adjoint oper-
ator in a complex separable Hilbert space H0⊕H1 , where H1 is finite dimensional. We describe
the singular spectrum of the perturbed operator and establish a connection with solutions to the
operator Riccati equation. In particular, we prove existence results for solutions in the case where
the whole Hilbert space is finite dimensional.

1. Introduction

In the present article we analyse a special class of finite rank perturbations of a
self-adjoint operator on a complex separable Hilbert space H and show how this is
related to the existence of solutions to the so-called operator Riccati equation. This
generalises results by Kostrykin and Makarov in [7] where they considered rank one
perturbations.

Let A be a bounded self-adjoint operator on the Hilbert space H and H0 ⊂ H be a
closed A-invariant subspace. We choose H1 = H⊥

0 and define the self-adjoint operators
Ai := A|Hi for i = 0,1. Assume that the perturbation V : H → H is off-diagonal with
respect to the orthogonal decomposition H = H0 ⊕H1 , that means Ran(V|H0) ⊂ H1

and Ran(V|H1) ⊂ H0 . Consider then the perturbed self-adjoint operator

B := A+V =
(

A0 V
V ∗ A1

)
with V =

(
0 V

V ∗ 0

)
,

where V : H1 →H0 is a bounded operator. We will study the operator Riccati equation
associated with the operators above

A1X −XA0−XVX +V ∗ = 0 , (1)

where the solution X is a densely defined operator from H0 to H1 . The name bears
analogy to the familiar Riccati equation as an ordinary differential equation and honours
the Italian mathematician Jacopo Francesco Riccati (1676 – 1754).
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It is well-known (see, e.g., [8, Theorem 4.4]) that the graph of a densely defined
operator X : H0 ⊃Dom(X)→H1 is invariant for B if and only if X is a strong solution
to the Riccati equation (1) in the sense of Definition 4.1 below.

There are sufficient conditions which assure the existence of a solution to the Ric-
cati equation. If the spectra of the self-adjoint operators A0 and A1 are separated and
the operator norm of the perturbation V is sufficiently small, then there is a bounded
solution to (1). For details about the smallness of the perturbation see [13, Theorem 3.3]
in combination with [8].

If the spectra of A0 and A1 are even subordinated, i.e.

supspec(A0) � inf spec(A1) ,

then a contractive solution to the Riccati equation exists regardless of the norm of the
perturbation V , see [9]. Similar results can be found in [2] and [6].

Note that in this work it is not assumed that the spectra of the operators A0 and
A1 are separated. Instead, we require that the Hilbert space H1 is finite dimensional.
Under this assumption, we prove existence results for the Riccati equation. We are
mainly interested in bounded solutions, but we also prove some statements about un-
bounded solutions. In particular, all these results hold under the assumption that the
whole Hilbert space H is finite dimensional.

Our main results are the following theorem and the deduced corollary.

THEOREM 1.1. Assume that H1 is finite dimensional with n := dimH1 , and sup-
pose that RanV is a cyclic generating subspace for the operator A0 , i.e.

lin span
{

Ak
0v

∣∣ k ∈ N0, v ∈ RanV
}

= H0 .

Then one has:

(i) The multiplicity of the spectrum of B is at most n. If there is an eigenvalue of
multiplicity n, then there is a bounded solution to the Riccati equation (1).

(ii) Assume that B has at least n eigenvalues outside the point spectrum of A0 ,
counted with multiplicities, and let U be the space spanned by the associated
eigenvectors. Furthermore, suppose that

PH1U = H1 ,

where PH1 : H → H is the orthogonal projection onto H1 . Then the Riccati equa-
tion (1) has a bounded solution.

COROLLARY 1.2. Let H be finite dimensional and assume that the spectra of B
and A0 are disjoint. Then there exists at least one solution to the Riccati equation (1).

This is an interesting existence result for the matrix Riccati equation and it seems
to us that this result has not been previously known. However, in [10, Example 7.1.1]
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it has been shown that there is no general existence theorem for a matrix Riccati equa-
tion that is associated with a non-self-adjoint block operator B , that means in (1) the
matrix V ∗ is substituted by an arbitrary matrix W . Still, for the self-adjoint case, as
it is considered in this paper, neither such a counterexample nor a general proven ex-
istence result is known. Corollary 1.2 states the existence for solutions under the mild
assumption that the whole spectrum of A0 is changed under the perturbation V .

Now we give an infinite dimensional example for illustrating the conditions of
Theorem 1.1:

EXAMPLE 1.3. Let H0 = L2([−1,1]) and H1 = C2 . We set v(t) := 1 for all
t ∈ [−1,1] and choose A0 as the multiplication operator

(A0x)(t) = t x(t) almost everywhere

for x ∈ H0 . It is obvious that the linear span of v is a cyclic generating subspace for
A0 . The operator A1 is chosen as the null matrix and the perturbation V is given with
respect to the standard basis (e1,e2) of C2 by Ve1 = v and Ve2 = v . Then we can
simply write:

B =

⎛
⎝ A0 v v

〈v, ·〉
〈v, ·〉

0 0
0 0

⎞
⎠ .

Note that λ1 = 0 is still an eigenvalue of B because 0⊕ (1,−1)T ∈ H0 ⊕H1

lies in the kernel. Since ‖B‖ > 1 and the absolutely continuous spectrum is invariant
under finite rank perturbation (see [5]), there has to be an eigenvalue outside of [−1,1] ,
denoted by λ2 from now on. One can show that x⊕ (1,1)T ∈ H0 ⊕H1 with suitable
x ∈ H0 is an eigenvector for λ2 . This is not written out in full here since we will have
more effective methods for calculating eigenvalues after section 3.

If U denotes the linear space spanned by all eigenvectors of B , we know by the
eigenvectors of λ1 and λ2 from above that

PH1U ⊃ lin span
{
(1,−1)T , (1,1)T}

= H1

holds. Therefore condition (ii) of Theorem 1.1 is fulfilled and the Riccati equation
has a bounded solution. In section 4 we will see how one can explicitly construct this
solution.

There is a large literature concerning the spectrum of the block operator B and the
Riccati equation, both in the finite dimensional matrix case, see, e.g., [10], [17], and in
the infinite dimensional case, see, e.g., [11], [8], [12]. In the second case it is possible
to expand the operator Riccati equation to unbounded coefficients which is especially
interesting in the study of perturbation theory, see [16], [3] and [14] for applications
of the Riccati equation in this field of research. The last three citations all portrait the
fruitful connection between invariant subspaces of operators and solutions to the Riccati
equation. We will extensively use this in the last section for the construction of these
solutions but in a more explicit way than it is usually seen.
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2. Preliminaries

In this section we want to fix some notations and explain facts about the concepts
that we will use in the following and need to prove Theorem 1.1. Mainly, we present
facts and proofs for readers that are not familiar with Herglotz functions, multiplicity
of spectra and the decomposition of the spectrum into an absolutely continuous and
singular part.

We will use the notation L (H,K) for the set of bounded linear operators from
a Hilbert space H to a Hilbert space K . Moreover, we will write L (H) instead of
L (H,H) . All considered Hilbert spaces are complex and separable. The spectrum of a
bounded linear operator T : H → H is denoted by spec(T ) and the point spectrum, i.e.
the set of all eigenvalues, is denoted by specp(T ) . Moreover, we will use the following
notion of multiplicity of spectra, cf. [1].

DEFINITION 2.1. For a self-adjoint operator T ∈L (H) in a Hilbert space H , we
call the minimal dimension of all cyclic generating subspaces the multiplicity of the
spectrum of T . Here, a subspace U ⊂ H is called a cyclic generating subspace for the
operator T if

lin span
{

Tku
∣∣ k ∈ N0, u ∈U

}
is dense in H .

With this definition the spectrum of an operator has multiplicity 1 and is called
simple if and only if there is a cyclic vector for this operator. If we consider finite
dimensional Hilbert spaces, the multiplicity of the spectrum above coincides with the
maximal multiplicity of the eigenvalues of T . In infinite dimensional Hilbert spaces
it is possible for the spectrum to have infinite multiplicity, e.g., the spectrum of the
identity.

Now we will explain how so-called Herglotz functions can be used to describe
self-adjoint operators and their spectra if the multiplicity is finite.

We will always write C+ := {z ∈ C | Imz > 0} for the upper complex half-plane
and also use the following notion from [4]:

DEFINITION 2.2. (i) A holomorphic function m : C+ → C is called a scalar
Herglotz function if Imm(z) � 0 for all z ∈ C+ .

(ii) An analytic function M : C+ → Cn×n or M : C+ → L (Cn) with n ∈ N is called
a matrix-valued Herglotz function or Herglotz matrix if

ImM(z) :=
1
2i

(M(z)−M(z)∗) � 0

for all z ∈ C+ .

A classical result in this theory is that every matrix-valued Herglotz function has a
unique integral representation, see [4, Theorem 5.4]. Therefore, there is a characteristic
example of a Herglotz function if a matrix-valued measure Ω is given. We call a map
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on the Borel sets of R , denoted by B(R) , with Ω : B(R) → Cn×n a matrix-valued
measure if

Ωy,x : B(R) → C , Δ �→ 〈y,Ω(Δ)x〉Cn

is a (finite) complex measure for all x,y ∈ Cn . If we demand Ω(Δ) � 0 for all Borel
sets Δ ⊂ R , the map Ωx,x is a positive measure for all x ∈ Cn .

EXAMPLE 2.3. For each matrix-valued measure Ω with Ω(Δ) � 0 for all Borel
sets Δ the map

M : z �→
∫

R

1
t− z

dΩ(t)

defines a matrix-valued Herglotz function on C+ .

Lebesgue’s decomposition theorem for ordinary σ -finite positive measures can
easily be generalised to complex measures, see [15, Theorem 6.10], and to matrix-
valued measures. So for each matrix-valuedmeasure Ω there is a unique decomposition
into an absolutely continuous and a singular measure with respect to the Lebesgue
measure. By separating the atoms of the measure, the singular part can additionally
split into a singularly continuous part and a pure point part:

Ω = Ωac + Ωs = Ωac + Ωsc + Ωpp .

With regard to the example of a Herglotz matrix above, we want to analyse these
parts of the measure and it turns out that an ordinary positive measure is sufficient for
that task:

PROPOSITION 2.4. Assume Ω : B(R) → Cn×n is a matrix-valued measure with
Ω(Δ) � 0 for all Borel sets Δ ⊂ R . Then the positive measure ω(Δ) := tr(Ω(Δ)) is
equivalent to Ω , i.e. they have precisely the same null sets.

Proof. A null set for Ω is clearly a null set for ω . Conversely, if we choose a
Borel set Δ with ω(Δ) = 0, we can calculate

2
∣∣Ω jk(Δ)

∣∣ � Ω j j(Δ)+ Ωkk(Δ) � 2tr(Ω(Δ)) = 0

for all 1 � j,k � n . The first inequality is a standard property for non-negativematrices.
See for example [4, Lemma 5.1]. �

In [4] the authors give describing sets for the parts of the measure and call them
supports. We also use this terminology here and call a Borel set S ⊂ R a support
of a given Borel measure μ , which can be positive, complex or matrix-valued, if
μ(R \ S) = 0. We call a support S of μ minimal if S \T has Lebesgue measure zero
for any support T ⊂ S .

Since we will be merely interested in the singular part of the measure for analysing
the Riccati equation, we just consider supports for the singular and the pure point part.
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PROPOSITION 2.5. Let Ω : B(R)→Cn×n be a matrix-valued measure that fulfils
Ω(Δ) � 0 for all Borel sets Δ ⊂ R and M : C+ → Cn×n the matrix-valued Herglotz
function from Example 2.3. Then the set

SΩ,s :=
{

λ ∈ R

∣∣∣ lim
ε→0+

tr ImM(λ + iε) = ∞
}

is a minimal support of the singular part Ωs . The set

SΩ,pp :=
{

λ ∈ R

∣∣∣ lim
ε→0+

ε tr M(λ + iε) = 0
}

is the smallest support of the pure point part Ωpp .

Proof. By the equivalence of the measures Ω and trΩ , one can use the support
theorem [4, Theorem 3.1] for scalar Herglotz functions or the support theorem [4, The-
orem 6.1] for Herglotz matrices. �

In the next proposition we present a fundamental example of a Herglotz function in
relation to a self-adjoint operator T ∈ L (H) , where we will write ET for its projector-
valued spectral measure. In section 3 we will concretise this example.

PROPOSITION 2.6. Let T ∈ L (H) be self-adjoint with multiplicity of the spec-
trum p ∈ N and n � p be an integer number. Moreover, let V : Cn → H be a linear
operator such that RanV is a cyclic generating subspace for T . Then

M : z �→V ∗(T − z)−1V

is a matrix-valued Herglotz function for z ∈ C+ which can be represented by a matrix-
valued measure Ω as

M(z) =
∫

R

1
t − z

dΩ(t) .

The measure Ω is equivalent to the spectral measure ET , i.e. they have the same null
sets. The set

Spp :=
{

λ ∈ R

∣∣∣ lim
ε→0+

ε trV ∗(T −λ − iε)−1V = 0
}

(2)

coincides with the point spectrum of T .

Proof. Since z �→ (T − z)−1 is analytic and because of the first resolvent identity,
one can write

ImM(z) = Imz
[
V ∗(T − z)−1(T − z)−1V

]
.

Obviously ImM(z) � 0 holds and therefore M is a matrix-valued Herglotz function. If
we now define

Ω(Δ) := V ∗ET (Δ)V

for every Borel set Δ ⊂ R , we get a matrix-valued measure and the representation for
M holds by the spectral theorem. Clearly, a null set of ET is also a null set of Ω . On
the other hand, a Borel set Δ with Ω(Δ) = 0 fulfils via the polarisation identity

〈v,ET (Δ′)u〉 = 0 for all u,v ∈ RanV ,
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and for all Borel sets Δ′ ⊂ Δ . Now we can use the spectral theorem for a measurable
function f (t) := tmχΔ(t)tk , where χΔ is the characteristic function of Δ and k,m non-
negative integers:

0 =
∫

Δ
tk+md〈v,ET (t)u〉 = 〈v, f (T )u〉 = 〈Tmv,χΔ(T )Tku〉 .

Since u,v ∈ RanV and RanV is a cyclic generating subspace for T , the following
equation is true for all x,y ∈ H :

0 = 〈y,χΔ(T )x〉 =
∫

Δ
d〈y,ET (t)x〉 = 〈y,ET (Δ)x〉 .

That means that ET (Δ) = 0 and the measures are equivalent.
The smallest support of Ωpp from Proposition 2.5 is therefore also a smallest

support of the pure point part of the spectral measure ET and it is well-known that the
atoms of ET are exactly the eigenvalues of T . �

In the next definition we will decompose the spectrum of a self-adjoint operator
into three parts. Analogously to above, one can generalise Lebesgue’s decomposition
theorem even to a projector-valued measures like ET . This is due to the fact that

Δ �→ 〈y,ET (Δ)x〉
is a complex measure for every x,y ∈ H which has a unique Lebegue decomposition.

DEFINITION 2.7. For a self-adjoint operator T ∈ L (H) with spectral measure
ET that has the Lebegue decomposition

ET = ET,ac +ET,s = ET,ac +ET,sc +ET,pp ,

we define the following sets for w ∈ {ac,s,sc, pp}
specw(T ) := {λ ∈ R | every open neighbourhoodU of λ fulfils ET,w(U) = 0} .

These closed sets specac(T ) , specs(T ) , specsc(T ) and specpp(T ) are called the ab-
solutely continuous, singular, singularly continuous and pure point spectrum of T ,
respectively.

Now it can be shown, cf. [5, Chapter 10], that for each self-adjoint operator T
there is a decomposition of its spectrum into

spec(T ) = specac(T )∪ specsc(T )∪ specpp(T ) .

Admittedly, none of this unions has to be disjoint. Note also that the pure point spec-
trum is in general larger than the set of eigenvalues specp(T ) since the latter does not
have to be closed. However,

specpp(T ) = specp(T )

is always true.
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3. Eigenvalues and singularly continuous spectrum of B

Throughout this work we always assume the hypothesis below.

HYPOTHESIS 3.1. Let B be a bounded self-adjoint operator which is represented
with respect to the orthogonal decomposition H = H0⊕H1 as an operator block matrix

B :=
(

A0 V
V ∗ A1

)
,

where A j ∈ L (H j) is self-adjoint for j = 0,1 and V ∈ L (H1,H0) .
Assume in addition that the Hilbert-space H1 is finite dimensional and that RanV

is a cyclic generating subspace for the operator A0 , i.e.

lin span
{

Ak
0v

∣∣ k ∈ N0,v ∈ RanV
}

is dense in H0 .

Since this hypothesis claims that the multiplicity of the spectra A0 and A1 are
not greater than dimH1 , respectively, the multiplicity of the spectrum of B is also
restrained.

LEMMA 3.2. Assume Hypothesis 3.1. Then H1 ⊂ H is a cyclic generating sub-
space for B . In particular, the multiplicity of the spectrum of B cannot exceed dimH1 .

Proof. Set n := dimH1 and choose a basis (ei)i=1,...,n of H1 . Since RanV is a
cyclic generating subspace for A0 by Hypothesis 3.1, one concludes that

lin span{Vei⊕0 , 0⊕ ei ∈ H0⊕H1 | 1 � i � n}
is a cyclic generating subspace for B . If we substitute Vei ⊕ 0 with Vei ⊕A1ei , the
statement above will remain true. Since B(0⊕ ei) = Vei ⊕A1ei holds, the space

lin span{0⊕ ei ∈ H0⊕H1 | 1 � i � n} = H1

is already a cyclic generating subspace for the operator B . �
It follows from the lemma above that the spectrum of the self-adjoint operator

A := A0 ⊕A1 , which could have the multiplicity 2 · dimH1 , is always altered by the
off-diagonal perturbation such that the multiplicity is at most only dimH1 .

It is possible to classify the eigenvalues of B into three distinct cases and it will
turn out that this is necessary for finding solutions to the Riccati equation.

LEMMA 3.3. Assume Hypothesis 3.1. A real number λ ∈ R is an eigenvalue of
the operator B with multiplicity k if and only if there is a set of k linear independent
vectors {y j} j=1,...,k ⊂ H1 with

Vy j ∈ Ran(A0−λ ) , j = 1, . . . ,k ,

and for each j one of the following statements holds:
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(i) λ /∈ specp(A0) and

(A1−λ )y j = V ∗(A0−λ )−1Vyj .

(ii) λ ∈ specp(A0) and

(A1−λ )y j = lim
ε→0+

V ∗(A0−λ − iε)−1Vyj .

(iii) λ ∈ specp(A0) with an eigenvector x ∈ H0 and

(A1 −λ )y j = lim
ε→0+

V ∗(A0 −λ − iε)−1Vyj −V ∗x .

Note that Ran(A0 −λ ) ⊂ (
RanEA0({λ}))⊥ always holds and therefore the limit

limε→0+ V ∗(A0 − λ − iε)−1Vyj is well-defined by the spectral theorem. Here, EA0

stands for the spectral measure of the self-adjoint operator A0 .

Proof. We will omit the proof of the multiplicity part because it is straightforward
after having proved the following. We will just prove here that a real number λ is an
eigenvalue of B if and only if one of the three statements is fulfilled for a non-zero
vector y1 ∈ H1 with Vy1 ∈ Ran(A0 −λ ) . We will start with the “only if” part.

Note that a number λ ∈ R is an eigenvalue of B if and only if the two equations

(A0−λ )y0 = −Vy1 (3)

(A1−λ )y1 = −V ∗y0 (4)

are fulfilled for a non-zero vector (y0,y1) ∈ H0⊕H1 .

First case: If λ /∈ specp(A0) , then (A0 −λ ) is injective and we immediately get
the equation of statement (i) for y1 = 0.

Second case: If λ ∈ specp(A0) , the operator (A0−λ ) is not injective and therefore
we change equation (3) for an ε > 0:

V ∗(A0−λ − iε)−1(A0−λ )y0 = −V ∗(A0−λ − iε)−1Vy1 . (5)

By the spectral theorem we can calculate

lim
ε→0+

V ∗(A0−λ − iε)−1(A0−λ )y0 = V ∗(IH0 −EA0({λ}))y0 .

For y0 ∈ RanEA0({λ})⊥ we get the equation of (ii) and for y0 /∈ RanEA0({λ})⊥ we
get the equation of (iii). In both cases y1 = 0.

To show the “if” part of the claim above, one has to construct an eigenvector
(y0,y1) ∈ H0 ⊕H1 for B . Since y1 with Vy1 ∈ Ran(A0 − λ ) is given, only y0 is to
construct. In the case (i) and (ii) one can simply set y0 ∈ RanEA0({λ})⊥ such that

(A0−λ )y0 = −Vy1
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holds. In the third case (iii) one has to do a similar reasoning and choose the vector
y′0 ∈ RanEA0({λ})⊥ such that

(A0−λ )y′0 = −Vy1

holds. Then just set y0 := y′0 + x . �

REMARK 3.4. The characterisation of the eigenvalues of B in Lemma 3.3 re-
mains true in the case of infinite dimensional H1 if the (strong) limits are replaced with
weak limits.

EXAMPLE 3.5. We consider the Hilbert space H = H0 ⊕H1 with H0 = H1 = C2

and the linear operator B : H → H given by:

B =
(

A0 V
V ∗ A1

)
=

⎛
⎜⎜⎝

1
0

1
1 1

1 1
1

0
0

⎞
⎟⎟⎠ .

There are three eigenvalues of B that belong to condition (i) of Lemma 3.3 and there is
the eigenvalue 1 that fulfils condition (iii). By choosing y1 = (0,1)T and x = (−1,0)T

we see that
(A1−1)y1 = lim

ε→0+
V ∗(A0−1− iε)−1Vy1 −V ∗x

holds.

EXAMPLE 3.6. We quickly revisit Example 1.3 from the introduction. The op-
erator A is the orthogonal sum of the multiplication operator on L2([−1,1]) and the
zero operator on C2 . While this operator has 0 as an eigenvalue of multiplicity 2, for
B this eigenvalue has to be simple since only case (i) of Lemma 3.3 is feasible and the
kernel of V is only one-dimensional. Moreover, by the equation in case (i), we get for
λ /∈ [−1,1] and y = (1,1)T the following

−λ = 2〈v,(A0−λ )−1v〉

and after an integration this becomes:

2 log

∣∣∣∣λ +1
λ −1

∣∣∣∣ = λ .

This equation has in fact a negative and positive solution and therefore three simple
eigenvalues for the operator B exist.

The singular and singularly continuous spectrum of B can be described by the
use of minimal supports of the spectral measure which we will do in the following.
We write JH1 : H1 → H for the inclusion map and in this case the adjoint satisfies
J∗H1

(x) = PH1(x) for all x ∈ H .
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PROPOSITION 3.7. Assume Hypothesis 3.1. The map M : C+ → L (H1) defined
by

M(z) := J∗H1
(B− z)−1JH1

is a matrix-valued Herglotz function with

M(z) =
[
(A1 − z)−V∗(A0− z)−1V

]−1
. (6)

Proof. Since z �→ (B− z)−1 is analytic and because of the first resolvent identity,
M is a matrix-valued Herglotz function, cf. [4]. Note that also Example 2.3 is applica-
ble to prove this. The inverse of the Schur complement of (B− z) shows equation (6),
see [16, Proposition 1.6.2]. �

The two propositions below yield a positive Borel measure which is equivalent to
the spectral measure of B and describe the singularly continuous spectrum and the pure
point spectrum of the perturbed operator B . This extends the results by Kostrykin and
Makarov in [7].

PROPOSITION 3.8. Assume Hypothesis 3.1. The Herglotz function

m(z) = tr
(
M(z)

)
admits the representation

m(z) =
∫

R

1
t− z

dω(t) , (7)

where ω is a positive Borel measure with compact support. Moreover, ω and the
spectral measure of B are equivalent, i.e. the null sets coincide.

Proof. From [4, Theorem 5.4] we know that m is a scalar Herglotz function. We
define an operator-valued measure Ω with values in L (H1) by

Ω(Δ) := J∗H1
EB(Δ)JH1

for every Borel set Δ ⊂ R . We easily see that

∫
dΩ(t)
t− z

= J∗H1

∫
dEB(t)
t− z

JH1 = M(z) for all z ∈ C+ .

Hence, ω(Δ) := trΩ(Δ) defines a positive measure with compact support, which satis-
fies equation (7).

Since by Lemma 3.2 the space H1 is a cyclic generating subspace for B , the
measure Ω is equivalent to EB by Proposition 2.6. That ω and Ω are equivalent has
been shown in Proposition 2.4. �

PROPOSITION 3.9. Assume Hypothesis 3.1. The set

Ss :=
{

λ ∈ R

∣∣∣ ∥∥∥[
(A1 −λ − iε)−V∗(A0 −λ − iε)−1V

]−1
∥∥∥ ε→0+−−−→ ∞

}
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is a minimal support of the singular part of the positive measure ω from Proposi-
tion 3.8. The set

Spp :=
{

λ ∈ R

∣∣∣ There is 0 = y ∈ H1 with Vy ∈ Ran(A0 −λ ) and there is

x ∈ RanEA0({λ}) such that

(A1−λ )y = lim
ε→0+

V ∗(A0−λ − iε)−1Vy−V∗x
}

is the set of all atoms of ω . In particular, Ssc := Ss \ Spp is a minimal support for the
singularly continuous part of ω .

Proof. By [4, Theorem 6.1], which is formulated in Proposition 2.5, there is a
minimal support of Ωs :

SΩ,s :=
{

λ ∈ R

∣∣∣ lim
ε→0+

tr ImM(λ + iε) = ∞
}

.

Of course this is by the equivalence of the measures, see Proposition 2.4, also a minimal
support for ωs . Obviously, Ss ⊃ SΩ,s and therefore Ss is a support of ωs as well. It it
is minimal by [4, Theorem 5.4 (ii)].

The set Spp coincides with all eigenvalues of B . Note that we pushed the three
cases of Lemma 3.3 into one formula here. By the equivalence of measures, Spp is the
set of all atoms of ω and therefore the smallest support of ωpp . �

REMARK 3.10. The sets Ss and Spp are connected to the spectrum of the per-
turbed operator B . We already noted that Spp = specp(B) but the relation to Ss is
more subtle. In general neither Ss ⊃ specs(B) nor Ss ⊂ specs(B) is correct. However,
Ss ⊃ specs(B) is always true. Hence, if the singular spectrum of B is non-empty, than
Ss is also non-empty.

Now, we define two subsets Kpp ⊂ Ss and Ksc ⊂ Ss of the singular support of ω ,
since not all points are suitable for the construction of a solution to the Riccati equation
as one can see in next section. The proper subsets are given by:

Kpp := {λ ∈ R | Φpp(λ ) = /0}

where Φpp(λ ) :=
{

y ∈ H1 \ {0}
∣∣∣ (A1−λ )y = lim

ε→0+
V ∗(A0−λ − iε)−1Vy

and
∫

1

|t−λ |2 d〈Vy,EA0(t)Vy〉 < ∞
}

and

Ksc := {λ ∈ R | Φsc(λ ) = /0}

where Φsc(λ ) :=
{

y ∈ H1 \ {0}
∣∣∣ (A1−λ )y = lim

ε→0+
V ∗(A0−λ − iε)−1Vy

and
∫

1

|t−λ |2 d〈Vy,EA0(t)Vy〉 = ∞
}

.
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Note that Kpp ⊂ Spp always holds and that we have equality if and only if there is
no eigenvalue of B which satisfies the condition (iii) of Lemma 3.3. In particular,
Kpp = Spp is fulfilled if the point spectra of A0 and B are disjoint.

Furthermore, Kostrykin and Makarov have shown in [7, Theorem 3.4] that
Kpp = Spp and Ksc = Ssc hold if the Hilbert space H1 is one-dimensional. By us-
ing this result, they have constructed solutions to the Riccati equation for each λ ∈ Ss

in the case that dimH1 = 1, see [7, Theorem 4.3]. In the following section we extend
their results about solutions to the Riccati equation for an arbitrarily finite dimensional
Hilbert space H1 .

4. Solutions to the Riccati equation

The operator Riccati equation (1) a priori only makes sense as an operator identity
if the solution X is bounded and Dom(X) = H0 . If one wants to include unbounded
operators, a generalised definition of solutions is required. We will use the same notion
of a so-called strong solution as in [7] and [8].

DEFINITION 4.1. A densely defined, not necessarily bounded or closable, linear
operator X : H0 ⊃ Dom(X)→ H1 is called a strong solution to the Riccati equation (1)
if

Ran(A0 +VX)|Dom(X) ⊂ Dom(X)

and
A1Xx−X(A0 +VX)x+V∗x = 0 for all x ∈ Dom(X)

hold.

HYPOTHESIS 4.2. Assume Hypothesis 3.1. Suppose that Kpp ∪Ksc is not empty
and that there are n := dimH1 linear independent vectors y1, . . . ,yn ∈H1 which satisfy

(A1 −λk)yk = lim
ε→0+

V ∗(A0−λk − iε)−1Vyk , λk ∈ Kpp∪Ksc (8)

for k = 1, . . . ,n. Moreover, denote Λpp := {(λk,yk) | yk ∈ Φpp(λk) , k = 1, . . . ,n} and
Λsc := {(λk,yk) | yk ∈ Φsc(λk) , k = 1, . . . ,n} for the different parts. We will abbreviate
this with Λ := Λpp∪Λsc .

Under Hypothesis 4.2, we define for k = 1, . . . ,n the, not necessarily orthogonal,
projections PΛ,k : H1 → H1 by

RanPΛ,k = lin span{yk} ,

KerPΛ,k = lin span{y j | j = k} .

We also define a possibly unbounded operator XΛ : H0 ⊃Dom(XΛ)→H1 on the domain

Dom(XΛ) :=

{
x ∈ H0

∣∣∣∣ lim
ε→0+

n

∑
j=1

P∗
Λ, jV

∗(A0−λ j + iε)−1x ∈ H1

}
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by

XΛx = lim
ε→0+

n

∑
j=1

P∗
Λ, jV

∗(A0−λ j + iε)−1x , (9)

which has the following properties.

PROPOSITION 4.3. Assume Hypothesis 4.2 with a chosen Λ = Λpp∪Λsc . Then:

(i) The linear operator XΛ is densely defined.

(ii) If Λsc is not empty, then the operator XΛ is unbounded and non-closable.

(iii) If Λsc is empty, i.e. {λ1, . . . ,λn} ⊂ Kpp , then the operator XΛ is bounded.

(iv) A0x ∈ Dom(XΛ) for all x ∈ Dom(XΛ) .

(v) XΛ is a strong solution to the Riccati equation (1).

Proof. A proof of the statement (i) for the case dimH1 = 1 can be found in [7].
This proof has a straightforward generalisation to a finite dimensional H1 . With the
same argument as in [7, Lemma 4.1] one can show that the limit

lim
ε→0+

P∗
Λ, jV

∗(A0 −λ j + iε)−1ϕ

exists for j ∈ {1, . . . ,n} and ϕ ∈ {p(A0)u | p polynomial,u ∈ RanV} . Since the latter
set is dense in H0 , the operator XΛ is densely defined.

To show (ii) we choose (λ j,y j) ∈ Λsc and define for all ε ∈ (0,1] the bounded
operators Y ε ∈ L (H0,H1) by

Y εx := P∗
Λ, jV

∗(A0 −λ j + iε)−1x .

A short calculation with the spectral theorem shows that the operator norm is given by

‖Y ε‖H0→H1
=

∣∣α j
∣∣(∫

1∣∣t −λ j
∣∣2 + ε2

d〈Vyj,EA0(t)Vyj〉
)1/2

(10)

where α j ∈ C is a constant independent of ε . If XΛ was bounded, the operator defined
by Y := P∗

Λ, jXΛ would also be bounded and therefore

sup
ε∈(0,1]

‖Y εx‖H1
< ∞ for all x ∈ H0 .

Since the uniform boundedness principle claims that supε∈(0,1] ‖Y ε‖H0→H1
is finite and

since that can be written by equation (10) and the monotone convergence theorem as

∫
1∣∣t−λ j

∣∣2 d〈Vyλ j
,EA0(t)Vyλ j

〉 < ∞ ,
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there is a contradiction to (λ j,y j) ∈ Λsc .
To show (iii), assume that {λ1, . . . ,λn} ⊂Kpp and that for all j = 1, . . . ,n we have

y j ∈ Φpp(λ j) . Then define a bounded operator Z : H1 → H0 by

Zy := w-lim
ε→0+

n

∑
j=1

(A0−λ j − iε)−1VPΛ, jy , y ∈ H1 .

Since all λ j are eigenvalues of B and VPΛ, jy ∈ Ran(A0 −λ j) for all j = 1, . . . ,n and
y ∈ H1 by Lemma 3.3, the weak limit is well-defined. Choose x ∈ Dom(XΛ) and
y ∈ H1 . Then

〈x,Zy〉H0 = lim
ε→0+

〈
x ,

n

∑
j=1

(A0−λ j − iε)−1VPΛ, jy
〉

H0

= lim
ε→0+

〈 n

∑
j=1

P∗
Λ, jV

∗(A0 −λ j + iε)−1x , y
〉

H1
= 〈XΛx,y〉H1 ,

so that Z∗ is an extension of XΛ . Hence, XΛ is a closable operator of finite rank and
therefore has to be bounded.

Statement (iv) is shown by applying the spectral theorem. For each j and all
x ∈ Dom(XΛ) one has

lim
ε→0+

P∗
Λ, jV

∗(A0 −λ j + iε)−1(A0−λ j)x = P∗
Λ, jV

∗x (11)

because H1 is finite dimensional and Ran(VPΛ, j) ⊂
(
RanEA0({λ j})

)⊥
. Therefore, we

have A0x ∈ Dom(XΛ) for all x ∈ Dom(XΛ) .
To show (v), we write the Riccati equation (1) in the form

n

∑
j=1

P∗
Λ, j(A1X −XA0−XVX +V ∗) = 0

and consider each summand separately. We choose x ∈ Dom(XΛ) and calculate by
using the equations (8) and (9):

P∗
Λ,k(A1XΛ −XΛA0−XΛVXΛ)x

= P∗
Λ,k

(
A1XΛx−XΛA0x− lim

ε→0+

(
PΛ,k

)∗
V ∗(A0−λk + iε)−1VXΛx

)
= P∗

Λ,k(A1− (A1−λk))XΛx−P∗
Λ,kXΛA0x

= P∗
Λ,kXΛ(λk −A0)x

= lim
ε→0+

P∗
Λ,kV

∗(A0−λk − iε)−1(λk −A0)x

= −P∗
Λ,kV

∗x .
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In the last step we used equation (11). �
Finally, we are able to prove our main results:

Proof of Theorem 1.1. By Lemma 3.2 the multiplicity of the spectrum of B is at
most n := dimH1 . If there is an eigenvalue λ with multiplicity n , then Lemma 3.3
shows that there are vectors y1, . . . ,yn ∈ H1 which span the Hilbert space H1 . Thus,
also by Lemma 3.3 the inequality

lim
ε→0+

∣∣trV ∗(A0 −λ − iε)−1V
∣∣ < ∞

holds and one concludes that λ /∈ specp(A0) . This is due to Proposition 2.6, in par-
ticular equation (2), and the fact that RanV is a cyclic generating subspace for A0 .
Eventually, we construct a bounded solution XΛ to the Riccati equation with
Λ = {(λ ,y1), . . . ,(λ ,yn)} and Proposition 4.3. This proves (i).

Statement (ii) is formulated in such a way that there exists at least one Λ as in
Hypothesis 4.2 such that Proposition 4.3 is applicable. �

Proof of Corollary 1.2. Since here it is not assumed that RanV is a cyclic gener-
ating subspace for A0 , we define

K0 := lin span
{

Ak
0v

∣∣ k ∈ N0, v ∈ RanV
}

,

which is always a closed A0 -invariant subspace of H0 . One can choose X |K0
⊥ = 0 for

a solution X to the Riccati equation (1), so that we can assume Hypothesis 3.1 without
loss of generality.

As H is finite dimensional and spanned by the eigenvectors of B , we always find
a bounded solution X by Theorem 1.1 part (ii). �
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