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LOG AND HARMONICALLY LOG–CONVEX
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Abstract. In this article, we introduce the concept of harmonically log-convex functions, which
seems to be strongly connected to unitarily invariant norms. Then, we prove Hermite-Hadamard
inequalities for these functions. As an application, we present many inequalities for the trace
operator and unitarily invariant norms.

1. Introduction

Let Mn be the space of all n× n complex matrices and M
+
n be the class of Mn

consisting of positive semi-definite matrices. Inequalities involving quantities of the
form ‖|AXB‖| have been of great interest in the literature. In this context, A,B ∈
M

+
n ,X ∈ Mn and ‖| ‖| is any unitarily invariant norm. Recall that these are norms sat-

isfying ‖|UAV‖|= ‖|A‖| for all unitary matrices U and V . Among the most interesting
inequalities are Hölder-Young and Heinz inequalities that state, respectively,

‖|AνXB1−ν‖| � ‖|AX‖|ν ‖|XB‖|1−ν � ν‖|AX‖|+(1−ν)‖|XB‖| (1.1)

and
2‖|A1/2XB1/2‖| � ‖|AνXB1−ν +A1−νXBν‖| � ‖|AX +XB‖|. (1.2)

for all ν ∈ [0,1] . For proofs of these inequalities, we refer the reader to [11] and [1],
respectively.

These inequalities have been studied thoroughly and many refinements and gener-
alizations have been obtained in the literature. We refer the reader to [4], [6], [10] and
[12] for such inequalities. Among the very recent generalizations of Young’s inequality
(1.1) is our result in [15]

‖|ApXBq‖| � ‖|Ap+rXBq−r‖| p−q+r
p−q+2r ‖|Aq−rXBp+r‖| r

p−q+2r (1.3)

where p � q � r � 0. In [6], [10], [12] and [16] integral versions of inequality (1.2)
have been obtained, where convexity of the function

ν → ‖|AνXB1−ν +A1−νXBν‖|
was the key to these studies. For example, in [12] the following theorem was proved
for the Heinz means f (ν) = ‖|AνXB1−ν +A1−νXBν‖|.
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THEOREM 1.1. Let 0 < μ � 1
2 , then

f (μ) � f (μ/2) � 1
μ

∫ μ

0
f (ν)dν � f (0)+ f (μ)

2
� f (0), (1.4)

and for 1
2 � μ � 1, we have

f (μ) � f

(
1+ μ

2

)
� 1

1− μ

∫ 1

μ
f (ν)dν � f (1)+ f (μ)

2
� f (1). (1.5)

The proof was merely based on the well known Hermite-Hadamard inequalities
that for a convex function f on [a,b],

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
. (1.6)

Then refinements and generalizations of inequalities of Theorem 1.1 have been obtained
based on corresponding refinements of the Hermite-Hadamard inequalities (1.6). See
for example [6] and [10].

In this paper, we introduce the concept of harmonically log-convex functions
which, as shown, is strongly related to these norm quantities. Several relations be-
tween log-convex and harmonically log-convex functions are presented, implying new
Hermite-Hadamard type inequalities for such functions.

Moreover, we investigate log-convexity of various functions like f (t) = ‖|At‖| ,
f (ν) = ‖|AνXB1−ν‖| ‖|A1−νXBν‖| and f (p) = ‖A‖p. Then we use these convexity
results to obtain other inequalities.

This work is motivated by the extensive study of operator convex functions. We
refer the reader to [3] for a comprehensive study of this topic.

2. Main Results

2.1. Harmonically log-convex functions

Harmonically convex functions were defined in [9] as follows.

DEFINITION 2.1. Let I ⊂ R\{0} be an interval. A function f : I → R is said to
be harmonically convex on I if

f

(
t1t2

λ t1 +(1−λ )t2

)
� λ f (t2)+ (1−λ ) f (t1),

for all t1, t2 ∈ I and λ ∈ [0,1].

Simply speaking, f : [a,b] → R is harmonically convex if the function g : [ 1
b , 1

a ]
defined by g(t) = f (1/t) is convex.

Motivated by this definition, we define harmonically log-convex functions as fol-
lows.
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DEFINITION 2.2. Let I ⊂ R
+ := (0,∞) be an interval. A function f : I → R

+ is
said to be harmonically log-convex on I if

f

(
t1t2

(1−λ )t1 + λ t2

)
� f λ (t1) f 1−λ (t2),

for all t1, t2 ∈ I and λ ∈ [0,1].

One can easily prove the following characterization of harmonically log-convex
functions.

PROPOSITION 2.3. Let I ⊂ R
+ be an interval. A function f : I → R

+ is harmon-
ically log-convex on I := [a,b] if and only if the function g :

[
1
b , 1

a

] → R defined by
g(x) = f (1/x) is log-convex.

Hence, the functions f (t) = t p, p > 0 are harmonically log-convex.

PROPOSITION 2.4. Let I = [a,b] ⊂ R
+ be an interval. If f : I → R

+ is log-
convex, then the function g :

[
1
b , 1

a

] → R
+ defined by

g(t) = f t (1/t)

is log-convex too.

Proof. Let t1, t2 ∈ [a,b] , λ ∈ [0,1], and t = 1
λ t−1

1 +(1−λ )t−1
2

. Then, clearly t = αt1 +

β t2 where α = λ t
t1

and β = 1−λ
t2

t. Hence, noting that α + β = 1 and recalling that f
is log-convex, we get

g
(
λ t−1

1 +(1−λ )t−1
2

)
= g(1/t)

= f 1/t(t)

= f 1/t(αt1 + β t2)

� f
α
t (t1) f

β
t (t2)

= f
λ
t1 (t1) f

1−λ
t2 (t2)

= gλ (1/t1)g1−λ (1/t2).

This proves that g is log-convex on [1/b,1/a]. �
Now propositions 2.3 and 2.4 imply the following corollary.

COROLLARY 2.5. Let I ⊂ R
+ be an interval. If f : I → R

+ is log-convex, then
the function g : I → R

+ defined by

g(t) = f 1/t(t)

is harmonically log-convex.
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Moreover, we have

COROLLARY 2.6. Let I ⊂ R
+ be an interval. If f : I → R

+ is harmonically
log-convex, then the function g : I → R

+ defined by

g(t) = f t(t)

is log-convex.

Proof. Since f is harmonically log-convex, h(t)= f (1/t) is log-convex, by propo-
sition 2.3. Then, by proposition 2.4, the function g(t) = ht(1/t) is log-convex. This
implies the result. �

Now corollaries 2.5 and 2.6 imply the following corollary.

COROLLARY 2.7. Let I ⊂R
+ be an interval. A function f : I →R

+ is log-convex
if and only if the function g : I → R

+ defined by

g(t) = f 1/t(t)

is harmonically log-convex.

The proof of the following composition relation is immediate from the definitions
of log-convex and harmonically log-convex functions.

PROPOSITION 2.8. Let f : I1 → R be harmonically convex and g : I2 → R be
log-convex and increasing. If f (I1) ⊆ I2 , then the composite function g◦ f : I1 → R is
harmonically log-convex.

Our next result treats log-convex functions on partitions of [0,1].

THEOREM 2.9. Let f = f (ν) be log-convex on [0,1], and let n ∈ N∪{0}. Then
if for some k ∈ {1,2, · · · ,2n} , ν ∈ [

k−1
2n , k

2n

]
, we have

f (ν) �
(

f

(
k−1
2n

))k−2nν (
f

(
k
2n

))2nν−k+1

. (2.1)

Proof. Observe that when ν ∈ [
k−1
2n , k

2n

]
, then for α = k−2nν,

ν = α
k−1
2n +(1−α)

k
2n .

Then using log-convexity of f , the result follows. �



LOG AND HARM. LOG-CONVEX FUNCTIONS RELATED TO MATRIX NORMS 457

THEOREM 2.10. Let f be log-convex on [0,1] . For n ∈ N∪{0} let

Ik,n =
[
k−1
2n ,

k
2n

]
, k = 1, · · · ,2n.

Define

gn(ν) =
(

f

(
k−1
2n

))k−2nν (
f

(
k
2n

))2nν−k+1

, ν ∈ In,k.

Then gn+1(ν) � gn(ν) for all ν ∈ [0,1]. Moreover gn → f uniformly on [0,1]. .

Proof. Let ν ∈ [0,1] , then for each n , there exists k ∈ {1,2, · · · ,2n} such that
ν ∈ [

k−1
2n , k

2n

]
. But then ν ∈ I2k−1,n+1∪ I2k,n+1. If ν ∈ I2k−1,n+1, we have

gn+1(ν) =
(

f

(
2k−2
2n+1

))2k−1−2n+1ν (
f

(
2k−1
2n+1

))2n+1ν−2k+2

=
(

f

(
k−1
2n

))2k−1−2n+1ν (
f

(
1
2

k−1
2n +

1
2

k
2n

))2n+1ν−2k+2

�
(

f

(
k−1
2n

))2k−1−2n+1ν
{(

f

(
k−1
2n

))1/2 (
f

(
k
2n

))1/2
}2n+1ν−2k+2

=
(

f

(
k−1
2n

))k−2nν (
f

(
k
2n

))2nν−k+1

= gn(ν).

This completes the proof when ν ∈ I2k−1,n+1. If ν ∈ I2k,n+1 , similar computations yield
the result. The fact that gn → f follows immediately noting that f is continuous. �

We remark that in the recent paper [16], similar partition ideas have been proved
for convex functions.

2.2. Hermite-Hadamard type inequalities

In [5] the following inequalities were proved for positive log-convex functions f
on (a,b) :

f

(
a+b

2

)
� exp

(
1

b−a

∫ b

a
ln f (x) dx

)

� 1
b−a

∫ b

a
G( f (x), f (a+b− x))dx � 1

b−a

∫ b

a
f (x)dx

� L( f (a), f (b)) � f (a)+ f (b)
2

, (2.2)

where G(p,q) =
√

pq and L(p,q) = p−q
ln p−lnq .

The following inequalities are the corresponding inequalities for harmonically log-
convex functions.
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THEOREM 2.11. Let f : [a,b]⊂ R
+ → R

+ be harmonically log-convex. Then

f

(
2ab
a+b

)
� exp

(
ab

b−a

∫ b

a

ln f (x)
x2 dx

)

� ab
b−a

∫ b

a

1
x2 G

(
f (x), f

(
abx

bx+ax−ab

))
dx � ab

b−a

∫ b

a

f (x)
x2 dx

� L( f (a), f (b)) � f (a)+ f (b)
2

,

Proof. This follows immediately by applying inequalities (2.2) to the function
g(x) = f (1/x) defined on [1/b,1/a] , observing log-convexity of g . �

Utilizing theorem 2.11 and corollary 2.5 we get the following inequalities for log-
convex functions.

COROLLARY 2.12. Let f : [a,b]⊂ R
+ → R

+ be log-convex. Then

f
a+b
2ab

(
2ab
a+b

)
� exp

(
ab

b−a

∫ b

a

ln f (x)
x3 dx

)

� ab
b−a

∫ b

a

f
1
x (x)
x2 dx

� f
1
a (a)− f

1
b (b)

ln f (a)
a − ln f (b)

b

� f
1
a (a)+ f

1
b (b)

2
.

Proof. Since f is log-convex, g(x) = f 1/x(x) is harmonically log-convex, by
corollary 2.5. Now apply theorem 2.11 to the function g , and simplify to get the re-
sult. �

REMARK. The author was not aware of [13], where the definition of a harmonically-
log convex function was introduced. However, after the paper has been published on-
line, the paper [13] has been to the author’s attention. We remark that the two papers
treat the idea differently, but some integral results have minor similarities.

2.3. Applications and examples of log-convex and harmonically log-convex func-
tions

The following lemma has been proved in [15].

LEMMA 2.13. Let A,B∈M
+
n and X ∈Mn . Then the function f : (0,∞)×(0,∞)→

[0,∞) defined by
f (p,q) = ‖|ApXBq‖|

is log-convex.
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As an application of this log-convexity, we present the following trace inequalities.

THEOREM 2.14. Let A,B ∈ M
+
n , X ∈ Mn and p � q > 0 . Then for r � q, we

have

tr(ApXBqX∗) �
(
tr(Ap+rXBq−rX∗)

)α (
tr(Aq−rXBp+rX∗)

)β

� αtr(Ap+rXBq−rX∗)+ β tr(Aq−rXBp+rX∗)

where α = p−q+r
p−q+2r and β = 1−α.

Proof. By Lemma 2.13, it follows that the function f (p,q) = ‖ApXBq‖2 is log-
convex on (0,∞)× (0,∞) . Hence, for the mentioned α,β ,

f (p,q) = f (α(p+ r,q− r)+ β (q− r, p+ r))

� f α (p+ r,q− r) f β f (q− r, p+ r)
� α f (p+ r,q− r)+ β f (q− r, p+ r).

Recalling that f (p,q) = ‖ApXBq‖2, we get

‖ApXBq‖2
2 �

(‖Ap+rXBq−r‖2
2

)α (‖Aq−rXBp+r‖2
2

)β

� α‖Ap+rXBq−r‖2
2 + β‖Aq−rXBp+r‖2

2.

But ‖T‖2
2 = tr(TT ∗), hence the inequality

‖ApXBq‖2
2 �

(‖Ap+rXBq−r‖2
2

)α (‖Aq−rXBp+r‖2
2

)β

becomes

tr(A2pXB2qX∗) �
{
tr

(
(A2)p+rX(B2)q−rX∗)}α {

tr
(
(A2)q−rX(B2)p+rX∗)}β

.

Since this is true for any A,B ∈ M
+
n , we may replace A by

√
A and B by

√
B , to get

tr(ApXBqX∗) �
(
tr(Ap+rXBq−rX∗)

)α (
tr(Aq−rXBp+rX∗)

)β

which implies both inequalities of the theorem. �

The ν−version of these inequalities can be stated as follows.

COROLLARY 2.15. Let A,B ∈ M
+
n and X ∈ Mn . Then for 0 � ν � 1, we have

tr(AνXB1−νX∗) �
{
tr(A|X |2)}ν {

tr(B|X∗|2)}1−ν

� νtr(A|X |2)+ (1−ν)tr(B|X∗|2).
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In [14], it was proved that the function

f (r) =
p−q+ r
p−q+2r

ap+rbq−r +
r

p−q+2r
aq−rbp+r

is increasing on [0,q], for the positive numbers a,b. On the other hand, in [15] it has
been proved that for any unitarily invariant norm the functions

f (r) = ‖|Ap+rXBq−r‖| p−q+r
p−q+2r ‖|Aq−rXBp+r‖| r

p−q+2r

and

g(r) =
p−q+ r
p−q+2r

‖|Ap+rXBq−r‖|+ r
p−q+2r

‖|Aq−rXBp+r‖|

are increasing on [0,q]. Simulating the proofs in [15] we can easily prove the following.

PROPOSITION 2.16. Let A,B ∈ M
+
n , X ∈ Mn and p � q > 0. Then the functions

f (r) =
{
tr(Ap+rXBq−rX∗)

} p−q+r
p−q+2r

{
tr(Aq−rXBp+rX∗)

} r
p−q+2r

g(r) =
p−q+ r
p−q+2r

tr(Ap+rXBq−rX∗)+
r

p−q+2r
tr(Aq−rXBp+rX∗)

are increasing on [0,q].

What this proposition tells us is that f (0) � f (r) � f (q) for 0 � r � q . Hence,
for such r ,

tr(ApXBqX∗) �
{
tr(Ap+rXBq−rX∗)

} p−q+r
p−q+2r

{
tr(Aq−rXBp+rX∗)

} r
p−q+2r

�
{
tr(Ap+q|X |2)} p

p+q
{
tr(|X |2Bp+q)

} q
p+q , (2.3)

as for g we get

tr(ApXBqX∗) � p−q+ r
p−q+2r

tr(Ap+rXBq−rX∗)+
r

p−q+2r
tr(Aq−rXBp+rX∗)

� p
p+q

tr(Ap+q|X |2)+
q

p+q
tr(|X∗|2Bp+q), (2.4)

introducing intermediate terms between

tr(ApXBqX∗) and
{
tr(Ap+q|X |2)} p

p+q
{
tr(|X∗|2Bp+q)

} q
p+q .

One last remark about these trace quantities is the following corollary.

COROLLARY 2.17. Let A,B∈M
+
n , X ∈Mn . The function f : (0,∞)×(0,∞)−→

[0,∞) defined by f (p,q) = tr(ApXBqX∗) is log-convex.
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Proof. Since (p,q) −→ ‖ApXBq‖2 is log-convex, we have

(p,q) −→ g(p,q) := {tr(ApXBqBqX∗Ap)}1/2

is log-convex. But then g2 is log-convex. The result follows by replacing A and B with√
A and

√
B , respectively. �

This corollary must be compared with the well known Lieb’s concavity theorem
that

(A,B) −→ tr(ApXBqX∗), p+q � 1

is concave, and the well known Ando’s convexity theorem that

(A,B) −→ tr(ApXB−qX∗), 1 � p � 2, 0 � q � 1, p−q � 1,

is convex. See [3] pages 118–119.
Observe that inequality (2.3) may be written in the form

tr(AB) � (trAp)1/ptr(Bq)1/q (2.5)

for the conjugate exponents p,q upon choosing X = I. This is the well known Hölder
inequality for the trace operator. Recall that in general,

‖|AB‖|� ‖|Ap‖|1/p‖|Bq‖|1/q (2.6)

for any unitarily invariant norm and conjugate exponents p,q .

THEOREM 2.18. Let A ∈ Mn . Then, the function f : [0,∞) → [0,∞) defined by

f (t) = ‖|At‖|
is log-convex, hence is convex, for any unitarily invariant norm ‖| ‖|.

Proof. Let t1, t2 ∈ [0,∞) and α,β � 0 be such that α + β = 1. Then,

f (αt1 + β t2) = ‖|Aαt1+β t2‖|
=

∥∥∥∣∣∣Aαt1Aβ t2
∣∣∣∥∥∥

�
∥∥∣∣At1

∥∥∣∣α ∥∥∣∣At2
∣∣∥∥β

= f α (t1) f β (t2),

where we have used (2.6) with p = 1
α and q = 1

β . This completes the proof. �

On the other hand, theorem 2.18 and corollary 2.5 imply the following.

THEOREM 2.19. Let A ∈ M
+
n . Then the function f : (0,∞) → [0,∞) defined by

f (t) = ‖|At‖|1/t is harmonically log-convex, hence is harmonically convex, for any
unitarily invariant norm ‖| ‖|.
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In particular, the function f (p) = ‖A‖p, p � 1 is harmonically log-convex for any
A ∈ Mn.

The following result follows immediately from Theorem 2.19 and Proposition 2.3.

COROLLARY 2.20. Let A ∈ M
+
n . Then the function f : (0,∞) → [0,∞) defined

by

f (t) =
∥∥∥∣∣∣A1/t

∥∥∥∣∣∣t
is log-convex, hence is convex.

2.4. Multiplicative Heinz-Type Means

Now we study the function ν → ‖|AνXB1−ν‖| which will be the key to other
results in this part of the paper.

PROPOSITION 2.21. Let A,B ∈ M
+
n and X ∈ Mn . Then the function

f (ν) = ‖|AνXB1−ν‖|
is log-convex on [0,1], hence is convex.

Proof. Let ν1,ν2 , ν ∈ [0,1] . Apply Hölder’s inequality (1.1) replacing X by
Aν2XB1−ν1 , A by Aν1−ν2 and B by Bν1−ν2 to get

f (νν1 +(1−ν)ν2) = ‖|Aνν1+(1−ν)ν2XB1−νν1−(1−ν)ν2‖|
=

∥∥∥∣∣∣(Aν1−ν2
)ν (

Aν2XB1−ν1
)(

Bν1−ν2
)1−ν

∥∥∥∣∣∣
�

∥∥∣∣Aν1−ν2
(
Aν2XB1−ν1

)∥∥∣∣ν ∥∥∣∣(Aν2XB1−ν1
)
Bν1−ν2

∥∥∣∣1−ν

= ‖|Aν1XB1−ν1‖|ν‖|Aν2XB1−ν2‖|1−ν

= f ν (ν1) f 1−ν(ν2).

This completes the proof for invertible matrices A and B . If A or B is not invertible, a
standard limiting process yields the result for general matrices. �

By symmetry, we deduce that the function f (ν) = ‖|A1−νXBν‖| is log-convex
too.

Following the same computations, one can easily prove that the function

f (ν) = ‖|AνXBν‖|,0 � ν � 1

is also log-convex. This gives a straightforward proof of Lemma 2, p. 150 of [2].
Since the product of two log-convex functions is log-convex, we have the follow-

ing corollary.

COROLLARY 2.22. Let A,B ∈ M
+
n and X ∈ Mn. Then the function

f (ν) = ‖|AνXB1−ν‖| ‖|A1−νXBν‖|
is log-convex, hence is convex.
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Observe that when f (ν) = ‖|AνXB1−ν‖| , the known Young’s inequality f (ν) �
f (1)ν f (0)1−ν follows from Theorem 2.9 by letting n = 0. In fact as n increases in-
equality (2.1) becomes better as shown in Theorem 2.10.

For example, by letting f (ν) = ‖|AνXB1−ν‖| and n = 1 in Theorem 2.9 we get
the following refinement of Young’s inequality (1.1).

COROLLARY 2.23. Let A,B ∈ M
+
n and X ∈ Mn . Then,

‖|AνXB1−ν‖| �
{ ‖|XB‖|1−2ν‖|A1/2XB1/2‖|2ν , 0 � ν � 1

2
‖|A1/2XB1/2‖|2−2ν‖|AX‖|2ν−1, 1

2 � ν � 1

}
� ‖|AX‖|ν‖|XB‖|1−ν .

Then as suggested by Theorem 2.10, taking larger n implies better refinements.
Our next goal is to study the monotonicity of the function

f (ν) = ‖|AνXB1−ν‖| ‖|A1−νXBν‖|.
For this, we need the following lemma.

LEMMA 2.24. Let A,B ∈ M
+
n and X ∈ Mn . If p � q � 0 , then the function

g(r) = ‖|Ap+rXBq−r‖| ‖|Aq−rXBp+r‖|
is increasing on [0,q].

Proof. Let 0 � r1 � r2 � q. Then

g(r1) = ‖|Ap+r1XBq−r1‖| ‖|Aq−r1XBp+r1‖|.
Observe that because p � q we have p+ r1 � q− r1 , hence we may apply Inequality
(1.3) twice with p = p+ r1 , q = q− r1 and r = r2 − r1 , noting that A has the bigger
exponent p+r1 in the first quantity and B has the bigger exponent p+r1 in the second
quantity. Then

g(r1) = ‖|Ap+r1XBq−r1‖| ‖|Aq−r1XBp+r1‖|
�

(
‖|Ap+r2XBq−r2‖|

p−q+r1+r2
p−q+2r2 ‖|Aq−r2XBp+r2‖|

r2−r1
p−q+2r2

)

×
(
‖|Ap+r2XBq−r2‖|

r2−r1
p−q+2r2 ‖|Aq−r2XBp+r2‖|

p−q+r1+r2
p−q+2r2

)
= ‖|Ap+r2XBq−r2‖| ‖|Aq−r2XBp+r2‖|
= g(r2).

This completes the proof. �

PROPOSITION 2.25. Let A,B ∈ M
+
n and X ∈ Mn . Then the function

f (ν) = ‖|AνXB1−ν‖| ‖|A1−νXBν‖|
is decreasing on [0, 1

2 ] and increasing on [ 1
2 ,1].
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Proof. If 0 � ν � 1
2 , then

f (ν) = ‖|A 1
2 +( 1

2−ν)XB
1
2−( 1

2−ν)‖| ‖|A 1
2−( 1

2−ν)XB
1
2+( 1

2−ν)‖|.

Write p = q = 1
2 , 1

2 −ν = r. Then,

f (ν) = ‖|Ap+rXBq−r‖| ‖|Aq−rXBp+r‖|, 0 � r � 1
2
.

Consequently, f is increasing with r . Since r = 1
2 −ν , f is decreasing with ν . This

completes the proof for [0, 1
2 ].

For 1
2 � ν � 1, observe that

f (ν) = ‖|A 1
2 +(ν− 1

2 )XB
1
2−(ν− 1

2 )‖| ‖|A 1
2−(ν− 1

2 )XB
1
2 +(ν− 1

2 )‖|.

Following the same idea, we infer that f is increasing with r := ν − 1
2 , hence so is with

ν. This complete the proof of the proposition. �

Proposition 2.25 allows us to write the following multiplicative version of Heinz
inequality (1.2).

COROLLARY 2.26. Let A,B ∈ M
+
n and X ∈ Mn . Then, for ν ∈ [0,1] , we have

‖|A1/2XB1/2‖|2 � ‖AνXB1−ν‖| ‖|A1−νXBν‖| � ‖|AX‖| ‖|XB‖|.

Proof. Since f (ν) = ‖|AνXB1−ν‖| ‖|A1−νXBν‖| is decreasing on [0, 1
2 ] , increas-

ing on [ 1
2 ,1] and is symmetric about ν = 1

2 , we have

f (1/2) � f (ν) � f (1) = f (0).

This implies the result. �

It should be noted that in [8], convexity of the function

ν → ‖| |AνXB1−ν |r ‖| ‖| |A1−νXBν |r ‖|; r > 0,

was proved and used to obtain some interesting inequalities.
We remark that the second inequality of Corollary 2.26 is trivial, however the

first part of the inequality ‖|A1/2XB1/2‖|2 � ‖AνXB1−ν‖| ‖|A1−νXBν‖| is not. At this
point, it might be thought that ‖|A1/2XB1/2‖| � ‖|AνXB1−ν‖| and ‖|A1/2XB1/2‖| �
‖|A1−νXBν‖|. In fact this is not true. This can be seen by taking the numerical ex-
ample: A = 3,B = 5 and X = 1. Then, for each ν ∈ ( 1

2 ,1] we have ‖|A1/2XB1/2‖| >
‖|AνXB1−ν‖| but ‖|A1/2XB1/2‖|< ‖|A1−νXBν‖| .
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