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Abstract. A class of non-self-adjoint fourth order differential operators with general separated
boundary conditions in Weyl’s limit circle case is studied. The dissipation property of the con-
sidered operators in L2[a,b) is proven by analysis and by using the characteristic determinant,
the completeness of the system of eigenfunctions and associated functions of these dissipative
operators also be proven.

1. Introduction

Non-self-adjoint spectral problems have more and more applications. For exam-
ple, interesting non-classical wavelets can be obtained from eigenfunctions and asso-
ciated functions for non-self-adjoint spectral problems. Thus, such problems are re-
ceiving more and more attention, especially the discreteness of the spectrum and the
completeness of eigenfunctions.

The non-self-adjointness of spectral problems can be caused by one or more of the
following factors: the non-linear dependence of the problems on the spectral parameter,
the non-symmetry of the differential expressions used, and the non-self-adjointness of
the boundary conditions (BCs) involved.

Non-self-adjoint spectral problems associated with differential operators having
only a discrete spectrum and depending polynomially on the spectral parameter have
been considered by Gohberg and Krein [1] and by Keldysh [2]. They studied the spec-
trum and principal functions of such problems and showed the completeness of the
principal functions in the corresponding Hilbert function spaces.

Non-self-adjoint Sturm-Liouville operators generated in L2(R+) , by differential
expression

l0(y) = −y′′ +q(x)y, x ∈ R+ = [0,+∞)

together with J-self-adjoint BCs, where q(x) is a complex valued function, have been
investigated in [3, 4, 5].

Non-self-adjoint differential operators generated by symmetric differential expres-
sions together with non-self-adjoint BCs have been investigated in [6, 7, 8, 9, 10, 11,
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12, 13, 14]. The determinant of perturbation connected with the dissipative operator
L generated in L2[a,b) by the Sturm-Liouville differential expression in Weyl’s limit
circle case has been studied by Bairamov and Ugurlu in [10], they using the Livšic
theorem, investigated the problem of completeness of the system of eigenfunctions and
associated functions of L .

There are also some results for fourth order dissipative operators [11, 12, 13, 14].
However, these studies only restricted into some special boundary conditions. For sec-
ond order Sturm-Liouville differential expression, Z. Wang and H. Wu in [7] give all
the non-self-adjoint boundary conditions which generate the operators dissipative. And
in [15, 16] the authors show that the fourth order boundary conditions are classified
into three types: separated, mixed and coupled, and the canonical forms for self-adjoint
BCs of each type are given.

Based on [15, 16] and following the ideas of [7] and [12], in this paper, a class
of non-self-adjoint fourth order differential operators in Weyl’s limit circle case with
general separated BCs is investigated. The results here are more general than previous
known results, and the process is much complicated.

This paper is organized as follows. In Section 2, we introduce our notation and
recall some basic results. The dissipation of the fourth order operator is proved in
Section 3. In Section 4, we review the characteristic function and the characteristic
determinant. The completeness of eigenfunctions and associated functions is studied in
Section 5.

2. Preliminaries

Consider the fourth order differential expression

l(y) = y(4) +q(x)y, on x ∈ I = [a,b), (2.1)

where −∞ < a < b � +∞ , q(x) is a real-valued function on I and q(x) ∈ L1
loc(I) .

Suppose that the endpoint a is regular, the endpoint b is singular, and the Weyl’s limit-
circle case holds for the differential expression l(y) . There are several discussions
about the Weyl’s limit-circle theory or applications [6, 17, 18, 19, 20, 21].

Let
Ω = {y ∈ L2(I) : y,y′,y′′,y′′′ ∈ ACloc(I), l(y) ∈ L2(I)}.

For all y,z ∈ Ω , we set

[y,z]x = −yz′′′ + y′z′′ − y′′z′ + y′′′z = −Rz(x)Q(x)Cy(x), x ∈ I,

where the bar over a function denotes complex conjugate, and

Q(x) =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠ , Rz(x) = (z(x),z′(x),z′′(x),z′′′(x)), Cz(x) = R∗
z (x),

and R∗
z (x) is complex conjugate transpose of Rz(x) .
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Let l(y) = λy , and we consider the boundary value problem consisting of the
differential equation

y(4) +q(x)y = λy on x ∈ I, (2.2)

and the BC :
l1(y) = γ1y(a)+ γ2y

′(a)− y′′′(a) = 0, (2.3)

l2(y) = γ2y(a)+ γ3y
′(a)+ y′′(a) = 0, (2.4)

l3(y) = γ5[y,z1]b + γ4[y,z2]b− [y,z4]b = 0, (2.5)

l4(y) = γ4[y,z1]b + γ6[y,z2]b +[y,z3]b = 0, (2.6)

where λ is a complex parameter, γi (i = 1,2,3,4) are real numbers with γ1γ3 − γ2
2 >

0 (hence γ1γ3 �= 0), γi (i = 5,6) are complex numbers with ℑ(γ5 + γ6) � 0 and
4ℑγ5ℑγ6 � | γ2

γ3
γ5 − γ2

γ1
γ6|2 and zi(x) ∈ L2(I) (i = 1,2,3,4) , which are given later, are

the linearly independent solutions of equation l(y) = 0 on interval I .
In L2(I) , define the operator L as Ly = l(y) on D(L) , where

D(L) = {y ∈ Ω| li(y) = 0, i = 1,2,3,4}.
Denote by φi(x,λ ) (i = 1,2,3,4) the solutions of Eq. (2.2), satisfying the initial

conditions

(Cφ1(a,λ ),Cφ2(a,λ ),Cφ3(a,λ ),Cφ4(a,λ )) =

⎛⎜⎜⎝
1 − γ2

γ1
0 1

γ1

− γ2
γ3

1 − 1
γ3

0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ . (2.7)

Since Weyl’s limit-circle case holds for the differential expression l(y) on I , the
solutions φi(x,λ ) (i = 1,2,3,4) belong to L2(I) . Let zi(x) = φi(x,0) (i = 1,2,3,4) ,
so zi(x) (i = 1,2,3,4) are the solutions of the equation l(y) = 0 (x ∈ I) , satisfying the
initial conditions

(Cz1(a),Cz2(a),Cz3(a),Cz4(a)) =

⎛⎜⎜⎝
1 − γ2

γ1
0 1

γ1

− γ2
γ3

1 − 1
γ3

0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (2.8)

and zi(x) ∈ L2(I) (i = 1,2,3,4) ; moreover zi(x) ∈ Ω (i = 1,2,3,4) . Consequently, for
each y ∈ Ω , the values [y,zi]b (i = 1,2,3,4) exist and are finite.

Let Φ(x) be the Wronskian matrix of the solutions zi(x) (i = 1,2,3,4) in I , i.e.

Φ(x) = (Cz1(x),Cz2(x),Cz3(x),Cz4(x)).

From
[zi,z j]x = −Rzj (x)Q(x)Czi(x) (1 � i, j � 4),

we have
([zi,z j]x)T = −Φ∗(x)Q(x)Φ(x) (1 � i, j � 4).
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By the nonzero constant of the Wronskian of the solutions z1(x),z2(x),z3(x),z4(x) in
I , and from (2.8) one obtain

([zi,z j]x)T = −Φ∗(x)Q(x)Φ(x) = J (1 � i, j � 4), (2.9)

where

J = −Φ∗(x)Q(x)Φ(x) =

⎛⎜⎜⎜⎝
0 0 γ2

γ3
1

0 0 −1 − γ2
γ1− γ2

γ3
1 0 0

−1 γ2
γ1

0 0

⎞⎟⎟⎟⎠ ,

and

J−1 =
1

1− γ2
2

γ1γ3

⎛⎜⎜⎜⎝
0 0 γ2

γ1
−1

0 0 1 − γ2
γ3− γ2

γ1
−1 0 0

1 γ2
γ3

0 0

⎞⎟⎟⎟⎠ .

By deduction above the following lemmas follows.

LEMMA 1. (see [17], page 261.)

Q(x) = −(Φ∗(x))−1JΦ−1(x), x ∈ I.

LEMMA 2. For arbitrary y ∈ D(L)

([y,z1]x, [y,z2]x, [y,z3]x, [y,z4]x)T = JΦ−1(x)Cy(x), x ∈ I.

COROLLARY 1. For arbitrary y1,y2,y3,y4 ∈ D(L), let Y (x) = (Cy1(x),Cy2(x),
Cy3(x),Cy4 (x)) be the Wronskian matrix of y1,y2,y3,y4, then

JΦ−1(x)Y (x) =

⎛⎜⎜⎝
[y1,z1]x [y2,z1]x [y3,z1]x [y4,z1]x
[y1,z2]x [y2,z2]x [y3,z2]x [y4,z2]x
[y1,z3]x [y2,z3]x [y3,z3]x [y4,z3]x
[y1,z4]x [y2,z4]x [y3,z4]x [y4,z4]x

⎞⎟⎟⎠ , x ∈ I.

LEMMA 3. For arbitrary y,z ∈ D(L)

[y,z]x =
1

1− γ2
2

γ1γ3

(
− γ2

γ1
[z,z1]x[y,z3]x +[z,z1]x[y,z4]x − [z,z2]x[y,z3]x +

γ2

γ3
[z,z2]x[y,z4]x

+
γ2

γ1
[z,z3]x[y,z1]x +[z,z3]x[y,z2]x − [z,z4]x[y,z1]x − γ2

γ3
[z,z4]x[y,z2]x

)
, x ∈ I.
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Proof. By Lemma 1 and Lemma 2, it follows

[y,z]x = −Rz(x)Q(x)Cy(x) = Rz(x)(Φ∗(x))−1JΦ−1(x)Cy(x)

= (Φ−1(x)Cz(x))∗J(Φ−1(x)Cy(x)))

=

⎛⎜⎜⎝J−1

⎛⎜⎜⎝
[z,z1]x
[z,z2]x
[z,z3]x
[z,z4]x

⎞⎟⎟⎠
⎞⎟⎟⎠

∗

J

⎛⎜⎜⎝J−1

⎛⎜⎜⎝
[y,z1]x
[y,z2]x
[y,z3]x
[y,z4]x

⎞⎟⎟⎠
⎞⎟⎟⎠

=

⎛⎝ 1

1− γ2
2

γ1γ3

⎞⎠2

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

0 0 γ2
γ1

−1
0 0 1 − γ2

γ3− γ2
γ1

−1 0 0
1 γ2

γ3
0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

[z,z1]x
[z,z2]x
[z,z3]x
[z,z4]x

⎞⎟⎟⎠
⎞⎟⎟⎟⎠

∗

⎛⎜⎜⎜⎝
0 0 γ2

γ3
1

0 0 −1 − γ2
γ1− γ2

γ3
1 0 0

−1 γ2
γ1

0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

0 0 γ2
γ1

−1
0 0 1 − γ2

γ3− γ2
γ1

−1 0 0
1 γ2

γ3
0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

[y,z1]x
[y,z2]x
[y,z3]x
[y,z4]x

⎞⎟⎟⎠
⎞⎟⎟⎟⎠

=
1

1− γ2
2

γ1γ3

(−[z,z1]x, −[z,z2]x, −[z,z3]x, −[z,z4]x
)
⎛⎜⎜⎜⎝

γ2
γ1

[y,z3]x − [y,z4]x
[y,z3]x − γ2

γ3
[y,z4]x

− γ2
γ1

[y,z1]x − [y,z2]x
[y,z1]x + γ2

γ3
[y,z2]x

⎞⎟⎟⎟⎠
=

1

1− γ2
2

γ1γ3

(
− γ2

γ1
[z,z1]x[y,z3]x +[z,z1]x[y,z4]x − [z,z2]x[y,z3]x +

γ2

γ3
[z,z2]x[y,z4]x

+
γ2

γ1
[z,z3]x[y,z1]x +[z,z3]x[y,z2]x − [z,z4]x[y,z1]x − γ2

γ3
[z,z4]x[y,z2]x

)
. �

3. Dissipative operators

At first, we give the definition of dissipative operator.

DEFINITION 1. (see [1]) A linear operator L , acting in the Hilbert space L2(I)
and having domain D(L) , is said to be dissipative if ℑ(L f , f ) � 0, ∀ f ∈ D(L).

For a bounded operator L (defined on Hilbert space L2(I)), we can always intro-
duce two operators

Lℑ =
L−L∗

2i
, Lℜ =

L+L∗

2i
.

The condition of dissipation is equivalent to the condition that its imaginary component
Lℑ is nonnegative. The operators Lℜ and Lℑ are self-adjoint operators, and L = Lℜ +
iLℑ , L∗ = Lℜ − iLℑ .
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Now set {
v3(x) = γ5z1(x)+ γ4z2(x)− z4(x),
v4(x) = γ4z1(x)+ γ6z2(x)+ z3(x),

x ∈ L2(I). (3.1)

It is clear that the solutions v3(x), v4(x) satisfy the boundary conditions (2.5) and (2.6),
z1(x) , z2(x) satisfy the boundary conditions (2.3) and (2.4).

REMARK 1. v3(x) does not satisfy the boundary condition (2.6), but satisfy (2.5);
v4(x) does not satisfy the boundary condition (2.5), but satisfy (2.6); z1(x) and z2(x)
satisfy the boundary conditions (2.3) and (2.4).

Setting
θ = det(Cz1(x),Cz2(x),Cv3(x),Cv4(x)), x ∈ I.

Then we have the following property of the operator L defined in this paper, which is
also a general property of dissipative operators.

LEMMA 4. Zero is not an eigenvalue of L; i.e. kerL = {0}.

Proof. Let y∈D(L) and Ly = 0, then y(4) +q(x)y = 0 and the function y satisfies
the boundary conditions (2.3)–(2.6). Therefore there exist constants c1, c2, c3, c4 such
that

y = c1z1(x)+ c2z2(x)+ c3v3(x)+ c4v4(x), x ∈ I.

The substitution y in the conditions (2.3)–(2.6) and the function θ �= 0, we find
ci = 0 (i = 1,2,3,4) . �

THEOREM 1. The operator L is dissipative in L2(I) , i.e.

ℑ(Ly,y) � 0, ∀y ∈ D(L).

Proof. For each y ∈ D(L) , from the Green’s formula, it follows

(Ly,y)− (y,Ly) = [y,y]b− [y,y]a. (3.2)

Since y ∈ D(L) by the boundary conditions (2.3) and (2.4), one get

[y,y]a = −yy′′′(a)+ y′y′′(a)− y′′y′(a)+ y′′′y(a) = 0. (3.3)

Using the boundary conditions (2.5), (2.6) and by Lemma 3, it can be obtained that

[y,y]b =
1

1− γ2
2

γ1γ3

(− γ2

γ1
[y,z1]b[y,z3]b +[y,z1]b[y,z4]b− [y,z2]b[y,z3]b +

γ2

γ3
[y,z2]b[y,z4]b

+
γ2

γ1
[y,z3]b[y,z1]b +[y,z3]b[y,z2]b− [y,z4]b[y,z1]b− γ2

γ3
[y,z4]b[y,z2]b)

=
1

1− γ2
2

γ1γ3

((γ5 − γ5)[y,z1]b[y,z1]b +(γ6− γ6)[y,z2]b[y,z2]b

+
(γ2

γ1
γ6− γ2

γ3
γ5

)
[y,z1]b[y,z2]b +

(
γ2

γ3
γ5 − γ2

γ1
γ6

)
[y,z1]b[y,z2]b). (3.4)
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Now inserting (3.3), (3.4) into (3.2), ones have

2iℑ(Ly,y) = (Ly,y)− (y,Ly) =
1

1− γ2
2

γ1γ3

([y,z1]b, [y,z2]b, [y,z3]b, [y,z4]b)

⎛⎜⎜⎝
γ5− γ5

γ2
γ3

γ5− γ2
γ1

γ6 0 0
γ2
γ1

γ6− γ2
γ3

γ5 γ6− γ6 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

[y,z1]b
[y,z2]b
[y,z3]b
[y,z4]b

⎞⎟⎟⎠ , (3.5)

and hence

2ℑ(Ly,y) =
1

1− γ2
2

γ1γ3

([y,z1]b, [y,z2]b, [y,z3]b, [y,z4]b)

⎛⎜⎜⎝
r c 0 0
c s 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

[y,z1]b
[y,z2]b
[y,z3]b
[y,z4]b

⎞⎟⎟⎠ , (3.6)

where
r = 2ℑγ5, s = 2ℑγ6, c = i(

γ2

γ3
γ5− γ2

γ1
γ6). (3.7)

Note that the 4 by 4 matrix in (3.6) is Hermitian. The eigenvalues of the Hermitian
matrix are

0 and
r+ s±√(r− s)2 +4|c|2

2
,

and they are all non-negative if and only if

r+ s � 0, rs � |c|2.

Since ℑ(γ5 + γ6) � 0, 4ℑγ5ℑγ6 � | γ2
γ3

γ5 − γ2
γ1

γ6|2 and γ1γ3− γ2
2 > 0, it has

ℑ(Ly,y) � 0,

i.e. L is dissipative in L2(I) . �

THEOREM 2. Let the notations of (3.7) hold. And if r > 0 , s > 0 and rs > |c|2 ,
then the operator L has no real eigenvalue.

Proof. Let λ0 be a real eigenvalue of L and let φ0(x) = φ(x,λ0) �= 0 be the cor-
responding eigenfunction, since

ℑ(Lφ0,φ0) = ℑ(λ0‖φ0‖2) = 0,

from (3.6), it follows

ℑ(Lφ0,φ0) =
1

2(1− γ2
2

γ1γ3
)
([φ0,z1]b, [φ0,z2]b)

(
r c
c s

)(
[φ0,z1]b
[φ0,z2]b

)
= 0, (3.8)
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since r > 0, s > 0 and rs > |c|2 , the matrix

(
r c
c s

)
is positive definite. So it can be

funded that [φ0,z1] = 0 and [φ0,z2] = 0. By the boundary conditions (2.5) and (2.6),
one has that [φ0,z3] = 0 and [φ0,z4] = 0. Let τ0(x) = τ(x,λ0) , η0(x) = η(x,λ0) ,
δ0(x) = δ (x,λ0) and φ0(x) = φ(x,λ0) be the independent solutions of l(y) = λ0y . By
using Corollary 1, then⎛⎜⎜⎝

[φ0,z1]b [τ0,z1]b [η0,z1]b [δ0,z1]b
[φ0,z2]b [τ0,z2]b [η0,z2]b [δ0,z2]b
[φ0,z3]b [τ0,z3]b [η0,z3]b [δ0,z3]b
[φ0,z4]b [τ0,z4]b [η0,z4]b [δ0,z4]b

⎞⎟⎟⎠= JΦ−1(b)(Cφ0(b),Cτ0(b),Cη0(b),Cδ0
(b)).

It is evident that the determinant of the left hand side is equal to zero, the value of the
Wronskian of the solutions τ(x,λ0) , η(x,λ0) , δ (x,λ0) and φ(x,λ0) is not equal to
zero, so the determinant of the right hand side is not equal to zero. This is a contradic-
tion, so the theorem is proven. �

4. Characteristic function and characteristic determinant

In this section, to prepare the operator L for the completeness, we review Green’s
function and use it to study the inverse of L .

The element y ∈ D(L) , y �= 0, is called a root vector of the operator L corre-
sponding to the eigenvalue λ0 , if all powers of L are defined on this element and
(L−λ0I)ny = 0 for some integer n > 0. The set of all root vectors of L corresponding
to the same eigenvalue λ0 with the vector y �= 0 forms a linear set Nλ0

and is called
the root lineal. The dimension of the lineal set Nλ0

is called the algebraic multiplicity
of the eigenvalue λ0 . Consequently the completeness of the system of all eigenvectors
and associated vectors of L is equivalent to the completeness of the system of all root
vectors of this operator.

Denote the class of all nuclear and the Hilbert-Schmidt operators in L2(I) by σ1

and σ2 , respectively. Let {μ j(L)}ν(L)
j=1 be a sequence of all nonzero eigenvalues of

L ∈ σp , p = 1,2 arranged by considering algebraic multiplicity and with decreasing
modulus, where ν(L)(� ∞) is a sum of algebraic multiplicities of all nonzero eigen-

values of L . If L ∈ σ1 , then ∑ν(L)
j=1 μ j(L) is called the trace of L and is denoted by

trL .

DEFINITION 2. (see [1]) Let g be an entire function. If for each ε > 0 there
exists a finite constant Cε > 0, such that |g(λ )| � Cεeε|λ | , λ ∈ C , then g is called an
entire function with growth of order � 1 and minimal type.

For each λ ∈ C , the functions φ1(x,λ ) , φ2(x,λ ) , φ3(x,λ ) , φ4(x,λ ) form a fun-
damental system of solutions of (2.2), and hence determine the eigenvalues of L .

For all x ∈ [a,b) , setting

ψi j(x,λ ) = [φi(·,λ ),z j(·)]x, (i, j = 1,2,3,4), (4.1)
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and
ψi j(λ ) = [φi(x,λ ),z j(x)]b, (i, j = 1,2,3,4), (4.2)

so ψi j(λ ) = ψi j(b,λ ) and it is evident that

σd(L) = {λ : λ ∈ C, ãi(λ ) = 0, b̃i(λ ) = 0, i = 1,2,3,4},

where σd(L) denotes the set of all eigenvalues of L and{
ãi(λ ) = γ5ψi1(λ )+ γ4ψi2(λ )−ψi4(λ ),
b̃i(λ ) = γ4ψi1(λ )+ γ6ψi2(λ )+ ψi3(λ ),

(i = 1,2,3,4).

LEMMA 5. The functions ψi j(λ ) (i, j = 1,2,3,4) are the entire functions of λ
with growth order � 1 and of minimal type.

Proof. By (4.1), one has

ψb1,4 j(λ ) = [φ4(x,λ ),z j(x)]b1 ( j = 1,2,3,4),

where a � b1 < b , since for arbitrary fixed b1 , the functions φ4(b1,λ ) , φ ′
4(b1,λ ) ,

φ ′′
4 (b1,λ ) , φ ′′′

4 (b1,λ ) are the entire functions of λ of order 1
2 , consequently, the func-

tions ψb1,4 j(λ ) ( j = 1,2,3,4) have the same property. Now we prove that the entire
functions ψb1,4 j(λ ) converge to ψ4 j(λ ) as b1 → b , uniformly in λ in each compact
set of the complex plane C .

Let y = y(x) be the solution of Eq. (2.2), then by Lemma 2 one has

y(x) =
1

1− γ2
2

γ1γ3

([y,z1]x
(
− γ2

γ1
z3(x)+ z4(x)

)
− [y,z2]x

(
z3(x)− γ2

γ3
z3(x)

)
(4.3)

+[y,z3]x
(
z2(x)+

γ2

γ1
z1(x)

)
− [y,z4]x

(
z1(x)+

γ2

γ3
z2(x))

)
, x ∈ I.

Let
f j(x,λ ) = [y,z j]x, ( j = 1,2,3,4), x ∈ I.

Then following Green’s formula, one has that f j(x,λ ) = [y,z j]x satisfy a system of the
first order differential equations

∂
∂x

f j(x,λ ) = λy(x,λ )z j(x) ( j = 1,2,3,4), x ∈ I.

Using (4.3) one obtain

∂
∂x

f (x,λ ) = λG(x) f (x,λ ), x ∈ I, (4.4)

where
f (x,λ ) = ( f1(x,λ ), f2(x,λ ), f3(x,λ ), f4(x,λ ))T ,
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G(x) =

⎛⎜⎜⎜⎝
z1(− γ2

γ1
z3 + z4)(x) −z1(z3 − γ2

γ3
z4)(x) z1(z2 + γ2

γ1
z1)(x) −z1(z1 + γ2

γ3
z2)(x)

z2(− γ2
γ1

z3 + z4)(x) −z2(z3 − γ2
γ3

z4)(x) z2(z2 + γ2
γ1

z1)(x) −z2(z1 + γ2
γ3

z2)(x)
z3(− γ2

γ1
z3 + z4)(x) −z3(z3 − γ2

γ3
z4)(x) z3(z2 + γ2

γ1
z1)(x) −z3(z1 + γ2

γ3
z2)(x)

z4(− γ2
γ1

z3 + z4)(x) −z4(z3 − γ2
γ3

z4)(x) z4(z2 + γ2
γ1

z1)(x) −z4(z1 + γ2
γ3

z2)(x)

⎞⎟⎟⎟⎠ ,

and the elements of G(x) are in L1(I) . For ω = (ω1, ω2, ω3, ω4)T put ‖ω‖ = |ω1|+
|ω2|+ |ω3|+ |ω4|, and the norm of a square 4×4 matrix will be denoted by ‖ · ‖ , the
inclusion ‖G(x)‖ ∈ L1(I) holds.

If y(x,λ ) = φ4(x,λ ) , then the system (4.4) is equivalent to the integral equation

f (x,λ ) = f (b1,λ )+ λ
∫ x

b1

G(t) f (t,λ )dt, x ∈ I, (4.5)

where

f (b1,λ ) =

⎛⎜⎜⎝
ψb1,41(λ )
ψb1,42(λ )
ψb1,43(λ )
ψb1,44(λ )

⎞⎟⎟⎠ , f (b,λ ) =

⎛⎜⎜⎝
ψ41(λ )
ψ42(λ )
ψ43(λ )
ψ44(λ )

⎞⎟⎟⎠ .

Using Gronwall’s inequality from (4.5), one finds that

‖ f (x,λ )‖ � ‖ f (b1,λ )‖exp(|λ |
∫ x

b1

‖G(t)‖dt), x ∈ I.

Hence

‖ f (b,λ )− f (b1,λ )‖ � |λ |(
∫ b

b1

‖G(t)‖dt)exp(|λ |
∫ b

a
‖G(t)‖dt), (4.6)

‖ f (b,λ )‖ � ‖ f (b1,λ )‖exp(|λ |
∫ b

b1

‖G(t)‖dt). (4.7)

It follows from (4.6) that ψb1,4 j(λ ) converges to ψ4 j(λ ) as b1 → b , uniformly
in λ in a compact set. Consequently ψ4 j(λ ) ( j = 1,2,3,4) are the entire functions of
λ . Hence ψ4 j(λ ) are of not higher than first order. Since, for arbitrary fixed b1 , the
functions ψb1,4 j(λ ) ( j = 1,2,3,4) are the entire functions of λ of order 1

2 , from (4.7)
we obtain that the entire functions ψ4 j(λ ) ( j = 1,2,3,4) are of growth and minimal
type.

Similarly, It can be provn that ψi j(λ ) (i = 1,2,3; j = 1,2,3,4) are the entire
functions of λ with order � 1, and are of growth and minimal type. Hence the proof
is completed. �

Rewrite the boundary conditions (2.3)–(2.6) in matrix form. i.e.⎛⎜⎜⎝
γ1 γ2 0 −1
γ2 γ3 1 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

y(a)
y′(a)
y′′(a)
y′′′(a)

⎞⎟⎟⎠+

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
γ5 γ4 0 −1
γ4 γ6 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝

[y,z1]b
[y,z2]b
[y,z3]b
[y,z4]b

⎞⎟⎟⎠= 0,
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and set

A =

⎛⎜⎜⎝
γ1 γ2 0 −1
γ2 γ3 1 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
γ5 γ4 0 −1
γ4 γ6 1 0

⎞⎟⎟⎠ ,

then one has the following well known function

Δ(λ ) = det(AΦ(a,λ )+BΦ(b,λ )),

where
Φ(a,λ ) = (Cφ1(a,λ ),Cφ2(a,λ ),Cφ3(a,λ ),Cφ4(a,λ )),

Φ(b,λ ) = ([φi(·,λ ),z j(·)]b)T ,

By direct calculation

Δ(λ ) =
(γ1γ3− γ2

2 )2

γ1γ3
det

(
ã3(λ ) ã4(λ )
b̃3(λ ) b̃4(λ )

)
+

γ2(γ1γ3 − γ2
2)

γ1γ3
det

(
ã2(λ ) ã3(λ )
b̃2(λ ) b̃3(λ )

)

+
γ2(γ1γ3− γ2

2 )
γ1γ3

det

(
ã1(λ ) ã4(λ )
b̃1(λ ) b̃4(λ )

)
− γ2

2

γ1γ3
det

(
ã1(λ ) ã2(λ )
b̃1(λ ) b̃2(λ )

)
, (4.8)

where
ãi(λ ) = γ5ψi1(λ )+ γ4ψi2(λ )−ψi4(λ ),

b̃i(λ ) = γ4ψi1(λ )+ γ6ψi2(λ )+ ψi3(λ ),

(i, j = 1,2,3,4).

By γ1γ3 �= 0, γ1γ3− γ2
2 > 0 and Lemma 5, Δ(λ ) is an entire function of λ .

The function Δ(λ ) is called the characteristic function of L , The analytic multi-
plicity of an eigenvalue λ0 is the order of λ0 as a zero of Δ(λ ) ; it is known that the
algebraic multiplicity of any eigenvalue of L is equal to the analytic multiplicity of the
eigenvalue (see [6]) concerning Δ(λ ) , then the following direct consequence of Lemma
5 which is well known can be obtained.

LEMMA 6. (see [12]) A complex number is an eigenvalue of L if and only if it is
a zero of the entire function Δ(λ ) .

LEMMA 7. (see [22]) The entire function Δ(λ ) is also of growth order � 1 and
minimal type: for any ε > 0 , there exists a finite constant Cε such that

|Δ(λ )| � Cεe
ε|λ |, ∀λ ∈ C, (4.9)

and hence

limsup
|λ |→∞

ln |Δ(λ )|
|λ | � 0. (4.10)

One can deduce the following properties of the zeros of Δ(λ ) .
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LEMMA 8. (see [22]) Denote by λ j a sequence of all zeros of Δ(λ ) counting
analytic multiplicity, then:

(1) the limit

lim
r→∞ ∑

|λ j |�r

1
λ j

exists and is finite;
(2) the number n(r) of zeros λ j lying in the circle |λ j| � r has a limit

lim
r→∞

n(r)
r

= 0;

(3) when Δ(0) �= 0 , then

Δ(λ ) = Δ(0) lim
r→∞

Π|λ j |�r

(
1− λ

λ j

)
, ∀λ ∈ C.

It is possible that Δ ≡ 0, i.e., every complex number is an eigenvalue of L . How-
ever, since Δ(λ ) is an entire function of λ and is not a constant or by Lemma 4, this
dose not happen when L is dissipative, i.e., it has the following result.

LEMMA 9. (see [7]) If L is dissipative, then the eigenvalues of L form a discrete
subset of C .

By Lemma 4, we know that zero is not an eigenvalue of L (i.e., kerL = {0} ).
Thus, the inverse operator L−1 of L exists. To find an explicit formula for L−1 , we
first calculate the Green’s function.

For y ∈ D(L) , the equation Ly = − f (x) is equivalent to the inhomogeneous dif-
ferential equation

l(y) = − f (x), x ∈ I = [a,b). (4.11)

One can represent the general solution of homogeneousdifferential equation l(y)=
0 in the form

y(x) = c1z1(x)+ c2z2(x)+ c3v3(x)+ c4v4(x), x ∈ I = [a,b), (4.12)

where ci (i = 1,2,3,4) are arbitrary constants.
By applying the standard method of variation of constants, one shall search the

general solution of the inhomogeneous differential equation (4.11) in the form

y(x) = C1(x)z1(x)+C2(x)z2(x)+C3(x)v3(x)+C4(x)v4(x), x ∈ I = [a,b), (4.13)

where the functions Ci(x) (i = 1,2,3,4) satisfy the linear system of equations⎧⎪⎪⎨⎪⎪⎩
C′

1(x)z1(x)+C′
2(x)z2(x)+C′

3(x)v3(x)+C′
4(x)v4(x) = 0,

C′
1(x)z

′
1(x)+C′

2(x)z
′
2(x)+C′

3(x)v
′
3(x)+C′

4(x)v
′
4(x) = 0,

C′
1(x)z

′′
1(x)+C′

2(x)z
′′
2(x)+C′

3(x)v
′′
3(x)+C′

4(x)v
′′
4(x) = 0,

C′
1(x)z

′′′
1 (x)+C′

2(x)z
′′′
2 (x)+C′

3(x)v
′′′
3 (x)+C′

4(x)v
′′′
4 (x) = f (x),

(4.14)
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Calculated properly, one obtain that

y(x) =
∫ b

a
K̃(x, t) f (t)dt + c1z1(x)+ c2z2(x)+ c3v3(x)+ c4v4(x), x ∈ I. (4.15)

where ci (i = 1,2,3,4) are arbitrary constants and

K̃(x,t) =
{

Z(x,t)
θ , a � t � x � b,

0, a � x � t < b,

where
θ = det(Cz1(x),Cz2(x),Cv3(x),Cv4(x)), x ∈ I,

Z(x,t) =

∣∣∣∣∣∣∣∣
z1(t) z2(t) v3(t) v4(t)
z′1(t) z′2(t) v′3(t) v′4(t)
z′′1(t) z′′2(t) v′′3(t) v′′4(t)
z′′′1 (x) z′′′2 (x) v′′′3 (x) v′′′4 (x)

∣∣∣∣∣∣∣∣ .
Substituting (4.15) into (2.3)–(2.6), it has ci = 0 (i = 1,2,3,4) .

Then

y(x) =
∫ b

a
K̃(x,t) f (t)dt, x ∈ I.

Set

G(x,t) =
{

K̃(x,t), a � t � x � b,
0, a � x � t < b.

Then

y(x) =
∫ b

a
G(x,t) f (t)dt.

Let K denote the integral operator defined by the formula

K f =
∫ b

a
G(x,t) f (t)dt, ∀ f ∈ L2(I). (4.16)

Since z1(x), z2(x), v3(x), v4(x) ∈ L2(I) , one has K ∈ σ2 . It is evident that K =
L−1 . Consequently the root lineal of the operators L and K coincides, therefore, the
completeness in L2(I) of the system of all eigenvectors and associated vectors of L
is equivalent to the completeness of those for K . Since the algebraic multiplicity of
nonzero eigenvalues of a compact operator is finite, each eigenvector of L may have
only a finite number of linear independent associated vectors.

5. Completeness of eigenfunctions

In this section, by using characteristic determinant, the completeness of the system
of eigenfunctions and associated functions of A (let A denote the linear non-self-adjoint
operator in the Hilbert space L2(I) with the domain D(A)) is considered. In order to
investigate this problem, the following basics and lemmas are needed.
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The determinant

det(I− μA) =
ν(A)

∏
j=1

[1− μμ j(A]), A ∈ σ1,

is called the characteristic determinant of A and is denoted by DA(μ) . The character-
istic determinant DA(μ) is an entire function of μ , since for any A ∈ σ1 ,

ν(A)

∑
j=1

|μ j| < ∞.

For any A ∈ σ2 , the regularized characteristic determinant is defined by

D̃A(μ) =
ν(A)

∏
j=1

[1− μμ j(A)]eμμ j(A). (5.1)

If the operator I − μA has a bounded inverse defined on the whole space L2(I) ,
then the complex number μ is called an F-regular point (regular in the sense of Fred-
holm) for A .

Let A and B be linear bounded operators in L2(I) and A−B ∈ σ1 . If the point μ
is an F-regular point of B , then

(I− μA)(I− μB)−1 = I− μ(A−B)(I− μB)−1,

where μ(A−B)(I− μB)−1 ∈ σ1 . Consequently, the determinant

DA/B(μ) = det[(I− μA)(I− μB)−1]

is meaningful and is called the determinant of perturbation of the operator B by the
operator K = A−B .

The following two theorems are well-known.

THEOREM 3. (see [1]) If A, B ∈ σ2 , A−B ∈ σ1 and μ is an F-regular point of
B, then

DA/B(μ) =
D̃A(μ)
D̃B(μ)

eμtr(B−A).

THEOREM 4. (see [1]) Let A and B be bounded dissipative operators (in par-
ticular, one of them or both may be self-adjoint) and A− B ∈ σ1 , then for any β0

(0 < β0 < π
2 ) the relation.

lim
δ→∞

[ 1
δ
|DA/B(δeiβ )|

]
= 0

holds uniformly with respect to β in the sector{
λ : λ = δeiβ ,0 < δ < ∞,

∣∣∣π
2
−β

∣∣∣< β0

}
.
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THEOREM 5. (Livšic theorem) (see [1]) Let A be compact dissipative operator
and Aℑ ∈ σ1 . In order that the system of all root vectors of A be complete, it is neces-
sary and sufficient that

ν(A)

∑
j=1

ℑμ j(A) = trAℑ. (5.2)

Now return to the integral operator K defined by (4.16), the inverse of A . Set
K = K1 + iK2 with K1 = Kℜ and K2 = Kℑ . By the discussion above, K and K1 are the
Hilbert-Schmidt operators, and K1 is a self-adjoint Hilbert-Schmidt operator in L2(I)
and K2 is the self-adjoint with a range space of dimension two. It is easy to verify
that K1 is the inverse of A1 , i.e. A−1

1 = K1 . Let T = −K and T = T1 + iT2 , where
T1 = −K1 , T2 = −K2 .

Denote by λ j and γ j the eigenvalues of the operators A and A1 , respectively.
Then the eigenvalues of T are − 1

λ j
and the eigenvalues of T1 are − 1

γk
. Since A1 is a

self-adjoint operator, therefore ℑγk = 0 for all k .

THEOREM 6.

∑
j

ℑ(− 1
λ j

) = trT2.

Proof. Using Lemma 3 for A = T1 and B = T one obtain

DT1/T (μ) =
D̃T1(μ)
D̃T (μ)

eμtr(T−T1) =
D̃T1(μ)
D̃T (μ)

eiμtrT2 . (5.3)

By (5.1) one has that

D̃T (μ) = ∏
j

(
1+

μ
λ j

)
e
− μ

λ j , D̃T1(μ) = ∏
j

(
1+

μ
γ j

)
e
− μ

γ j . (5.4)

Set γ5 = ℜγ5 + iℑγ5 , γ6 = ℜγ6 + iℑγ6 , ã′i(μ) = ℜγ5ψi1(μ) + γ4ψi2(μ)−ψi4(μ) ,
b̃′i(μ) = γ4ψi1(μ)+ ℜγ6ψi2(μ)+ ψi3(μ), so by (4), one has

Δ(μ) =
(γ1γ3− γ2

2 )2

γ1γ3

[
det

(
ã′3(μ) ã′4(μ)
b̃′3(μ) b̃′4(μ)

)
−ℑγ5ℑγ6det

(
ψ31(μ) ψ41(μ)
ψ32(μ) ψ42(μ)

)]

+
γ2(γ1γ3 − γ2

2 )
γ1γ3

[
det

(
ã′2(μ) ã′3(μ)
b̃′2(μ) b̃′3(μ)

)
−ℑγ5ℑγ6det

(
ψ21(μ) ψ31(μ)
ψ22(μ) ψ32(μ)

)]

+
γ2(γ1γ3 − γ2

2 )
γ1γ3

[
det

(
ã′1(μ) ã′4(μ)
b̃′1(μ) b̃′4(μ)

)
−ℑγ5ℑγ6det

(
ψ11(μ) ψ41(μ)
ψ12(μ) ψ42(μ)

)]

− γ2
2

γ1γ3
[det

(
ã′1(μ) ã′2(μ)
b̃′1(μ) b̃′2(μ)

)
−ℑγ5ℑγ6det

(
ψ11(μ) ψ21(μ)
ψ12(μ) ψ22(μ)

)
].
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it has Δ(0) �= 0, and

Δ1(μ) =
(γ1γ3− γ2

2 )2

γ1γ3
det

(
ã′3(μ) ã′4(μ)
b̃′3(μ) b̃′4(μ)

)
+

γ2(γ1γ3− γ2
2 )

γ1γ3
det

(
ã′2(μ) ã′3(μ)
b̃′2(μ) b̃′3(μ)

)

+
γ2(γ1γ3 − γ2

2)
γ1γ3

det

(
ã′1(μ) ã′4(μ)
b̃′1(μ) b̃′4(μ)

)
− γ2

2

γ1γ3
det

(
ã′1(μ) ã′2(μ)
b̃′1(μ) b̃′2(μ)

)
.

By Lemma 8, it has

D−T (μ) =

(μ)

(0)

= ∏
j

(
1− μ

λ j

)
, D−T1(μ) =


1(μ)

1(0)

= ∏
j

(
1− μ

γ j

)
.

Therefore

D̃T (μ) = D−T (−μ)e
−μΣ j

1
λ j , D̃T1(μ) = D−T1(−μ)e

−μΣ j
1
γ j , (5.5)

and hence

DT1/T (μ) =
D−T1(−μ)e

−μΣ j
1
γ j

D−T (−μ)e
−μΣ j

1
λ j

eiμtrT2

=
D−T1(−μ)
D−T (−μ)

exp
(

μ ∑
j

1
λ j

− μ ∑
j

1
γ j

+ iμtrT2

)
, (γ j ∈ R). (5.6)

Note that ℑλ j � 0 for each j since A is dissipative, so by taking μ = it (0 < t <
∞) in (5.6), then get

1
t

ln |DT1/T (it)| = 1
t

ln
∣∣∣∏

j

(
1+

it
γ j

)∣∣∣− 1
t

ln
∣∣∣∏

j

(
1+

it
λ j

)∣∣∣−∑
j

ℑ
1
λ j

− trT2. (5.7)

By virtue of Theorem 4 and (4.10), one has that

lim
t→∞

1
t

ln |DT1/T (it)| = 0 (5.8)

and

limsup
t→∞

1
t

ln
∣∣∣∏

j

(
1+

it
γ j

)∣∣∣� 0, limsup
t→∞

1
t

ln
∣∣∣∏

j

(
1+

it
λ j

)∣∣∣� 0. (5.9)

On the other hand, for t > 0, it has the following estimates: for any t > 0 and each
j , ∣∣∣1+

it
λ j

∣∣∣2 = 1+2t
ℑλ j

|λ j|2 +
t2

|λ j|2 � 1,
∣∣∣1+

it
γ j

∣∣∣2 = 1+
t2

γ2
j

� 1, (5.10)

which imply that

1
t

ln
∣∣∣∏

j

(
1+

it
γ j

)∣∣∣� 0,
1
t

ln
∣∣∣∏

j

(
1+

it
λ j

)∣∣∣� 0. (5.11)
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From (5.9) and (5.11) one deduces that

limsup
t→∞

1
t

ln
∣∣∣∏

j

(
1+

it
γ j

)∣∣∣= 0, limsup
t→∞

1
t

ln
∣∣∣∏

j

(
1+

it
λ j

)∣∣∣= 0. (5.12)

Now, taking the limit t → ∞ , in (5.7) and making use of (5.8) and (5.12), one get that

∑
j

ℑ
(
− 1

λ j

)
= trT2. � (5.13)

Therefore, by Livšic’s theorem, the system of eigenfunctions and associated func-
tions of −K is complete in L2(I) , and hence the same is true for A .

As a direct consequence of Theorem 6, one has the following fact.

COROLLARY 2. The dissipative operator A has infinitely many eigenvalues.

Proof. Since each lineal of A is finite dimensional, the completeness in L2(I) of
the system of eigenfunctions and associated functions of A implies that A has infinitely
many eigenvalues. �

THEOREM 7. The system of all root vectors of the dissipative operator T (also of
K )is complete in L2(I) .

Since the completeness in L2(I) of the system of all eigenvectors and associated
vectors of A(also L ) in L2(I) is equivalent to the completeness of those for K , from
Theorem 6 one obtain

THEOREM 8. The system of all eigenvectors and associated vectors of L is com-
plete in L2(I) .
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