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Abstract. For positive integers n and k , an operator T is said to be k -quasi-∗ -n -paranormal if

||T 1+n+kx|| 1
1+n ||T kx|| n

1+n � ||T ∗T kx|| for all x ∈ H , which is a generalization of ∗ -paranormal
operator. In this paper, we prove that the spectrum is continuous on the class of all k -quasi-∗ -n -
paranormal operators. Let λ be an isolated point of σ(T ) and E be the Riesz idempotent with
respect to λ . We also prove that (1) if λ �= 0 , then E is self-adjoint and R(E) = N(T −λ) =
N(T −λ)∗ . (2) if λ = 0 , then R(E) = N(T k+1) .

1. Introduction

Let B(H) denote the C∗ -algebra of all bounded linear operators on an infinite
dimensional separable Hilbert space H . In paper [18] authors introduced the class of
k -quasi-∗ -n -paranormal operators defined as follows:

DEFINITION 1.1. For positive integers n and k , an operator T is said to be k -

quasi-∗ -n -paranormal if ||T 1+n+kx|| 1
1+n ||Tkx|| n

1+n � ||T ∗Tkx|| for all x ∈ H .

A k -quasi-∗ -n -paranormal operator for positive integers n and k is an exten-

sion of ∗ -n -paranormal operator, i.e., ||T 1+nx|| 1
1+n � ||T ∗x|| for unit vector x and

k -quasi-∗ -paranormal operator, i.e., ||Tk+2x||||Tkx|| � ||T ∗Tkx||2 for all x ∈ H . A ∗ -
1-paranormal operator is called a ∗ -paranormal operator and a 1-quasi-∗ -paranormal
operator is called a quasi-∗ -paranormal operator. It is known that quasi-∗ -paranormal
operator is normaloid [10], i.e., ||Tn|| = ||T ||n , for n ∈ N (equivalently, ||T || = r(T ) ,
the spectral radius of T ). ∗ -paranormal operator and quasi-∗ -paranormal operator
have been studied by many authors and it is known that they have many interesting
properties similar to those of hyponormal operators (see [5, 9, 13]).

It is clear that

∗-n-paranormal⇒ quasi-∗ -n-paranormal⇒ normaloid
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and

quasi-∗ -n-paranormal⇒ k-quasi-∗ -n-paranormal

⇒ (k+1)-quasi-∗ -n-paranormal.

EXAMPLE 1.1. Given a bounded sequence of positive numbers α : α1,α2,α3, . . .
(called weights), the unilateral weighted shift Wα associated with α is the operator on
l2 defined by Wαen = αnen+1 for all n � 1, where {en}∞

n=1 is the canonical orthogonal
basis for l2 . Straightforward calculations show that Wα is a k -quasi-∗ -n -paranormal
operator if and only if

Wα =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
α1 0 0 0 0 · · ·
0 α2 0 0 0 · · ·
0 0 α3 0 0 · · ·
0 0 0 α4 0 · · ·
· · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

(αi+1+nαi+n · · ·αi+2αi+1)
1

1+n � αi (i = k,k+1,k+2, · · ·).
Now it is natural to ask whether k -quasi-∗ -n -paranormal operators are normaloid

or not. For k > 1, an answer has been given: there exists a nilpotent operator which is
a k -quasi-∗ -n -paranormal operator. But it need not be normaloid.

In section 2, we give a necessary and sufficient condition for T to be a k -quasi-
∗ -n -paranormal operator. In section 3, we prove that the spectrum is continuous on
the class of all k -quasi-∗ -n -paranormal operators. In section 4, we study the Riesz
idempotent of k -quasi-∗ -n -paranormal operators.

2. k -quasi-∗ -n -paranormal operators

In the sequel, we shall write N(T ) and R(T ) for the null space and range space of
T , respectively.

LEMMA 2.1. [18] T is a k -quasi-∗ -n-paranormal operator if and only if

T ∗1+n+kT 1+n+k− (n+1)λ nT ∗kTT ∗Tk +nλ 1+nT ∗kT k � 0 f or any λ > 0.

THEOREM 2.2. If T does not have a dense range, then the following statements
are equivalent:

(1) T is a k -quasi-∗ -n-paranormal operator;

(2) T =
(

T1 T2

0 T3

)
on H =R(Tk)⊕N(T ∗k), where T ∗1+n

1 T 1+n
1 −(1+n)λ n(T1T ∗

1 +

T2T ∗
2 )+nλ 1+n � 0 for all λ > 0 and T k

3 = 0. Furthermore, σ(T ) = σ(T1)∪{0}.
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Proof. (1) ⇒ (2) Consider the matrix representation of T with respect to the
decomposition H = R(Tk)⊕N(T ∗k) :

T =
(

T1 T2

0 T3

)
.

Let P be the projection onto R(Tk) . Since T is a k -quasi-∗ -n -paranormal operator,
we have

P(T ∗1+nT 1+n− (1+n)λ nTT ∗ +nλ 1+n)P � 0 for all λ > 0.

Therefore

T ∗1+n
1 T 1+n

1 − (1+n)λ n(T1T
∗
1 +T2T

∗
2 )+nλ 1+n � 0 for all λ > 0.

On the other hand, for any x = (x1,x2) ∈ H, we have

(Tk
3 x2,x2) = (Tk(I−P)x,(I−P)x) = ((I−P)x,T ∗k(I−P)x) = 0,

which implies Tk
3 = 0.

Since σ(T )∪M = σ(T1)∪σ(T3), where M is the union of the holes in σ(T )
which happens to be subset of σ(T1)∩σ(T3) by Corollary 7 of [8], and σ(T1)∩σ(T3)
has no interior point and T3 is nilpotent, we have σ(T ) = σ(T1)∪{0}.
(2) ⇒ (1) Suppose that T =

(
T1 T2

0 T3

)
on H = R(Tk)⊕N(T ∗k) , where T ∗1+n

1 T 1+n
1 −

(1+n)λ n(T1T ∗
1 +T2T ∗

2 )+nλ 1+n � 0 for all λ > 0 and Tk
3 = 0. Since

Tk =

⎛
⎝Tk

1

k−1
∑
j=0

T j
1 T2T

k−1− j
3

0 0

⎞
⎠ ,

we have

T ∗k(T ∗1+nT 1+n− (1+n)λ nTT ∗ +nλ 1+n)Tk

=
(

T1 T2

0 T3

)∗k

×
((

T1 T2

0 T3

)∗1+n (
T1 T2

0 T3

)1+n

− (1+n)λ n
(

T1 T2

0 T3

)(
T1 T2

0 T3

)∗
+nλ 1+n

)

×
(

T1 T2

0 T3

)k

=

⎛
⎝ T ∗k

1 0

(
k−1
∑
j=0

T j
1 T2T

k−1− j
3 )∗ 0

⎞
⎠(

D C
C∗ F

)⎛
⎝Tk

1

k−1
∑
j=0

T j
1 T2T

k−1− j
3

0 0

⎞
⎠

=

⎛
⎜⎜⎝

T ∗k
1 DTk

1 T ∗k
1 D

k−1
∑
j=0

T j
1 T2T

k−1− j
3

(
k−1
∑
j=0

T j
1 T2T

k−1− j
3 )∗DTk

1 (
k−1
∑
j=0

T j
1 T2T

k−1− j
3 )∗D

k−1
∑
j=0

T j
1 T2T

k−1− j
3

⎞
⎟⎟⎠
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where D = T ∗1+n
1 T 1+n

1 − (1+n)λ n(T1T ∗
1 +T2T ∗

2 )+nλ 1+n ,

F = (
n

∑
j=0

T j
1 T2T

n− j
3 )∗

n

∑
j=0

T j
1 T2T

n− j
3 +T ∗1+n

3 T 1+n
3 − (1+n)λ nT3T

∗
3 +nλ 1+n,

C = T ∗1+n
1

n
∑
j=0

T j
1 T2T

n− j
3 − (1+n)λ nT2T ∗

3 .

Let λ > 0 be arbitrary and v = x⊕ y be a vector in H = R(Tk)⊕N(T ∗k) , where
x ∈ R(Tk) and y ∈ N(T ∗k) . Then

(T ∗k(T ∗1+nT 1+n− (1+n)λ nTT ∗ +nλ 1+n)Tkv,v)

= (T ∗k
1 DTk

1 x,x)+ (T ∗k
1 Dy,x)+ ((

k−1

∑
j=0

T j
1 T2T

k−1− j
3 )∗DTk

1 x,y)

+ ((
k−1

∑
j=0

T j
1 T2T

k−1− j
3 )∗D

k−1

∑
j=0

T j
1 T2T

k−1− j
3 y,y)

= (D(T k
1 x+

k−1

∑
j=0

T j
1 T2T

k−1− j
3 y),(T k

1 x+
k−1

∑
j=0

T j
1 T2T

k−1− j
3 y)).

Since

D = T ∗1+n
1 T 1+n

1 − (1+n)λ n(T1T
∗
1 +T2T

∗
2 )+nλ 1+n � 0 for all λ > 0,

(T ∗k(T ∗1+nT 1+n− (1+n)λ nTT ∗ +nλ 1+n)Tkv,v) � 0 for all v ∈ H,

hence
T ∗k(T ∗1+nT 1+n− (1+n)λ nTT ∗ +nλ 1+n)Tk � 0 for all λ > 0.

Thus T is a k -quasi-∗ -n -paranormal operator. �

COROLLARY 2.3. If T is a k -quasi-∗ -n-paranormal operator and R(Tk) is not
dense, then

T =
(

T1 T2

0 T3

)
on H = R(Tk)⊕ N(T ∗k),

where T1 is a ∗ -n-paranormal operator on R(Tk) and Tk
3 = 0 .

COROLLARY 2.4. If T is a k -quasi-∗ -n-paranormaloperator and R(Tk) is dense,
then T is a ∗ -n-paranormal operator.

COROLLARY 2.5. If T is a k -quasi-∗ -n-paranormal operator, 0 �= λ ∈ σp(T )

and T is of the form T =
(

λ A
0 B

)
on H = N(T −λ )⊕N(T −λ )⊥ , then A = 0 .
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Proof. Let E be the orthogonal projection onto N(T −λ ). Without loss of gener-
ality, assume that λ = 1. Since T is a k -quasi-∗ -n -paranormal operator, T satisfies

T ∗k(T ∗1+nT 1+n− (1+n)λ nTT ∗ +nλ 1+n)Tk � 0 for all λ > 0.

Taking λ = 1, we have

E(T ∗1+n+kT 1+n+k − (1+n)T∗kTT ∗Tk +nT∗kT k)E � 0.

We remark

E(T ∗1+n+kT 1+n+k)E =
(

1 0
0 0

)
,

E(T ∗kTT ∗Tk)E =
(

1+AA∗ 0
0 0

)

and

ET ∗kT kE =
(

1 0
0 0

)
.

Thus (−(n+1)AA∗ 0
0 0

)
� 0.

Hence A = 0. �

COROLLARY 2.6. If T is a k -quasi-∗ -n-paranormal operator and λ �= 0 , then
Tx = λx implies T ∗x = λx.

Proof. It follows from Corollary 2.5. �
The following example provides an operator T which is a k -quasi-∗ -n -paranormal

operator, however, the relation N(T ) ⊆ N(T ∗) does not hold.

EXAMPLE 2.7. [13] Let A =
(

1 0
0 0

)
B =

(
1 1
1 1

)
be operators on R

2
, and let

Hn = R
2

for all positive integers n . Consider the operator TA,B on ⊕+∞
n=1Hn defined by

TA,B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 · · ·
A 0 0 0 0 0 · · ·
0 B 0 0 0 0 · · ·
0 0 B 0 0 0 · · ·
0 0 0 B 0 0 · · ·
0 0 0 0 B 0 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then TA,B is a quasi-∗ -paranormal operator, hence TA,B is a k -quasi-∗ -paranormal
operator, however for the vector x = (0,0,1,−1,0,0, · · ·) , TA,B(x) = 0, but T ∗

A,B(x) �= 0.
Therefore, the relation N(TA,B) ⊆ N(T ∗

A,B) does not always hold.
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3. The spectral continuity of k -quasi-∗ -n -paranormal operators

For every T ∈ B(H) , σ(T ) is a compact subset of C . The function σ viewed as a
function from B(H) into the set of all compact subsets of C , equipped with the Haus-
dorff metric, is well known to be upper semi-continuous, but fails to be continuous in
general. Conway and Morrel [2] have carried out a detailed study of spectral continuity
in B(H) . Recently, it has been proved that the spectrum is continuous in the set of
normal operators and hyponormal operators in [7]. And this result has been extended to
quasihyponormal operators by Djordjević in [3], to p -hyponormal operators by Hwang
and Lee in [11], and to ( p,k )-quasihyponormal, M -hyponormal, ∗ -paranormal and
paranormal operators by Duggal, Jeon and Kim in [4]. In this section we extend this
result to k -quasi-∗ -n -paranormal operators.

LEMMA 3.1. Let T be a k -quasi-∗ -n-paranormal operator. Then the following
assertions hold:

(1) If T is quasinilpotent, then Tk+1 = 0 .
(2) For every non-zero λ ∈ σp(T ) , the matrix representation of T with respect to

the decomposition H = N(T −λ )⊕ (N(T −λ ))⊥ is: T =
(

λ 0
0 B

)
for some operator

B satisfying λ /∈ σp(B) and σ(T ) = {λ}∪σ(B) .

Proof. (1) Suppose T is a k -quasi-∗ -n -paranormal operator. If R(Tk) is dense,
then T is a ∗ -n -paranormal operator, which leads to that T is normaloid, hence T = 0.
If R(Tk) is not dense, then

T =
(

T1 T2

0 T3

)
on H = R(Tk)⊕N(T ∗k)

where T1 is a ∗ -n -paranormal operator, Tk
3 = 0 and σ(T ) = σ(T1)∪{0} by Theorem

2.2. Since σ(T1) = {0} , T1 = 0. Thus

Tk+1 =
(

0 T2

0 T3

)k+1

=
(

0 T2Tk
3

0 Tk+1
3

)
= 0.

(2) If λ �= 0 and λ ∈ σp(T ) , we have that N(T −λ ) reduces T by Corollary 2.5.

So we have that T =
(

λ 0
0 B

)
on H = N(T −λ )⊕ (N(T −λ ))⊥ for some operator B

satisfying λ /∈ σp(B) and σ(T ) = {λ}∪σ(B) . �

LEMMA 3.2. [1] Let H be a complex Hilbert space. Then there exists a Hilbert
space K such that H ⊂ K and a map ϕ : B(H) → B(K) such that

(1) ϕ is a faithful ∗ -representation of the algebra B(H) on K ;
(2) ϕ(A) � 0 for any A � 0 in B(H);
(3) σa(T ) = σa(ϕ(T )) = σp(ϕ(T )) for any T ∈ B(H) .
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THEOREM 3.3. The spectrum σ is continuous on the set of k -quasi-∗ -n-para-
normal operators.

Proof. Suppose T is a k -quasi-∗ -n -paranormal operator. Let ϕ : B(H) → B(K)
be Berberian’s faithful ∗ -representation of Lemma 3.2. In the following, we shall show
that ϕ(T ) is also a k -quasi-∗ -n -paranormal operator. In fact, since T is a k -quasi-∗ -
n -paranormal operator, we have

T ∗k(T ∗1+nT 1+n− (1+n)λ nTT ∗ +nλ 1+n)Tk � 0 for all λ > 0.

Hence we have

ϕ(T )∗k(ϕ(T )∗1+nϕ(T )1+n− (1+n)λ nϕ(T )ϕ(T )∗ +nλ 1+n)ϕ(T )k

= ϕ(T ∗k(T ∗1+nT 1+n− (1+n)λ nTT ∗ +nλ 1+n)Tk) by Lemma 3.2

� 0 by Lemma 3.2,

so ϕ(T ) is also a k -quasi-∗ -n -paranormal operator. By Lemma 3.1, we have T be-
longs to the set C(i) (see definition in [4]). Therefore, we have that the spectrum σ is
continuous on the set of k -quasi-∗ -n -paranormal operators by [4, Theorem 1.1]. �

4. Isolated point of spectrum of k -quasi-∗ -n -paranormal operator

Let λ be an isolated point of the spectrum of T . Then the Riesz idempotent E of
T with respect to λ is defined by

E =
1

2π i

∫
∂D

(μ −T)−1dμ ,

where D is a closed disk centered at λ which contains no other points of the spec-
trum of T . Stampfli [14] showed that if T is hyponormal, then E is self-adjoint and
R(E) = N(T − λ ) = N(T − λ )∗ . Recently, Tanahashi and Uchiyama [16] obtained
Stampfli’s result for ∗ -paranormal operators. We shall show that for every k -quasi-∗ -
n -paranormal operator T and each isolated point λ of σ(T ) , the Riesz idempotent E
satisfies that

R(E) = N(Tk+1) if λ = 0,

R(E) = N(T −λ ) = N(T −λ )∗ and E is self-adjoint if λ �= 0.

LEMMA 4.1. Let T be a ∗ -n-paranormal operator, λ be an isolated point of
σ(T ) and E be the Riesz idempotent with respect to λ . Then R(E) = N(T −λ ) .

Proof. Recall from [12, Proposition 4.8] that if T is a ∗ -n -paranormal operator,

then T is a (n+ 1)-paranormal operator, i.e., ||T 2+nx|| 1
2+n � ||Tx|| for unit vector x .

[16, Theorem 2] implies R(E) = N(T −λ ) . �
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THEOREM 4.2. Let T be a k -quasi-∗ -n-paranormal operator, λ be an isolated
point of σ(T ) and E be the Riesz idempotent with respect to λ . Then the following
assertions hold.

(1) if λ �= 0, then E is self-adjoint and R(E) = N(T −λ ) = N(T −λ )∗.

(2) if λ = 0, then R(E) = N(T k+1).

Proof. If λ �= 0, assume that R(Tk) is dense. Then T is a ∗ -n -paranormal oper-
ator and R(E) = N(T −λ ) by Lemma 4.1. So we may assume that Tk does not have
dense range. Then by Theorem 2.2 the operator T can be decomposed as follows:

T =
(

T1 T2

0 T3

)
on H = R(Tk)⊕N(T ∗k),

where T1 is a ∗ -n -paranormal operator on R(Tk) . Now if λ is a non-zero isolated
point of σ(T ) , then λ ∈ iso σ(T1) because σ(T ) = σ(T1)∪ {0} . Therefore λ is a
simple pole of the resolvent of T1 and the ∗ -n -paranormal operator T1 can be written
as follows:

T1 =
(

T11 0
0 T12

)
on R(Tk) = N(T1 −λ )⊕R(T1−λ ),

where σ(T11) = {λ} . Therefore

T −λ =

⎛
⎝0 0 T21

0 T12−λ T22

0 0 T3−λ

⎞
⎠ =

(
0 G
0 M

)

on
H = N(T1 −λ )⊕R(T1−λ )⊕N(T ∗k),

where

M =
(

T12−λ T22

0 T3−λ

)
.

Now, we claim that M is an invertible operator on R(T1−λ )⊕N(T ∗k) . First we verify
that T12−λ is invertible. If not, then λ will be an isolated point in σ(T12) . Since T12

is ∗ -n -paranormal, λ is an eigenvalue of T12 and thus T12x = λx for some non-zero
vector x in R(T1−λ ) . On the other hand, T1x = T12x implying x is in N(T1 − λ ) .
Hence x must be a zero vector. This contradiction shows that T12 − λ is invertible.
Since T3 −λ is also invertible, it follows that M is invertible. It is easy to show that
R(E) = N(T −λ ) .

We prove N(T − λ ) = N(T − λ )∗ . Since N(T − λ ) ⊆ N(T − λ )∗ by Corollary
2.6, it suffices to show that N(T −λ )∗ ⊆ N(T −λ ) . Let x = ( x1

x2 ) ∈ N(T −λ )∗. Then

0 = (T −λ )∗x =
(

(T1 −λ )∗ 0
T ∗
2 (T3−λ )∗

)(
x1

x2

)

=
(

(T1 −λ )∗x1

T ∗
2 x1 +(T3−λ )∗x2

)
.
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Hence x1 ∈ N(T1 −λ )∗ = N(T1 −λ ) . Since

(T −λ )
(

x1

0

)
=

(
T1−λ T2

0 T3−λ

)(
x1

0

)
=

(
(T1−λ )x1

0

)
= 0,

we have

0 = (T −λ )∗
(

x1

0

)
=

(
(T1 −λ )∗x1

T ∗
2 x1

)

by Corollary 2.6, hence T ∗
2 x1 = 0. This implies (T3 −λ )∗x2 = 0 and x2 = 0 because

T3 is nilpotent. Thus

x =
(

x1

0

)
∈ N(T1−λ )⊕{0}= N(T −λ ).

Next, we show that E is self-adjoint. Since E is the Riesz idempotent of T with
respect to λ and T is a k -quasi-∗ -n -paranormal operator, R(E) = N(T − λ ) and
N(E) = R(T −λ ) . Since N(T −λ )⊆N(T −λ )∗ by Corollary 2.6, then N(T −λ ) and
R(T −λ ) are orthogonal. Hence R(E)⊥ = N(E) , and so E is self-adjoint.

If λ = 0, σ(T |R(E)) = 0, then (T |R(E))k+1 = 0 by Lemma 3.1, hence R(E) =
N(Tk+1) . �
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