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ON THE SINGULAR VECTORS OF THE
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Abstract. In this paper, we study the largest and the smallest singular vectors of the generalized
Lyapunov operator. For real matrices A,B with order n , we prove that max‖X‖F =1 ‖AXBT +
BXAT‖F is achieved by a symmetric matrix for n � 3 and give a counterexample for order
n = 4 . We also prove that min‖X‖F =1 ‖AXBT +BXAT‖F is achieved by a symmetric matrix for
n � 2 and give a counterexample for order n = 3 . It is shown that the minimizer is symmetric,
if the minimum is zero, or if the real parts of the eigenvalues of A−λB are of one sign.

1. Introduction

Lyapunov equations plays a fundamental role in control theory and the stability
analysis of linear systems [1, 17, 23, 24]. They are also widely used in other fields
of pure and applied mathematics. This has motivated a continuous interest to both the
theory and numerical treatment of Lyapunov operators and equations [16, 21, 2, 6]. In
the past years, the generalized Lyapunov equations, the generalized continuous-time
Lyapunov equation (GCLE)

Lc(X) = AXBT +BXAT = −Q (1)

and the generalized discrete-time Lyapunov equation (GDLE)

Ld(X) = AXAT −BXBT = −Q, (2)

where A,B and Q are given real n×n matrices, have received considerable interest
[3, 4, 13, 25, 26, 27, 28].

As shown in [12], the solvability of Equations (1) and (2) can be described in terms
of the generalized eigenstructure of the matrix pair (A,B) . A matrix pencil xA− yB is
called regular if det(xA− yB) �= 0 for some pair of complex numbers (x,y) . The pair
(x,y) �= (0,0) is called a generalized eigenvalue if det(xA− yB) = 0. For the more
conventional form of a matrix pencil A− λB , the eigenvalues are given by λ = y/x
with λ = ∞ when x = 0. The regular matrix pencil A− λB is called c-stable if all
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finite eigenvalues of A− λB lie in the open left half-plane, and d-stable if all finite
eigenvalues of A−λB lie inside the unit circle.

The norm of a generalized continuous-timeLyapunov operator (GCLO) and a gen-
eralized discrete-time Lyapunov operator (GDLO) are defined as

‖Lc‖ = max
‖X‖F=1

‖AXBT +BXAT‖F (3)

and
‖Ld‖ = max

‖X‖F=1
‖AXAT −BXBT‖F , (4)

respectively, where ‖ · ‖F denotes the Frobenius norm [18, 5]. The separation of the
GCLO and the GDLO are defined as

sepc(A,B) = min
‖X‖F=1

‖AXBT +BXAT‖F (5)

and
sepd(A,B) = min

‖X‖F=1
‖AXAT −BXBT‖F , (6)

respectively. References for separation and condition estimation can be found in [6, 8,
14, 19, 20], for example.

The conjecture that the minimizer X for the separation of the continuous-time
Lyapunov operator, i.e.,

min
‖X‖F=1

‖AX +XAT‖F ,

is symmetric was discussed in [7]. In general the conjecture is false, but it is true in
many cases (e.g. A is normal or stable). The conjecture means that the smallest singular
“vectors” of L(X) = AX +XAT can be symmetric. The largest singular “vectors” was
also studied in [7]. The authors of [7] “proved” that the maximizer of

max
‖X‖F=1

‖AX +XAT‖F ,

is symmetric. But there is an error in their proof(see [9]). Thus, the problem that
whether the maximizer is symmetric or not is still open. In [10], the maximizer being
symmetric was proved for normal matrices, and in [11] a method of numeric testing for
the problem was presented. For non-negative, non-positive, and tridiagonal matrices,
[15] gives an affirmative answer to the conjecture.

In this paper, we consider the largest and the smallest singular “vectors” of the
generalized Lyapunov operator. As shown in the following equation

AXAT −BXBT =
1
2
(CXDT +DXCT ),

where C = A+B,D = A−B , we will discuss Equations (3) and (5) instead of Equations
(4) and (6) in some cases. In Section 2, we show that the maximizer of Equation (3)
and Equation (4) is symmetric for the matrices A,B with order n � 3. We also give
a counterexample for A,B with oder 4. If there exist orthogonal matrices U and V
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such that UAV is a tridiagonal matrix and UBV is a diagonal matrix, then Equation
(3) and Equation (4) is achieved by a symmetric matrix. In Section 3, we discuss
the separation of the GCLO and the GDLO, i.e., Equation (5) and Equation (6). We
show that the minimizer is achieved by a symmetric matrix for A,B with oder 2. We
give a counterexample for order 3. It is shown that the minimizer is symmetric, if the
minimum is zero, or if the real parts of the eigenvalues of A−λB are of one sign.

2. The largest singular vectors of the GLO

Before proving the main results, we need several lemmas. The following lemma
is simply extend the Lemma 1 in [7].

LEMMA 2.1. Suppose A,B ∈ Rn×n . Then (3), (4), (5) and (6) are achieved by
either a symmetric matrix or a skew-symmetric matrix.

LEMMA 2.2. For A,B ∈ Rn×n ,

max
X �=0

‖AXBT +BXAT‖F

‖X‖F

is achieved by a symmetric matrix X if and only if for every skew-symmetric real matrix
P, there exists a symmetric real matrix Q such that ‖Q‖F = ‖P‖F and

tr((A(Q+P)BT +B(Q+P)AT)2) � 0.

Proof. By Lemma 2.1, we know that (3) is achieved by a symmetric matrix X
if and only if for every skew-symmetric real matrix P , there exists a symmetric real
matrix Q such that

‖Lc(Q)‖F

‖Q‖F
� ‖Lc(P)‖F

‖P‖F
.

Obviously, it is equivalent to that for every skew-symmetric real matrix P , there exists
a symmetric real matrix Q such that ‖Q‖F = ‖P‖F and

‖Lc(Q)‖F � ‖Lc(P)‖F .

Note that

tr(Lc(Q+P)2) = tr((Lc(Q)+Lc(P))2)

=tr(Lc(Q)2 +Lc(Q)Lc(P)+Lc(P)Lc(Q)+Lc(P)2)

=tr((Lc(Q))T Lc(Q))− tr((Lc(P))T Lc(P))+ tr(Lc(Q)Lc(P))− tr(Lc(Q)Lc(P))T

=‖Lc(Q)‖2
F −‖Lc(P)‖2

F ,

Then ‖Lc(Q)‖2
F � ‖Lc(P)‖2

F if and only if tr((Lc(Q + P))2) � 0. The proof is com-
plete. �

The following theorem shows that (3) can be achieved by a symmetric matrix for
the case that A is orthogonally similar to a tridiagonal matrix.
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THEOREM 2.3. Suppose there exist orthogonal matrices U and V such that UAV
is a tridiagonal matrix and UBV is a diagonal matrix. Then (3) is achieved by a
symmetric matrix X .

Proof. The restrictions of Lc on the symmetric matrix set Sn and the skew-symmet-
ric matrix set Kn are denoted by LS

c and LK
c respectively. By the unitary invariance

property of Frobenius norm, we have

‖Lc‖ = max
‖X‖F=1

‖(UAV )VT XV (UBV)T +(UBV)VT XV (UAV )T‖F ,

where U and V are orthogonal matrices. Thus without loss of generality, we assume
that A is a tridiagonal matrix, say

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 · · · 0 0
c1 a2 b2 · · · 0 0
0 c2 a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 bn−1

0 0 0 · · · cn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and B = diag(d1,d2, · · · ,dn) . Suppose P ∈ Kn , say

P =

⎡
⎢⎢⎢⎢⎢⎣

0 x12 x13 · · · x1n

−x12 0 x23 · · · x2n

−x13 −x23 0 · · · x3n
...

...
...

. . .
...

−x1n −x2n −x3n · · · 0

⎤
⎥⎥⎥⎥⎥⎦ .

Take

Q =

⎡
⎢⎢⎢⎢⎢⎣

0 x12 x13 · · · x1n

x12 0 x23 · · · x2n

x13 x23 0 · · · x3n
...

...
...

. . .
...

x1n x2n x3n · · · 0

⎤
⎥⎥⎥⎥⎥⎦ .

Obviously, Q ∈ Sn and ‖Q‖F = ‖P‖F . By calculation, we have

Lc(Q+P) =

⎡
⎢⎢⎢⎣

2b1d1x12 ∗ · · · ∗
0 (2c1x12 +2b2x23)d2 · · · ∗
...

...
. . .

...
0 0 · · · 2cn−1dnxn−1 n

⎤
⎥⎥⎥⎦ .

Hence

tr((Lc(Q+P))2)= 4(b1d1x12)2+4
n−1

∑
i=2

((ci−1dixi−1 i+bidixi i+1))2+4(cn−1dnxn−1 n)2 � 0,
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By Lemma 2.2, we have ‖Lc‖ = ‖LS
c‖. �

In the discrete case, we also have the following theorem, which is an analogue to
Theorem 2.3.

THEOREM 2.4. Suppose there exist orthogonal matrices U and V such that UAV
and UBV are upper bidiagonal matrices. Then (4) is achieved by a symmetric matrix
X .

The following theorem shows that the largest singular vector is symmetric for all
real matrices of order n � 3.

THEOREM 2.5. Suppose A,B ∈ Rn×n . If n � 3, then (3) is achieved by a sym-
metric matrix X .

Proof. Note that

‖Lc‖ = max
‖X‖F=1

‖(UAV )VT XV(UBV )T +(UBV)VT XV (UAV )T‖F

for any orthogonal matrices U and V .
Suppose n = 2. By Singular Value Decomposition, there are orthogonal matrices

U and V such that UBV is a diagonal matrix. It follows from Theorem 2.3 that the
largest singular vector is symmetric.

Suppose n = 3. For a real skew-symmetric matrix K �= 0 with order 3, there exists
an orthogonal matrix U ∈ R3×3 such that

UKUT =
[
K1 0
0 0

]
,

where K1 ∈R2×2 is a skew-symmetric matrix. By Singular Value Decomposition, there
exist orthogonal matrices U1 ∈ R2×2 and V ∈ R3×3 such that

V (BUT )
[
U1 0
0 1

]
=

[
B11 B12

0 B22

]
,

where B11 =
[
s1 0
0 s2

]
. Suppose

VAUT
[
U1 0
0 1

]
=

[
A11 A12

A21 A22

]
,

where A11 ∈ R2×2. By the unitary invariance property of the Frobenius norm, we have

‖AKBT +BKAT‖2
F

‖K‖2
F

=
‖(VAUT )UKUT (VBUT )T +(VBUT )UKUT (VAUT )T‖2

F

‖UKUT‖2
F

=

∥∥∥∥
[
A11 A12

A21 A22

][
UT

1 K1U1 0
0 0

][
BT

11 0
BT

12 BT
22

]
+

[
B11 B12

0 B22

][
UT

1 K1U1 0
0 0

][
AT

11 AT
21

AT
12 AT

22

]∥∥∥∥
2

F

‖UT
1 K1U1‖2

F
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Note that UT
1 K1U1 is a skew-symmetric matrix. Hence it suffices to prove that for real

matrices

A =

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ , B =

⎡
⎣b11 0 b13

0 b22 b23

0 0 b33

⎤
⎦ and K =

⎡
⎣ 0 λ 0
−λ 0 0
0 0 0

⎤
⎦ ,

there exists a symmetric matrix S ∈ R3×3 such that

‖ASBT +BSAT‖F

‖S‖F
� ‖AKBT +BKAT‖F

‖K‖F
.

By a similar argument as in the proof of Lemma 2.2, it suffices to prove that there exists
a symmetric matrix S ∈ R3×3 such that ‖S‖F = ‖K‖F and

tr(A(S+K)BT +B(S+K)AT)2 � 0.

Take

S =

⎡
⎣0 λ 0

λ 0 0
0 0 0

⎤
⎦ .

Obviously ‖S‖F = ‖K‖F . By calculation, we have

A(S+K)BT +B(S+K)AT =

⎡
⎣2λa12b11 2λ (a11b22 +a22b11) 2λa32b11

0 2λa21b22 0
0 2λa31b22 0

⎤
⎦ .

Hence

tr(A(S+K)BT +B(S+K)AT )2 = 4λ 2 [
(a12b11)2 +(a21b22)2] � 0.

The proof is complete. �
The above theorem shows the correctness of the following corollary in discrete

case.

COROLLARY 2.6. Suppose A,B ∈ Rn×n . If n � 3, then

max
X �=0

‖AXAT −BXBT‖F

‖X‖F

is achieved by a symmetric matrix X .

Proof. Note that

AXAT −BXBT =
1
2
(CXDT +DXCT ),

where C = A+B and D = A−B. Thus the result follows from Theorem 2.5. �
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In general, for real matrices A and B ,

max
X �=0

‖AXAT −BXBT‖F

‖X‖F
(7)

can not always be achieved by a symmetric matrix. The following example shows that
the maximizer should be skew-symmetric for some A,B in the case n = 4. By the proof
of Corollary 2.6, we know that the generalized continuous case is similar.

EXAMPLE 2.7. Suppose

A =

⎡
⎢⎢⎣
−1 −1 0 0
0 −1 −1 0
0 −1 1 0
0 0 1 1

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

The maximum in (7) is 4.259367. It is achieved by the real skew-symmetric matrix

X ≈

⎡
⎢⎢⎣

0 0.063318 −0.249461 −0.153498
−0.063318 0 −0.586480 −0.249461
0.249461 0.586480 0 −0.063318
0.153498 0.249461 0.063318 0

⎤
⎥⎥⎦ .

But the largest quotient in (7) that can be achieved from a real symmetric matrix X is
approximately 4.257641. The singular values and “vectors” were computed using the
Kronecker product matrix (A⊗A−B⊗B) for the generalized discrete-time Lyapunov
operator.

3. The separation of the generalized Lyapunov operators

The smallest singular vectors were investigated in continuous-time case [7]. In
this section, we discuss the smallest singular vectors of the discrete-time Lyapunov
operator, the GCLO and the GDLO with similar techniques as in [7].

3.1. The separation of the discrete-time Lyapunov operator

We consider the discrete case in this subsection. The separation of the discrete-
time Lyapunov operator is achieved by a symmetric matrix for the 2×2 real matrices.

THEOREM 3.1. Suppose A ∈ R2×2 . Then

min
X �=0

‖AXAT −X‖F

‖X‖F
(8)

is achieved by a symmetric matrix.
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Proof. In the proof of Theorem 5 in [7], it is shown that for a real matrix

A =
[
a11 a12

a21 a22

]
,

there exists an orthogonal matrix U ∈ R2×2 such that

UAUT =
[
b11 b12

b21 b11

]
.

By the unitary invariance property of Frobenius norm, we suppose

A =
[
a11 a12

a21 a11

]
.

Suppose the skew-symmetric matrix K =
[

0 1
−1 0

]
. Take

S =

{
diag(a12,−a21), if a2

12 +a2
21 �= 0,

I2, if a12 = a21 = 0.

By calculation, we have

‖ASAT −S‖F

‖S‖F
= |a2

11−a12a21−1|= ‖AKAT −K‖F

‖K‖F
.

By Lemma 2.1, we know that (8) is achieved by either a symmetric matrix or skew-
symmetric matrix. It follows from the identity above that (8) can be achieved by a
symmetric matrix. �

By contrast with the relatively brief proof of Theorem 3.1, we will give a different
proof for general case (see Theorem 3.11).

The separation (8) can also be achieved by a symmetric matrix for the case A being
a normal matrix. An analogue to Corollary 2 in [7], we have the following lemma,
which can be used to prove the normal case.

LEMMA 3.2. If (8) is minimized by a complex matrix X ∈ Cn×n , then it is mini-
mized by X , X +X , X −X , X +X∗ and X −X∗ (whenever these are nonzero), where
X denotes the conjugate matrix of X and X∗ denotes the conjugate transpose matrix
of X .

THEOREM 3.3. If A is a normal real matrix, then (8) can be minimized by a
symmetric matrix.

Proof. For a normal matrix A , there exists a unitary matrix U ∈ Cn×n such that
UAU∗ = diag(a1, · · · ,an). By the unitary invariance property of Frobenius norm, we
have

‖AXAT −X‖F

‖X‖F
=

‖(UAU∗)UXU∗(UAU∗)∗ −UXU∗‖F

‖UXU∗‖F
. (9)
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Suppose UXU∗ = (yi j). Then we have

‖AXAT −X‖F

‖X‖F
=

√
∑ |(aia j −1)yi j|2
‖UXU∗‖F

. (10)

Suppose |akal −1|= min |aia j −1|. So√
∑ |(aia j −1)yi j|2
‖UXU∗‖F

�
√|(akal −1)|2 ∑ |yi j|2√

∑ |yi j|2
= |(akal −1)|.

Then the (10) is minimized by setting UXU∗ = (yi j), where

yi j =

{
y, if i = k and j = l,

0, if i �= k and j �= l,

and y is chosen so that the real part of X +X∗ is nonzero. By Lemma 3.2, we have that
X +X∗ minimizes (9). Thus the real part of X +X∗ also minimizes (9). �

The following example shows that the minimizer of (8) should be a skew-symmetric
matrix for some matrix A with order n = 3.

EXAMPLE 3.4. Suppose

A =

⎡
⎣1 0 −1

1 1 0
1 1 1

⎤
⎦ .

The minimum in (8) is 0.554958. It is achieved by the real skew-symmetric matrix

X ≈
⎡
⎣ 0 −0.417907 −0.231920

0.417907 0 0.521121
0.231920 −0.521121 0

⎤
⎦ .

But the smallest value in (8) that can be achieved from a real symmetric matrix X is
approximately 0.556442. Similar to Example 2.7, the singular values and “vectors”
were computed using the Kronecker product matrix (A⊗A− I) for the discrete-time
Lyapunov operator.

3.2. The separation of the generalized Lyapunov operator

In this subsection, we study the separation of the GCLO and the GDLO, i.e., (5)
and (6). The following lemma shows the condition for unique solvability of the GCLE
and the GDLE.

LEMMA 3.5. ([12]) Let A−λB be a regular pencil.
(1) The GCLE (1) has a unique solution if and only if all eigenvalues of A−λB

are finite and λi + λ j �= 0 for any two eigenvalues λi and λ j of A−λB.
(2) The GDLE (2) has a unique solution if and only if λiλ j �= 1 for any two eigen-

values λi and λ j of A−λB(under the convention 0 ·∞ = 1 ).
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The classical result about the positive definite solution of the stable Lyapunov
equation remains valid for the generalized equations [25].

LEMMA 3.6. ([25]) Let B be nonsingular and Q be positive definite (semidefi-
nite).

(1) If Re(λi) < 0 for all eigenvalues λi of A−λB, then the solution matrix X of
the GCLE (1) is positive definite (semidefinite).

(2) If |λi| < 1 for all eigenvalues λi of A−λB, then the solution matrix X of the
GDLE (2) is positive definite (semidefinite).

THEOREM 3.7. Suppose A,B ∈ Rn×n , and

sepc(A,B) = min
X �=0

‖AXBT +BXAT‖F

‖X‖F
. (11)

(1) The separation sepc(A,B) �= 0 if and only if A−λB is regular, all eigenvalues
of A−λB are finite and λi + λ j �= 0 for any two eigenvalues λi and λ j of A−λB.

(2) If sepc(A,B) = 0 , then (11) can be achieved by a symmetric matrix.

Proof. (1) Note that sepc(A,B) �= 0 if and only if the equation

AXBT +BXAT = 0 (12)

has a unique solution X = 0. If A (or B) is singular, there exists nonzero x ∈ Rn

such that Ax = 0 (or Bx = 0).Thus Equation (12) has nonzero solution X = xxT . So
sepc(A,B) �= 0 if and only if A and B is nonsingular and Equation (12) has unique
solution. By Lemma 3.5 which was proved in [12], the proof is complete.

(2) We prove the statement (2) by studying two cases.
Case 1. If A (or B) is singular, there exists x ∈ Rn such that Ax = 0 (or Bx = 0).

So we have
AxxT BT +BxxTAT = 0.

Thus (11) is achieved by a symmetric matrix xxT .
Case 2. If A and B are nonsingular, then

min
X �=0

‖AXBT +BXAT‖F

‖X‖F
= min

X �=0

‖(AB−1)BXBT +BXBT (AB−1)T‖F

‖BXBT‖F
· ‖BXBT‖F

‖X‖F
.

Hence

min
X �=0

‖(AB−1)Y +YT (AB−1)T‖F

‖Y‖F
= 0, (13)

where Y = BXBT . By Theorem 3 in [7], we have that there exists a symmetric matrix
Y0 such that (13) holds. Thus (5) is minimized by B−1Y0B−T . �

In the following of this section, we use the notation A � 0 to express the fact that
a Hermitian matrix A is a positive semidefinite. If A and B are Hermitian matrices,
then we say A � B if and only if A−B � 0.
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LEMMA 3.8. ([7]) If X and Y are Hermitian matrices such that X � Y � −X ,
then ‖X‖F � ‖Y‖F .

The following theorem shows that the separation of the GCLO and the GDLO can
be achieved by a symmetric matrix for regular stable matrix pencil.

THEOREM 3.9. Suppose A−λB is a regular pencil.
(1) If all eigenvalues λi of A−λB are finite and Re(λi) < 0 , then

sepc(A,B) = min
X �=0

‖AXBT +BXAT‖F

‖X‖F

can be achieved by a symmetric matrix.
(2) If all eigenvalues λi of A−λB are finite and |λi| < 1 , then

sepd(A,B) = min
X �=0

‖AXAT −BXBT‖F

‖X‖F

can be achieved by a symmetric matrix.

Proof. We only prove the continuous-time case, the discrete-time case being sim-
ilar. By Lemma 2.1, for any skew-symmetric matrix K , it suffices to construct a sym-
metric matrix S such that

‖ASBT +BSAT‖F

‖S‖F
� ‖AKBT +BKAT‖F

‖K‖F
.

Suppose M = AKBT +BKAT , where K is a skew-symmetric matrix. Obviously, M is
a skew-symmetric matrix. So there exists an orthogonal matrix U ∈ Rn×n such that

UMUT = diag(M1, · · · ,Mr, · · · ,Ms),

where M1 = · · · = Mr = 0 and Mj =
[

0 λ j

−λ j 0

]
, j = r+1, · · · ,s.

Take a real matrix R such that

URUT = diag(R1, · · · ,Rr, · · · ,Rs),

where Rj = Mj for j = 1, · · · ,r and Rj =
[|λ j| 0

0 |λ j|
]

for j = r+1, · · · ,s. Note that

Rj � iMj � −Rj,

where i2 = −1 and j = 1, · · · ,s. Hence

R � iM � −R. (14)

By Lemma 3.5, there exists a symmetric matrix S satisfying ASBT +BSAT = R . So we
have

A(S− iK)BT +B(S− iK)AT = R− iM,
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and
A(iK +S)BT +B(iK +S)AT = iM +R.

By Lemma 3.6 and Equation (14), we have S � iK � −S . Lemma 3.8 shows that
‖S‖� ‖iK‖ = ‖K‖. Hence

‖ASBT +BSAT‖F

‖S‖F
=
‖R‖F

‖S‖F
=

‖URUT‖F

‖S‖F
=

‖UMUT‖F

‖S‖F
=

‖M‖F

‖S‖F

=
‖AKBT +BKAT‖F

‖S‖F
� ‖AKBT +BKAT‖F

‖K‖F
. �

The proof of Theorem 3.9 shows that the result is also true under the alternative
condition for Re(λi) > 0 in continuous-time case and for |λi|> 1 in discrete-time case.

In general the separation of the GCLO and the GDLO can not always be mini-
mized by a symmetric matrix. In the case n = 3 a counterexample can be derived from
Example 3.4. The following lemma can be used to study the separation of the GCLO
and the GDLO with order 2.

LEMMA 3.10. Suppose B =
[
1 0
0 0

]
. Then for any A∈R2×2 , the separation of the

GDLO

min
X �=0

‖AXAT −BXBT‖F

‖X‖F
(15)

can be minimized by a symmetric matrix.

Proof. By Lemma 2.1, (15) can be achieved by either a symmetric or a skew-
symmetric matrix. Thus for

A =
[
a11 a12

a21 a22

]
, B =

[
1 0
0 0

]
and K =

[
0 1
−1 0

]
,

it suffices to construct a symmetric matrix S such that

‖ASAT −BSBT‖F

‖S‖F
=

‖AKAT −BKBT‖F

‖K‖F
.

In fact, if take

S =
[

0 a11a22−a12a21−a2
22−a2

12
a11a22−a12a21−a2

22−a2
12 2(a11a12 +a21a22)

]

when a11a12 +a21a22 �= 0, and S =
[
0 1
1 0

]
when a11a12 +a21a22 = 0, then we have

‖ASAT −BSBT‖F

‖S‖F
= |a11a22−a12a21| = ‖AKAT −BKBT‖F

‖K‖F
. �

Finally we point out that the separation of the GCLO and the GDLO can be mini-
mized by a symmetric matrix for A,B with order n = 2. Here we only show the general
continuous case.
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THEOREM 3.11. For any A,B ∈ R2×2 , the separation of the GCLO

min
X �=0

‖AXBT +BXAT‖F

‖X‖F
(16)

can be achieved by a symmetric matrix.

Proof. If A or B is singular, then min‖X‖F=1 ‖AXBT +BXAT‖F = 0. The results
follows from Thereom 3.7. Thus we can suppose both A and B are nonsingular.

If all the eigenvalues λi of A−λB are imaginary, then λ1 = a+ bi,λ2 = a− bi .
In the case a = 0, the result follows from Thereom 3.7. In the case a �= 0, the result
follows from Theorem 3.9.

Suppose all the eigenvalues λi of A−λB are real. If λ1λ2 > 0, the result follows
from Theorem 3.9. Now consider the case that all the eigenvalues λi of A− λB are
real and λ1λ2 < 0. Note that

AXBT +BXAT =
1

2λ1
(CXCT −DXDT ),

where C = A+λ1B , D = A−λ1B . So D has rank 1. By the unitary invariance property
of Frobenius norm, there exist orthogonal matrices U,V ∈ R2×2 such that UDV =[
d 0
0 0

]
, where d ∈ R and d �= 0. The result follows from Lemma 3.10. �
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