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Abstract. The arrowhead matrices define a class of one-term Sylvester matrix (OTSM) operators
on a finite-dimensional Hilbert space through an elementary UDL factorization. It enables us
to consider the infinite invertible arrowhead matrices UDL factored properly for introducing,
under suitable conditions, the arrowhead operators and their associated class of OTSM operators
on an infinite-dimensional Hilbert space. Properties regarding convergence, inertia, inverses, and
spectra are also considered.

1. Introduction

The arrowhead matrices of finite order are of interest in the symmetric eigenvalue
problem [14, 18], and some literature is dedicated to compute their eigenpairs; see e.g.
[15]. In addition, there exists a current and increasing use of the arrowhead matrices
of large order, with applications in networks, wireless communication, and the world
wide web; see [12] and the references therein. Infinite arrowhead matrices arise also in
physical applications [3, 7], although a further analysis remains. For details on infinite
matrices see [6, 17]. Furthermore, it is of interest the introduction of explicit inertia
criteria with respect the half planes, based on the well-known theory [4, 5, 13, 16]. In
particular, for linear operators on Hilbert space with potential applications.

An arrowhead matrix can be defined as a particular diagonal plus rank-two matrix.
There are two similar kinds, up-arrowhead matrices and down-arrowhead matrices. In
the finite case, we obtain one from the other with an elementary similarity transfor-
mation. The up-arrowhead matrices can be defined adequately in the infinite case.
Although asymptotic analysis for large order arrowhead matrices is possible, an infi-
nite down-arrowhead matrix cannot be defined. Hence, we manage finite arrowhead
matrices of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b0 c1 c2 · · · cn−1

a1 b1 0
. . .

...

a2 0 b2
. . . 0

...
. . .

. . .
. . . 0

an−1 · · · 0 0 bn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(

b0 c′
a Db

)
, (1)
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with Db = diag(b1,b2, . . . ,bn−1) , and c′ denotes the transpose of c .
An n×n matrix A is said to be arrowhead without loss of generality if A is of the

form (1) and bordered irreducible, i.e. Db is nonsingular, with distinct nonzero diagonal
entries, and ai �= 0, ci �= 0, for i = 1,2, . . . ,n− 1. Bordered irreducible arrowhead
matrices ordered adequately have been studied largely in the available literature. The
ordering is by convenience of the proposed methods, but in general it is not necessary;
see e.g. [12, 15] and the references therein. In fact the symmetric eigenvalue problem
[14, 18] has been focused on bordered irreducible arrowhead matrices.

The aim is to begin with a class of OTSM operators [10] on a finite-dimensional
Hilbert space defined through a direct triangular factorization A = UDL of the arrow-
head matrices (1). The matrices U and L are upper and lower triangular, respectively,
with unit diagonal. The matrix D = diag(u,Db) is diagonal, with u �= 0 to be defined.
Well-known and new inertial and spectral criteria for these operators are given. In order
to introduce the arrowhead operators and their related class of OTSM operators on an
infinite-dimensional Hilbert space, we consider infinite invertible arrowhead matrices
UDL factored properly so that associativity of multiplication of the involved matrices
succeeds.

The operators defined from finite arrowheadmatrices have nice properties. Most of
these properties are preserved even for the arrowhead operators and their related OTSM
operators on an infinite-dimensional Hilbert space. We shall consider some of their
properties, e.g. Cauchy’s interlacing property for eigenvalues, inverse decomposition,
and inertia.

The outline is as follows, in Section 2 a UDL factorization for finite arrowhead
matrices is handled, focusing on the nonsingular ones. Their related OTSM operators
are defined and some results regarding inversion, inertial, and spectral properties are
detailed. Further analysis on the hermitian case is done. The infinite invertible arrow-
head matrices UDL factored properly are then introduced in Section 3. The arrowhead
operators and their associated OTSM operators on an infinite-dimensionalHilbert space
are introduced in Section 4. Properties regarding convergence, inertia, and spectra are
also considered.

2. Finite arrowhead matrices and OTSM operators

Every arrowhead matrix A ∈ Cn×n has a triangular factorization A = UDL . For
nonsingular arrowhead matrices (1) such a factorization is unique, with D nonsingular.

LEMMA 1. Given a nonsingular arrowhead matrix A ∈ Cn×n as in (1):

a). A has a unique UDL triangular factorization of the form,

A =
(

1
(
D−1

b c
)′

0 In−1

)(
u 0
0 Db

)(
1 0

D−1
b a In−1

)
, (2)

with u = b0−∑n−1
i=1

aici
bi
�= 0 , and In−1 the identity matrix of order n−1 .
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b). A−1 has a unique L−1D−1U−1 triangular factorization of the form,

A−1 =
(

1 0
−D−1

b a In−1

)( 1
u 0
0 D−1

b

)(
1 −(D−1

b c
)′

0 In−1

)
. (3)

c). A−1 is decomposable as a diagonal plus a rank-one matrix,

A−1 = diag
(
0,D−1

b

)
+

1
u

(
1

−D−1
b a

)(
1 −(D−1

b c
)′ )

. (4)

Proof. a). Straightforwardly from (1) and (2), with A and Db nonsingular matri-
ces, A = UDL if and only if u = b0−∑n−1

i=1
aici
bi
�= 0.

The proofs for b). and c). are also trivial. �
From Lemma 1, the UDL factorization of the nonsingular arrowhead matrices de-

fines a particular class of OTSM operators [10] on the set of all n×n diagonal nonsin-
gular matrices Diag(Cn×n) . It is of interest for linking inertial and spectral properties of
nonsingular arrowhead matrices with that of diagonal matrices belong to Diag(Cn×n) .

DEFINITION 1. The class of the matrix operators

T : Diag
(
C

n×n)→C
n×n; T (U,L) [D] := UDL = A,

is a class of OTSM operators defined from the UDL factorization (2) of the nonsingular
arrowhead matrix A . The argument matrix D , and the matrices L and U are as given
in Lemma 1.

Notice as the definition of the operator T ∈ T is dual because it also defines an
arrowhead operator on T : Cn→ Cn . Therefore in the finite-dimensional case, we can
study such operators from the associated nonsingular arrowhead matrix A as usual.

PROPOSITION 1. Given a nonsingular arrowhead matrix A ∈ Cn×n :

a). Its right eigenvectors are of the form xλi
= ξ

(
1 − (D−1

b−λi
a)′
)′

, with ξ �= 0 an

arbitrary scalar, and their distinct nonzero eigenvalues {λi} , i = 1,2, . . . ,k � n,
are the roots of the complex-valued function

f (λ ) : D ⊂ C→ C ; f (λ ) = b0−λ −
n−1

∑
i=1

ciai

bi−λ
. (5)

b). A is simple if and only if y′λi
xλi
�= 0 , for i = 1,2, . . . ,n, where the vector y′λi

=

η
(
1 − (D−1

b−λi
c)′
)

, with η �= 0 arbitrary, is a left eigenvector of A associated to

the simple nonzero eigenvalue λi . Therefore, its spectral decomposition is

A =
n

∑
i=1

λixλi
y′λi

=
n

∑
i=1

λi

(
1

−D−1
b−λi

a

)(
ηi −ηi

(
D−1

b−λi
c
)′ )

, (6)

with the scalars ηi chosen so that y′λi
xλ j

= δi j , Kronecker’s delta, for i, j =
1,2, . . . ,n.
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Proof. a). An eigenvector xλ of A belongs to the nontrivial kernel of A− λ In .
Since A is a nonsingular arrowhead matrix (1), bordered and irreducible, the form of
the eigenvectors and the function f (λ ) , related with the well-known secular equation,
are obtained readily.

The eigenvalues of A satisfy λi �= b j , j = 1, . . . ,n− 1, so that f (λ ) from (5)
has not indeterminacies. Notice the trivial kernels of A− b jIn , with independence of
the value b0 . The special case λi = b0 �= 0, and b0 �= b j , implies u = b0 �= 0, and

xλi
= ξ

(
1 − (D−1

b−b0
a)′
)′

.

The function f (λ ) = P(λ )/∏n−1
i=1 (bi−λ ) has the same roots than the character-

istic polynomial P(λ ) of A . Thus if xλi
= ξ

(
1 − (D−1

b−λi
a)′
)′

, with λi �= 0 a root of

f (λ ) , then xλi
is an eigenvector associated to λi .

b). Although P(λ ) and f (λ ) have the same roots, as a rule, their derivatives P′(λ )
and f ′(λ ) have distinct roots. However, if the root λi is not simple, λi is also a root
of P′(λ ) and f ′(λ ) , i.e. P′(λi) = f ′(λi) = 0. Hence, the derivative f ′(λ ) evaluated at
λ = λi , a possible eigenvalue of A with algebraic multiplicity greater than 1, is null.
The eigenvalues of A are into the domain of analyticity of f (λ ) , where its derivative is
well defined,

f ′(λ ) =−1−
n−1

∑
i=1

ciai

(bi−λ )2
= 0, for λ = λi, if and only if y′λi

xλi
= 0,

the vector y′λi
= η

(
1 − (D−1

b−λi
c)′
)

is a left eigenvector related with λi . Notice yλi

belonging to the kernel of A′ −λiIn .
Under the given assumptions A is simple, i.e. with n distinct nonzero eigenvalues,

and hence semisimple (similar to a diagonal matrix). The spectral decomposition (6) of
A is straightforward from the spectral theorem for finite simple matrices; see e.g. page
154 (Theorem 3) from [13]. �

2.1. Hermitian arrowhead matrices

The hermitian arrowhead matrices, satisfying A∗=A , with A∗ the conjugate trans-
pose of A , are of main use in applications. Since the hermitian arrowhead matrices also
satisfy factorization (2), their related OTSM operators are T (L) [D] := L∗DL = A .

PROPOSITION 2. Given a nonsingular hermitian arrowhead matrix A ∈ Cn×n ,
where Cn is the unitary space with inner product 〈 · , · 〉 , and the diagonal entries of Db

ordered without loss of generality in decreasing order:

a). A is simple and between two nearer singularities of f |R(λ ) , the restriction of
f (λ ) to R , there is one and only one real eigenvalue.

b). In addition, assume that b0 > b1 . There exist real numbers θi ( i = 1,2, . . . ,n),
so that the eigenvalues of A satisfy:

λi = bi−1 + θi‖a‖, with |θi|� 1, and
n

∑
j=2

θ j =−θ1.
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Proof. a). The ordering is obtained using an elementary similarity transformation
A = PÃP−1 on a nonsingular hermitian arrowhead matrix Ã . The eigenvalues of A are
real and nonzero. Also, λ �= b j , for j = 1, . . . ,n−1. Therefore, we can use the rational
function f |R(λ ) , the restriction of f (λ ) to R , by observing its real range,

f |R(λ ) : D ′ ⊂ R→ R ; f |R(λ ) = b0−λ −
n−1

∑
i=1

|ai|2
bi−λ

.

Thus into the domain of analyticity of f |R(λ ) , its derivative satisfies

f |′R(λ ) =−1−
n−1

∑
i=1

|ai|2
(bi−λ )2

< 0.

From Proposition 1, A is simple. The bi , i = 1, . . . ,n−1, are singularities of f |R(λ ) .
Since f |′

R
(λ ) < 0, taking arbitrary bk−1 and bk , k = 2, . . . ,n , into the open interval

(bk−1,bk) there is one and only one root of f |R(λ ) .
b). The hermitian arrowhead matrix is decomposed by convenience in the form

A = Db0 +F2 = diag(b0,Db)+
(

0 a∗
a On−1

)
, (7)

with b j ∈ R , j = 0,1, . . . ,n− 1. The matrix On−1 is the zero matrix of order n− 1.
The nonzero eigenvalues of F2 are simples, +‖a‖ , −‖a‖ . Since the matrices involved
are hermitian and b0 > b1 > .. . > bn−1 , using Courant-Fischer’s theorem for the char-
acterization of the eigenvalues {λi} of A , with decreasing ordering, we obtain for
i = 1,2, . . . ,n ,

bi−1−‖a‖� λi � bi−1 +‖a‖ ⇒ λi = bi−1 + θi‖a‖,
with |θi|� 1. Since trace

(
A−Db0

)
= 0, we have ∑n

i=1 θi = 0.
As a simple consequence of Proposition 2 a)., Cauchy’s interlacing property for

the eigenvalues of A also holds,

λ1 > b1 > λ2 > b2 > .. . > bn−2 > λn−1 > bn−1 > λn.

Therefore, −1 � θi < 0, i = 2,3, . . . ,n , 0 < θ1 � 1, and ∑n
i=2 θi =−θ1 . �

Analogous results as Proposition 2 b). can be obtained for distinct values of b0

and orderings of the diagonal entries of Db .

2.2. Explicit inertia criteria for arrowhead matrices

For every nonsingular matrix A , the Main Inertia Theorem [16] assures the ex-
istence of a hermitian matrix H with the same inertia than A , with respect the half
planes. The interesting case for arrowhead matrices is when H = D , from (2), the ma-
trix argument of T (U,L) [D] . Obviously, if an OTSM operator preserves inertia, then
it preserves stability. If A is hermitian, it is well known that A and D have the same
inertia.
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COROLLARY 1. Given a nonsingular arrowhead matrix A = UDL ∈ Cn×n , fac-
tored as in (2), where Cn is the unitary space. Assuming for the OTSM operator
T (U,L) [D] , a real diagonal matrix argument D = diag(u,Db):

a). If A is hermitian, then the OTSM operator T (L) [D] preserves inertia.

b). If A is not hermitian and the following condition on the matrix entries is satisfied,

uRe(b0)− 1
4

n−1

∑
i=1

|uai+bici|2
b2
i

> 0, (8)

with Re(b0) the real part of b0 , then the OTSM operator T (U,L) [D] preserves
inertia, In(A) = In(D) .

Proof. a). By the given assumptions D is trivially hermitian. Since A = L∗DL ,
the matrices A and D are congruent and Sylvester’s law of inertia holds; see page
187 (Theorem 3) from [13]. Thus if D is stable, negative definite, In(D) = (0,n,0) =
In(A) , and the matrix A is also stable.

b). If D is solution of Lyapunov’s equation AD + DA∗ = W , with W positive
definite and invertible, the Main Inertia Theorem [16] assures the same inertia (π ,ν,0)
for the matrices A and D ,

W = AD+DA∗ =
(

2uRe(b0) (ua+Dbc)∗

ua+Dbc 2D2
b

)
, (9)

where c denotes the conjugate of c . The matrix W is arrowhead and hermitian, hence
its eigenvalues are real and Cauchy’s interlacing property holds. Thus for Proposition 2,
W is positive and invertible if and only if the argument matrix DW = diag

(
uW ,D2

b

)
of

the triangular factorization (2) of W is positive. Since the remaining diagonal entries of
DW are positive, we only may check the condition uW > 0, it gives condition (8). �

3. Infinite arrowhead matrices with a UDL factorization

Given an infinite-dimensional matrix A = (αik) , the matrix B = (βik) is a classical
inverse of A if both matrices A and B satisfy AB = BA = I , with I the identity matrix.
The matrix A may have (or may not have) classical inverse. Alternatively, A may have
two classical inverses, and then infinitely many classical inverses; see e.g. [6, 17, 1].

We are interested in the infinite invertible arrowhead matrices (1) defined properly,
with the sequences a and c belonging to �2 , the space of the complex square summable
sequences, and Db an infinite invertible diagonal matrix. Recall that the arrowhead
matrices have been defined here as bordered and irreducible, i.e. ai , bi , and ci , are
nonzero, i = 1,2, . . . .

No every infinite-dimensional arrowhead matrix has a UDL factorization (2) pre-
serving associativity of multiplication of the matrices involved [6]. In order to extend
the inverse decompositions (3) and (4) to the infinite-dimensional case, the UDL fac-
torization for the infinite arrowhead matrices becomes essential. Further conditions on
the entries of A may be introduced.
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LEMMA 2. Given an infinite arrowhead matrix A of the form (1), with a, D−1
b a =

a/b, c, and D−1
b c = c/b, sequences belonging to C∞ :

a). The matrix A can be factored in the form (2) preserving associativity of matrix
product, with u = b0−∑∞

k=1
akck
bk
∈ C .

b). If A is invertible, its classical inverse A−1 can be factored in the form (3), well
defined for matrix product, and

u = b0−
∞

∑
k=1

akck

bk
�= 0. (10)

c). If A is invertible, its classical inverse can be decomposed as a determined diag-
onal plus rank-one matrix as given in (4).

Proof. a). The result is checked directly using the assumptions on the involved
sequences and the associativity property of the product of the infinite triangular matrices
and the infinite diagonal matrices involved in factorization (2).

b). If a matrix A with a UDL factorization (2) is also invertible, then u �= 0, and
such a triangular factorization is unique. Using associativity of multiplication of the
infinite matrices involved in (3),

AA−1 = (UD)(LL−1)(D−1U−1) = U(DD−1)U−1 = UU−1 = I.

In a similar way, A−1A = I . Therefore, A−1 is a classical inverse of A . The uniqueness
of the factorization for the classical inverse A−1 is a consequence of the uniqueness
of the inverses of the diagonal and the unit triangular matrices involved in the UDL
factorization (2) of A .

c). Taking the product (L−1D−1)U−1 = L−1(D−1U−1) , a decomposition for the
classical inverse, analogous that of the finite case, follows. �

EXAMPLE 1. First, we illustrate with an infinite arrowhead matrix A1 with b0 =
1, Db = diag

(
2
3 , 3

4 , . . . , n+1
n+2 , . . .

)
, and the sequences a and c belonging to C

∞ , a j =
1/( j +2) , c j = 1/( j +1) ,

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2

1
3

1
4

1
5 · · ·

1
3

2
3 0 0 0 · · ·

1
4 0 3

4 0 0 · · ·
1
5 0 0 4

5 0 · · ·
1
6 0 0 0 5

6 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the entries of D−1
b = diag

( 3
2 , 4

3 , . . . , n+2
n+1 , . . .

)
are uniformly bounded, and D−1

b a =(
1
2 , 1

3 , . . . , 1
(n+1) , . . .

)′
, D−1

b c =
(

3
4 , 4

9 , . . . , n+2
(n+1)2

, . . .
)′

, belonging to C∞ , A1 can be
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UDL factored properly. The entry u from the factorization (2) is obtained using the
series of Basel’s problem,

u = 1−
∞

∑
k=1

1
(k+1)2

= 2− π2

6 > 0.

Hence by (10), A1 is invertible. The classical inverse A−1
1 decomposed as in (4) is

obtained straightforwardly.

EXAMPLE 2. We manage now a symmetric arrowhead matrix A2 with its main
diagonal densely defined in the closed interval

[ 1
2 , 3

2

]
. It is provided by reiterating a

bisection method on such an interval. Thus, for j = 1,2, . . . , the b j = 2m+2k+1
2m+1 , with

j = 2m + k , 2m � j < 2m+1 , and 0 � k < 2m . Taking by convenience b0 = 3/2, the
entries on the diagonal of A2 are distinct, and the diagonal is dense in

[
1
2 , 3

2

]
. Also,

a = c ∈ C∞ , with a j = 1/( j +1) ,

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2

1
2

1
3

1
4

1
5 · · ·

1
2 1 0 0 0 · · ·
1
3 0 3

4 0 0 · · ·
1
4 0 0 5

4 0 · · ·
1
5 0 0 0 5

8 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since D−1
b a =

(
1
2 , 4

9 , . . . , an
bn

, . . .
)′ ∈C∞ , A2 can be UDL factored properly. Notice the

uniformly bounded entries of D−1
b = diag

(
1, 4

3 , . . . , 1
bn

, . . .
)

, i.e. 2/3 < 1/b j < 2, and

a ∈C
∞ . The condition (10) (u �= 0) is also satisfied,

u = 3
2 −

∞

∑
k=1

1
bk

1
(k+1)2

, but 2
3

(
π2−6

6

)
<

∞

∑
k=1

1
bk

1
(k+1)2

< 2
(

π2−6
6

)
.

Therefore, 0 < 7
2 − π2

3 < u < 13
6 − π2

9 , and A2 is invertible. The classical inverse A−1
2

decomposed as in (4) is

A−1
2 = diag

(
0,D−1

b

)
+ 1

u x0x
′
0, with x0 =

(
1 − (D−1

b a
)′)′ ∈ C

∞.

4. The arrowhead operators and their related OTSM operators.

Let �2 = �2 (N) be the infinite-dimensional Hilbert space of the complex square
summable sequences x = (ξ1,ξ2, . . .)

′ = (ξi) , with the usual inner product 〈 · , · 〉 . We
consider the operators defined from arrowhead matrices. In particular, we ask about
(maximal) bounded linear operators TA = T : �2 → �2 , T ∈ B(�2) , defined from the
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infinite invertible arrowhead matrices (1), not necessarily factored as UDL , given in
Section 3,

y = (ηi) = Tx ∈ �2, so that, η j =
∞

∑
k=1

α jkξk, j = 1,2, . . .

As usual, the arrowhead matrices are referred to the standard orthonormal basis {ei} of
�2 , unless otherwise stated.

Some restrictions may be introduced. As observed in Section 3, it is necessary
that the sequences a = (ai) and c = (ci) from (1) be square summable sequences. In
addition, for infinite arrowhead matrices under the conditions given in Lemma 2, the
sequences a/b = (ai/bi) and c/b = (ci/bi) should be sequences belonging to �2 .

For T ∈ B(�2) , defined from an arrowhead matrix A factored as in (2), ‖T‖ �
KU ·KD ·KL = K ∈ R , where KD = sup{|u|, |bi|, | i ∈ Z+} < ∞ , and the first row of U
and the first column of L belonging to �2 . Therefore, ‖Tx‖ = ‖y‖ � K‖x‖ , and the
operator T is defined on the whole of �2 . Here ‖T‖ is the norm of the operator T ,

‖T‖ = sup
{ ‖Tx‖
‖x‖ | x ∈D (T ) , x �= 0�2

}
, where 0�2 is the trivial sequence, and ‖x‖ =√〈x,x〉 .

Related with arrowhead operators, we can define a class of OTSM operators on
the set of invertible diagonal operator on �2 , Diag(�2)⊂ B(�2) .

DEFINITION 2. The class of OTSM operators

T : Diag(�2)→ B(�2) ; T = T (U,L) [D] := UDL,

is the class related with the operators arising from arrowhead matrices UDL factored
properly as in (2).

4.1. Compact arrowhead operators

To handle with the arrowhead operators, we recover the infinite arrowhead matrix
A decomposed by convenience in the form

A = (αik) = Db0 +F2 = diag(b0,(bi))+
(

0 c′
a O

)
, (11)

where the sequence b = (bi) is not necessarily neither square summable nor convergent.
The matrices Db0 , O , and F2 are the matrix representations of a diagonal operator, the
zero operator, and a finite rank-two operator, respectively. We can introduce a wide
class of arrowhead operators on �2 defined from matrices of the form (11), not only
those defined from the UDL factorization (2). However, such UDL factorization is
compulsory for managing their related OTSM operators.

A sufficient condition for defining an operator T ∈ B(�2) from a matrix A is
∑i ∑ j |αi j|2 < ∞ ; see e.g. [8, 11]. Applying it to an arrowhead operator, we state the
following,
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PROPOSITION 3. Given a linear operator T defined from an infinite arrowhead
matrix A = (αik) decomposed as in (11), with (ai) , (bi) , (ci) , sequences belong to �2 :

a). The arrowhead operator T is bounded, T ∈ B(�2) .

b). If the sequence a/b = (ai/bi) ∈ �2 , and the condition (10) is satisfied, then T ∈
B(�2) is invertible, but its related OTSM operator cannot be well defined.

c). If in addition to the assumptions given in b)., the sequence c/b = (ci/bi) ∈ �2 ,
so that the matrix A, which induces T , can be UDL factored properly. Then,
its related OTSM operator can be well defined, and the inverse operator T−1 is
defined from a matrix decomposed as in (4).

Proof. a). Trivially, ∑i ∑ j |αi j|2 = |b0|2 +∑∞
j=1

(|a j|2 + |b j|2 + |c j|2
)
< ∞ , and the

arrowhead matrix A from (11) defines a bounded linear operator T .
b). Since A = Db0 +F2 is decomposed in the form (11) and (ai/bi) ∈ �2 , the next

decomposition is well defined,

A = diag(1,(bi))
[
D�b0

+F�2
]
= diag(1,(bi))

[(
b0 0′�2

0�2 I

)
+
(

0 c′

D−1
b a O

)]
.

Since the operator diag(1,(bi)) is diagonal invertible, it is sufficient to check the invert-

ibility of the operator defined from
[
D�b0

+F�2
]

by finding its kernel, Ker(
[
D�b0

+F�2
]
) ,

where I is the matrix representation of the identity operator,

Ker(
[
D�b0

+F�2
]
) =

{
x ∈ �2 |

[
D�b0

+F�2
]
x =
(

b0 c′

D−1
b a I

)
x = 0�2

}
.

Hence, b0ξ1 + 〈(ξ j)
∞
j=2 , c〉 = 0, and ξ1D

−1
b a+ (ξ j)

∞
j=2 = 0�2 . We obtain (ξ j)

∞
j=2 =

−ξ1D
−1
b a =−ξ1a/b , and b0ξ1− ξ1〈a/b, c〉= 0.

A nontrivial sequence x belongs to the kernel of
[
D�b0

+F�2
]

if and only if the

condition 〈a/b, c〉 = b0 is satisfied. Such a x is of the form x = ξ (1 −a/b) ∈ �2 ,
with ξ = ξ1 an arbitrary scalar. However, such a condition is in contradiction with the
assumption (10) unless ξ = 0, i.e. x = 0�2 .

The factorization A = diag(1,(bi))
[
D�b0

+F�2
]

allows us to consider the inverse

operator T−1 . Although
[
D�b0

+F�2
]

is not an arrowhead matrix as defined here, it can

be UDL factored trivially. Thus A = D1UDL , where D1 = diag(1,(bi)) . Hence A−1 =
(L−1D−1U−1)D−1

1 is a factorization of the matrix that induces the inverse operator
T−1 . There is not difficulty with the matrix product A−1A = I . However, taking the
matrix product AA−1 ,

AA−1 = (D1UD)(LL−1)(D−1U−1)D−1
1 = (D1U(DD−1)U−1)D−1

1

= D1(UU−1)D−1
1 = D1D

−1
1 = I.
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The product U−1D−1
1 should be avoided because it cannot be well defined. Since the

difficulties with the matrix U , the UDL factorization of A becomes unsuitable. Its
related OTSM operator cannot be well defined. Although T−1 exists, it cannot be well
defined from the decompositions (3) and (4).

c). If in addition to the assumptions given in b)., the sequence
(
D−1

b c
)
= c/b∈ �2 ,

then the matrix A from (11) can be UDL factored properly, and its related OTSM
operator can be well defined. Also, the matrix decompositions (3) and (4) define the
operator T−1 . �

LEMMA 3. An arrowhead operator T ∈ B(�2) , defined from matrix (11) is com-
pact if and only if lim j→∞ b j = 0 .

Proof. Since T = Db0 +F2 , with F2 a finite rank-two operator, T is compact if
and only if Db0 is compact. But the diagonal operator Db0 , with b = (bi) ∈C∞ having
nonzero components, is compact if and only if lim j→∞ b j = 0; see e.g. [2, 11].

Another simple but constructive proof exploits the uniform convergence of the
sequence

(
T(n)
)

of (compact) finite rank operators defined, from the n th principal sec-
tions of A , on �2 . Indeed ‖T(n)−T‖ → 0, taking into account that a and c belong to
�2 and the matrix representation of T(n)−T ,

A(n)−A=

(
On c(n)′

a(n) D(n)
b

)
−→
n→∞

O ⇔ lim
j→∞
|b j|= 0,

where a(n) , c(n) , and D(n)
b , are a , c , and Db , shifted n−1 positions forward. �

LEMMA 4. Given an arrowhead operator T ∈ B(�2):

a). If T satisfies the assumptions of Proposition 3 b). or c)., then T is an invertible
compact operator and its inverse operator T−1 is unbounded.

b). If T satisfies the assumptions of Proposition 3 c)., then its related OTSM operator
T (U,L) [D] preserves compactness.

Proof. a). It is not difficult to see that the operator T defined in Proposition 3
satisfies also the conditions of Lemma 3. Thus 0 ∈ σ (T ) , but by Proposition 3, the
value 0 is not an eigenvalue, and T is invertible.

The inverse of an invertible compact operator is necessarily unbounded. It is
checked easily using the matrix representations of T−1 in Proposition 3 b). or c).,
and observing that a positive real number K , satisfying ‖T−1y‖� K‖y‖ , for all y ∈ �2 ,
does not exist. Thus T−1 is unbounded.

b). Since D is assumed compact, and L and U operators belonging to B(�2) , the
operator T = T (U,L) [D] = UDL ∈ B(�2) , is compact. �

A compact operator on an infinite Hilbert space may have (or may not have) spec-
tral values distinct than 0, but for Riesz-Schauder’s theorem, if they exist must be
eigenvalues [2, 9, 11]. For bounded (not necessarily compact) arrowhead operators,
conditions on the existence of their eigenvalues agree with the finite-dimensional case.
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PROPOSITION 4. Given an invertible arrowhead operator T ∈ B(�2) , defined
from a matrix of the form (11), with a, c , and D−1

b a, square summable sequences
satisfying condition (10). The operator T has an eigenpair of the form {λ , xλ} , with
xλ = ξ

(
1 − (a/(b−λ ))′

)′
, and ξ �= 0 an arbitrary scalar, if and only if λ �= 0 is a

root of the complex-valued function

f (λ ) : D ⊂ C→ C; f (λ ) = (b0−λ )−〈(a/(b−λ )) , c〉.

Proof. The resolvent Rλ does not exist if and only if T − λ I has a nontrivial
kernel. In addition, it is not difficult to prove that λ �= b j , j = 1,2, . . . ; see Proposition
1 for the finite case. Therefore, D−1

b−λ exists and reasoning as in the proof of Proposition
3 for invertible compact arrowhead operators, it is sufficient to check that a nontrivial
sequence xλ = (ξi) ∈ �2 satisfies(

b0−λ c′

D−1
b−λ a I

)
xλ = 0�2 , with Db−λ = diag((bi−λ )) .

We obtain (ξ j)
∞
j=2 = −ξ1D

−1
b−λa = −ξ1 (a/(b−λ )) . Also, the following condition

should be satisfied (b0−λ )ξ1−ξ1〈(a/(b−λ )) , c〉= 0. Thus T has eigenpairs of the

form {λ , xλ} =
{

λ , ξ
(
1 − (a/(b−λ ))′

)′}
, where ξ �= 0 is an arbitrary scalar, if

and only if λ is a root of f (λ ) . From condition (10), f (0) = b0−〈a/b, c〉 = u �= 0,
and 0 is not an eigenvalue of T . �

Analogous to the well-known Equation (5) for the finite case, the eigenvalues of
bounded invertible arrowhead operators under the assumptions of Proposition 4 are the
roots of the complex-valued function f (λ ) defined on the domain D = D \ {b} ⊂ C .
Here D = D(0,r) can be any open disc with center 0 and radius r > ‖T‖ .

f (λ ) =
{

b0−〈a/b, c〉= u �= 0, if λ = 0;
b0−λ −〈(a/(b−λ )) , c〉, if λ �= 0,λ �= bk.

(12)

For invertible compact arrowhead operators, f (λ ) is meromorphic on D0 = D\{0,b}⊂
C . The simple poles of f (λ ) accumulate only in 0 /∈D0 . It is reasonable to argue that,
under additional conditions on the sequences a , b , and c , there exist infinitely many
countable roots of f (λ ) accumulate only in 0. For example, it happens if the invertible
compact arrowhead operator is also self-adjoint. Indeed, it is not difficult to observe that
f (λ ) can be restricted to f |R(λ ): D ′ ⊂R→R , and f |′

R
(λ ) < 0 in D ′0 = D ′ \{0}⊂R .

Between two nearer singularities exists one and only one root of f |R(λ ) . The eigen-
values are a countable set accumulate in the value 0, and Cauchy’s interlacing property
for the eigenvalues also holds.

4.2. Nonsingular arrowhead operators

An operator T ∈ B(�2) is said to be nonsingular if T−1 exists and is bounded,
T−1 ∈ B(�2) ; see e.g. [9]. Therefore, nonsingular arrowhead operators defined, on
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the whole of �2 , from a matrix of the form (11) are bounded invertible (not compact)
arrowhead operators. Thus T is bijective, for all x ∈ �2 ; k‖x‖� ‖Tx‖� K‖x‖ , with k
and K positive real numbers, and its inverse operator T−1 is also nonsingular.

PROPOSITION 5. Given a linear operator T ∈ B(�2) defined from an infinite ar-
rowhead matrix A (11), with a, c , and a/b = D−1

b a, nontrivial square summable se-
quences satisfying condition (10):

a). The arrowhead operator T is nonsingular if and only if the entries of Db are
uniformly bounded and lim j→∞ |b j| �= 0 .

b). If in addition the nontrivial sequence c/b = D−1
b c ∈ �2 , so that the matrix A,

which induces T , has an appropriate UDL factorization, then the inverse (non-
singular) operator T−1 ∈ B(�2) is defined from a matrix decomposable as in (3)
and (4). Its related OTSM operator T (U,L) [D] is well defined and preserves
nonsingularity.

Proof. a). Notice that 0 < |u| < ∞ . Also, we can use the factorization given

in the proof of Proposition 3, for the matrix A = diag(1,(bi))
[
D�b0

+F�2
]

= D1UDL .

Therefore, A−1 = (L−1D−1U−1)D−1
1 . Here the operators defined for U , D , and L

are trivially nonsingular operators. Thus T is nonsingular if and only if the diagonal
operator defined from D1 = diag(1,(bi)) is nonsingular. But recalling that Db has
distinct nonzero entries on the diagonal, such operator is nonsingular if and only if the
entries of Db are uniformly bounded and lim j→∞ |b j| �= 0.

b). The nonsingularity of T−1 follows from a). The proof for the decomposition
of A−1 is analogous to the proof of Proposition 3 c). Since the nonsingularity of the
operators U , D , and L , its related OTSM operator T (U,L) [D] is well defined, and the
nonsingularity of D is preserved. �

Proposition 5 jointly with the proof of Lemma 3 establish that, for a nonsingular
arrowhead operator T , the sequence

(
T(n)
)

of the finite rank operators does not con-
verge uniformly to T . However, it is not difficult to check the strong convergence of(
T(n)
)
.

We prove that the sequence
(
T−1
(n)

)
of finite rank operators T−1

(n) ∈ B(�2) , defined

from the inverses of the n th principal sections of the matrix A , strongly converges to

T−1 , so that T−1 ∈ B(�2) , but
(
T−1
(n)

)
is not uniformly convergent. For simplicity, the

arrowhead operators are defined from matrices UDL factored properly.

THEOREM 6. Given a nonsingular arrowhead operator T ∈ B(�2) , satisfying all

the assumptions of Proposition 5, and the sequence
(
T−1
(n)

)
of finite rank operators on

�2 , defined from the inverses of the principal finite sections of the matrix A that induces

T . The sequence
(
T−1
(n)

)
s−→ T−1 (strongly).
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Proof. Since the T−1
(n) are compact, these are bounded operators. Also by Proposi-

tion 5, the entries of Db are uniformly bounded and lim j→∞ b j �= 0. Thus for all x∈ �2 ,

the sequence
(
‖T−1

(n) x‖
)

� kx . Then, from Banach-Steinhaus’s (uniform boundedness)

theorem, the sequence
(
‖T−1

(n) ‖
)

� k is bounded on �2 . Besides, for all x ∈ �2 , the

sequence
(
y(n)
)

=
(
T−1
(n) x

)
is a (fundamental) Cauchy sequence. These results charac-

terize the strong convergence of
(
T−1
(n)

)
, i.e.

(
T−1
(n)

)
s−→ T−1 ; see e.g. [11].

We give another equivalent and constructive proof using the matrix representation
(4) for both T−1

(n) and T−1 . The matrix representation for the difference operator T−1
(n) −

T−1 is

A−1
(n)−A−1 = diag

(
On,−

(
Db

(n)
)−1
)
−1

u

(
0n

−
(
D(n)

b

)−1
a(n)

)(
0n−
((

D(n)
b

)−1
c(n)
)′)

+
(

u−un

unu

)⎛⎝ 1
−D−1

(n−1)ba(n−1)

0�2

⎞
⎠(1−(D−1

(n−1)bc(n−1)

)′
0′�2

)

= diag

(
On,−

(
Db

(n)
)−1
)
−1

u
x(n)
a

(
x(n)
c

)′
+
(

u−un

unu

)
xa(n−1)

(
xc(n−1)

)′
.

We have denoted un �= 0 as the value of u for the matrix A−1
(n) , the vectors D−1

(n−1)ba(n−1)

=
(

a1
b1

, . . . ,
an−1
bn−1

)′
, D−1

(n−1)bc(n−1) =
(

c1
b1

, . . . ,
cn−1
bn−1

)′
, and 0n is the zero vector of Cn .

Since Proposition 5 is assumed,

1
u
x(n)
a

(
x(n)
c

)′ −→
n→∞

O = 0 · xa(∞)
(
xc(∞)

)′ ←−
n→∞

(
u−un

unu

)
xa(n−1)

(
xc(n−1)

)′
.

We obtain,

lim
n

(
A−1

(n)−A−1
)

= lim
n

diag

(
On,−

(
Db

(n)
)−1

)
�= O,

because the entries of Db are uniformly bounded and limn→∞ 1/bn �= 0. Therefore,

limn→∞ ‖T−1
(n) −T−1‖ > 0, and the sequence

(
T−1
(n)

)
is not uniformly convergent to

T−1 . However, the nonsingularity of the operator defined from Db is used for observing

the strong convergence of
(
T−1
(n)

)
,

lim
n

(
A−1

(n)x−A−1x
)

= lim
n

diag

(
On,−

(
Db

(n)
)−1

)
x= 0�2 .

Therefore, ∀x ∈ �2 : limn→∞ ‖T−1
(n) x−T−1x‖ = 0, and the sequence

(
T−1
(n)

)
converges

strongly to T−1 . �
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4.3. Explicit inertia criteria for invertible arrowhead operators T ∈ B(�2)

Inertial properties with respect the half planes of invertible arrowhead operators
T ∈ B(�2) can be connected with that of invertible diagonal operators D ∈ Diag

(
�̂2
)
,

with �̂2 the Hilbert space of the real square summable sequences. Analogous to the
finite-dimensional case, the connection is through T (U,L) [D] , the class of OTSM
operators.

COROLLARY 2. Given an invertible arrowhead operator T ∈B(�2) , defined from
an arrowhead matrix under the assumptions of Lemma 2. Assuming its related OTSM
operator well defined, T (U,L) [D]: Diag

(
�̂2
)→B(�2) , with real matrix argument D =

diag(u,Db):

a). If A is hermitian, then the OTSM operator T (L) [D] preserves inertia.

b). If A is not hermitian and the following condition on the matrix entries is satisfied,

uRe(b0)− 1
4‖
(
ua

b + c
)‖2 = uRe(b0)− 1

4

∞

∑
i=1

|uai+bici|2
b2
i

> 0, (13)

with Re(b0) the real part of b0 , then the OTSM operator T (U,L) [D] preserves
inertia.

Proof. a). It is an immediate consequence of the infinite-dimensional version of
Sylvester’s law of inertia; see Corollary 5 from [4].

b). We use the infinite arrowhead matrix W = 2Re(AD) = AD+DA∗ , of the form
(9). If condition (13) holds, then its related arrowhead operator W is positive and
invertible, and the result follows from [5], Theorem 5. �

4.4. Examples of simple arrowhead operators

An arrowhead operator T is said to be simple if T has countable distintc eigen-
values. From Proposition 4, an invertible self-adjoint arrowhead operator T ∈ B(�2)
is simple. It is illustrated with the maximal operator T2 defined from the arrowhead
matrix A2 from Section 3.

EXAMPLE 3. The self-adjoint operator T2 ∈ B(�2) is also nonsingular. The ex-
istence of infinitely many real and simple eigenvalues and its corresponding (total) or-
thonormal set of eigenvectors

{
xλi

}
, and the fact that the extremal eigenvalues are

λmax > 3
2 and λmin < 1

2 , follow from Proposition 4. Rayleigh’s quotients are m =
λmin = inf{〈Tx,x〉|x ∈ �2,‖x‖= 1} , M = λmax = sup{〈Tx,x〉|x ∈ �2,‖x‖= 1} .

Since T2 satisfies the assumptions of Proposition 5 b)., its related OTSM operator
T2 (L) [D] is well defined. By Corollary 2 a)., T2 (L) [D] preserves inertia, σ (T2) ⊂
(0,∞) , and 0 < m < 1

2 . The spectrum of T2 is

σ (T2) = {m∪ [ 1
2 , 3

2

]∪M} ⊂ (0,∞) .
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Every α ∈ [ 1
2 , 3

2

]
belongs to σ (T2) . Indeed, α is either an eigenvalue or belongs to

the continuous spectrum. Furthermore since T2 is nonsingular, the spectrum of T−1
2 is

simply
σ
(
T−1
2

)
= { 1

M ∪
[

2
3 ,2
]∪ 1

m} ⊂ (0,∞) .

As a rule, if an arrowhead operator is simple, it is not necessarily self-adjoint, or
normal.

EXAMPLE 4. The maximal operator T1 ∈ B(�2) , defined from the arrowhead ma-
trix A1 given in Section 3, is nonsingular. Although T1 is not self-adjoint, the existence
of infinitely many real and simple eigenvalues and their corresponding eigenvectors{
xλi

}
also follows from Proposition 4. Notice f (λ ) restricted to f |R(λ ): D ′ ⊂R→R ,

and f |′
R
(λ ) < 0. The interlacing property for the eigenvalues also holds.

0 < λmin = λ1 < b1 < λ2 < b2 < .. . < b j < λ j+1 < b j+1 < .....
(
j ∈ Z

+) .
Thus T1 has a unique eigenvalue λmax > 1. Since f |R(0) = f(0) = u > 0, λmin is the
unique eigenvalue of T1 lying in the interval

(
0, 2

3

)
.

Alternatively, T1 satisfies also Proposition 5 b). and T1 (U,L) [D] , its associate
OTSM operator, is well defined. Since condition (13) is

(
2− π2

6

)
− 1

4

(
3− π2

6

)2 ∞

∑
k=1

1
(k+1)2

> 0,

from Corollary 2 b)., T1 (L,U) [D] preserves inertia, and σ (T1)⊂ (0,∞) .
The only accumulation point of eigenvalues of T1 is 1 , from below. We have also

the additional λmax > 1. The spectrum is σ (T1) = {λ j,λmax}∪ {1} . The spectrum
of the inverse operator T−1

1 is easily obtained from that of T1 . For example, the only
accumulation point of eigenvalues of T−1

1 is 1 , from above, and 1/λmax is its unique
eigenvalue less than 1.
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