ON THE GRÜSS INEQUALITY FOR UNITAL 2-POSITIVE LINEAR MAPS

SRIRAM BALASUBRAMANIAN

(Communicated by R. Rajić)

Abstract

In a recent work, Moslehian and Rajić have shown that the Grüss inequality holds for unital n-positive linear maps $\phi: \mathscr{A} \rightarrow B(H)$, where \mathscr{A} is a unital C^{*}-algebra and H is a Hilbert space, if $n \geqslant 3$. They also demonstrate that the inequality fails to hold, in general, if $n=1$ and question whether the inequality holds if $n=2$. In this article, we provide an affirmative answer to this question.

1. Introduction

A classical theorem of Grüss (see [4]) states that if f and g are bounded real valued integrable functions on $[a, b]$ and $m_{1} \leqslant f(x) \leqslant M_{1}$ and $m_{2} \leqslant g(x) \leqslant M_{2}$ for all $x \in[a, b]$, then

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}}\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} g(x) d x\right)\right| \leqslant \frac{1}{4} \alpha \beta
$$

where $\alpha=\left(M_{1}-m_{1}\right)$ and $\beta=\left(M_{2}-m_{2}\right)$.
A generalized operator version of the Grüss inequality was given by Renaud in [8], where he proved the following result.

THEOREM 1. Let $A, B \in B(H)$ and suppose that their numerical ranges are contained in disks of radii R and S respectively. If $T \in B(H)$ is a positive operator with $\operatorname{Tr}(T)=1$, where Tr stands for the trace, then

$$
|\operatorname{Tr}(T A B)-\operatorname{Tr}(T A) \operatorname{Tr}(T B)| \leqslant 4 R S
$$

If A, B are normal, then the constant 4 on the right hand side can be replaced by 1 .
Among other operator versions of the Grüss inequality, of particular interest to us are those of Perić and Rajić (see [7]), where they prove the Grüss inequality for completely bounded maps, and Moslehian and Rajić (see [5]), where they prove the Grüss inequality for n-positive unital linear maps, for $n \geqslant 3$. In [5], the authors show that the inequality fails to hold in general, if $n=1$ and question whether it holds for the case $n=2$. The main result of this article gives an affirmative answer to this question.

[^0]Before we state the main result, we shall introduce some notation and definitions. Throughout this article, \mathscr{A} will denote a unital C^{*}-algebra, $M_{n}(\mathscr{A})$ the C^{*}-algebra of $n \times n$ matrices over \mathscr{A}, H and K complex Hilbert spaces and $B(H)$ the C^{*}-algebra of bounded operators on H. The notations $e, 1$ will denote the unit elements in \mathscr{A} and $B(H)$ respectively and $\phi: \mathscr{A} \rightarrow B(H)$, a unital linear map, i.e. a linear map such that $\phi(e)=1$. The map ϕ is said to be positive if $\phi(a)$ is positive in $B(H)$ for all positive $a \in \mathscr{A}$. For more details, see [6]. It is easy to see that the map $\phi_{n}: M_{n}(\mathscr{A}) \rightarrow M_{n}(B(H))$ defined by $\phi_{n}\left(\left(a_{i j}\right)\right)=\left(\phi\left(a_{i j}\right)\right)$ is unital and linear for each $n \in \mathbb{N}$. The map ϕ is said to be n-positive if ϕ_{n} is a positive map, completely positive if ϕ is n-positive for all $n \in \mathbb{N}$ and completely bounded if $\sup _{n \in \mathbb{N}}\left\|\phi_{n}\right\|<\infty$.

The main result of this article is the following.

THEOREM 2. Let \mathscr{A} be a C^{*}-algebra with unit e. If $\phi: \mathscr{A} \rightarrow B(H)$ is a unital 2-positive linear map, then

$$
\begin{equation*}
\|\phi(a b)-\phi(a) \phi(b)\| \leqslant\left(\inf _{\lambda \in \mathbb{C}}\|a-\lambda e\|\right)\left(\inf _{\mu \in \mathbb{C}}\|b-\mu e\|\right) \tag{1}
\end{equation*}
$$

for all $a, b \in \mathscr{A}$.
To prove Theorem 2, we use the well-known theorems of Stinespring, Russo-Dye, Fuglede-Putnam, and the result due to Choi (see Lemma 3).

2. Preliminaries

In this section we include some lemmas which will be used in the sequel. Observe that if \mathscr{A} and \mathscr{B} are unital C^{*}-algebras and $\gamma: \mathscr{A} \rightarrow \mathscr{B}$ is a unital n-positive linear map, then it is m-positive for all $m=1,2, \ldots, n$. In particular γ is positive. It is well known that positive maps are ${ }^{*}$-preserving. i.e. $\gamma\left(a^{*}\right)=\gamma(a)^{*}$ for all $a \in \mathscr{A}$. Moreover $\|\gamma\|=1$.

LEMMA 1. If $P, Q, R \in B(H)$, then $A=\left(\begin{array}{cc}P & R \\ R^{*} & Q\end{array}\right) \succeq 0$ in $M_{2}(B(H))$ if and only if $P, Q \succeq 0$ and $|\langle R x, y\rangle|^{2} \leqslant\langle P x, x\rangle\langle Q y, y\rangle$, for all $x, y \in H$. Moreover, if $A \succeq 0$, then $\|R\|^{2} \leqslant\|P\|\|Q\|$.

Lemma 2. Let $A=\left(\begin{array}{cc}T & S \\ S^{*} & R\end{array}\right) \in B(H \oplus K)$. If $R \in B(K)$ be invertible, then the following statements are equivalent.
(i) $A \succeq 0$
(ii) $T, R \succeq 0$ and $T \succeq S R^{-1} S^{*}$.

The above two lemmas are well known. Their proofs can be found in [1].

Lemma 3. (Choi) Let \mathscr{U} and \mathscr{V} be C^{*}-algebras and $\phi: \mathscr{U} \rightarrow \mathscr{V}$ be a positive linear map. If $x, y \in \mathscr{U}$ and $\left(\begin{array}{cc}x & y \\ y^{*} & x\end{array}\right) \succeq 0$, then $\left(\begin{array}{cc}\phi(x) & \phi(y) \\ \phi\left(y^{*}\right) & \phi(x)\end{array}\right) \succeq 0$.

For a proof of Lemma 3, please see Corollary 4.4 of [3].
Proposition 1. If \mathscr{B} is a unital C^{*}-algebra and $\phi: \mathscr{B} \rightarrow B(H)$ is a unital 2-positive linear map, then

$$
\begin{equation*}
\|\phi(a b)-\phi(a) \phi(b)\|^{2} \leqslant\left\|\phi\left(a a^{*}\right)-\phi(a) \phi(a)^{*}\right\|\left\|\phi\left(b^{*} b\right)-\phi(b)^{*} \phi(b)\right\| \tag{2}
\end{equation*}
$$

for all unitaries $a, b \in \mathscr{B}$.

Proof. Since ϕ is positive, recall that $\phi\left(x^{*}\right)=\phi(x)^{*}$ for all $x \in \mathscr{B}$. Let $a, b \in \mathscr{B}$ be unitary. Consider the matrix

$$
A=\left(\begin{array}{ccc|c}
a^{*} a & a^{*} b & a^{*} & a^{*}\left(a^{*} b\right) \\
b^{*} a & b^{*} b & b^{*} & b^{*}\left(a^{*} b\right) \\
a & b & a^{*} a & a^{*} b \\
\hline\left(b^{*} a\right) a & \left(b^{*} a\right) b & b^{*} a & b^{*} b
\end{array}\right) .
$$

Since a, b are unitaries, it follows that $R=b^{*} b=e$ and

$$
T=\left(\begin{array}{ccc}
a^{*} a & a^{*} b & a^{*} \\
b^{*} a & b^{*} b & b^{*} \\
a & b & a^{*} a
\end{array}\right)=\left(\begin{array}{c}
a^{*}\left(a^{*} b\right) \\
b^{*}\left(a^{*} b\right) \\
a^{*} b
\end{array}\right)\left(\left(b^{*} a\right) a\left(b^{*} a\right) b b^{*} a\right)=S S^{*}=S R^{-1} S^{*}
$$

Thus Lemma 2 implies that $A \succeq 0$. This is equivalent to

$$
\left(\begin{array}{cc|cc}
a^{*} a & a^{*} b & a^{*} & a^{*}\left(a^{*} b\right) \tag{3}\\
b^{*} a & b^{*} b & b^{*} & b^{*}\left(a^{*} b\right) \\
\hline a & b & a^{*} a & a^{*} b \\
\left(b^{*} a\right) a & \left(b^{*} a\right) b & b^{*} a & b^{*} b
\end{array}\right) \succeq 0
$$

By Lemma 3 applied to the unital positive map ϕ_{2} and the 2×2 block matrix in equation (3), it follows that

$$
\left(\begin{array}{cccc}
\phi\left(a^{*} a\right) & \phi\left(a^{*} b\right) & \phi(a)^{*} & \phi\left(a^{*}\left(a^{*} b\right)\right) \tag{4}\\
\phi\left(b^{*} a\right) & \phi\left(b^{*} b\right) & \phi(b)^{*} & \phi\left(b^{*}\left(a^{*} b\right)\right) \\
\phi(a) & \phi(b) & \phi\left(a^{*} a\right) & \phi\left(a^{*} b\right) \\
\phi\left(\left(b^{*} a\right) a\right) & \phi\left(\left(b^{*} a\right) b\right. & \phi\left(b^{*} a\right) & \phi\left(b^{*} b\right)
\end{array}\right) \succeq 0
$$

This in turn implies that

$$
\left(\begin{array}{ccc}
\phi\left(a^{*} a\right) & \phi\left(a^{*} b\right) & \phi(a)^{*} \tag{5}\\
\phi\left(b^{*} a\right) & \phi\left(b^{*} b\right) & \phi(b)^{*} \\
\phi(a) & \phi(b) & \phi\left(a^{*} a\right)
\end{array}\right) \succeq 0
$$

By Lemma 2 and the fact that $\phi\left(a^{*} a\right)=\phi(e)=1$, equation (5) is equivalent to

$$
\left(\begin{array}{l}
\phi\left(a^{*} a\right) \tag{6}\\
\phi\left(b^{*} b\right) \\
\phi\left(b^{*} a\right) \\
\phi\left(b^{*} b\right)
\end{array}\right)-\binom{\phi(a)^{*}}{\phi(b)^{*}}(\phi(a) \phi(b)) \succeq 0
$$

i.e.

$$
\begin{equation*}
\binom{\phi\left(a^{*} a\right)-\phi(a)^{*} \phi(a) \phi\left(a^{*} b\right)-\phi(a)^{*} \phi(b)}{\phi\left(b^{*} a\right)-\phi(b)^{*} \phi(a) \phi\left(b^{*} b\right)-\phi(b)^{*} \phi(b)} \succeq 0 . \tag{7}
\end{equation*}
$$

An application of Lemma 1 to the operator matrix in equation (7) yields

$$
\begin{equation*}
\left\|\phi\left(a^{*} b\right)-\phi(a)^{*} \phi(b)\right\|^{2} \leqslant\left\|\phi\left(a^{*} a\right)-\phi(a)^{*} \phi(a)\right\|\left\|\phi\left(b^{*} b\right)-\phi(b)^{*} \phi(b)\right\| \tag{8}
\end{equation*}
$$

for all unitaries $a, b \in \mathscr{B}$. Replacing a by a^{*} in (8) completes the proof.
The following three theorems are well known.
THEOREM 3. (Fuglede-Putnam) Let \mathscr{A} be a C^{*}-algebra. If $x, y \in \mathscr{A}$ are such that x is normal and $x y=y x$, then $x^{*} y=y x^{*}$.

For more on the Fuglede-Putnam theorem, please see [2].

THEOREM 4. (Stinespring's Dilation Theorem) If \mathscr{B} is a unital C *-algebra and $\phi: \mathscr{B} \rightarrow B(H)$ is a unital completely positive map, then there exist a Hilbert space K, an isometry $v: H \rightarrow K$ and a unital *-homomorphism $\pi: \mathscr{B} \rightarrow B(K)$ such that $\phi(x)=v^{*} \pi(x) v$ for all $x \in \mathscr{B}$.

For a proof of Stinespring's dilation theorem, please see [6].

THEOREM 5. (Russo-Dye) Let \mathscr{A} be a unital C^{*}-algebra. If $a \in \mathscr{A}$ is such that $\|a\|<1$, then a is a convex combination of unitary elements in \mathscr{A}.

For a proof and more on the Russo-Dye theorem, please see [2].

3. The Proof

This section contains the proof of our main result, i.e. Theorem 2. The following theorem and corollary lead us to it.

THEOREM 6. If a, b are commuting normal elements in the unital C *-algebra \mathscr{A} and $\phi: \mathscr{A} \rightarrow B(H)$ is a unital positive linear map, then

$$
\begin{equation*}
\|\phi(a b)-\phi(a) \phi(b)\| \leqslant\left(\inf _{\lambda \in \mathbb{C}}\|a-\lambda e\|\right)\left(\inf _{\mu \in \mathbb{C}}\|b-\mu e\|\right) \tag{9}
\end{equation*}
$$

i.e. the Grüss inequality holds for such $a, b \in \mathscr{A}$.

Proof. The proof is adapted from [7]. Let $\lambda, \mu \in \mathbb{C}$. Since a, b are commuting normal elements in the C^{*}-algebra \mathscr{A}, it follows from Theorem 3 that the C^{*} subalgebra of \mathscr{A}, say \mathscr{B}, generated by a, b and e is commutative. Since the restricted map $\phi: \mathscr{B} \rightarrow B(H)$ is positive and \mathscr{B} is commutative, it follows that $\phi: \mathscr{B} \rightarrow B(H)$ is in fact completely positive (see e.g. [6]). By Theorem 4, it follows that there exist a Hilbert space K, an isometry $v: H \rightarrow K$ and a unital *-homomorphism $\pi: \mathscr{B} \rightarrow B(K)$ such that $\phi(x)=v^{*} \pi(x) v$ for all $x \in \mathscr{B}$. Since π is a unital $*$-homomorphism, it is completely positive and hence is a complete contraction. In particular $\|\pi\| \leqslant 1$. It follows that

$$
\begin{aligned}
\|\phi(a b)-\phi(a) \phi(b)\| & =\|\phi((a-\lambda e)(b-\mu e))-\phi(a-\lambda e) \phi(b-\mu e)\| \\
& =\left\|v^{*} \pi((a-\lambda e)(b-\mu e)) v-v^{*} \pi(a-\lambda e) v v^{*} \pi(b-\mu e) v\right\| \\
& =\left\|v^{*} \pi(a-\lambda e) \pi(b-\mu e) v-v^{*} \pi(a-\lambda e) v v^{*} \pi(b-\mu e) v\right\| \\
& =\left\|v^{*} \pi(a-\lambda e)\left(1-v v^{*}\right) \pi(b-\mu e) v\right\| \\
& \leqslant\|a-\lambda e\|\left\|1-v v^{*}\right\|\|b-\mu e\| \\
& \leqslant\|a-\lambda e\|\|b-\mu e\|
\end{aligned}
$$

The proof is complete by taking infimums on the above inequality first with respect to λ and then with respect to μ.

REMARK 1. It is easy to see that if \mathscr{A} is commutative or ϕ is completely positive, in the statement of Theorem 6, then the entire proof of Theorem 6 goes through with \mathscr{B} replaced by \mathscr{A}, for arbitrary a and b, i.e. the Grüss inequality (9) holds if \mathscr{A} is commutative or ϕ is completely positive.

COROLLARY 1. If ϕ and a are as in Theorem 6, then

$$
\left\|\phi\left(a a^{*}\right)-\phi(a) \phi(a)^{*}\right\| \leqslant\left(\inf _{\lambda \in \mathbb{C}}\|a-\lambda e\|\right)^{2}
$$

Proof. The proof follows by taking $b=a^{*}$ in Theorem 6.
Proof of Theorem 2. Recall a, b, \mathscr{A}, H and ϕ from the statement of Theorem 2. Let $\varepsilon>0$. By Theorem 5, there exist unitary elements u_{1}, \ldots, u_{k} and v_{1}, \ldots, v_{ℓ} in \mathscr{A} such that $\frac{a}{(\|a\|+\varepsilon)}=\sum_{i=1}^{k} \alpha_{i} u_{i}$ and $\frac{b}{(\|b\|+\varepsilon)}=\sum_{j=1}^{\ell} \beta_{j} v_{j}$, where $\alpha_{i}, \beta_{j} \geqslant 0$ and $\sum_{i=1}^{k} \alpha_{i}=\sum_{j=1}^{\ell} \beta_{j}=1$. It follows from Proposition 1 and Corollary 1 that

$$
\begin{align*}
\frac{1}{(\|a\|+\varepsilon)} & \frac{1}{(\|b\|+\varepsilon)}\|\phi(a b)-\phi(a) \phi(b)\| \\
& =\left\|\phi\left(\left(\sum_{i=1}^{k} \alpha_{i} u_{i}\right)\left(\sum_{j=1}^{\ell} \beta_{j} v_{j}\right)\right)-\phi\left(\sum_{i=1}^{k} \alpha_{i} u_{i}\right) \phi\left(\sum_{j=1}^{\ell} \beta_{j} v_{j}\right)\right\| \\
& \leqslant \sum_{i=1}^{k} \sum_{j=1}^{\ell} \alpha_{i} \beta_{j}\left\|\phi\left(u_{i} v_{j}\right)-\phi\left(u_{i}\right) \phi\left(v_{j}\right)\right\| \tag{10}
\end{align*}
$$

$$
\begin{align*}
& \leqslant \sum_{i=1}^{k} \sum_{j=1}^{\ell} \alpha_{i} \beta_{j}\left\|\phi\left(u_{i} u_{i}^{*}\right)-\phi\left(u_{i}\right) \phi\left(u_{i}\right)^{*}\right\|^{\frac{1}{2}}\left\|\phi\left(v_{j}^{*} v_{j}\right)-\phi\left(v_{j}\right)^{*} \phi\left(v_{j}\right)\right\|^{\frac{1}{2}} \tag{11}\\
& \leqslant \sum_{i=1}^{k} \sum_{j=1}^{\ell} \alpha_{i} \beta_{j}\left(\inf _{\lambda \in \mathbb{C}}\left\|u_{i}-\lambda e\right\|\right)\left(\inf _{\mu \in \mathbb{C}}\left\|v_{j}-\mu e\right\|\right) \\
& \leqslant \sum_{i=1}^{k} \sum_{j=1}^{\ell} \alpha_{i} \beta_{j}\left\|u_{i}\right\|\left\|v_{j}\right\| \\
& =\sum_{i=1}^{k} \sum_{j=1}^{\ell} \alpha_{i} \beta_{j} \\
& =\left(\sum_{i=1}^{k} \alpha_{i}\right)\left(\sum_{j=1}^{\ell} \beta_{j}\right) \\
& =1
\end{align*}
$$

Letting $\varepsilon \rightarrow 0$ above yields,

$$
\begin{equation*}
\|\phi(a b)-\phi(a) \phi(b)\| \leqslant\|a\|\|b\| \tag{12}
\end{equation*}
$$

Let $\lambda, \mu \in \mathbb{C}$ be arbitrary. It follows from equation (12) that

$$
\begin{aligned}
\|\phi(a b)-\phi(a) \phi(b)\| & =\|\phi((a-\lambda e)(b-\mu e))-\phi(a-\lambda e) \phi(b-\mu e)\| \\
& \leqslant\|(a-\lambda e)\|\|(b-\mu e)\|
\end{aligned}
$$

Taking infimums in the above inequality, first with respect to λ and then with respect to μ completes the proof.

The Grüss inequality fails, in general, when ϕ in Theorem 2 is assumed only to be positive, i.e. when $n=1$, as the following example shows. We point out that [5] contains an example of such a map $\phi: M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$.

Example. Let $k \geqslant 2, \beta=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be an orthonormal set in $H, E=$ $\operatorname{span}(\beta)$, and $\theta: M_{k}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$ denote the transpose map. It is well known that θ is a unital positive linear map, which is not 2 -positive (see [10]). Define $\phi: M_{k}(\mathbb{C}) \rightarrow$ $B(H)$ by $\phi(a)=\left(\begin{array}{cc}\theta(a) & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right)$. The block structure is with respect to the orthogonal decomposition $E \oplus E^{\perp}$ of H. Here $\mathbf{1}$ denotes the identity operator and $\mathbf{0}$ denotes the zero operator. It is easy to see that ϕ is a unital positive linear map which is not 2 positive. Let $a=\left(\begin{array}{ll}1 & 3 \\ 3 & 3\end{array}\right) \oplus \mathbf{0}_{k-2} \in M_{k}(\mathbb{C})$ and $b=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right) \oplus \mathbf{0}_{k-2} \in M_{k}(\mathbb{C})$. A simple computation shows that the eigenvalues of a belong to $\{0,2 \pm \sqrt{10}\}$ and those of b belong to $\{0,1,3\}$. Since a and b are normal, it follows from [9] that,

$$
\begin{equation*}
\inf _{\lambda \in \mathbb{C}}\|a-\lambda e\|=\sqrt{10} \quad \text { and } \quad \inf _{\mu \in \mathbb{C}}\|b-\mu e\|=\frac{3}{2} \tag{13}
\end{equation*}
$$

Moreover

$$
\begin{aligned}
\phi(a b)-\phi(a) \phi(b) & =\left(\left(\left(\begin{array}{ll}
1 & 3 \\
9 & 9
\end{array}\right) \oplus \mathbf{0}_{k-2}\right) \oplus \mathbf{1}\right)-\left(\left(\left(\begin{array}{ll}
1 & 9 \\
3 & 9
\end{array}\right) \oplus \mathbf{0}_{k-2}\right) \oplus \mathbf{1}\right) \\
& =\left(\left(\left(\begin{array}{cc}
0 & -6 \\
6 & 0
\end{array}\right) \oplus \mathbf{0}_{k-2}\right) \oplus \mathbf{0}\right)
\end{aligned}
$$

Thus,

$$
\|\phi(a b)-\phi(a) \phi(b)\|=6>\sqrt{10} \cdot \frac{3}{2}=\left(\inf _{\lambda \in \mathbb{C}}\|a-\lambda e\|\right)\left(\inf _{\mu \in \mathbb{C}}\|b-\mu e\|\right)
$$

Acknowledgements. I would like to thank Prof. Scott McCullough for some useful discussions and Krishanu Deyasi for his help with some MATLAB computations.

REFERENCES

[1] T. Ando, Topics on Operator Inequalities, Division of Appl. Math., Research Institute of Applied Electricity, Hokkaido Univ., Sapporo, 1978.
[2] B. Blackadar, Operator Algebras: Theory of C *-Algebras and von Neumann Algebras, Encyclopaedia of Mathematical Sciences, Vol. 122, 2006, ISBN 978-3-540-28517-5.
[3] M. D. Choi, Some Assorted Inequalities for Positive linear maps on C^{*}-algebras, J. Oper. Th., 4 (1980), 271-285.
[4] G. GrÜSs, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x$ $\int_{a}^{b} g(x) d x$, Math. Z. 39 (1934), 215-226.
[5] M. S. Moslehian, R. Rajić, A Grüss inequality for n-positive linear maps, Linear Algebra Appl. 433 (2010), 1555-1560.
[6] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge University Press, 1st edition, 2003.
[7] I. Perić, R. Rajić, Grüss inequality for completely bounded maps, Linear Algebra Appl. 390 (2004), 287-292.
[8] P. F. Renaud, A matrix formulation of Grüss inequality, Linear Algebra Appl. 335 (2001), 95-100.
[9] J. G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970), 737-747.
[10] T. Takasaki, J. Tomiyama, On the geometry of positive maps in matrix algebras, Math. Z. 184 (1983), 101-108.

[^0]: Mathematics subject classification (2010): Primary: 46L05, 47A63; Secondary: 47B65.
 Keywords and phrases: Grüss inequality, C^{*}-algebra, n-positive, completely positive.

