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BACKWARD ERRORS AND PSEUDOSPECTRA FOR

STRUCTURED NONLINEAR EIGENVALUE PROBLEMS

SK. SAFIQUE AHMAD AND VOLKER MEHRMANN

(Communicated by R.-C. Li)

Abstract. Minimal norm structured perturbations (backward errors) are constructed such that
an approximate eigenpair of a nonlinear eigenvalue problem is an exact eigenpair of an appro-
priately perturbed problem. Structured and unstructured backward errors are compared. These
results extend previous results for (structured) matrix polynomials to more general functions.

1. Introduction

In this paper we consider the perturbation analysis for the nonlinear eigenvalue
problem (in homogeneous form) of computing points on the Riemann sphere {(c,s) ∈
C2, |c|2 + |s|2 = 1} and vectors x ∈ Cn such that the nonlinear system of equations(

m

∑
j=0

Mj f j(c,s)

)
x = 0 (1)

holds, where we assume that the scalar valued functions f0(c,s), f1(c,s), . . . , fm(c,s)
and the coefficient matrices M0,M1,M2, . . . ,Mm ∈ Cn,n are given data.

Simultaneously, we study the problem in non-homogeneous form to determine
complex numbers λ and vectors x ∈ Cn such that(

m

∑
j=0

Mj f j(λ )

)
x = 0. (2)

We call pairs (c,s) satisfying (1) or λ satisfying (2) eigenvalues and the associated
vectors x eigenvectors. If the functions fi are all rational in c,s then by introducing
λ = c

s and scaling with appropriate powers of c and s , then these two versions of the
problem can be easily transformed into each other, but this transformation to nonhomo-
geneous form is not always possible, see problem (9).
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For convenience we often write problems (1) and (2) in product notation (M ⊗
f (c,s))x = 0, (M⊗ f (λ ))x = 0, respectively, with tuples of matrices M := (M0,M1,
. . . , Mm)∈ (Cn×n)m+1 and tuples f (c,s) := ( f0(c,s), f1(c,s), . . . , fm(c,s)) , or f (λ ) :=
( f0(λ ), . . . , fm(λ )) , respectively.

Backward error analysis, see e.g. [20], studies the question to compute, for
an approximate eigenvalue (γ,μ) (or λ ) and associated approximate eigenvector x ,
the smallest (in some appropriate measure) perturbation tuple of coefficient matrices
ΔM := (ΔM0,ΔM1, . . . ,ΔMm)∈ (Cn×n)m+1 and perturbation vectors Δ f = (δ f0,δ f1, . . . ,
δ fm) ∈ Cm+1 such that the perturbed nonlinear equations

((M + ΔM)⊗ ( f + Δ f )(γ,μ))x = 0, ((M + ΔM)⊗ ( f + Δ f )(λ ))x = 0, (3)

hold, respectively.
Classical backward error analysis would construct the perturbations both for the

nonlinear functions ( f j + δ f j)(c,s) (( f j + δ f j)(λ )) and the coefficients Mj + ΔMj ,
j = 0, . . . ,m . This problem is, however, extremely difficult for general sets of functions
f j . Instead, in this paper we assume that the perturbations in the functions f j are
known (so that for simplicity we may assume that there are no perturbations in these
functions at all) and we consider only perturbations in the coefficient matrices Mj . This
is a reasonable assumption in many applications, since the f j are typically elementary
scalar functions and thus the perturbation analysis is well understood. However, if there
are errors in the functions f j , then these would have to be incorporated in the analysis.

Under this assumption, for a given eigenvalue (γ,μ) or λ , we can express the
function values f j(γ,μ) or f j(λ ) , respectively, in a uniform way as scalars ψ j , where
we have the following choices that incorporate all cases that are considered in this paper.

1. The choice ψ j = λ j , j = 0,1, . . . ,m encodes the nonhomogeneous polynomial
case f j(λ ) = λ j .

2. The choice ψ j = γ jμm− j , j = 0,1, . . . ,m encodes the homogeneous polynomial
case.

3. The choice ψ j = f j(λ ) , j = 0,1, . . . ,m encodes the nonhomogeneous case with
general functions f j .

4. The choice ψ j = f j(γ,μ) , j = 0,1, . . . ,m encodes the homogeneous case with
general functions f j .

The backward error then is the smallest perturbation ΔM (in some measure) such that

((M + ΔM)⊗ψ)x =

(
m

∑
j=0

(Mj + ΔMj)ψ j

)
x = 0. (4)

Nonlinear eigenvalue problems of the described form arise in many applications,
see e.g., [34, 40] for surveys with a large number of applications and [9] for a collection
of benchmark examples.
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A nonrational eigenvalue problem of the form(
K + ı

√
κ2−κ2

c D−κ2M

)
x = 0

has been studied in [43]. Here κ is an unknown, κc is a fixed reference frequency,
and K , M , D are large and sparse symmetric stiffness, mass and damping matrices,
respectively. This problem can be turned into a polynomial eigenvalue problem by
introducing λ =

√
κ2−κ2

c .
In [12] a rational eigenvalue problem arising in the numerical solution of a fluid-

structure interaction is introduced. It has the form(
λ 2

a2 M +K +
λ 2

λ β + α
D

)
x = 0, (5)

where a is the speed of sound in the given material, and α , β are positive constants.
The matrices M , K are large sparse symmetric positive definite mass and stiffness
matrices, respectively, and the symmetric positive semidefinite matrix D describes the
effect of an absorbing wall. Clearing out the denominator in (5) leads to a cubic eigen-
value problem

(λ 3βM + λ 2(αM +a2A)+ λ (a2βK)+a2αK)x = 0. (6)

Similar rational eigenvalue problems arise in the finite element simulation of me-
chanical problems, see e.g., [33, 36, 42].

For (6) in the polynomial setting (and also in many other cases), to deal with
infinite eigenvalues arising from a singular leading coefficient, it is convenient to use
the homogeneous framework, setting λ = c

s , and studying

(s3βM + s2c(αM +a2A)+ sc2(a2βK)+ c3a2αK)x = 0, (7)

which can be written as M⊗ f (c,s) = M0 f0(c,s)+M1 f1(c,s)+M2 f2(c,s)+M3 f3(c,s) ,
where fi = cism−i , i = 0,1,2,3, m = 3, M0 = βM , M1 = (αM +a2A) , M2 = (a2βK) ,
M3 = a2αK . This representation may still not cure all the difficulties with infinite
eigenvalues, e.g., the homogeneous version of (5)

(M⊗ f (c,s))x :=
(

s2

c2a2 M +K +
s2

c(sβ + cα)
A

)
x = 0, (8)

still is problematic if c = 0. We often prefer nevertheless to work in the homogeneous
framework also for this particular problem.

Once a nonlinear eigenvalue problem of the form (3) has been converted into a
polynomial eigenvalue problem, it can subsequently be turned into a linear eigenvalue
problem by one of the usual linearization approaches, see e.g., [16, 31, 32]. This ap-
proach of turning a rational problem into a larger linear problem is successful in many
practical applications, see e.g., [24, 25, 29]. However, the size of the problem may
substantially increase and, moreover, typically extra eigenvalues are introduced which
have to be recognized and removed from the computed spectrum.
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EXAMPLE 1.1. Consider the symmetric rational eigenvalue problem

R(λ )x :=
[

λ −α + 1
λ−1 1

1 0

]
x = 0,

which has no finite eigenvalues, since detR(λ ) = −1. Scaling the problem by λ − 1,
the rational eigenvalue problem becomes a symmetric polynomial eigenvalue problem

P(λ )x =
[

(λ −1)(λ −α)+1 λ −1
(λ −1) 0

]
x = 0,

which has a double eigenvalue at ∞ and also a double eigenvalue at 1 .
Considering a symmetric linearization [22, 31] of the polynomial problem one

obtains

L(λ )z =

⎛⎜⎜⎝λ

⎡⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 −α 1
0 0 1 0

⎤⎥⎥⎦+

⎡⎢⎢⎣
−(α +1) 1 α −1

1 0 −1 0
α −1 0 0
−1 0 0 0

⎤⎥⎥⎦
⎞⎟⎟⎠z = 0.

Analyzing L(λ ) for different α , one sees that it has a Jordan block of size 2 at ∞ and
two Jordan blocks of size 1 for the eigenvalue λ = α .

Due to the Jordan block at ∞ this problem is very sensitive to perturbations. If,
e.g., we perturb the problem to

Pε(λ )x =
([

(λ −1)(λ −α)+1 λ −1
λ −1 ε

])
x = 0,

then the problem has two finite eigenvalues as roots of (λ 2−(α +1)λ +1)ε−(λ −1)2

and by appropriate choices of ε and α large perturbations may arise.

There also exist practical problems where a nonlinear eigenvalue problem can-
not be turned into a polynomial eigenvalue problem. Consider, e.g., the non-rational
eigenvalue problem of the form(

λM0 +M1 +M2e
−τλ

)
x = 0, (9)

where the Mi are real matrix coefficients, and τ is a real parameter. Such problems
arise in the stability analysis of single delay differential equations [14, 18, 26, 35],
where τ describes the delay time.

Example 1.1 shows some of the difficulties that may arise in eigenvalue problems
of the form (3) and it shows the need for a careful perturbation analysis on the original
data. This analysis is still mainly open and even for polynomial problems the (struc-
tured) perturbation theory and the computation of (structured) backward errors is only
very recent, see e.g., [1, 3, 5, 7, 8, 10, 11, 21, 22, 23, 30, 38, 39].

There is very little literature that deals with the perturbation analysis of rational or
more general nonlinear eigenvalue problems, see e.g., [12, 15, 37], but in these articles
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usually only problems without infinite eigenvalues are considered. But, as we will see
below, it turns out that for the discussed class of backward errors, the theory developed
in [7, 8] for the polynomial case can be easily extended.

The paper is organized as follows. In Section 2, we introduce the notation and
recall some of the techniques for polynomial eigenvalue problems from [7, 8]. In Sec-
tions 3 and 4 we then construct structured backward errors for complex symmetric/skew-
symmetric and Hermitian/skew-Hermitian problems, respectively, and compare these to
the corresponding unstructured backward errors.

2. Notation and preliminaries

For a nonnegative vector w = [w1,w2, . . . ,wn]T ∈ R
n and a vector x ∈ C

n , we
introduce the weighted (semi-)norm ‖x‖w,2 := ‖[w1x1,w2x2, . . . ,wnxn]T‖2 , where ‖ ‖2

denotes the classical Euclidean norm in Cn . If w is strictly positive, then this is a
norm, and if w has zero components then it is a semi-norm. For a nonnegative vector
w ∈ Rn , we define the componentwise inverse via w−1 := [w−1

1 ,w−1
2 , . . . ,w−1

n ]T , where
we use the convention that w−1

i = 0 if wi = 0. By σmax(A) and σmin(A) , we denote the
largest and smallest singular values of a matrix A , respectively. The identity matrix is
denoted by I , AT stands for transpose and AH for the conjugate transpose of a matrix
A∈ Cn,n . For x ∈ Cn with xHx = 1, we frequently use the projector Px := I−xxH onto
the orthogonal complement of the space spanned by x .

We will construct structured and unstructured backward errors both in spectral and
Frobenius norm on Cn,n , which are defined by

‖A‖2 := max
‖x‖=1

‖Ax‖2, ‖A‖F := (traceAHA)1/2,

respectively, and we sometimes use ‖A‖q , where q∈ {2,F} . For z ∈C, define sign(z)

:=
z
|z|2 if z �= 0, and sign(z) := 0 if z = 0.

The vector space of all tuples M = (M0,M1,M2, . . . ,Mm) with coefficients in Mi ∈
Cn,n , is denoted by Mm+1(Cn,n) . With a nonnegative weight vector w ∈ Rm+1 , it can
be equipped with a weighted norm/seminorm |||.|||w,q given by

|||M|||w,q := ‖(M0, . . . ,Mm)‖w,q = (w2
0‖M1‖2

q + . . .+w2
m‖Mm‖2

q)
1/2,

for q ∈ {2,F} , respectively. For convenience, if w := [1,1, . . . ,1]T then we leave off
the subscript w .

In the following, we consider matrix functions of the form M ⊗ f as in (1) or
(2). Such a matrix function is called regular if det(M ⊗ f ) �= 0 for some eigenvalue
(γ,μ) (λ ), otherwise it is called singular. Let (γ,μ) (λ ) be an approximation to an
eigenvalue with corresponding approximate right eigenvector x �= 0. Then for the tuple
ψ =: (ψ0,ψ1, . . . ,ψm) constructed as in (4), we construct Frobenius and spectral norm
backward errors

ηw,q(ψ ,x,M) := inf{|||ΔM|||w,q, ((M + ΔM)⊗ψ)x = 0}.
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If the problem has coefficients Mi that are structured in a subset S ⊂ Mm(Cn,n) , then
we construct structured backward errors

ηS
w,q(ψ ,x,M) := inf{|||ΔM|||w,q, ΔM ∈ S, ((M + ΔM)⊗ψ)x = 0}.

Such backward errors were introduced for matrix polynomials in [19, 38], but here we
follow [3, 4, 5].

In order to compute the backward errors, we will need the partial gradient ∇i‖z‖w,2

of a map Cm+1 → R , z �→ ‖z‖w,2 which is just the gradient of the map C → R , zi �→
‖[z0, . . . ,zm]T‖w,2 which fixes the variables z0, . . . ,zi−1,zi+1, . . . ,zm as constants. The
gradient of the map Cm+1 → R , z �→ ‖z‖w,2 , is then defined as

∇(‖z‖w,2) = [∇0‖z‖w,2,∇1‖z‖w,2, . . . ,∇m‖z‖w,2]
T .

With these definitions we have the following proposition, see [4, 8].

PROPOSITION 2.1. Consider the map Hw,2 : Cm+1\{0}→R given by Hw,2(z) :=
‖[z0, . . . ,zm]T‖w,2 . Then Hw,2 is differentiable on Cm and

∇ jHw,2(z) =
w2

j z j

Hw,2(z)
, j = 0,1, . . . ,m.

Furthermore,
m

∑
j=0

z j
∇ jHw,2(z)
Hw,2(z)

= 1,
m

∑
j=0

w−2
j |∇ jHw,2(z)|2 = 1.

In order to simplify the presentation, in the following we use the abbreviations

zMj :=
∇ jHw,2

Hw,2
|z, j = 0, . . . ,m, (10)

where z := [z0,z1, . . . ,zm]T .
We will construct backward errors for the following structured nonlinear eigen-

value problems, which extend the polynomial classes that were introduced in non-
homogeneous form in [31]. Defining MT := (MT

0 ,MT
1 , . . . ,MT

m) and MH := (MH
0 ,MH

1 ,
. . . ,MH

m ) , we say that problem (4) is complex symmetric/skew-symmetric if (MT ⊗ψ)=
±(M⊗ψ) , and Hermitian/skew-Hermitian if MH ⊗ψ = ±(M⊗ψ) .

For symmetric/skew-symmetric problems of the form (4), if x ∈ Cn is a right
eigenvector of (1) or (2) corresponding to an eigenvalue (γ,μ) (λ ), then x is a left
eigenvector. For Hermitian/skew Hermitian eigenvalue problems, if x ∈ Cn and y ∈ Cn

are right and left eigenvectors corresponding to an eigenvalue (γ,μ) (λ ) of (1) or (2),
then y and x are right and left eigenvector corresponding to the eigenvalue (γ,μ) (λ ).

For a given approximate eigenvalue (γ,μ) (λ ), we can determine the smallest
norm perturbation ΔM to the tuple M that makes this an eigenvalue, and when this
is known we can determine a concrete perturbation with this norm and a given right
eigenvector x . This follows from the following proposition.
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PROPOSITION 2.2. Let M ∈ Mm+1(Cn,n) and a set of functions f j , j = 0, . . . ,m
be given. For an approximate eigenvalue (γ,μ) (λ ), consider the tuple ψ = (ψ0, . . . ,ψm)
as in (4) . Set

Hw,2(ψ) = ‖[w0ψ1, . . . ,wmψm]T‖2, (11)

where we assume that not all weights wi are zero. Then the backward error satisfies

ηw,2(ψ ,x,M) = min
‖x‖=1

‖(M⊗ψ)x‖
Hw−1,2(ψ)

.

Proof. The tuple that defines the backward error satisfies ((M + ΔM)⊗ψ)x = 0
for some normalized vector x , which implies that (M⊗ψ)x = −(ΔM⊗ψ)x . Hence
we have that

‖(M⊗ψ)x‖ � |||ΔM|||w,2Hw−1,2(ψ),

where w−1 = (w−1
0 ,w−1

1 , . . . ,w−1
n ) , with w−1

i = 0 if wi = 0. The perturbation ΔMi

depends on wi and hence if wi = 0, then there is no perturbation in the i th coefficient
matrix of M⊗ψ , i.e., ΔMi = 0. If at least one wi is nonzero and (M⊗ψ)x+(ΔM⊗
ψ)x = 0, then

‖(M⊗ψ)x‖
Hw−1,2(ψ)

� |||ΔM|||w,2

i.e., we have

ηw,2(ψ ,x,M) � ‖(M⊗ψ)x‖
Hw−1,2(ψ)

.

To show that equality can be achieved, consider any normalized vector x , a nor-
malized vector y with yHx = 1, as well as the rank one matrix (M⊗ψ)xyH , and choose
for i = 0, . . . ,m ,

ΔMi =
−w−2

i signψi|ψi|
Hw−1,2(ψ)2 (M⊗ψ)xyH .

Then we have that (M⊗ψ + ΔM⊗ψ)x = 0, which implies that

‖(M⊗ψ)xyHx‖
Hw−1,2(ψ)

=
‖(M⊗ψ)x‖
Hw−1,2(ψ)

.

Minimizing over all possible normalized vectors x then gives the desired inequal-
ity. �

We will also make use of the following completion result which is a direct corol-
lary of Theorem 1.2 in [13].
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PROPOSITION 2.3.

1. Let A = ±AT , C = ±BT ∈ Cn,n and χ := σmax

([
A
B

])
. Then there exists a

symmetric/skew-symmetric matrix X ∈ C
n,n such that σmax

([
A ±BT

B X

])
= χ ,

and X has the form

X := −KAKT + χ(I−KKH)1/2Z(I−KKT )1/2,

where K := B(χ2I −AA)−1/2 and Z = ±ZT ∈ Cn,n is an arbitrary matrix such
that ‖Z‖2 � 1 .

2. For A =±AH,B =±BH , set χ :=
∥∥∥∥[AB

]∥∥∥∥
2
. Then there exists an Hermitian/skew-

Hermitian matrix D, respectively, such that

∥∥∥∥[A ±BH

B D

]∥∥∥∥
2

= χ and D is of

the form D := −KAKH + χ(I−KKH)1/2Z(I −KKH)1/2 , where K := B(χ2I −
A2)−1/2 and Z = ±ZH is an arbitrary matrix such that ‖Z‖2 � 1 .

3. Backward errors for symmetric/skew-symmetric nonlinear
eigenvalue problems

In this section we will construct backward error formulas for non-homogeneous/ho-
mogeneous symmetric/skew-symmetric nonlinear eigenvalue problems.

THEOREM 3.1. Consider a regular symmetric/skew-symmetric nonlinear matrix
equation of the form (4) with M ∈ Mm+1(Cn,n) , and let x ∈ Cn with xHx = 1 . For
an approximate eigenvalue (γ,μ) (λ ), construct the tuple ψ := (ψ0,ψ1, . . . ,ψm) as in
(4) , and let k := −(M⊗ψ)x . Introduce the perturbation matrices

ΔMj :=

{−xxT MjxxH + zMj

[
xkT + kxH −2(xTk)xxH

]
if Mj = MT

j ,

zMj

[
kxH − xkT

]
if Mj = −MT

j ,

for j = 0, . . . ,m, where zMj is as in (10) . Then ΔM has the desired symmetry structure
and satisfies ((M⊗ψ)+ (ΔM⊗ψ))x = 0 , i.e., (γ,μ) (λ ) is an exact eigenvalue and

(M + ΔM⊗ψ))x = 0.

Proof. The proof is a slight modification of the proof for the polynomial case in
[7]. In the symmetric case we have for all j = 0, . . . ,m that ΔMj = ΔMT

j . Hence ΔM
is symmetric, and we have that
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((M + ΔM)⊗ψ)x =

(
m

∑
j=0

(Mj + ΔMj)ψ j

)
x

=
m

∑
j=0

ψ j
[
Mjx− xxT Mjx+ zMj

[
xkT x+ k−2(xTk)x

]]
= (I− xxT )(

m

∑
j=0

Mjψ j)x+
[
xkT x+ k−2(xTk)x

] m

∑
j=0

zMj ψ j.

By Proposition 2.1, we have
m

∑
j=0

zMj ψ j = 1, and also kT x = xT k . Hence

((M + ΔM)⊗ψ))x = −(I− xxT )k+ xkT x+ k−2(xTk)x
= −k+ x(xT k)+ x(kT x)+ k−2(xTk)x = 0.

The proof for the skew-symmetric case follows analogously. �
Using Theorem 3.1, we then obtain the following backward errors for complex

symmetric nonlinear eigenvalue problems.

THEOREM 3.2. Let M ∈ Mm+1(Cn,n) be as in (4) with complex symmetric co-
efficients, and let x ∈ Cn be such that xHx = 1 . Let (γ,μ) (λ ) be an approximate
eigenvalue, let the associated tuple ψ := (ψ0,ψ1, . . . ,ψm) be as in (4) , and let k :=
−(M⊗ψ)x .

i) The structured backward error with respect to the Frobenius norm is then given
by

ηS
w,F (ψ ,x,M) =

√
2‖k‖2

2−|xTk|2
Hw−1,2(ψ)

and there exists a unique complex symmetric ΔM with coefficients

ΔMj = zMj

[
xkT + kxH − (xTk)xxH] , j = 0, . . . ,m,

such that the structured backward error satisfies ηS
w,F(ψ ,x,M) = |||ΔM|||w,F and

x , x are left and right eigenvectors corresponding to the eigenvalue of (M +
ΔM)⊗ψ , respectively.

ii) The structured backward error with respect to the spectral norm is given by

ηS
w,2(ψ ,x,M) =

‖k‖2

Hw−1,2(ψ)

and there exists a complex symmetric ΔM with coefficients

ΔMj := zMj

[
xkT + kxH − (kT x)xxH − xT k(I− xxT )kkT (I− xxH)

‖k‖2
2−|xTk|2

]
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such that |||ΔM|||w,2 = ηS
w,2(ψ ,x,M) and ((M + ΔM)⊗ψ)x = 0 , where ‖k‖2

2 �=
|xT k|2 . Then (γ,μ) , (λ ) is an exact eigenvalue satisfying ((M + ΔM)⊗ψ)x =
0 .

Proof. The proof is a slight modification of the proof for the polynomial case [7].
By Theorem 3.1 we have that ((M + ΔM)⊗ψ)x = 0 and hence k = (ΔM⊗ψ)x . Now
we construct a unitary matrix U which has x as its first column, i.e., U = [x,U1]∈Cn×n

and let Δ̃Mj := UT ΔMjU =
[
d j, j dT

j
d j D j, j

]
, where Dj, j = DT

j, j ∈ C(n−1)×(n−1) . Then

U(Δ̃M⊗ψ)UH =UUT (ΔM⊗ψ)UHU = Δ̃M⊗ψ ,

and hence
U(Δ̃M⊗ψ)UHx = (Δ̃M⊗ψ)x = k,

which implies that

(Δ̃M⊗ψ)UHx = UT k =
[

xT k
UT

1 k

]
.

Therefore, we get that[
∑m

j=0 ψ jd j, j

∑m
j=0 ψ jd j

]
=

[
∑m

j=0 wjd j, jψ jw
−1
j

∑m
j=0 wjψ jd jw

−1
j

]
=

[
xT k
UT

1 k

]
.

To minimize the norm of the perturbation, we use the same procedure as in the polyno-
mial case [7] and solve this system for the parameters d j, j,d j in a least squares sense
which, together with Proposition 2.1, yields

d j, j = zMj x
T k, d j = zMjU

T
1 k, j = 0,1, . . . ,m,

and, since U1UH
1 = (I− xxH) , we have

ΔMj = U Δ̃MUH = xd j, jx
H +U1d jx

H + xdT
j U

H
1 +U1Dj, jU

H
1

= zMj [(xx
T kxH)+U1U

T
1 kxH + xkTU1U

H
1 )]+U1Dj, jU

H
1

= zMj

[
kxH + xkT − (kTx)xxH]+U1Dj, jU

H
1 . (12)

Further, we note that if wj = 0, then by our definition w−1
j = 0, and hence there will

be no perturbation to the coefficient matrix Mj , i.e., ΔMj = 0.
In Frobenius norm, the unique minimal perturbation is obtained by taking Dj, j = 0

and hence we get

‖ΔMj‖2
F = |d j, j|2 +2‖d j‖2

2 = |zMj |2(|xT k|2 +2‖UT
1 k‖2

2)

= |∇ jHw−1,2(ψ)|2 2‖k‖2
2−|xTk|2

Hw−1,2(ψ)2 ,
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since ‖UT k‖2
2 = |xT k|2 +‖UT

1 k‖2
2 . By Proposition 2.1, we have that

m

∑
j=0

w2
j |∇ jHw−1,2(ψ)|2 = 1, and hence, |||ΔM|||w,F =

√
2‖k‖2

2−|xTk|2
Hw−1,2(ψ)2 .

As kT x is a scalar constant, it follows that all ΔMj and thus also ΔM are symmetric
and

((M + ΔM)⊗ψ)x =
m

∑
j=0

ψ j(Mj + ΔMj)x = −k+(
m

∑
j=0

ψ jΔMj)x

= −k+
m

∑
j=0

f jzMj [kx
H + xkT − xkT xxH ]x = 0,

where we have again used Proposition 2.1, i.e., ∑m
j=0 ψ jzMj = 1.

For the spectral norm we can apply Proposition 2.3 to (12) and get

Dj, j = − zMj

P2

[
xT k(UT

1 k)(UT
1 k)T

]
+χ

[
I− (UT

1 k)(UT
1 k)H

P2

]1/2

Z

[
I− UT

1 k(UT
1 k)T

P2

]1/2

,

where Z = ZT and ‖Z‖2 � 1, P2 = ‖k‖2
2 − |xTk|2 , χ :=

√
‖d j, j‖2 +‖d j‖2

2 . With the

special choice Z = 0 we get Dj, j = − zMj

P2

[
xT k(UT

1 k)(UT
1 k)T

]
, where P �= 0and

U1Dj, jU
H
1 = − zMj

P2 xT kU1U
T
1 kkTU1U

H
1 = − zMj

P2 xT k(I− xxT )kkT (I− xxH).

Hence,

ΔMj = zMj

[
kxH + xkT − x(kT x)xH]− zMj

P2 xT k(I− xxT )kkT (I− xxH),

ΔM is symmetric, and ((M⊗ψ)+ (ΔM⊗ψ))x = 0. With

χ := σmax

([
d j, j

d j

])
= |zMj |

√
|xT k|2 +‖UT

1 k‖2
|∇ jHw−1,2(ψ)|

Hw−1,2(ψ)
‖k‖2,

then by Proposition 2.3 we have χ = ‖ΔMj‖2 , and again by Proposition 2.1,

ηS
w,2(ψ ,x,M) = |||ΔM|||w,2 =

‖k‖2

Hw−1,2(ψ)
. �

As a corollary we have the following relations between structured and unstructured
backward errors.
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COROLLARY 3.3. Consider a regular problem (1) with symmetric M∈Mm+1(Cn×n)
and let x ∈ Cn be such that xHx = 1 . For a given approximate eigenvalue (γ,μ) (λ )
define ψ = (ψ0,ψ1, . . . ,ψm) as in (4) and let k := −(M⊗ψ)x . Then

ηS
w,F(ψ ,x,M) �

√
2ηw,2(ψ ,x,M),

ηS
w,2(ψ ,x,M) = ηw,2(ψ ,x,M).

We obtain an analogous result in the case of real problems and real perturbations which
we omit here for brevity, we just mention that we need that the function evaluations f j

yield real values to obtain a real backward error. Defining ψ as in (4), in this case the

minimal perturbation has the form
m

∑
j=0

ψ jΔMj , with coefficients

ΔMj = zMj

[
xkT + kxT − (xT k)xxT ] , j = 1,2, . . . ,m.

The same technique of proof also applies in the complex skew-symmetric case. We
state the results here for completeness.

THEOREM 3.4. Consider problem (1) with complex-symmetric M∈Mm+1(Cn,n) ,
and let x ∈Cn be such that xHx = 1 . For an approximate eigenvalue (γ,μ) , (λ ) define

ψ = (ψ0, . . . ,ψm) as in (4) and let k :=−(M⊗ψ)x . Introducing ΔM⊗ψ =
m

∑
j=1

ψ jΔMj

with coefficient matrices

ΔMj := −zMj

[
xkT − kxH] , j = 0,1,2, . . . ,m,

we have that ΔM is complex skew-symmetric, and (γ,μ) is an exact eigenvalue with
eigenvector x of the perturbed problem ((M + ΔM)⊗ψ)x = 0 .

THEOREM 3.5. Consider problem (1) with complex-symmetric M∈Mm+1(Cn,n) ,
and let x ∈C

n be such that xHx = 1 . For an approximate eigenvalue (γ,μ) , (λ ) define
ψ = (ψ0, . . . ,ψm) as in (4) and let k := −(M⊗ψ)x . Then the structured backward
errors with respect to the Frobenius norm and spectral norm are given by

ηS
w,F(ψ ,x,M) =

√
2‖k‖2

2

Hw−1,2(ψ)
,

ηS
w,2(ψ ,x,M) =

‖k‖2

Hw−1,2(ψ)
,

respectively.

The relation between structured and unstructured backward errors is then clearly
the same as in the symmetric case for the spectral norm.

In this section we have shown that the backward error results for symmetric and
skew-symmetric matrix functions carry over from the polynomial case to (4) with very
little modifications.



ERRORS AND PSEUDOSPECTRA FOR NONLINEAR EIGENVALUE PROBLEMS 551

4. Backward errors for Hermitian/skew-Hermitian
nonlinear eigenvalue problems

In this section we present the results for the Hermitian and skew-Hermitian case.

THEOREM 4.1. Consider problem (1) with Hermitian or skew-Hermitian M ∈
Mm+1(Cn,n) , and let x ∈ Cn be such that xHx = 1 . For an approximate eigenvalue
(γ,μ) (λ ), define ψ = (ψ0, . . . ,ψm) as in (4) and let k := −(M⊗ψ)x . Introducing

ΔM⊗ψ =
m

∑
j=1

ψ jΔMj with coefficient matrices

ΔMj :=
{−xxHMjxxH +

[
zMj xk

HPx + zMjPxkx
H], if Mj = MH

j ,

−xxHMjxxH − [
zMj xk

HPx − zMjPxkx
H], if Mj = −MH

j ,

we have that ΔM is Hermitian or skew-Hermitian, respectively, and (γ,μ) (λ ) is an
exact eigenvalue with eigenvector x satisfying ((M + ΔM)⊗ψ)x = 0 .

Proof. The proof follows in the same way as for the symmetric/skew symmetric
problems. �

For the construction of the backward errors we introduce

T :=
[

ℜ(ψ0)w−1
0 . . . ℜ(ψm)w−1

m
ℑ(ψ0)w−1

0 . . . ℑ(ψm)w−1
m

]
,

and set

t = [t0, . . . ,tm]T := T+
[

ℜ(xHk)
ℑ(xHk)

]
, (13)

where T+ denotes the Moore-Penrose inverse of T , see [17]. Denoting by e j the j -th
unit vector, we have the following structured backward errors.

THEOREM 4.2. Consider problem (1) with Hermitian M ∈ Mm+1(Cn,n) , and
let x ∈ C

n be such that xHx = 1 . For an approximate eigenvalue (γ,μ) , (λ ) define
ψ = (ψ0, . . . ,ψm) as in (4) and let k := −(M⊗ψ)x .

i) The structured backward error in Frobenius norm is given by

ηS
w,F(ψ ,x,M) =

√
2‖k‖2

2−|xHk|2
Hw−1,2(ψ)

,

with
ΔMj = zMj

[
kxH + xkH − (kHx)xxH]+U1ΔDj, jU

H
1 .

If all ψ j , j = 0, . . . ,m are real then

ηS
w,F(ψ ,x,M) =

√√√√ m

∑
j=0

‖e jt‖2
2

w2
j

+2
‖k‖2

2−|xHk|2
Hw−1,2(ψ)2 ,
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with
ΔMj = w−1

j xeT
j tx

H + zMjPxkx
H + zMjxk

HPx +U1ΔDj, jU
H
1 .

ii) The structured backward error in spectral norm is given by

ηS
w,2(ψ ,x,M) =

‖k‖2

Hw−1,2(ψ)
,

with

ΔEj = ΔMj −
zMj x

HkPxkkHPx

P2 ,

if all ψ j , j = 1, . . . ,m are real, where ΔMj is as in part i), and

ηS
w,2(ψ ,x,M) =

√√√√ m

∑
j=0

‖e jt‖2
2

w2
j

+
‖k‖2

2−|xHk|2
Hw−1,2(ψ)2 ,

with

ΔEj = ΔMj −
w−1

j eT
j tPxkkHPx

‖k‖2
2−|xHk|2 , and ‖k‖2

2 �= |xHk|2,

otherwise, where ΔMj is as in (i) .

Proof. The proof follows as in the proof of Theorem 3.3 in [8]. �

The result for the skew-Hermitian case is obtained analogously, just replacing Mj

by ıMj , we omit the result here.
The relationship between the structured and unstructured backward errors for the

Hermitian/skew-Hermitian case is the same as in the symmetric/skew-symmetric case.
Here we state the results for the Hermitian case, the analogous results for the skew-
Hermitian case are again omitted.

COROLLARY 4.3. Consider problem (1) with Hermitian or skew-Hermitian M ∈
Mm+1(Cn,n) , and let x ∈ Cn be such that xHx = 1 . For an approximate eigenvalue
(γ,μ) (λ ), define ψ = (ψ0, . . . ,ψm) as in (4) and let k := −(M⊗ψ)x . Then we have
the following relations between the structured and unstructured backward errors.

i) ηS
w,2(ψ ,x,M) = ηw,2(ψ ,x,M), if ψ j ∈ R for 0 � j � m,

ii) ηS
w,2(ψ ,x,M) = ηw,2(ψ ,x,M), if ψ j ∈ ıR for 0 � j � m,

iii) ηS
w,2(ψ ,x,M) � ηw,2(ψ ,x,M), otherwise, if Hw−1,2(ψ)‖T+‖ � 1 ,

iv) ηS
w,F(ψ ,x,M) �

√
2ηw,2(ψ ,x,M), if ψ j ∈ R for 0 � j � m,

v) ηS
w,F(ψ ,x,M) �

√
2ηw,2(ψ ,x,M), otherwise, if Hw−1,2(ψ)‖T+‖ �

√
2 .
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Proof. By Theorem 4.2, we have

ηS
w,F(ψ ,x,M) =

√√√√ m

∑
j=0

∣∣∣∣ t j

w j

∣∣∣∣2 +2
‖k‖2

2−|xHk|2
Hw−1,2(ψ)2

�
√
‖T+‖|xHk|2−2

|xHk|2
Hw−1,2(ψ)2 +2

‖k‖2

Hw−1,2(ψ)2

=

√√√√|xHk|2
[
‖T+‖2− 2

Hw−1,2(ψ)2

]
+2

‖k‖2

Hw−1,2(ψ)2

�
√

2ηw,2(ψ ,x,M)

if Hw−1,2(ψ)‖T+‖ �
√

2, where using (13) we have ∑m
j=0 |t j|2 = ‖t‖2 = |xHk|2‖T+‖2 .

The other results follow from Theorem 4.2. �

We illustrate the results with some examples.

EXAMPLE 4.4. Consider the delay differential equation ẋ(t)+M1x(t)+M0x(t −
τ) = 0, where

M0 = −
⎡⎣ 1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5

⎤⎦ , M1 = −
⎡⎣ −149 −50i −154i+1

50i 7 4+ i
154i+1 4− i 1

⎤⎦ , x =

⎡⎢⎣
i√
3

− i√
3

1√
3

⎤⎥⎦ ,

and the delay is τ = 1000. For given λ and ψ as in (4) the associated eigenvalue
problem is M⊗ψ = γI +M1 +M0e−λ τ with ψ = (ψ0,ψ1,ψ2) = (−e−λ τ ,−1,λ ) . The
coefficient matrices M2 = I , M1 , M0 are Hermitian and if λ is such that ψ j ∈ R , for
j = 0, . . . ,m , then we obtain the following backward errors.

λ η2(ψ ,x,M) ηS
2 (ψ ,x,M) ηS

F(ψ ,x,M)

0.3 0.3703 0.3703 0.5104
3 0.9000 0.9000 0.9074
10 0.9780 0.9780 0.9787
10−5 140.5133 140.5133 168.3081

If λ ∈ C such that ψ j ∈ C for j = 0, . . . ,m , then we obtain

λ η2(ψ ,x,M) ηS
2 (ψ ,x,M) ηS

F(ψ ,x,M)

20+3i 0.9903 1.0158 1.0158
3+5i 0.9725 1.0176 1.0176
0.3+10i 0.9953 1.0163 1.0163
3i 60.279 112.5229 112.5229
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EXAMPLE 4.5. Consider the rational eigenvalue problem in homogeneous form(
μM0 + γM1 +

γμ
μ −10γ

M2

)
x = 0,

with Hermitian coefficients

M0 =

⎡⎣ 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

⎤⎦ , M1 =

⎡⎣ −149 −50i −154i+1
50i 7 4+ i

154i+1 4− i 1

⎤⎦ ,

M2 =

⎡⎣ 1 1+ i 2i
1− i 2 3i
−2i −3i 2

⎤⎦ , and x =

⎡⎢⎣
i√
3

− i√
3

1√
3

⎤⎥⎦ .

If (γ,μ) is such that ψ j ∈ R for j = 0, . . . ,m , then we obtain the backward errors

(γ,μ) η2(ψ ,x,M) ηS
2 (ψ ,x,M) ηS

F(ψ ,x,M)

(2,3) 110.3015 110.3015 132.1514
(0,2) 0.4076 0.4076 0.5483
(4,3) 159.6050 159.6050 191.2182
(4,0) 200.0725 200.0725 239.7038

If (γ,μ) is such that ψ j ∈ C for j = 0, . . . ,m , then we obtain the backward errors

(γ,μ) η2(ψ ,x,M) ηS
2 (ψ ,x,M) ηS

F(ψ ,x,M)

(0.1+0.2i,−0.3+0.9i) 50.4250 149.6831 149.6831
(2−3i,−4+3i) 116.9143 168.9691 168.9691
(−2−5i,3+7i) 115.3996 168.5062 168.5062

We see that in the complex case the structured and unstructured backward errors may
differ substantially.

REMARK 4.6. Backward errors are closely related to pseudospectra which have
been studied in detail for matrices, matrix pencils, and matrix polynomials, see e.g.,
[2, 6, 23, 27, 28, 39, 41]. Thus, the presented results on structured backward errors can
be immediately transferred to corresponding results for structured pseudospectra. For
brevity we do not present these results here.

5. Conclusion

We have extended the construction of structured backward errors from polyno-
mial eigenvalue problems to nonlinear eigenvalue problems that are linear in the matrix
coefficients and have derived a systematic framework for the construction of appropri-
ately structured backward errors for the classes of complex symmetric, complex skew-
symmetric, Hermitian, and skew-Hermitian problems. The resulting minimal pertur-
bation is unique in the case of Frobenius norm and there are infinitely many solutions
for the case of spectral norm. The results show no real surprise, the relation between
structured and unstructured backward errors is similar as in the polynomial case.
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