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POLYNOMIAL AS A NEW VARIABLE –– A BANACH

ALGEBRA WITH A FUNCTIONAL CALCULUS
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(Communicated by S. McCullough)

Abstract. Given any square matrix or a bounded operator A in a Hilbert space such that p(A)
is normal (or similar to normal), we construct a Banach algebra, depending on the polynomial
p , for which a simple functional calculus holds. When the polynomial is of degree d , then
the algebra deals with continuous Cd -valued functions, defined on the spectrum of p(A) . In
particular, the calculus provides a natural approach to deal with nontrivial Jordan blocks and one
does not need differentiability at such eigenvalues.

1. Introduction

There are many situations in which it would be desirable to be able to treat poly-
nomials as new global variables. For example, by Hilbert’s lemniscate theorem (see
e.g [12]) polynomials can be used to map complicated sets of the complex plane onto
discs. As polynomials are not one-to-one we represent scalar functions in the original
variable by a vector valued function in the polynomial. This leads to multicentric holo-
morphic calculus [9]. In [10] we applied it to generalize the von Neumann theorem on
contractions in Hilbert spaces. In such applications one would, given a bounded oper-
ator A , search for a polynomial p such that p(A) has a small norm – thus mapping a
potentially complicated spectrum into a small disc.

In this paper we study multicentric calculus without assuming the functions to be
analytic. As an application we consider situations in which p(A) is diagonalizable or
similar to normal. Thus, the aim is to remove the Jordan blocks by moving from A
to p(A) . To illustrate the goal consider finite dimensional matrices. If D = diag{α j}
is a diagonal matrix and ϕ is a continuous function, then any reasonable functional
calculus satisfies ϕ(D) = diag{ϕ(α j)} . Further, if A is diagonalizable so that with a
similarity T we have A = TDT−1 , then we of course set

ϕ(A) = Tϕ(D)T−1. (1)
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However, if A has an eigenvalue with a nontrivial Jordan block, then the customary
approach is to assume that ϕ is smooth enough at the eigenvalues so that the off-
diagonal elements can be represented by derivatives of ϕ . For example, if

J =

⎛
⎝α 1

α 1
α

⎞
⎠ (2)

then

ϕ(J) =

⎛
⎝ϕ(α) ϕ ′(α) 1

2 ϕ ′′(α)
ϕ(α) ϕ ′(α)

ϕ(α)

⎞
⎠ . (3)

A collection of different ways to define ϕ(A) for matrices can be found from [11],
where Higham, following Gantmacher [6], says that a function ϕ is defined at the
spectrum σ(A) = {α j} if the values ϕ(k)(α j) are known for 0 � k � n j , where n j +1
are the powers in the minimal polynomial.

This has two obvious drawbacks. First, since it is based on the Jordan form the
functional calculus is discontinuous: for diagonalizable matrices it is given for all con-
tinuous functions while it requires existence of derivatives at eigenvalues with nontriv-
ial Jordan blocks. Second, the approach cannot conveniently be extended to infinite
dimensional spaces. Recall that there is a natural functional calculus for normal oper-
ators which easily extends to operators which are similar to normal. If, however, an
eigenvalue with a nontrivial Jordan block would exist in the middle of a cluster of other
eigenvalues, then one would need to have a way to treat function classes which are
continuous and additionally have derivatives at that particular eigenvalue.

We shall show in this paper that there is a simple way to parametrize continuous
functions which slow down at those places where some extra smoothness is needed.
And it turns out that this allows a functional calculus which agrees with the holomor-
phic functional calculus if applied to holomorphic functions but is defined for functions
which do not need to be differentiable at any point.

The starting point for the calculus is taking w = p(z) as a new variable. Since
such a change of variable is only locally injective we compensate this by replacing the
scalar function

ϕ : z �→ ϕ(z) ∈ C

by a vector valued function
f : w �→ f (w) ∈ C

d

where d is the degree of the polynomial p . The multicentric representation of ϕ is
then of the form

ϕ(z) =
d

∑
j=1

δ j(z) f j(p(z)), (4)

where δ j ’s are the Lagrange interpolation polynomials such that δ j(λ j) = 1 while
δ j(λk) = 0 when k �= j, [9].
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If now p(A) is diagonalizable, one can apply the known functional calculus to
represent f j(p(A)) . But since δ j ’s are polynomials, δ j(A) is well defined and differ-
entiability of ϕ is not needed.

The paper is organized as follows. We first consider the Banach space of contin-
uous functions f : M → Cd and associate with it a product, “polyproduct” � , such
that it becomes a Banach algebra, which we denote by CΛ(M) . Here Λ denotes the set
of zeros of the polynomial p . Then the functions ϕ in (4) can be viewed as Gelfand
transformations f̂ of functions f ∈ CΛ(M) . Towards the end of the paper we discuss
the functional calculus for operators in Hilbert spaces H such that p(A) is similar to
a normal operator. In particular we study the mapping χA which associates to f a
bounded operator χA( f ) ∈ B(H)

χA( f ) =
d

∑
j=1

δ j(A) f j(p(A))

and show that we get a homomorphism χA( f � g) = χA( f )χA(g) which, in an appro-
priate quotient algebra, satisfies a spectral mapping theorem.

2. Construction of the Banach algebra

2.1. Multicentric representation of functions

We assume given a polynomial p(z) = (z− λ1) · · · (z− λd) with distinct zeros
Λ = {λ j}d

j=1 mapping the z-plane onto w-plane: w = p(z) . In addition we denote by
Λ1 = {z : p′(z) = 0} the set of critical points of p . We call the points of Λ as the local
centers of the multicentric calculus. Recall that by the Gauss-Lucas theorem Λ1 is in
the convex hull of Λ .

Suppose δ j(z) are the Lagrange interpolation polynomialswith interpolation points
in Λ so that

δ j(z) =
p(z)

p′(λ j)(z−λ j)
= ∏

k �= j

z−λk

λ j −λk
.

Assume then that we are given a function f mapping a compact M ⊂ C into Cd . It
determines a unique function ϕ on K = p−1(M) if we set

ϕ(z) =
d

∑
j=1

δ j(z) f j(p(z)) for z ∈ K.

We say that ϕ is given on K by a multicentric representation and denote it in short

ϕ = L f .

In the reverse direction, suppose we are given a scalar function ϕ on a set K0 . Then a
necessary condition for f to be determined uniquely is that K0 is balanced w.r.t. Λ
in the following sense: K0 = p−1(p(K0)) . We shall assume throughout that K0 ⊂ K =
p−1(M) is such that p(K0) = M .
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Assuming that K is balanced and contains no critical points, then the function f is
pointwisely uniquely determined by the values of ϕ . In order to write down a formula
we agree about some additional notation. Denote the roots of p(z)−w = 0 by z j =
z j(w) . Away from critical values these are analytic and we assume a fixed numbering so
that z j(w)→ λ j if z1(w)→ λ1 (when w→ 0). In the inversion we essentially exchange
interpolation and evaluation points. To that end let δ j(ζ ;w) denote the interpolation
polynomial, with w fixed, which takes the value 1 at ζ = z j(w) while vanishing at
other zk(w)’s:

δ j(ζ ;w) =
p(ζ )−w

p′(z j(w))(ζ − z j(w))
, (5)

so that in particular δ j(ζ ;0) = δ j(ζ ).

PROPOSITION 1. Suppose K is a balanced compact set with respect to local cen-
ters Λ . Assume that ϕ is given pointwisely in K . Then f is uniquely defined for all
noncritical values w ∈ M \ p(Λ1) by

fk(w) =
d

∑
j=1

δ j(λk;w)ϕ(z j(w)). (6)

The functions fk inherit the smoothness of ϕ , and additionally, if λc ∈Λ1 is an interior
point of K and ϕ is at that point analytic, then the singularities of each fk at the critical
value p(λc) are removable.

Proof. See the discussions in [9] and [10]. �
So, we could use the expression f = L −1ϕ at least when the components of f

are determined by (6) for noncritical values w provided ϕ is given in a balanced set.
In particular this is natural when ϕ is analytic in a balanced domain. However, the
topic of this paper is in functions which are perhaps given only on discrete sets, such
as the set of eigenvalues of a matrix and then some extra care is needed in considering
the possible lack of injectivity of L . We shall therefore build a Banach algebra and
view L as performing the Gelfand transformation f̂ = L f . We then get many general
properties of Gelfand transform to be transported into our situation with relatively small
amount of work.

2.2. Multiplication of the vector functions: polyproduct

Consider now continuous functions f mapping M into Cd . We are aiming to
define a Banach algebra structure into C(M)d . Denoting by � the multiplication in
C(M)d we then want that L takes the vector functions into scalar functions in such a
way that L becomes an algebra homomorphism

L ( f �g) = (L f )(L g)

where the multiplication of scalar functions L f is pointwise.
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Since ∑d
j=1 δ j(z) = 1 the constant vector 1 = (1, . . . ,1)t ∈ Cd serves as the unit

in the algebra. In order to define f �g we hence need to code the differences between
components of f .

DEFINITION 1. For a ∈ Cd we set

� : a �→ �a =

⎛
⎜⎜⎝

0 a1−a2 . . . a1−ad

a2−a1 0 . . . a2−ad

. . . . . . . . . . . .
ad −a1 . . . ad −ad−1 0

⎞
⎟⎟⎠

and call it boxing the vector a .

In order to define the product we still need to introduce two “scaling” entities,
matrix L and vector � . The matrix L has zero diagonal and Li j = 1/(λi−λ j) for
i �= j , while the vector � ∈ Cd has components � j = 1/p′(λ j) . Now, denoting by ◦ the
Hadamard (or Schur, elementwise) product we can define the product as follows.

DEFINITION 2. Let f and g be pointwisely defined functions from M ⊂ C into
Cd . Then their “polyproduct” f � g is a function defined on M , taking values in Cd

such that
( f �g)(w) = ( f ◦ g)(w)−w (L◦� f (w)◦�g(w))�.

REMARK 1. We shall write this in short, with slight abuse of notation, as

f �g = f ◦ g−w (L◦� f ◦�g)�.

Further, for the powers we write f n = f � f n−1 and the inverse in particular as f−1

whenever it exists: f � f−1 = 1 .

PROPOSITION 2. The vector space of functions

f : M ⊂ C → C
d

equipped with the product � becomes a complex commutative algebra with 1 as the
unit.

Proof. In addition to the obvious properties of scalar multiplication and summa-
tion of vectors we observe that the vector product is commutative

f �g = g� f

and since �1 = 0 we have 1� f = f . Further, since �(α f + βg) = α� f + β�g, we
get

(α f + βg)�h = α( f �h)+ β (g�h).

These are enough for the structure to be an algebra. �
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We shall now consider products L fL g . Denoting

σi j =
1

p′(λ j)
1

λi−λ j
(7)

we can write the polynomials δiδ j which appear in such products in a simple way.

LEMMA 1. We have with w = p(z)

δ 2
i (z) = δi(z)−w∑

j �=i

[σi jδi(z)+ σ jiδ j(z)] (8)

while for i �= j
δi(z)δ j(z) = w [σi jδi(z)+ σ jiδ j(z)]. (9)

Proof. Let first i �= j . Since

δi =
p

p′(λi)(z−λi)

and p(z) = w we can write

δiδ j =
w

p′(λi)
δ j

z−λi
.

But δ j/(z−λi) is a polynomial of degree d − 2 and can thus be written as a linear
combination in these basis polynomials. This gives

δ j

z−λi
=

1
λ j −λi

δ j +
p′(λi)

p′(λ j)(λi −λ j)
δi

which then yields (9). Consider then (8). Since ∑ j δ j = 1 we can write δi = 1−∑ j �=i δ j

to get
δ 2

i = δi−∑
j �=i

δiδ j,

which, with the help of (9), yields the claim and completes the proof of the lemma. �

THEOREM 1. Let f and g be defined in M and K = p−1(M) . Then if ϕ and ψ
are functions defined on K by ϕ = L f and ψ = L g, then ϕψ is given by

ϕψ = L ( f �g).

Proof. We can now multiply the expressions for ϕ and ψ :

ϕψ = ∑
i, j

δi fiδ jg j (10)

= ∑
i

δ 2
i figi +∑

i
∑
j �=i

δiδ j fig j (11)

= ∑
i

δi figi−w∑
i

∑
j �=i

[σi jδi(z)+ σ jiδ j(z)] figi (12)

+w∑
i

∑
j �=i

[σi jδi(z)+ σ jiδ j(z)] fig j. (13)
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Here the term multiplying δk appears in the form

fkgk −w ∑
j �=k

σk j( fk − f j)(gk −g j)

and hence the whole expression reads

ϕψ = ∑
i

δi [ figi −w∑
j �=i

σi j( fi − f j)(gi −g j)].

This is easily seen to be of the form ϕψ = L ( f �g) which completes the proof of the
theorem. �

2.3. The norm in the algebra

We shall be considering continuous functions f from a compact M ⊂ C into Cd

and begin with the uniform norm | f |M = maxw∈M | f (w)|∞ where |a|∞ = max1� j�d |a j| .
The definition of polyproduct makes this into an algebra, but | · |M is not an algebra
norm in general, so we need to move into the “operator norm”.

DEFINITION 3. For f ∈C(M)d we set

‖ f‖ = sup
|g|M�1

| f �g|M.

This is clearly a norm in C(M)d and it is in fact equivalent with | · |M .

PROPOSITION 3. There is a constant C , only depending on M and on Λ such
that

‖ f �g‖ � ‖ f‖‖g‖ (14)

| f |M � ‖ f‖ � C| f |M. (15)

Proof. In fact
| f |M = | f �1|M � ‖ f‖.

On the other hand, from the definition of the polyproduct it is clear that there exists a
constant C such that

| f �g|M � C| f |M |g|M.

But then
‖ f‖ = sup

|g|M�1
| f �g|M � C| f |M .

Finally,
| f �g�h|M � ‖ f‖ |g�h|M � ‖ f‖‖g‖|h|M

implies (14). �
Since the polyproduct � is uniquely determined by Λ , we shall denote the algebra

in short as CΛ(M) .
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DEFINITION 4. The vector space C(M)d of continuous functions f from a com-
pact M ⊂C into Cd , with the operator norm ‖ f‖ and product � is denoted by CΛ(M) .

The discussion can be summarized as follows.

THEOREM 2. The Banach space C(M)d equipped with polyproduct � , and de-
noted by CΛ(M) , is a commutative unital Banach algebra. The algebra-norm ‖ · ‖ is
equivalent with | · |M and functions with components given by polynomials p(w,w) are
dense in CΛ(M) .

Proof. Recall that polynomials p(w,w) are dense in the sup-norm on a compact
M ⊂ C among continuous functions by Stone-Weierstrass theorem. Applying this on
each component of functions f ∈CΛ(M) gives the result. �

2.4. Characters of CΛ(M)

In order to be able to apply the Gelfand theory we need to know all characters in
the algebra CΛ(M) .

DEFINITION 5. A nontrivial linear functional χ :CΛ(M)→C is called a character
if it is additionally multiplicative:

χ( f �g) = χ( f )χ(g).

The set of all characters is the character space, which we denote here by X .

REMARK 2. In commutative unital Banach algebras all characters – complex ho-
momorphisms – are automatically bounded and of norm 1. Since maximal ideals are
kernels of characters, the focus is sometimes on the maximal ideals rather than on the
characters, [1], [2], [3], [13].

Because the polyproduct � is constructed to yield L ( f �g) = L fL g, we con-
clude immediately that for each fixed z0 ∈ p−1(M) the functional

χz0 : f �→
d

∑
j=1

δ j(z0) f j(p(z0)) (16)

is a character. We show next that there are no others.

THEOREM 3. The character space X is

X = {χz : z ∈ p−1(M)}

where χz is given in (16) .
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Proof. We need to show that all characters are of the form (16). Let χ ∈ X be
given and apply it within the subalgebra consisting of elements of the form

f = α1,

where α is a scalar function α ∈C(M) . Now, it is well known that all multiplicative
functionals in C(M) are given by evaluations at some w0 ∈ M : α �→ α(w0) ; hence
χ(α1) = α(w0) for some w0 ∈ M .

Next, take an arbitrary g ∈CΛ(M) . Then we conclude from

χ(α1�g) = α(w0)χ(g)

that χ(g) depends on g(w0) , only. In fact χ(α1 � g) = χ(αg) = α(w0)χ(g) and if
α(w0) = 1 we have

χ(g) = χ(αg)+ χ((1−α)g)

so that χ((1−α)g) = 0.
We assume next that w0 is chosen and χ is a character f �→ χ( f ) such that the

value only depends on f (w0) . We may therefore view χ as an arbitrary linear func-
tional in Cd which is multiplicative with respect to the polyproduct � at w0 . In fact,
setting for a,b ∈ C

d

ab = (a�b)(w0)

makes Cd into a Banach algebra, for each fixed w0 .
Let a,b ∈ Cd , then χ is of the form

χ(a) =
d

∑
j=1

η ja j

and we require
χ((a�b)(w0)) = χ(a)χ(b).

First observe that χ(1) = 1 gives ∑d
j=1 η j = 1. Then, comparing with Lemma 1 and

using the notation in the proof of it, we see that we must have

η2
i = ηi −w0 ∑

j �=i

(σi jηi + σ jiη j) (17)

while for j �= i
ηiη j = w0(σi jηi + σ jiη j). (18)

Let first w0 = 0. Then clearly ηi ∈ {0,1} and, since ∑i ηi = 1, only one of the
ηi ’s can differ from zero resulting in exactly d different solutions.

For w0 �= 0 we have from (18) that ηi �= 0 for all i . We take η1 as an unknown
so that for j > 1

η j =
w0σ1 jη1

η1 −w0σ j1
.



576 O. NEVANLINNA

Substituting these into (17) and dividing with η1 �= 0 yields

η1 = 1−w0 ∑
j �=1

σ1 j −w2
0 ∑

j �=1

σ j1σ1 j

η1 −w0σ j1
.

This has, counting multiplicities, exactly d solutions for η1 . However, we already
know d solutions, namely, δ1(zk(w0)) , for k = 1, · · · ,d where p(zk(w0)) = w0 , which
completes the proof. �

2.5. Gelfand transform and the spectrum

When ϕ is holomorphic it is natural to think ϕ as the “primary” function which
is represented or parametrized by the vector function f . However, when dealing with
functions with less smoothness it is easier to think their roles to be reversed. This is
because f can be taken as any continuous vector function while the behavior of ϕ is in
general complicated near critical points.

We take CΛ(M) as the defining algebra while the functions ϕ appear as Gelfand
transforms.

Before applying this machinery we recall some basic properties of Gelfand theory.
Let A be a commutative unital Banach algebra with unit e and denote by h a character:

h(ab) = h(a)h(b) for all a,b ∈ A .

Let us denote by ΣA the character space of A . Then every h ∈ ΣA has norm 1 and
ΣA is compact in the Gelfand topology: one gives ΣA the relative weak∗ -topology it
has as a subset of the dual of A .

Then the Gelfand transform of a ∈ A is

â : ΣA → C where â(h) = h(a).

The function â is then always continuous in the Gelfand topology and this allows one
to study the algebra A by studying continuous functions on ΣA .

Since every maximal ideal of A is of the form Nh = {a ∈ A : h(a) = 0} , the
character space is sometimes called the maximal ideal space of A . We collect here
basic facts on the Gelfand theory, and here we treat â∈C(ΣA ) as a continuous function
with the sup-norm. Recall that the spectrum σ(a) of an element a ∈ A consists of
those λ ∈ C for which λe−a does not have an inverse in A . We denote by ρ(a) the
spectral radius of a : ρ(a) = max{|λ | : λ ∈ σ(a)} .

THEOREM 4. (Gelfand representation theorem) Let A be a commutative unital
Banach algebra. Then for all a ∈ A

(i) σ(a) = â(ΣA ) = {â(h) : h ∈ ΣA } ;

(ii) ρ(a) = ‖â‖∞ = limn→∞ ‖an‖1/n � ‖a‖;
(iii) a ∈ A has an inverse if and only if â(h) �= 0 for all h ∈ ΣA ;
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(iv) rad A = {a ∈ A : â(h) = 0 for all h ∈ ΣA } .

(See any text book treating Banach algebras, e.g. [1], [2], [3], [13]).
We shall now consider CΛ(M) . In what follows we write f � f n−1 = f n and in

particular f−1 for the inverse of f . Recall that we denote by X the character space of
CΛ(M)

X = {χz : z ∈ p−1(M)}
where

χz( f ) =
d

∑
j=1

δ j(z) f j(p(z)).

This allows us to identify χz with z and consequently X with p−1(M) . Hence we
shall view the Gelfand transform f̂ as a function of z ∈ p−1(M) .

DEFINITION 6. Given f ∈CΛ(M) we set

f̂ : p−1(M) → C

f̂ : z �→ f̂ (z) =
d

∑
j=1

δ j(z) f j(p(z)).

Thus, we can view the multicentric representation operator L as performing the
Gelfand transformation

L : f �→ f̂ .

We denote this Gelfand transformation by L to remind that for constant vectors a ∈
Cd the transformation â is just the Lagrange interpolation polynomial (restricted into
p−1(M)). We denote | f̂ |K = supz∈K | f̂ (z)| .

We specify now the general Gelfand representation theorem for the algebra CΛ(M) .

THEOREM 5. (Multicentric representation as Gelfand transform) For f ∈CΛ(M)
the following hold with K = p−1(M):

(i) σ( f ) = { f̂ (z) : z ∈ K} ;

(ii) ρ( f ) = | f̂ |K = limn→∞ ‖ f n‖1/n � ‖ f‖;

(iii) f has an inverse if and only if f̂ (z) �= 0 for all z ∈ K ;

(iv) rad CΛ(M) = { f ∈CΛ(M) : f̂ (z) = 0 for all z ∈ K} .

Recall, that an algebra A is called semi-simple if rad A = {0} .

THEOREM 6. CΛ(M) is semi-simple if and only if M contains no isolated critical
values of p.
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Proof. Take f ∈ rad(CΛ(M)) so that f̂ (z) = 0 for all z ∈ K . Since f̂ determines
f uniquely outside critical values, we have f (w) = 0 away from the critical values.
If every critical value is an accumulation point of M then by continuity f vanishes
everywhere. On the other hand, if w0 ∈ M is an isolated critical value, take critical
points zi ∈ p−1({w0}) . By assumption, they are isolated and all we need to do is to
find 0 �= a∈C

d such that ∑ j δ j(zi)a j = 0 for all i . However, since w0 is a critical value
at least two of the roots zi coincide and hence the matrix (δ j(zi))i j is not of full rank.
So, we conclude that nontrivial solutions f exist and CΛ(M) is not semi-simple. �

REMARK 3. If sA is a simplifying polynomial of minimal degree for an n×n ma-
trix A (see Definition 9), then all critical values of sA are isolated and inside σ(sA(A)) .

2.6. Invertible elements of CΛ(M)

From Theorem 5 we can conclude that if ϕ is given by multicentric representation
ϕ = L f where f is continuous and bounded, then 1/ϕ = L g with a bounded and
continuous g if and only if ϕ(z) �= 0 for z∈ p−1(M) . We shall now derive a quantitative
version of this.

THEOREM 7. There exists a constant C depending on M and Λ such that the
following holds. If f ∈CΛ(M) is such that for all z ∈ p−1(M)

|L f (z)| � η > 0,

then there exists g ∈CΛ(M) such that f �g = 1 and

‖g‖ � C
‖ f‖d−1

ηd . (19)

Before turning to prove this we look at an instructive example and formulate a
lemma of some inpedenpendt interest.

EXAMPLE 1. We shall first consider the degree two case with w = z2 − 1. If we
put ϕ(z) = L f (z) , then the inverse g = f−1 is given simply as follows:(

g1(w)
g2(w)

)
=

1
ϕ(z)ϕ(−z)

(
f2(w)
f1(w)

)
. (20)

In fact, since
g� f = g ◦ f +

w
4

(g1−g2)( f1 − f2)1

we have

g� f =
1

ϕ(z)ϕ(−z)
( f1 f2 − w

4
( f1 − f2)2)1

and then expanding ϕ(z)ϕ(−z) we obtain[
1+ z

2
f1 +

1− z
2

f2

][
1− z

2
f1 +

1+ z
2

f2

]
= f1 f2 − w

4
( f1 − f2)2.

In particular, the constant C in (19) equals 1 in this case.
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The example suggests to look at the inverse in the following way. Denote by
z j = z j(w) the roots of p(ζ )−w = 0 and when needed, we put z1(p(z)) = z . With
ϕ = L f and ψ = 1/ϕ = L g we then have

ψ(z1) =
1

Φ(w)

d

∏
j=2

ϕ(z j)

where Φ(w) = ∏d
j=1 ϕ(z j) . In this notation we have the following result.

LEMMA 2. Suppose that f has analytic components in M . Then

Φ : w �→
d

∏
j=1

ϕ(z j(w)) (21)

is analytic in M .

Proof. All roots z j(w) are analytic except possibly at critical values. Since ϕ(z j(w))
is given by

ϕ(z j(w)) =
d

∑
k=1

δk(z j(w)) fk(w)

with fk ’s analytic, we may as well assume that fk ’s are constants as the only source for
lack of analyticity at the critical values would come from products of δk ’s. But if fk ’s
are constants, we may put q(ζ ) = ∑d

k=1 fkδk(ζ ) . However, then

p(ζ1, · · · ,ζd) =
d

∏
j=1

q(ζ j)

is a symmetric polynomial and it can be expressed uniquely by elementary polynomials
si by Newton’s theorem. If we now substitute ζ j = z j(w) , where z j(w)’s are the roots
of p(ζ )−w = 0, we observe that all elementary polynomials si except sd are constants.
For example, s1 = −∑d

j=1 z j(w) = −∑d
j=1 λ j , while sd(w) = (−1)d(p(0)−w) . Thus

we arrive at a polynomial in w , which completes the proof. �

Proof of Theorem 7. We turn now to prove the bound for the inverse. From the
assumptions it follows immediately that |Φ(w)| � ηd . We therefore concentrate in
estimating

Φ(w)ψ(z) =
d

∏
j=2

ϕ(z j) =
d

∏
j=2

d

∑
k=1

δk(z j) fk(w)

and organize this as a sum of the form

δ1(z2) · · ·δ1(zd) f1(w)d−1 + · · · = ∑
|α |=d−1

qα(z)Fα(w).

Here α = (α1, · · · ,αd) and Fα(w) = ∏d
k=1 fk(w)αk while qα(z) is a rather complicated

sum of products of different δk ’s evaluated at z j ’s with j > 1. Treating z j = z j(p(z))
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as functions of z , qα(z) are clearly analytic away from the critical points z ∈ Λ1 .
Individual products of δk(z j)’s within qα(z) may have branch points at these critical
points while the sum qα(z) itself is however a polynomial. To see this, let fk(w) = xk

be constants and denote x = (x1, · · · ,xd)t ∈ Cd . Then Fα(w) = xα and if we put

P(z,x) = ∑
|α |=d−1

qα(z)xα ,

then we can view P(z,x) as a polynomial in C×Cd . In fact, Φ(p(z)) is a polynomial
and ϕ(z) divides it so P(z,x) must be a polynomial in z . But then, for example by
differentiating P(z,x) with ∂ α = ∏( ∂

∂xk
)αk gives ∂ αP(z,x) = α!qα(z) showing that

each qα is a polynomial in z .
Finally we write qα in the multicentric form qα(z) = ∑d

j=1 δ j(z)Qα , j(w) so that

Φ(w)ψ(z) =
d

∑
j=1

δ j(z) ∑
|α |=d−1

Fα(w)Qα , j(w).

Here |Fα(w)| � ‖ f‖d−1 and |Φ(w)| � ηd . But ψ = L g where

g = ∑
|α |=d−1

FαQα/Φ

and hence with C = ∑|α |=d−1‖Qα‖

‖g‖ � C
‖ f‖d−1

ηd . �

2.7. Characteristic function, resolvent estimates and nilpotent elements

From the previous discussion we see that f is invertible in the algebra if and only
if Φ does not vanish. This suggests to introduce a characteristic function for f . This
gives still another view to the algebra.

Denoting again by z j(w) the roots of p(z)−w = 0 we have λ ∈ σ( f ) = { f̂ (z) :
z ∈ K = p−1(M)} if and only if ∏d

j=1(λ − f̂ (z j(w))) = 0 at some w ∈ M . Expanding
the product as a polynomial in λ takes the form

π f (λ ,w) =
d

∏
j=1

(λ − f̂ (z j(w))) = λ d −Φ1(w)λ d−1 + · · ·+(−1)dΦd(w), (22)

since the coefficient functions Φ j are again functions of w by the same argument as in
Lemma 2; notice that Φd equals the Φ in (21).

DEFINITION 7. Given f ∈CΛ(M) we call π f (λ ,w) the characteristic function of
f . Further, we call (λ1− f )−1 the resolvent element whenever it exists.
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This allows us to formulate a different version of the estimate for the inversion. To
that end we denote by | · |∞ the max-norm in Cd .

THEOREM 8. There exists a constant C , depending on M and on Λ , such that
for w ∈ M

|(λ1− f )−1(w)|∞ � C
(|λ |+‖ f‖)d−1

|π f (λ ,w)| .

Proof. This follows in an obvious way from Theorem 7 and from the defini-
tions. �

REMARK 4. From ρ( f ) = | f̂ |K � ‖ f‖ we have the lower bound

1
dist(λ ,σ( f ))

= | 1

λ − f̂
|K � ‖(λ1− f )−1‖. (23)

This in particular implies that if f �= λ1 and λ ∈ ∂σ( f ) , there exists gn ∈CΛ(M) of
unit length such that (λ1− f )�gn → 0. In other words, λ1− f is a topological divisor
of zero.

We noted earlier that f ∈ rad CΛ(M) if and only if f̂ vanishes identically, or,
which is the same thing, σ( f ) = {0}.

PROPOSITION 4. If σ( f ) = {0} , then f is nilpotent and there exists n � d such
that f n = 0 .

Proof. In other words, we need to show that all quasinilpotent elements are actu-
ally nilpotent. It is clear from Theorem 6 that nontrivial quasinilpotent elements exist
when M contains an isolated critical value, say w0 . We can proceed now as follows.
We view the multiplication

f : g �→ f �g

as an operator in C(M,Cd) and hence for each w ∈ M there is a matrix Bf (w) such
that

( f �g)(w) = Bf (w)g(w).

If f is quasinilpotent, it means that each Bf (w) must be for fixed w quasinilpotent.
However, a d × d -matrix is quasinilpotent only when it is nilpotent, from which the
claim follows. �

EXAMPLE 2. Consider w = z2−1. Put h = w
4 ( f1 − f2) . Then

Bf =
(

f1 +h −h
h f2 −h

)

which for fixed w has the eigenvalues

1
2
( f1(w)+ f2(w))±

√
1+w
2

( f1(w)− f2(w)).
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That is, the eigenvalues are simply ϕ(z) and ϕ(−z) . Denote

E(z) =
(

δ1(z) δ2(z)
δ1(−z) δ2(−z)

)

so that for z �= 0

E(z)−1 =
1
2z

(
z+1 z−1
z−1 z+1

)
.

Finally, (
ϕ(z) 0

0 ϕ(−z)

)
= E(z)Bf (w)E(z)−1

and we see that the eigenvectors are independent of the function f . At z = 0 the
eigenvalues agree, and E(0) is no longer invertible. Put f (−1) = (1,−1)t so that
ϕ(0) = 0. Then

Bf (−1) =
1
2

(
1 1
−1 −1

)
is similar to

(
0 1
0 0

)
.

2.8. Quotient algebra CΛ(M)/IK0

When we apply the functional calculus, discussed in the next section, the natu-
ral requirement for ϕ is that it is well defined at the spectrum σ(A) of the operator
A , which means that f representing ϕ must be well defined on a set which includes
p(σ(A)) . However, p−1(p(σ(A)) is likely to be properly larger than σ(A) which in
practice shows up in lack of uniqueness in representing ϕ .

Let K0 ⊂ C be compact, put p(K0) = M and denote as before K = p−1(M) . We
assume here that the inclusion K0 ⊂ K is proper.

Let IK0 be the closed ideal in CΛ(M)

IK0 = { f ∈CΛ(M) : f̂ (z) = 0 for z ∈ K0}.
Then the set of elements we are dealing with can be identified with the cosets [ f ] :

CΛ(M)/IK0 = {[ f ] : [ f ] = f +IK0}.
This is a unital Banach algebra with norm defined as

‖ [ f ] ‖ = inf
g∈IK0

‖ f +g‖.

We need to identify the character space of this quotient algebra.

DEFINITION 8. Given a closed ideal J ⊂ A the hull of the ideal is the set of all
characters which vanish at every element in the ideal.

LEMMA 3. (Theorem 6.2 in [5]) Given a closed ideal J in a commutative Banach
algebra A , the character space of the quotient algebra A /J is the hull of J .

COROLLARY 1. The quotient algebra CΛ(M)/IK0 is a Banach algebra with unit
and the character space can be identified with K0 , so that the Gelfand transformation
becomes [ f ] �→ f̂|K0

.
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2.9. Additional remarks on LCΛ(M)

Here we make some observations on the range of the Gelfand transformation.
Denoting LCΛ(M) = {ϕ ∈ C(K) : ∃ f ∈ CΛ(M) such that ϕ = f̂} we clearly have a
normed subalgebra of C(K) with the sup-norm on K = p−1(M) but the algebra need
not be closed.

EXAMPLE 3. Let Λ = {−1,1} so that p(x) = x2 − 1, and M = [−1,0] = {x :
−1 � x � 0} so that K = p−1(M) = [−1,1] . Then LCΛ(M) contains all polynomials
as any polynomial Q(x) can uniquely be written as

Q(x) =
d

∑
j=1

δ j(x)Qj(p(x))

where Qj ’s are polynomials. Now, polynomials are dense in C(K) and we conclude
that the closure of LCΛ(M) equals C(K) in this case. However, if we take ϕ ∈C(K)
such that

ϕ(x) = max{xα ,0}
then for 0 < α < 1 we have ϕ ∈C(K)\LCΛ(M) . In fact, for x �= 0 we have ϕ(x) =
L f (x) with f (x2−1) becoming unbounded as x tends to 0. Note, that in this example
the Gelfand transformation is injective.

EXAMPLE 4. Let Λ = {−1,1} but K = Λ1 = {0} . Then CΛ({−1}) is a two-
dimensional complex algebra, with nontrivial radical consisting of vectors f such that
f1(−1)+ f2(−1) = 0. On the other hand LCΛ({−1}) is one-dimensional, closed and
isomorphic with the complex field.

EXAMPLE 5. Let Λ = {−1,1} and K = {z : ε � |z| � 2} with some small posi-
tive ε . Then the critical point, the origin, is not in K and the following hold with some
constant C

‖L f‖∞ � ‖ f‖ � C ‖L f‖∞.

However, if L f (x+ iy) = xα with 0 < α < 1 for x > 0 and vanishing on the left half
plane, then

‖ f‖ ∼ Const/ε1−α .

It is natural to ask whether ϕ ∈ LCΛ(M) shall be differentiable at the interior
critical points. After all, we shall be able to apply the functional calculus in such a case
for matrices which do have a nontrivial Jordan block and we usually assume that the
value on the off-diagonal would be the derivative of ϕ at the eigenvalue in question.

EXAMPLE 6. Let again p(z) = z2−1 but K such that it contains the critical point
in the interior: K = {z : |p(z)| � 2} . Then M likewise contains a neighborhood of -1.
We have

ϕ(z) =
1
2
[ f1(w)+ f2(w)]+

z
2
[ f1(w)− f2(w)].
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If ϕ ∈ LCΛ(M) , then fi ∈C(M) and we have

1
2z

[ϕ(z)−ϕ(−z)] =
1
2
[ f1(z2 −1)− f2(z2 −1)]

and hence the limit

lim
z→0

1
2z

[ϕ(z)−ϕ(−z)] =
1
2
[ f1(−1)− f2(−1)]

always exists. However, it does not imply that ϕ would be differentiable at the origin.
In fact, we have

1
z
[ϕ(z)−ϕ(0)] (24)

=
1
2z

{[ f1(z2 −1)+ f2(z2−1)]− [ f1(−1)+ f2(−1)] (25)

+
1
2
[ f1(z2 −1)− f2(z2 −1)]. (26)

Here the last term is continuous as z tends to origin. Thus the derivative exists de-
pending on the behavior of f1 + f2 near w = −1. In particular, if f1 + f2 is Hölder
continuous with exponent α > 1/2, then ϕ is differentiable.

3. Functional calculi

3.1. Functional calculus for matrices

We discuss first the functional calculus related to CΛ(M) for matrices. Denote by
Mn complex n×n -matrices with the norm

‖A‖ = sup
|x|2=1

|Ax|2.

Further, we denote by σ(A) = {αk} the eigenvalues of A and by mA the minimal
polynomial of A , that is, the monic polynomial q of smallest degree such that q(A)= 0:

mA(z) =
m

∏
k=1

(z−αk)nk+1.

Clearly a functional calculus for A can exist only when the functions are defined at the
spectrum. As mentioned in the introduction, the usual way is to say that ϕ is defined at
the spectrum σ(A) = {αk} if the values ϕ(i)(αk) are known for 0 � i � nk , [6], [11].
Based on this information one can construct the Hermite interpolation polynomial p for
ϕ and set ϕ(A) = p(A) . As we saw in Example 6 the functions in our algebra do not
need to be differentiable - but of course when they are the resulting functional calculus
yields the same matrices ϕ(A) .

DEFINITION 9. Given A ∈ Mn we call all monic polynomials p such that p(A)
is similar to a diagonal matrix as simplifying polynomials for A .
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If K denotes those indices k for which nk > 0 in the minimal polynomial, then
setting

sA(z) =
∫ z

0
∏

k∈K

(ζ −αk)nkdζ + c

we have a polynomial of minimal degree such that s( j)
A (αk) = 0 for j = 1, · · · ,nk and

k ∈ K . Clearly then sA(A) is similar to the diagonal matrix diag(sA(αk)) . Since we
can add an arbitrary constant to sA we may assume as well that sA has distinct roots.

Let now p be a simplifying polynomial for A with distinct roots and assume ϕ is
given on σ(A) as

ϕ(z) =
d

∑
j=1

δ j(z) f j(p(z)).

Denoting B = p(A) we could then define for f j ∈C(σ(B)) the matrix function f j(B)
either by Lagrange interpolation at p(αk) or by assuming the similarity transformation
to the diagonal form B = TDT−1 be given and setting f j(B) = T f j(D)T−1 , both yield-
ing the same matrix f j(B) which commute with A . Then the following matrix is well
defined:

ϕ(A) =
d

∑
j=1

δ j(A) f j(B).

It follows immediately that if we have two functions f ,g ∈CΛ(σ(B)) , and we denote
ϕ = L f , ψ = L g and ϕψ = L ( f �g) , then this definition yields

(ϕψ)(A) = ϕ(A)ψ(A).

However, we formulate the exact statement using a different notation to underline the
fact that knowing the values of ϕ at the spectrum of A need not determine f uniquely,
and hence not ϕ(A) , either.

DEFINITION 10. Assume p is a simplifying polynomial for A∈Mn with distinct
roots Λ . Then we denote by χA the mapping CΛ(p(σ(A))) → Mn given by

f �→ χA( f ) =
d

∑
j=1

δ j(A) f j(B). (27)

THEOREM 9. The mapping χA is a continuous homomorphism CΛ(p(σ(A))) →
Mn.

Proof. That χA is a homomorphism is build in the construction and in particular
we have

χA( f �g) = χA( f ) χA(g).

The continuity of χA is seen from

‖χA( f )‖ �
d

∑
j=1

‖δ j(A)‖ ‖ f j(B)‖
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combined with ‖ f j(B)‖� κ(T )| f |σ(p(A)) and with | f |σ(p(A)) � || f || , see Proposition 3.
Here κ(T ) = ‖T‖ ‖T−1‖ denotes the condition number of the diagonalizing similarity
transformation. �

We can now also conclude that we can formulate a spectral mapping theorem.
Let M = p(σ(A)) and, as it would likely to be the case, σ(A) is a proper subset of
p−1(M) . Then it follows from Corollary 1 that the spectrum of [ f ] in CΛ(M)/Iσ(A) is
σ([ f ]) = { f̂ (z) : z ∈ σ(A)}.

THEOREM 10. We have for [ f ] ∈CΛ(p(σ(A)))/Iσ(A) and χA( f ) ∈ Mn

σ(χA( f )) = σ([ f ]).

Proof. Even so the statement may look rather complicated the proof here can be
reduced to the standard spectral mapping theorem for polynomials. However, the state-
ment holds as such in more general setting and then in particular the present simple
proof is not available.

Consider f j(B) where B = p(A) and denote by βi the eigenvalues of B . There
are in general s � m different eigenvalues of B . Let q j be the polynomial of degree
s−1 such that

q j(βi) = f j(βi) for i = 1, · · · ,s. (28)

Then we set f j(B) = q j(B) . Thus we have

χA( f ) = P(A) (29)

if we set P(z) = ∑d
j=1 δ j(z)q j(p(z)) . The conclusion follows as P is a polynomial. �

REMARK 5. There are two different steps to be taken when consructing χA( f ) .
(i) Given A ∈ Mn one could for example compute the Schur decomposition of A .

From there one must decide what diagonal elements are to be considered as the same
and based on that one chooses a simplifying polynomial p such that it has simple roots.
Notice in particular that then the eigenvalues αk for which nk > 0, are distinct from the
roots λ j of p .

(ii) Given f one then computes the Lagrange interpolating polynomials q j(w)
satisfying (28) for each j .

Then χA( f ) is given by (29).

REMARK 6. It is natural to ask how this approach is different from the definition
based on Hermite interpolation on the spectrum of A . Consider the minimal polynomial
mA as the simplifying polynomial. In the Hermite interpolation one interpolates at the
eigenvalues while we add a constant c so that the polynomial p(z) = mA(z)+ c has
simple roots. The effect on the differentiability requirement on f and/or ϕ is then
removed and replaced by a balanced limiting behavior of the roots of p near its critical
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points - and this happens automatically, independent of the function f as long as it is
continuous. To illustrate this, suppose f is holomorphic and ϕ = L f so that

ϕ ′(z) =
d

∑
j=1

[δ ′
j(z) f j(p(z))+ δ j(z) f ′j(p(z))p′(z)].

However, at critical points zc we have ϕ ′(zc) = ∑d
j=1 δ ′

j(zc) f j(p(zc)) so this value does
not depend on whether f is differentiable at critical values or not. See also Example 6.

3.2. Polynomially normal operators in Hilbert spaces

We shall now consider bounded operators A in complex Hilbert spaces H . The
operator norm of A ∈ B(H) is denoted by ‖A‖ .

DEFINITION 11. We call A ∈ B(H) polynomially normal, if there exists a non-
constant monic polynomial p such that p(A) is normal. The polynomial p is then
called a simplifying polynomial for A .

Polynomially normal operators have been discussed in [4], [7], as operator valued
roots for polynomial equations p(z)−N = 0 with N normal. We formulate a structure
result (see Theorem 3.1, in [7], also Theorem 2 in [8]).

THEOREM 11. Let H be separable and A ∈ B(H) such that p(A) is normal for
some nonconstant polynomial p. Then there exist reducing subspaces {Hn}∞

n=0 for
A, such that H = ⊕∞

n=0Hn and A|H0
is algebraic while A|Hn are for n � 1 similar to

normal.

We could take use of this structure result but proceed independently of it. We start
by assuming that p(A) is normal and then comment the straightforward extension to
the case where p(A) is similar to normal.

Let N = p(A) be normal, and as before, we may assume that p has simple roots.
Then the first task is to define f j(N) in a consistent way. Recall the following two
results, see e.g. [2].

LEMMA 4. Let M ⊂ C be compact. Then the closure of polynomials of the form
q(w,w) in the uniform norm over M equals C(M) .

Since N commutes with N∗ the operator q(N,N∗) is well defined and the follow-
ing holds.

LEMMA 5. If N ∈ B(H) is normal, then

‖q(N,N∗)‖ = max
w∈σ(N)

|q(w,w)|.
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Given now a normal operator N and a continuous function f j on σ(N) one ap-
proximates f j by a sequence {q j,n} such that

| f j −q j,n|∞ = max
w∈σ(N)

| f j(w)−q j,n(w,w)| → 0.

But then {q j,n(N,N∗)} is a Cauchy sequence and we can define

f j(N) = lim
n→∞

q j,n(N,N∗). (30)

Then f j(N) ∈ B(H) is normal, with ‖ f j(N)‖ = | f j|∞ � ‖ f‖.

DEFINITION 12. Assume p is a simplifying polynomial for A ∈ B(H) with dis-
tinct roots Λ , so that N = p(A) is normal. Then we denote by χA the mapping
CΛ(p(σ(A))) → B(H) given by

f �→ χA( f ) =
d

∑
j=1

δ j(A) f j(N). (31)

Note that here δ j(A) and f j(N) commute. In fact, A commutes with N = p(A)
and since N commutes with N∗ the operator A commutes with N∗ as well, by Fu-
glede’s theorem, [2]. We combine the construction into the following theorem.

THEOREM 12. Let A ∈ B(H) and a simplifying polynomial p be given as in
Definition 12. Then the mapping χA is a continuous homomorphism from CΛ(p(σ(A)))
to B(H) . In particular,

χA( f �g) = χA( f ) χA(g)

and

‖χA( f )‖ � C‖ f‖ with C =
d

∑
j=1

‖δ j(A)‖.

REMARK 7. (The case of p(A) similar to normal) We can extend the construction
above to operators which are similar to polynomially normal ones. In short, assume
that A∈B(H) is such that there exists a polynomial p and a bounded T with bounded
inverse, such that N = T−1p(A)T is normal. Denote V = T−1AT so that N = p(V )
and B = p(A) . Then we can define

f j(B) = T f j(N)T−1

and again A commutes with f j(B) as A f j(B) = T [V f j(p(V ))]T−1 . This allows us to
define

χA( f ) = T χV ( f )T−1 (32)

and the extension shares all the natural properties.
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REMARK 8. (Spectral measure) Recall that if N is normal, then there exists (see
e.g. Section 12 in [14]) a spectral measure E from the σ -algebra of all Borel sets of
σ(N) into B(H) such that if ϕ is an essentially bounded Borel-measurable function on
σ(N) then

ϕ(N) =
∫

σ(N)
ϕ dE.

This could in an obvious way be used in defining f j(p(A)) , thus extending the func-
tional calculus even further.

3.3. Spectral mapping theorem for operators

If A ∈ B(H) is such that p(A) is similar to normal, then we have χA( f ) =
TχV ( f )T−1 and therefore χA( f ) and χV ( f ) have the same spectrum. Therefore we
may as well assume that A is polynomially normal.

THEOREM 13. Suppose p has simple zeros and A ∈ B(H) is such that p(A) is
normal. Then for all [ f ] ∈CΛ(p(σ(A)))/Iσ(A) we have

σ(χA( f )) = σ([ f ]).

Proof. Recall that σ([ f ]) = { f̂ (z) : z ∈ σ(A)}. Consider first the inclusion

f̂ (z) ∈ σ(χA( f )) for all z ∈ σ(A). (33)

where f is of the form
f j(w) = q j(w,w). (34)

We take a λ ∈ σ(A) and need to show that f̂ (λ ) ∈ σ(χA( f )) . The discussion
splits into two as to whether

λ ∈ σap(A), (35)

or, if that is not the case, then necessarily,

λ ∈ σp(A∗). (36)

Since p(A) is normal we have in both cases p(λ ) ∈ σap(p(A)) .
Assuming (35) there exists a sequence of unit vectors xn such that

(A−λ )xn → 0 (37)

which by writing p(A)− p(λ ) = q(A,λ )(A−λ ) implies immediately that

(p(A)− p(λ ))xn → 0.

But then also
(p(A)− p(λ ))∗xn → 0.
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In fact, if N is normal and Nyn → 0, then

(Nyn,Nyn) = (N∗yn,N
∗yn) → 0.

Denoting p(A) = N and p(λ ) = ν we have

χA( f )− f̂ (λ ) (38)

=
d

∑
j=1

δ j(A)[Qj(N,N∗)−Qj(ν,ν)] (39)

+ ∑
j=1

[δ j(A)− δ j(λ )]Qj(ν,ν). (40)

Operating with these at xn we have

[Qj(N,N∗)−Qj(ν,ν)]xn → 0

since both (N −ν)xn and (N∗ −ν)xn tend to 0. In fact, there are polynomials R,S of
three variables such that we can write

Q(N,N∗)−Q(ν,ν) = [Q(N,N∗)−Q(ν,N∗)]+ [Q(ν,N∗)−Q(ν,ν)]
= R(N,ν,N∗)(N−ν)+S(ν,N∗,ν)(N∗ −ν)

Likewise, by (37), [δ j(A)− δ j(λ )]Qj(ν,ν)xn → 0, and so f̂ (λ ) ∈ σap(χA( f )).
Next, assume that λ ∈ σp(A∗) and suppose x is an eigenvector such that

A∗x = λx.

Then clearly
{[δ j(A)− δ j(λ )]Qj(ν,ν)}∗x = 0.

However, we also have
Qj(N,N∗)∗x = Qj(ν,ν)x

since from A∗x = λx we conclude p(A)∗x = p(λ )x and so N = p(A) being normal this

implies Nx = νx as well. Substituting these into χA( f )∗ − f̂ (λ ) gives

[χA( f )∗ − f̂ (λ )]x = 0.

Hence f̂ (λ ) ∈ σp(χA( f )∗) and so f̂ (λ ) ∈ σ(χA( f )) .
We still need to show (33) when f̂ is not of the form (34). To that end assume that

f̂n approximates f̂ uniformly in σ(A) where f̂n is of the special form (34).
Take μ ∈ f̂ (σ(A)) and we need to show that μ ∈ σ(χA( f )) . For some λ ∈ σ(A)

we thus have μ = f̂ (λ ) . Let { f̂n} be an approximative sequence of the special form
(34) such that in particular

sup
z∈σ(A)

| f̂ (z)− f̂n(z)| → 0
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and hence also
χA( f ) = lim

n
χA( fn).

Fix an arbitrary open set V such that σ(χA( f )) ⊂ V . We show that μ ∈ V which
completes the argument. Fix an open set U such that

σ(χA( f )) ⊂U ⊂ cl(U) ⊂V.

Since the spectrum is upper semicontinuous (e.g. Theorem 3.4.2 in [1]) there exists an
ε > 0 such that

σ(B) ⊂U whenever ‖χA( f )−B‖ < ε.

Let nε be such that ‖χA( f )− χA( fn)‖ < ε for all n � nε . Then σ(χA( fn)) ⊂U . But
for f̂n we then have

f̂n(λ ) ∈ σ(χA( fn)) ⊂U.

Finally, from f̂n(λ ) → f̂ (λ ) we conclude that

μ = f̂ (λ ) ∈ cl(U) ⊂V.

Consider now the other direction. Here the conclusion follows easily already from
Corollary 1 with K0 = σ(A) . In fact, suppose f̂ (z) �= 0 for z ∈ σ(A). Then there exists
g ∈CΛ(σ(p(A))) such that

f̂ (z)ĝ(z) = 1 for z ∈ σ(A).

By Theorem 5 we then know that [g] is the inverse of [ f ] and since χA is a
homomorphism from Cλ (σ(p(A)))/Iσ(A) to B(H) , we have

χA( f )χA(g) = I

and 0 /∈ σ(χA( f )) . Thus, if μ ∈ σ(χA( f )) , then there must exist λ ∈ σ(A) such that
f̂ (λ )− μ = 0. But this simply means that σ(χA( f )) ⊂ f̂ (σ(A)) . �
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