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Abstract. Let R be a triangular ring with center Z(R) . Let F1,F2,G1,G2 : R → R be maps such
that

F1(x)y+F2(y)x+ xG2(y)+ yG1(x) ∈ Z(R)

for all x,y ∈ R . The aim of the paper is to give a solution of this functional identity in cer-
tain triangular rings. As applications, centralizing additive maps of certain triangular rings are
determined.

1. Introduction

Let R be an associative ring with center Z(R) . The functional identities of degree
2 are

F1(x)y+F2(y)x+ xG2(y)+ yG1(x) = 0 (1)

for all x,y ∈ R and a slightly more general one,

F1(x)y+F2(y)x+ xG2(y)+ yG1(x) ∈ Z(R) (2)

for all x,y ∈ R . In 1995, Brešar [3] investigated both (1) and (2) in prime rings, which
initiated the theory of functional identities (see the book [5] for a full account on this
theory).

In 2013, Eremita [9] gave a solution of (1) in certain triangular rings. As appli-
cations he discussed commuting additive maps and generalized inner biderivations of
certain triangular rings. It should be mentioned that (1) was considered in the context
of nest algebras by Zhang, Feng, Li and Wu in [14]. In 2015, Eremita [10] gave a so-
lution of (1) in a much wider class of triangular rings. Recently, the author [12] gave a
solution of (1) in arbitrary triangular rings. As applications commuting additive maps
and generalized inner biderivations of arbitrary triangular rings are determined.

In the present paper, we shall give a solution of (2) in certain triangular rings. As
consequences, the solution of (2) in upper triangular matrix rings and nest algebras are
determined. As an application of our main result, centralizing additive maps of certain
triangular rings are determined.
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2. The main result

A unital ring R with a nontrivial idempotent e is a triangular ring, if eR f is a
faithful (eRe, f R f )-bimodule and f Re = 0, where f = 1− e . Each triangular ring R
has the so-called Peirce decomposition:

R = eRe⊕ eR f ⊕ f R f .

The result [6, Proposion 3] tells us that the center of R is

Z(R) = {a+b∈ eRe+ f R f | am = mb for all m ∈ eR f }.
Furthermore, there exists a unique ring isomorphism τ : Z(R)e → Z(R) f such that
am = mτ(a) for all m ∈ eR f and for any a ∈ Z(R)e .

We set [x,y] = xy− yx for x,y ∈ R . Let S be a subset of R . we set

Z2(S) = {a ∈ S | [[a,x],x] = 0 for all x ∈ S}.
We begin with the following technical result, which will be used in the proof of

the main result.

LEMMA 2.1. Let A be a unital ring such that

(i) Z2(A) = Z(A);

(ii) A does not contain nonzero central ideals.

Suppose that there exist a,b ∈ A such that

ax+ xb∈ Z(A) (3)

for all x ∈ A. Then a = −b ∈ Z(A) .

Proof. Letting x = 1 in (3) we get that a+ b ∈ Z(A) . Set c = a+ b . It follows
from (3) that

[a,x]+ xc ∈ Z(A)

for all x∈A , which yields that [[a,x],x] = 0 for all x∈A . Hence, a∈Z2(A) =Z(A) and
hence b ∈ Z(A) . Consequently, (a+ b)A ⊆ Z(A) . Since A does not contain nonzero
central ideals, we get that a+b = 0 and then a = −b ∈ Z(A) . �

A map F : R → R is said to be additive modulo Z(R) if

F(x+ y)−F(x)−F(y) ∈ Z(R)

for all x,y ∈ R . For each map F : R → R and each positive integer n we define a map
δn,F : Rn → R by

δn,F(x1, . . . ,xn) = F(x1 + · · ·+ xn)−F(x1)−·· ·−F(xn).

Obviously, δn,F(Rn) ⊆ Z(R) if F is additive modulo Z(R) (see [9, Lemma 3.1]).
Using the same arguments as in [9] we are ready to give the main result of the

paper.
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THEOREM 2.1. Let R be a triangular ring such that

Z(eRe) = Z(R)e and Z( f R f ) = Z(R) f .

Assume that one of the following conditions is satisfied:

(i) Z2(eRe) = Z(eRe) and eRe does not contain nonzero central ideals;

(ii) Z2( f R f ) = Z( f R f ) and fR f does not contain nonzero central ideals.

Suppose that F1,F2,G1,G2 : R → R are arbitrary maps such that

F1(x)y+F2(y)x+ xG2(y)+ yG1(x) ∈ Z(R)

for all x,y ∈ R. Then there exist p1, p2,q1,q2,r1,r2 ∈ R and maps α1,α2 : R → Z(R)
such that p1 + p2 = r1 + r2 ∈ Z(R) , pi[x,y]− [x,y]ri ∈ Z(R) , i = 1,2 , and

F1(x) = xq1− p1x+ α1(x)
F2(x) = xq2− p2x+ α2(x)
G1(x) = xr2−q2x−α1(x)
G2(x) = xr1−q1x−α2(x)

for all x,y ∈ R.

Proof. Let
H(x,y) = F1(x)y+F2(y)x+ xG2(y)+ yG1(x)

for all x,y ∈ R . We claim that F1,F2,G1,G2 are additive modulo Z(R) . Since H(x1 +
x2,y)−H(x1,y)−H(x2,y) ∈ Z(R) for all x1,x2,y ∈ R we see that

δ2,F1(x1,x2)y+ yδ2,G1(x1,x2) ∈ Z(R)

for all x1,x2,y ∈ R . In view of [8, Lemma 3.1] or [9, Lemma 3.1] we obtain

δ2,F1(x1,x2) = −δ2,G1(x1,x2) ∈ Z(R)

for all x1,x2 ∈ R . Thus, both F1 and G1 are additive modulo Z(R) . Similarly, we
obtain that both F2 and G2 are additive modulo Z(R) .

Since H(x,1) ∈ Z(R) and H(1,x) ∈ Z(R) we get

F1(x)+G1(x)+F2(1)x+ xG2(1) ∈ Z(R)
F2(x)+G2(x)+F1(1)x+ xG1(1) ∈ Z(R)

(4)

for all x ∈ R . From eH(x, f ) f = 0 it follows that

eF1(x) f + eF2( f )x f + exG2( f ) f = 0

and so
eF1(x) f = −eF2( f )x f − exG2( f ) f (5)
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for all x ∈ R . Analogously, we get

eF2(x) f = −eF1( f )x f − exG1( f ) f

eG1(x) f = −eF2(e)x f − exG2(e) f

eG2(x) f = −eF1(e)x f − exG1(e) f

(6)

for all x ∈ R . Since H(exe, f y f ) ∈ Z(R) we get

F1(exe) f y f +F2( f y f )exe+ exeG2( f y f )+ f y fG1(exe) ∈ Z(R)

for all x,y ∈ R . That is,

eF1(ex f ) f y f + f F1(exe) f y f + eF2( f y f )exe+ exeG2( f y f )e
+ exeG2( f y f ) f + f y fG1(exe) f ∈ Z(R)

for all x,y ∈ R . Then [6, Proposition 3] tells us that

eF1(ex f ) f y f + exeG2( f y f ) f = 0

for all x ∈ R and so

f F1(exe) f y f + eF2( f y f )exe+ exeG2( f y f )e+ f y fG1(exe) f ∈ Z(R)

for all x ∈ R . This implies that

(eF2( f y f )exe+ exeG2( f y f )e)+ ( f F1(exe) f y f + f y fG1(exe) f ) ∈ Z(R) (7)

for all x,y ∈ R . Without loss of generality we may assume that the assumption (i) is
satisfied. It follows from (7) that

eF2( f y f )exe+ exeG2( f y f )e ∈ Z(eRe)

for all x,y ∈ R . By Lemma 2.1 we get

eF2( f y f )e = −eG2( f y f )e ∈ Z(eRe) (8)

for all y ∈ R . Using (8) togather with (7) we get

f F1(exe) f y f + f y fG1(exe) f = 0

for all x,y ∈ R . Letting y = f in the last relation we get that f F1(exe) f = − fG1(exe) f
and then

f F1(exe) f = − fG1(exe) f ∈ Z( f R f ) (9)

for all x ∈ R . In an analogous manner, we get

eF1( f x f )e = −eG1( f x f )e ∈ Z(eRe)
f F2(exe) f = − fG2(exe) f ∈ Z( f R f )
eF2( f x f )e = −eG2( f x f )e ∈ Z(eRe)

(10)
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for all x ∈ R . From H(exe,ey f ) ∈ Z(R) it follows that

eF1(exe)ey f + eF2(ey f )exe+ exeG2(ey f )e+ exeG2(ey f ) f

+ ey fG1(exe) f ∈ Z(R)
(11)

for all x,y ∈ R . On the one hand, we get from (11) that

eF1(exe)ey f + exeG2(ey f ) f + ey fG1(exe) f = 0

for all x,y ∈ R . Consequently, using (6) we get

eF1(exe)ey f − exeF1(e)ey f − exey fG1(e) f + ey fG1(exe) f = 0

for all x,y ∈ R . Using (9), it follows that
(
eF1(exe)e− exeF1(e)− exeτ−1( fG1(e) f )+ τ−1( fG1(exe) f )

)
ey f = 0

for all x,y ∈ R . Since eR f is faithful as a left eRe-module we obtain

eF1(exe)e = exe
(
F1(e)e+ τ−1( fG1(e) f )

)− τ−1( fG1(exe) f ) (12)

for all x ∈ R . Analogously, we obtain

eF2(exe)e = exe
(
F2(e)e+ τ−1( fG2(e) f )

)− τ−1( fG2(exe) f )

for all x ∈ R . On the other hand, we get from (11) that

eF2(ey f )exe+ exeG2(ey f )e = 0

for all x ∈ R . This yields that

eF2(ey f )e = −eG2(ey f )e ∈ Z(eRe)

for all y ∈ R . Analogously, we obtain

eF1(ey f )e = −eG1(ey f )e ∈ Z(eRe)
f F1(ey f ) f = − fG1(ey f ) f ∈ Z( f R f )
f F2(ey f ) f = − fG2(ey f ) f ∈ Z( f R f )

(13)

for all x ∈ R . Since H(ex f ,ey f ) = 0 we have

F1(ex f )ey f +F2(ey f )ex f + ex fG2(ey f )+ ey fG1(ex f ) = 0

and hence, using (13), we get
(
eF1(ex f )e− τ−1( f F1(ex f ) f )

)
ey f +

(
eF2(ey f )e− τ−1( f F2(ey f ) f )

)
ex f = 0

for all x,y ∈ R . It follows from [9, Lemma 2.1] that

eF1(ex f )e = τ−1( f F1(ex f ) f )

eF2(ex f )e = τ−1( f F2(ex f ) f )
(14)
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for all x ∈ R . Since eH( f x f ,ey f ) f = 0 we have

eF1( f x f )ey f + eF2(ey f ) f x f + ey fG1( f x f ) f = 0

for all x,y ∈ R . Using (6) togather with (10), it follows that

ey f (τ(eF1( f x f )e)− (τ(eF1( f )e)+ fG1( f ) f ) f x f + fG1( f x f ) f ) = 0

for all x ∈ R , y ∈ R . Since eR f is faithful as a right f R f -module we get

fG1( f x f ) f = (τ(eF1( f )e)+ fG1( f ) f ) f x f − τ(eF1( f x f )e) (15)

for all x ∈ R . Analogously,

fG2( f x f ) f = (τ(eF2( f )e)+ fG2( f ) f ) f x f − τ(eF2( f x f )e)

for all x ∈ R . Note that

f F1( f x f ) f + f F2( f ) f x f + f x fG2( f ) f + fG1( f x f ) f = H( f x f , f ) f

and hence, using (15), we obtain

f F1( f x f ) f = −( f F2( f ) f + fG1( f ) f + τ(eF1( f )e)) f x f − f x fG2( f ) f

+ τ(eF1( f x f )e)+H( f x f , f ) f
(16)

for all x ∈ R .
We are now ready to describe F1 . Using (5), (9), (12) and (16) we get

F1(x) = eF1(x)e+ eF1(x) f + f F1(x) f

= eF1(exe)e+ eF1(ex f )e+ eF1( f x f )e+ eF1(x) f + f F1(exe) f

+ f F1(ex f ) f + f F1( f x f ) f + δ3,F1(exe,ex f , f x f )

= exe(F1(e)e+ τ−1( fG1(e) f ))− τ−1( fG1(exe) f )+ eF1(ex f )e
+ eF1( f x f )e− eF2( f )x f − exG2( f ) f − fG1(exe) f + f F1(ex f ) f

− ( f F2( f ) f + fG1( f ) f + τ(eF1( f )e)) f x f − f x fG2( f ) f

+ τ(eF1( f x f )e)+H( f x f , f ) f + δ3,F1(exe,ex f , f x f )

for all x ∈ R . Define a map α1 by

α1(x) = (eF1(ex f )e+ f F1(ex f ) f )+ (eF1( f x f )e+ τ(eF1( f x f )e))

− (τ−1( fG1(exe) f )+ fG1(exe) f )+ δ3,F1(exe,ex f , f x f )

for all x ∈ R . According to (9), (10), and (14) we see that α1(R) ⊆ Z(R) . Thus,

F1(x) = exe(F1(e)e+ τ−1( fG1(e) f ))− eF2( f )x f − exG2( f ) f

− ( f F2( f ) f + fG1( f ) f + τ(eF1( f )e)) f x f − f x fG2( f ) f

+H( f x f , f ) f + α1(x)
(17)
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for all x ∈ R . Note that

eF2( f )ex f = eF2( f )ex− xeF2( f )e,

since eF2( f )e ∈ Z(eRe) . We can now rewrite (17) as

F1(x) = x
(
F1(e)e+ τ−1( fG1(e) f )−G2( f ) f + eF2( f )e

)
− (F2( f ) f + fG1( f ) f + τ(eF1( f )e)+ eF2( f )e)x
+H( f x f , f ) f + α1(x)

for all x ∈ R . Moreover, since

−G2( f ) f + eF2( f )e = −G2( f ) f − eG2( f )e = −G2( f ),
F2( f ) f + eF2( f )e = F2( f )

Thus, we can rewrite (17) as

F1(x) = x
(
eF1(e)e−G2( f )+ τ−1( fG1(e) f )

)
− ( fG1( f ) f +F2( f )+ τ(eF1( f )e))x+H( f x f , f ) f + α1(x)

(18)

for all x ∈ R . In an analogous manner we get

F2(x) = x(eF2(e)e−G1( f )+ τ−1( fG2(e) f ))
− ( fG2( f ) f +F1( f )+ τ(eF2( f )e))x+H( f , f x f ) f + α2(x)

(19)

for all x ∈ R , where

α2(x) = (eF2(ex f )e+ f F2(ex f ) f )+ (eF2( f x f )e+ τ(eF2( f x f )e))

− (τ−1( fG2(exe) f )+ fG2(exe) f )+ δ3,F2(exe,ex f , f x f ) ∈ Z(R).

Now, using (4) we have

G1(x) = −F1(x)−F2(1)x− xG2(1)

= −x(eF1(e)e+G2(1)−G2( f )+ τ−1( fG1(e) f ))
+ ( fG1( f ) f −F2(1)+F2( f )+ τ(eF1( f )e))x
−H( f x f , f ) f −α1(x)

(20)

and

G2(x) = −F2(x)−F1(1)x− xG1(1)

= −x(eF2(e)e+G1(1)−G1( f )+ τ−1( fG2(e) f ))
+ ( fG2( f ) f −F1(1)+F1( f )+ τ(eF2( f )e))x
−H( f , f x f ) f −α2(x).

(21)
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Set

q1 = eF1(e)e−G2( f )+ τ−1( fG1(e) f ),

q2 = eF2(e)e−G1( f )+ τ−1( fG2(e) f ),

λ = (eF2( f )e+ τ(eF2( f )e))+ (τ−1( fG1(e) f )+ fG1(e) f ),

μ = (eF1( f )e+ τ(eF1( f )e))+ (τ−1( fG2(e) f )+ fG2(e) f ).

Note that λ ,μ ∈ Z(R) . Using (6) and (10), we see that

λ −q1 = eF2( f )e+ τ(eF2( f )e)+ fG1(e) f −F1(e)e+G2( f )
= τ(eF2( f )e)+ fG1(e) f −F1(e)e+ eG2( f ) f + fG2( f ) f

= τ(eF2( f )e)+ fG1(e) f −F1(e)e−F1(e) f − fG1(e) f + fG2( f ) f

= fG2( f ) f + τ(eF2( f )e)−F1(e).

Similarly, using (6) and (10), we obtain

μ −q2 = eF1( f )e+ τ(eF1( f )e)+ fG2(e) f −F2(e)e+G1( f )
= τ(eF1( f )e)+ fG2(e) f −F2(e)e+ eG1( f ) f + fG1( f ) f

= τ(eF1( f )e)+ fG2(e) f −F2(e)e−F2(e) f − fG2(e) f + fG1( f ) f

= fG1( f ) f + τ(eF1( f )e)−F2(e).

Therefore,

fG1( f ) f +F2( f )+ τ(eF1( f )e) = μ −q2 +F2(e)+F2( f ),
fG2( f ) f +F1( f )+ τ(eF2( f )e) = λ −q1 +F1(e)+F1( f ),

eF1(e)e+G2(1)−G2( f )+ τ−1( fG1(e) f ) = G2(1)+q1,

eF2(e)e+G1(1)−G1( f )+ τ−1( fG2(e) f ) = G1(1)+q2.

Consequently, (18)-(21) can be rewritten as

F1(x) = xq1− (μ −q2 +F2(e)+F2( f ))x+H( f x f , f ) f + α1(x)
F2(x) = xq2− (λ −q1 +F1(e)+F1( f ))x+H( f , f x f ) f + α2(x)
G1(x) = −x(G2(1)+q1− μ + δ2,F2(e, f ))−q2x−H( f x f , f ) f −α1(x)
G2(x) = −x(G1(1)+q2−λ + δ2,F1(e, f ))−q1x−H( f , f x f ) f −α2(x)

for all x ∈ R . Setting

p1 = μ −q2 +F2(e)+F2( f ),
p2 = λ −q1 +F1(e)+F1( f ),
r2 = −G2(1)−q1 + μ − δ2,F2(e, f ),
r1 = −G1(1)−q2 + λ − δ2,F1(e, f ).

and
τ1(x) = H( f x f , f ) f and τ2(x) = H( f , f x f ) f
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for all x ∈ R . Now, (2) yields

p1xy+ p2yx− xyr1− yxr2 + τ1(x)y+ τ2(y)x− xτ2(y)− yτ1(x) ∈ Z(R) (22)

for all x,y ∈ R . It suffices to prove that p1 + p2 = r1 + r2 ∈ Z(R) , τ1 = τ2 = 0, and

pi[x,y]− [x,y]ri ∈ Z(R)

for all x,y ∈ R , i = 1,2. For every r ∈ R , letting x = f r f and y = f in (22) we obtain

(p1 + p2) f r f − f r f (r1 + r2) ∈ Z(R)

for all r ∈ R . This implies that e(p1 + p2) f = 0 and

f (p1 + p2) f r f − f r f (r1 + r2) = 0

for all r ∈ R . Hence, f (p1 + p2) f = f (r1 + r2) f ∈ Z( f R f ) . Similarly, letting x = ere
and y = e in (22) we obtain

(p1 + p2)ere− ere(r1 + r2) ∈ Z(R)

for all r ∈ R . This implies that e(p1 + p2)e = e(r1 +r2)e∈ Z(eRe) and e(r1 +r2) f = 0.
Hence, p1 + p2 = r1 + r2 .

Letting x = e and y = er f in (22) we get

p1er f − er f r1 ∈ Z(R)

for all r ∈ R . This implies that

ep1er f − er f r1 f = 0

for all r ∈ R . That is, ep1 · er f = er f · f r1 f ∈ Z(R) . [6, Proposion 3] tells us that
ep1e + f r1 f ∈ Z(R) . Similarly, letting x = er f and y = e we obtain ep2e + f r2 f ∈
Z(R) . Thus, we have

e(p1 + p2)e+ f (r1 + r2) f ∈ Z(R).

Since p1 + p2 = r1 + r2 and e(p1 + p2) f = 0, we see that

p1 + p2 = e(p1 + p2)e+ f (p1 + p2) f ∈ Z(R).

Replacing x,y by ex f and f y f in (22) respectively, we see that

ep1ex f y f − ex f y f r1 f − ex f τ2(y) ∈ Z(R) (23)

for all x,y ∈ R . Since ep1e+ f r1 f ∈ Z(R) we get from (23) that ex f τ2(y) = 0 for all
x,y ∈ R . Since eR f is faithful as a right f R f -module we obtain τ2 = 0. Similarly,
replacing x and y by f x f and ey f in (22) respectively, we obtain τ1 = 0.

Now, (22) yields

p1xy+ p2yx− xyr1− yxr2 ∈ Z(R) (24)
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for all x,y ∈ R . Let γ = p1 + p2 . Then (24) implies

p1xy+ p2yx− xyr1− yxr2 = (γ − p2)xy+ p2yx− xyr1− yx(γ − r1)
= (γ − p2)xy+(p2− γ)yx− xyr1 + yxr1

= p1[x,y]− [x,y]r1 ∈ Z(R)

and similarly p2[x,y]− [x,y]r2 ∈ Z(R) for all x,y ∈ R . �

LEMMA 2.2. Let R be a triangular ring. Then R does not contain nonzero central
ideals and Z2(R) = Z(R) .

Proof. In view of [1, Lemma 2.6] we see that R does not contain nonzero central
ideals. Let a ∈ Z2(R) . We have

[[a,x],x] = 0 (25)

for all x ∈ R . Letting x = f in (25) we get ea f = 0. Thus, a = eae+ f a f . Letting
x = er f + f in (25) we get

eaer f − er f a f = 0

for all r ∈ R . This implies that eae+ f a f ∈ Z(R) . Hence, a ∈ Z(R) . This implies that
Z2(R) ⊆ Z(R) . The inclusion Z(R) ⊆ Z2(R) is trivial. Therefore, Z2(R) = Z(R) . �

As a consequence of Theorem 2.1 we obtain the following result.

COROLLARY 2.1. Let S be a unital ring and let n � 3 . Let Tn(S) be the ring of
all n×n upper triangular matrices over S . Suppose that F1,F2,G1,G2 : Tn(S)→ Tn(S)
are arbitrary maps such that

F1(x)y+F2(y)x+ xG2(y)+ yG1(x) ∈ Z(S) · I

for all x,y ∈ Tn(S) . Then there exist p1, p2,q1,q2,r1,r2 ∈ Tn(S) and maps α1,α2 :
Tn(S) → Z(S) · I such that p1 + p2 = r1 + r2 ∈ Z(S) · I , pi[x,y]− [x,y]ri ∈ Z(S) · I ,
i = 1,2 , and

F1(x) = xq1− p1x+ α1(x)
F2(x) = xq2− p2x+ α2(x)
G1(x) = xr2−q2x−α1(x)
G2(x) = xr1−q1x−α2(x)

for all x,y ∈ Tn(S) .

Proof. Let e = e11 and f = I − e11 . It is easy to check that Tn(S) is a triangu-
lar ring. Clearly, Z(Tn(S))e = Z(eTn(S)e) and Z(Tn(S)) f = Z( f Tn(S) f ) . Note that
f Tn(S) f ∼= Tn−1(S) is a triangular ring. By Lemma 2.2 we see that f Tn(S) f does not
contain nonzero central ideals and Z2( f Tn(S) f ) = Z( f Tn(S) f ) . Thus, all assumptions
of Theorem 2.1 are met. Then the conclusion follows from Theorem 2.1. �
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COROLLARY 2.2. Let S be a unital noncommutative prime ring. Suppose that
F1,F2,G1,G2 : T2(S) → T2(S) are arbitrary maps such that

F1(x)y+F2(y)x+ xG2(y)+ yG1(x) ∈ Z(S) · I

for all x,y ∈ T2(S) . Then there exist p1, p2,q1,q2,r1,r2 ∈ T2(S) and maps α1,α2 :
T2(S) → Z(S) · I such that p1 + p2 = r1 + r2 ∈ Z(S) · I , pi[x,y]− [x,y]ri ∈ Z(S) · I ,
i = 1,2 , and

F1(x) = xq1− p1x+ α1(x)
F2(x) = xq2− p2x+ α2(x)
G1(x) = xr2−q2x−α1(x)
G2(x) = xr1−q1x−α2(x)

for all x,y ∈ T2(S) .

Proof. Let e = e11 and f = e22 . Note that f T2(S) f ∼= S f is a noncommutative
prime ring. In view of a well-known result of Posner [11, Theorem 2] we get that
f T2(S) f does not contain nonzero central ideals and Z2( f T2(S) f ) = Z( f T2(S) f ) . Thus,
all assumptions of Theorem 2.1 are met. Then the conclusion follows from Theorem
2.1. �

A nest N is a totally ordered set of closed subspaces of a Hilbert space H such
that {0} , H ∈ N , and N is closed under the taking of arbitrary intersections and
closed linear spans of its elements. The nest algebra associated to N is the set

T (N ) = {T ∈ B(H) | TN ⊆ N for all N ∈ N }.

A nest algebra T (N ) is called trivial if N = {0,H} . A nontrivial nest al-
gebra can be viewed as a triangular algebra. Namely, if N ∈ N \ {0,H} and E
is the orthonormal projection onto N , then N1 = E(N ) and N2 = (1 − E)(N )
are nests of N and N⊥ , respectively. Moreover, T (N1) = ET (N )E , T (N2) =
(1−E)T (N )(1−E) are nest algebras and

T (N ) =
(

T (N1) ET (N )(1−E)
T (N2)

)
.

We refer the reader to [7] for the general theory of nest algebras. Note that
Z(T (N )) = C1 [7, Corollary 19.5].

As a consequence of Theorem 2.1 we have

COROLLARY 2.3. Let N be a nest of a complex Hilbert space H with dimCH >
2 . Let T (N ) be a nest algebra. Suppose that F1,F2,G1,G2 : T (N ) → T (N ) are
arbitrary maps such that

F1(x)y+F2(y)x+ xG2(y)+ yG1(x) ∈ C1
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for all x,y ∈ T (N ) . Then there exist p1, p2,q1,q2,r1,r2 ∈ T (N ) and maps α1,α2 :
T (N ) → C1 such that p1 + p2 = r1 + r2 ∈ C1 , pi[x,y]− [x,y]ri ∈ C1 , i = 1,2 , and

F1(x) = xq1− p1x+ α1(x)
F2(x) = xq2− p2x+ α2(x)
G1(x) = xr2−q2x−α1(x)
G2(x) = xr1−q1x−α2(x)

for all x,y ∈ T (N ) .

Proof. If N is a trivial nest, then T (N ) = B(H) is a prime ring and hence
the conclusion follows from [3, Theorem 4.8]. Thus, we may assume that N is a
nontrivial nest. Since dimCH > 2 it follows that either dimCN > 1 or dimCN⊥ >
1. If dimCN > 1, then either T (N1) = B(N) is a noncommutative prime ring or
T (N1) is a triangular ring. Similarly, if dimCN⊥ > 1, then either T (N2) = B(N⊥)
is a noncommutative prime ring or T (N2) is a triangular ring. In view of a well-
known result of Posner [11, Theorem 2] and Lemma 2.2 we see that all assumptions of
Theorem 2.1 are met. Then the conclusion follows from Theorem 2.1. �

3. Centralizing additive maps

Let R be a ring. Recall that an additive map F : R → R is said to be commuting
if [F(x),x] = 0 for all x ∈ R . An additive map F : R → R is said to be centralizing if
[F(x),x] ∈ Z(R) . In 1993, Brešar [2] determined commuting and centralizing additive
maps on prime rings. Commuting maps appear in many areas and have been studied
intensively (see the survey article [4]).

In 2001, Cheung [6] described the form of commuting linear maps for a certain
class of triangular algebras. Later, a similar result [1, Remark 2.8] was obtained for
another class of triangular algebras. In 2013, Eremita [9] described the form of com-
muting additive maps for yet another class of triangular rings. In 2015, Eremita [10]
described the form of commuting additive maps for a much wider class of triangular
rings. Recently, the author [12] described the form of commuting additive maps for
arbitrary triangular rings.

In 2012, Du and Wang [8] described the form of k -commuting linear maps for a
certain class of triangular algebras. In particular, they obtained a description of cen-
tralizing linear maps for a certain class of triangular algebras (see [8, Theorem 1.1]).
Recently, the author obtained a description of centralizing linear maps for a more gen-
eral class of triangular algebras (see [13, Proposition 2.1]).

Using Theorem 2.1 we obtain a description of centralizing additive maps for a
certain class of triangular rings.

THEOREM 3.1. Let R be a triangular ring such that

Z(eRe) = Z(R)e and Z( f R f ) = Z(R) f .

Assume that one of the following conditions is satisfied:
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(i) Z2(eRe) = Z(R)e and eRe does not contain nonzero central ideals;

(ii) Z2( f R f ) = Z( f R f ) and fR f does not contain nonzero central ideals.

Suppose that a map F : R→ R is additive modulo Z(R) . If F is centralizing, then there
exist λ ∈ Z(R) and a map τ : R → Z(R) such that

F(x) = λx+ τ(x)

for all x ∈ R.

Proof. Since F is additive modulo Z(R) , the linearization of [F(x),x] ∈ Z(A) for
all x ∈ R , gives

F(x)y+F(y)x− xF(y)− yF(x) ∈ Z(R)

for all x,y ∈ R . Now, Theorem 2.1 implies that

F(x) = xq− px+ α1(x)
−F(x) = xr−qx−α2(x)

(26)

for some p,q,r ∈ R and maps α1,α2 : R → Z(R) . It follows from (26) that

x(q+ r)− (p+q)x∈ Z(R)

for all x ∈ R . In view of [8, Lemma 3.1] or [9, Lemma 3.1] we get that q+ r = p+q∈
Z(R) . So, r = p . Setting c = p+q we get from (26) that

F(x) = qx+ xq− cx+ α1(x)

for all x ∈ R . Since [F(x),x] ∈ Z(R) for all x ∈ R we get

[qx+ xq,x] ∈ Z(R) (27)

for all x ∈ R . Letting x = e in (27) we obtain that eq f = 0. Thus,

q = eqe+ f q f .

For every r ∈ R , letting x = e+ er f in (27) we get

[qx+ xq,x] = [(eqe+ f q f )(e+ er f )+ (e+ er f )(eqe+ f q f ),e+ er f ]
= [2eqe+ eqer f + er f q f ,e+ er f ]
= −eqer f − er f q f +2eqer f

= eqer f − er f q f ∈ Z(R)

for all r ∈ R . This yields that eqer f − er f q f = 0 and so eqe · er f = er f · f q f for all
r ∈ R . Hence,

q = eqe⊕ f q f ∈ Z(R).

Consequently, p ∈ Z(R) . Setting λ = q− p and τ = α1 we conclude that F(x) =
λx+ τ(x) for all x ∈ R . �

As consequences of Theorem 3.1 we have
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COROLLARY 3.1. Let S be a unital ring and let n � 3 . Suppose that a map
F : Tn(S) → Tn(S) is additive modulo Z(S) · I . If F is centralizing, then there exist
λ ∈ Z(S) · I and a map τ : Tn(S) → Z(S) · I such that

F(x) = λx+ τ(x)

for all x ∈ Tn(S) .

COROLLARY 3.2. Let S be a unital noncommutative prime ring. Suppose that a
map F : T2(S)→ T2(S) is additive modulo Z(S) · I . If F is centralizing, then there exist
λ ∈ Z(S) · I and a map τ : T2(S) → Z(S) · I such that

F(x) = λx+ τ(x)

for all x ∈ T2(S) .

COROLLARY 3.3. Let N be a nest of a complex Hilbert space H with dimCH >
2 . Let T (N ) be a nest algebra. Suppose that a map F : T (N )→T (N ) is additive
modulo C1 . If F is centralizing, then there exist λ ∈ C1 and a map τ : T (N ) → C1
such that

F(x) = λx+ τ(x)

for all x ∈ T (N ) .

Proof. If N is a trivial nest, then T (N ) = B(H) is a prime ring and hence
the conclusion follows from [2, Theorem A]. If N is a nontrivial nest, then the result
follows from Theorem 3.1. �
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