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ON THE GRÜSS INEQUALITY FOR UNITAL 2–POSITIVE LINEAR MAPS
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(Communicated by R. Rajić)

Abstract. In a recent work, Moslehian and Rajić have shown that the Grüss inequality holds for
unital n -positive linear maps φ : A →B(H) , where A is a unital C*-algebra and H is a Hilbert
space, if n � 3 . They also demonstrate that the inequality fails to hold, in general, if n = 1 and
question whether the inequality holds if n = 2 . In this article, we provide an affirmative answer
to this question.

1. Introduction

A classical theorem of Grüss (see [4]) states that if f and g are bounded real
valued integrable functions on [a,b] and m1 � f (x) � M1 and m2 � g(x) � M2 for all
x ∈ [a,b] , then∣∣∣∣ 1

b−a

∫ b

a
f (x)g(x)dx− 1

(b−a)2

(∫ b

a
f (x)dx

)(∫ b

a
g(x)dx

)∣∣∣∣� 1
4

αβ ,

where α = (M1 −m1) and β = (M2 −m2) .
A generalized operator version of the Grüss inequality was given by Renaud in

[8], where he proved the following result.

THEOREM 1. Let A,B ∈ B(H) and suppose that their numerical ranges are con-
tained in disks of radii R and S respectively. If T ∈ B(H) is a positive operator with
Tr(T) = 1 , where Tr stands for the trace, then

|Tr(TAB)−Tr(TA)Tr(TB)| � 4RS.

If A,B are normal, then the constant 4 on the right hand side can be replaced by 1 .

Among other operator versions of the Grüss inequality, of particular interest to
us are those of Perić and Rajić (see [7]), where they prove the Grüss inequality for
completely bounded maps, and Moslehian and Rajić (see [5]), where they prove the
Grüss inequality for n -positive unital linear maps, for n � 3. In [5], the authors show
that the inequality fails to hold in general, if n = 1 and question whether it holds for the
case n = 2. The main result of this article gives an affirmative answer to this question.

Mathematics subject classification (2010): Primary: 46L05, 47A63; Secondary: 47B65.
Keywords and phrases: Grüss inequality, C*-algebra, n -positive, completely positive.

c© � � , Zagreb
Paper OaM-10-38

643

http://dx.doi.org/10.7153/oam-10-38


644 S. BALASUBRAMANIAN

Before we state the main result, we shall introduce some notation and definitions.
Throughout this article, A will denote a unital C*-algebra, Mn(A ) the C*-algebra of
n×n matrices over A , H and K complex Hilbert spaces and B(H) the C*-algebra of
bounded operators on H . The notations e , 1 will denote the unit elements in A and
B(H) respectively and φ : A → B(H) , a unital linear map, i.e. a linear map such that
φ(e) = 1. The map φ is said to be positive if φ(a) is positive in B(H) for all positive
a∈A . For more details, see [6]. It is easy to see that the map φn : Mn(A )→Mn(B(H))
defined by φn((ai j)) = (φ(ai j)) is unital and linear for each n ∈ N . The map φ is said
to be n -positive if φn is a positive map, completely positive if φ is n -positive for all
n ∈ N and completely bounded if supn∈N ‖φn‖ < ∞ .

The main result of this article is the following.

THEOREM 2. Let A be a C*-algebra with unit e . If φ : A → B(H) is a unital
2 -positive linear map, then

‖φ(ab)−φ(a)φ(b)‖ �
(

inf
λ∈C

‖a−λe‖
)(

inf
μ∈C

‖b− μe‖
)

. (1)

for all a,b ∈ A .

To prove Theorem 2, we use the well-known theorems of Stinespring, Russo-Dye,
Fuglede-Putnam, and the result due to Choi (see Lemma 3).

2. Preliminaries

In this section we include some lemmas which will be used in the sequel. Observe
that if A and B are unital C*-algebras and γ : A → B is a unital n -positive linear
map, then it is m-positive for all m = 1,2, . . . ,n . In particular γ is positive. It is well
known that positive maps are *-preserving. i.e. γ(a∗) = γ(a)∗ for all a∈A . Moreover
‖γ‖ = 1.

LEMMA 1. If P,Q,R ∈ B(H) , then A =
(

P R
R∗ Q

)
� 0 in M2(B(H)) if and only

if P,Q � 0 and |〈Rx,y〉|2 � 〈Px,x〉〈Qy,y〉 , for all x,y ∈ H . Moreover, if A � 0 , then
‖R‖2 � ‖P‖‖Q‖ .

LEMMA 2. Let A =
(

T S
S∗ R

)
∈ B(H ⊕K) . If R ∈ B(K) be invertible, then the

following statements are equivalent.

(i) A � 0

(ii) T,R � 0 and T � SR−1S∗ .

The above two lemmas are well known. Their proofs can be found in [1].
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LEMMA 3. (Choi) Let U and V be C*-algebras and φ : U → V be a positive

linear map. If x,y ∈ U and

(
x y
y∗ x

)
� 0, then

(
φ(x) φ(y)
φ(y∗) φ(x)

)
� 0.

For a proof of Lemma 3, please see Corollary 4.4 of [3].

PROPOSITION 1. If B is a unital C*-algebra and φ : B → B(H) is a unital
2 -positive linear map, then

‖φ(ab)−φ(a)φ(b)‖2 � ‖φ(aa∗)−φ(a)φ(a)∗‖‖φ(b∗b)−φ(b)∗φ(b)‖, (2)

for all unitaries a,b ∈ B .

Proof. Since φ is positive, recall that φ(x∗) = φ(x)∗ for all x ∈ B . Let a,b ∈ B
be unitary. Consider the matrix

A =

⎛
⎜⎜⎝

a∗a a∗b a∗ a∗(a∗b)
b∗a b∗b b∗ b∗(a∗b)
a b a∗a a∗b

(b∗a)a (b∗a)b b∗a b∗b

⎞
⎟⎟⎠ .

Since a,b are unitaries, it follows that R = b∗b = e and

T =

⎛
⎝a∗a a∗b a∗

b∗a b∗b b∗
a b a∗a

⎞
⎠=

⎛
⎝a∗(a∗b)

b∗(a∗b)
a∗b

⎞
⎠((b∗a)a (b∗a)b b∗a

)
= SS∗ = SR−1S∗.

Thus Lemma 2 implies that A � 0. This is equivalent to⎛
⎜⎜⎝

a∗a a∗b a∗ a∗(a∗b)
b∗a b∗b b∗ b∗(a∗b)
a b a∗a a∗b

(b∗a)a (b∗a)b b∗a b∗b

⎞
⎟⎟⎠� 0. (3)

By Lemma 3 applied to the unital positive map φ2 and the 2×2 block matrix in equa-
tion (3), it follows that⎛

⎜⎜⎝
φ(a∗a) φ(a∗b) φ(a)∗ φ(a∗(a∗b))
φ(b∗a) φ(b∗b) φ(b)∗ φ(b∗(a∗b))
φ(a) φ(b) φ(a∗a) φ(a∗b)

φ((b∗a)a) φ((b∗a)b) φ(b∗a) φ(b∗b)

⎞
⎟⎟⎠� 0. (4)

This in turn implies that ⎛
⎝φ(a∗a) φ(a∗b) φ(a)∗

φ(b∗a) φ(b∗b) φ(b)∗
φ(a) φ(b) φ(a∗a)

⎞
⎠� 0. (5)
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By Lemma 2 and the fact that φ(a∗a) = φ(e) = 1, equation (5) is equivalent to(
φ(a∗a) φ(a∗b)
φ(b∗a) φ(b∗b)

)
−
(

φ(a)∗
φ(b)∗

)(
φ(a) φ(b)

)� 0, (6)

i.e. (
φ(a∗a)−φ(a)∗φ(a) φ(a∗b)−φ(a)∗φ(b)
φ(b∗a)−φ(b)∗φ(a) φ(b∗b)−φ(b)∗φ(b)

)
� 0. (7)

An application of Lemma 1 to the operator matrix in equation (7) yields

‖φ(a∗b)−φ(a)∗φ(b)‖2 � ‖φ(a∗a)−φ(a)∗φ(a)‖‖φ(b∗b)−φ(b)∗φ(b)‖ (8)

for all unitaries a,b ∈ B . Replacing a by a∗ in (8) completes the proof. �

The following three theorems are well known.

THEOREM 3. (Fuglede-Putnam) Let A be a C*-algebra. If x,y ∈ A are such
that x is normal and xy = yx , then x∗y = yx∗ .

For more on the Fuglede-Putnam theorem, please see [2].

THEOREM 4. (Stinespring’s Dilation Theorem) If B is a unital C*-algebra and
φ : B → B(H) is a unital completely positive map, then there exist a Hilbert space
K , an isometry v : H → K and a unital *-homomorphism π : B → B(K) such that
φ(x) = v∗π(x)v for all x ∈ B .

For a proof of Stinespring’s dilation theorem, please see [6].

THEOREM 5. (Russo-Dye) Let A be a unital C*-algebra. If a ∈ A is such that
‖a‖ < 1 , then a is a convex combination of unitary elements in A .

For a proof and more on the Russo-Dye theorem, please see [2].

3. The Proof

This section contains the proof of our main result, i.e. Theorem 2. The following
theorem and corollary lead us to it.

THEOREM 6. If a,b are commuting normal elements in the unital C*-algebra A
and φ : A → B(H) is a unital positive linear map, then

‖φ(ab)−φ(a)φ(b)‖ �
(

inf
λ∈C

‖a−λe‖
)(

inf
μ∈C

‖b− μe‖
)

, (9)

i.e. the Grüss inequality holds for such a,b ∈ A .
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Proof. The proof is adapted from [7]. Let λ ,μ ∈ C . Since a,b are commut-
ing normal elements in the C*-algebra A , it follows from Theorem 3 that the C*-
subalgebra of A , say B , generated by a,b and e is commutative. Since the restricted
map φ : B → B(H) is positive and B is commutative, it follows that φ : B → B(H)
is in fact completely positive (see e.g. [6]). By Theorem 4, it follows that there exist a
Hilbert space K , an isometry v : H → K and a unital *-homomorphism π : B → B(K)
such that φ(x) = v∗π(x)v for all x ∈ B . Since π is a unital *-homomorphism, it is
completely positive and hence is a complete contraction. In particular ‖π‖ � 1. It
follows that

‖φ(ab)−φ(a)φ(b)‖ = ‖φ((a−λe)(b− μe))−φ(a−λe)φ(b−μe)‖
= ‖v∗π((a−λe)(b− μe))v− v∗π(a−λe)vv∗π(b− μe)v‖
= ‖v∗π(a−λe)π(b− μe)v− v∗π(a−λe)vv∗π(b− μe)v‖
= ‖v∗π(a−λe)(1− vv∗)π(b− μe)v‖
� ‖a−λe‖‖1− vv∗‖‖b− μe‖
� ‖a−λe‖‖b− μe‖.

The proof is complete by taking infimums on the above inequality first with respect to
λ and then with respect to μ . �

REMARK 1. It is easy to see that if A is commutative or φ is completely positive,
in the statement of Theorem 6, then the entire proof of Theorem 6 goes through with
B replaced by A , for arbitrary a and b , i.e. the Grüss inequality (9) holds if A is
commutative or φ is completely positive.

COROLLARY 1. If φ and a are as in Theorem 6, then

‖φ(aa∗)−φ(a)φ(a)∗‖ �
(

inf
λ∈C

‖a−λe‖
)2

.

Proof. The proof follows by taking b = a∗ in Theorem 6. �
Proof of Theorem 2. Recall a , b , A , H and φ from the statement of Theorem

2. Let ε > 0. By Theorem 5, there exist unitary elements u1, . . . ,uk and v1, . . . ,v�

in A such that a
(‖a‖+ε) = ∑k

i=1 αiui and b
(‖b‖+ε) = ∑�

j=1 β jv j , where αi,β j � 0 and

∑k
i=1 αi = ∑�

j=1 β j = 1. It follows from Proposition 1 and Corollary 1 that

1
(‖a‖+ ε)

1
(‖b‖+ ε)

‖φ(ab)−φ(a)φ(b)‖

=

∥∥∥∥∥φ

((
k

∑
i=1

αiui

)(
�

∑
j=1

β jv j

))
−φ

(
k

∑
i=1

αiui

)
φ

(
�

∑
j=1

β jv j

)∥∥∥∥∥
�

k

∑
i=1

�

∑
j=1

αiβ j‖φ(uiv j)−φ(ui)φ(v j)‖ (10)
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�
k

∑
i=1

�

∑
j=1

αiβ j‖φ(uiu
∗
i )−φ(ui)φ(ui)∗‖ 1

2 ‖φ(v∗j v j)−φ(v j)∗φ(v j)‖ 1
2 (11)

�
k

∑
i=1

�

∑
j=1

αiβ j

(
inf

λ∈C

‖ui−λe‖
)(

inf
μ∈C

‖v j − μe‖
)

�
k

∑
i=1

�

∑
j=1

αiβ j‖ui‖‖v j‖

=
k

∑
i=1

�

∑
j=1

αiβ j

=

(
k

∑
i=1

αi

)(
�

∑
j=1

β j

)

= 1.

Letting ε → 0 above yields,

‖φ(ab)−φ(a)φ(b)‖ � ‖a‖‖b‖. (12)

Let λ ,μ ∈ C be arbitrary. It follows from equation (12) that

‖φ(ab)−φ(a)φ(b)‖ = ‖φ((a−λe)(b− μe))−φ(a−λe)φ(b−μe)‖
� ‖(a−λe)‖‖(b− μe)‖.

Taking infimums in the above inequality, first with respect to λ and then with respect
to μ completes the proof. �

The Grüss inequality fails, in general, when φ in Theorem 2 is assumed only to
be positive, i.e. when n = 1, as the following example shows. We point out that [5]
contains an example of such a map φ : M2(C) → M2(C) .

EXAMPLE. Let k � 2, β = {e1,e2, . . . ,ek} be an orthonormal set in H , E =
span(β ) , and θ : Mk(C) → Mk(C) denote the transpose map. It is well known that θ
is a unital positive linear map, which is not 2-positive (see [10]). Define φ : Mk(C) →
B(H) by φ(a) =

(
θ (a) 0

0 1

)
. The block structure is with respect to the orthogonal

decomposition E ⊕E⊥ of H . Here 1 denotes the identity operator and 0 denotes the
zero operator. It is easy to see that φ is a unital positive linear map which is not 2-

positive. Let a =
(

1 3
3 3

)
⊕0k−2 ∈ Mk(C) and b =

(
1 0
0 3

)
⊕0k−2 ∈ Mk(C) . A simple

computation shows that the eigenvalues of a belong to {0,2±√
10} and those of b

belong to {0,1,3} . Since a and b are normal, it follows from [9] that,

inf
λ∈C

‖a−λe‖=
√

10 and inf
μ∈C

‖b− μe‖=
3
2
. (13)



ON THE GRÜSS INEQUALITY FOR UNITAL 2 -POSITIVE LINEAR MAPS 649

Moreover

φ(ab)−φ(a)φ(b) =
(((

1 3
9 9

)
⊕0k−2

)
⊕1
)
−
(((

1 9
3 9

)
⊕0k−2

)
⊕1
)

=
(((

0 −6
6 0

)
⊕0k−2

)
⊕0
)

.

Thus,

‖φ(ab)−φ(a)φ(b)‖ = 6 >
√

10 · 3
2

=
(

inf
λ∈C

‖a−λe‖
)(

inf
μ∈C

‖b− μe‖
)

.
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