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ALGORITHM TESTING FOR THE HYPERCYCLICITY

OF FINITELY ABELIAN SUBGROUPS OF GL(n,C)

MOHAMED ELGHAOUI AND ADLENE AYADI

(Communicated by I. M. Spitkovsky)

Abstract. In this paper, we present an algorithm that tests the existence of dense orbits for finitely
abelian subgroups of GL(n,C) . A test example is given.

1. Introduction

In [1], Ayadi and Marzougui have characterized abelian subgroups of GL(n,C)
which are hypercyclic (i.e. having a dense orbit). In this paper, we deal with the algo-
rithmic aspect, we present an algorithm that tests the existence of dense orbits for any
abelian finitely generated subgroup G of GL(n,C) .

The hypercyclicity condition presented in [1] is related to the density of an additive
subgroup of Cn . As a matter of fact, the authors [3] gave a simple criterion to test the
density of discrete additive subgroups of Rn and Cn . Our algorithm is actually based
heavily on these two papers ([1], [3]). It determines, in the same handwork, explicitly
the normal form of the group G (see definition below). For one matrix, the normal
form is reduced to the Jordan canonical form and in this case, Weintranb [5] gave an
algorithm.

On this matter, we can cite S. Goodwin [4] who gave an algorithm which tests the
density of orbits for Borel subgroups.

To state our main results, we need to introduce the following notations and defini-
tions:

Denote by Mn(C) the set of complex square matrices of order n � 1, and GL(n,C)
the group of the invertible matrices of Mn(C) .

• The spectrum of a square matrix A , denoted by σ(A) is the set of all eigenvalues
of A .

• Tn(C) the set of all lower-triangular matrices over C , of order n and with only
one eigenvalue.

• T∗
n(C) = Tn(C)∩GL(n,C) (i.e. the subset of matrices of Tn(C) having a non

zero eigenvalue), it is a subgroup of GL(n,C) .
• Dn(C) the set of diagonal matrix of Mn(C) .
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• C∗ = C\{0} and N0 = N\{0} .

Let r ∈ N0 and η = (n1, . . . ,nr) ∈ Nr
0 such that

r
∑
i=1

ni = n . Denote by:

• Kη,r(C) =
{
M = diag(T1, . . . ,Tr) ∈ Mn(C) : Tk ∈ Tnk(C), k = 1, . . . ,r

}
.

• K ∗
η,r(C) = Kη,r(C)∩GL(n,C) , it is a subgroup of GL(n,C) .

• vT the transpose of a vector v ∈ Cn .
• En = (e1, . . . ,en) the standard basis of Cn .
• In the identity matrix on Cn .
Denote by:
• u0 = [e1,1, . . . ,er,1]T ∈ Cn , where ek,1 = [1,0, . . . ,0]T ∈ Cnk , 1 � k � r.
• e(k) = [0Cn1 , . . . ,0C

nk−1 ,eT
k,1,0C

nk+1 , . . . ,0Cnr ]T , 1 � k � r.
In [1], the authors proved the following

PROPOSITION 1.1. ([1], Proposition 6.1.) Let G be an abelian subgroup of
GL(n,C) , then there exists P ∈ GL(n,C) such that G̃ = P−1GP is a subgroup of
K ∗

η,r(C) , for some 1 � r � n and η ∈ Nr
0 .

We say that the group G̃ is a normal form of G of length r .

THEOREM 1.2. ([1], Theorem 1.3) Let G be an abelian subgroup of GL(n,C)
and P ∈ GL(n,C) such that P−1GP ⊂ K ∗

η,r(C) . Assume that G is generated by A1 =
eB1 , . . . ,Ap = eBp with B1, . . . ,Bp ∈ PK ∗

η,r(C)P−1 . Then G is hypercyclic if and only

if
p
∑

k=1
ZBkPu0 +2iπ

r
∑

k=1
ZPe(k) is a dense additive subgroup of Cn .

COROLLARY 1.3. Let G be an abelian subgroup of GL(n,C) , generated by
A1, . . . ,Ap and P ∈ GL(n,C) such that P−1GP ⊂ K ∗

η,r(C) . If p + r � 2n, G has
no dense orbit.

• A subset V of Cn is called G-invariant if for every x ∈V, Gx ⊂V .

2. Algorithm testing for the hypercyclicity of finitely abelian subgroups of
GL(n,C)

2.1. Normal form of the group G

Let G be an abelian subgroup of GL(n,C) generated by A1, . . . ,Ap .

2.1.1. Determination of generalized eigenspaces of G

The first part of the algorithm is to determine a matrix P ∈ GL(n,C) such that
G′ = P−1GP is a subgroup of K ∗

η,r(C) as given in proposition 1.1.
To do so, given the eigenvalues λk,1, . . . ,λk,rk of Ak , k = 1, . . . , p , the algorithm

determines the corresponding generalized eigenspaces:

Ek, j = Ker(Ak −λk, jIn)αk, j , j = 1, . . . ,rk, k = 1, . . . , p
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where αk, j is the multiplicity of λk, j and rk the number of distinct eigenvalues of Ak .
After that, it determines all the intersections:

p⋂
k=1

Ek,ik , 1 � ik � rk, such that
p⋂

k=1

Ek,ik �= {0}.

Denote these spaces by E1, . . . ,Er , called the generalized eigenspaces of G .

PROPOSITION 2.1. The spaces Ei defined as above verify:

(i)
r⊕

i=1
Ei = Cn and Ei are G-invariant.

(ii) For every M ∈ G, and for every 1 � j � r , the restriction M|Ej
has only one

eigenvalue.

Proof. (i) Since E1,i1 is A2 -invariant for every i1 = 1, . . . ,r1 , so we have

E1,i1 =
r2⊕

i2=1

E1,i1 ∩E2,i2

We now apply this argument again, with E1,i1 replaced by E1,i1 ∩E2,i2 , to obtain

E1,i1 ∩E2,i2 =
r3⊕

i3=1

(
E1,i1 ∩E2,i2 ∩E3,i3

)
We continuous in this fashion obtaining

Cn =
r1⊕

i1=1

E1,i1

=
r1⊕

i1=1

r2⊕
i2=1

(E1,i1 ∩E2,i2)

=
r1⊕

i1=1

r2⊕
i2=1

r3⊕
i3=1

(
E1,i1 ∩E2,i2 ∩E3,i3

)
=

r1⊕
i1=1

r2⊕
i2=1

. . .

rp⊕
ip=1

(
E1,i1 ∩E2,i2 ∩ . . .∩Ep,ip

)

Finally, by ignoring those intersections which are equal to {0} , we obtain Cn =
r⊕

i=1

Ei .

As for every i = 1, . . . ,r , Ei = E1,i1 ∩ . . .∩Ep,ip for some 1 � ik � rk , k = 1, . . . , p ,
then Ei is G-invariant as intersection of the G-invariant subspaces Ek,ik .

(ii) Let Ei = E1,i1 ∩ . . .∩Ep,ip for every i = 1, . . . ,r . As Ei ⊂ Ek,ik then λk,ik is
the unique eigenvalue of Ak|Ei

. Since the matrices
(
Ak|Ei

)
1�k�p

is pairwise commuting
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for every i = 1, . . . ,r they are simultaneously trigonalized. It follows that for any
M = An1

1 An2
2 . . .A

np
p ∈ G with n1,n2, . . . ,np ∈ N ,

M|Ei
=

(
A1|Ei

)n1
(
A2|Ei

)n2 . . .
(
Ap|Ei

)np

and

σ(M|Ei
) ⊂

p

∏
k=1

σ
(
(Ak|Ei

)nk) =

{
p

∏
k=1

λ nk
k,ik

}

Therefore σ(M|Ei
) =

{
p

∏
k=1

λ nk
k,ik

}
. �

At this state, the algorithm determines the number r of generalized eigenspaces of
G which corresponds to the number of blocs in the normal form of each matrix of G .
If p+ r � 2n then there is no need to proceed further since by Corollary 1.3, G has no
dense orbit.

The next step consists in finding a basis Ci for each space Ei and so by juxtapos-
ing, a new basis C = (C1, . . . ,Cr) of Cn . Denote by R the transition matrix from En

to C and by Âk = R−1AkR , k = 1, . . . , p . Then Âk = diag(Âk,1, . . . , Âk,r) . Actually, the
set {A1, . . . ,Ap} has been simultaneously block diagonalized.

A step further in order to simplify the structure of G , is to simultaneously trigonal-
ize the set {Â1,i, . . . , Âp,i} , i = 1, . . . ,r . Since these matrices are pairwise commuting,
so they have some common eigenvectors (vr1+1, . . . ,vni) . We complete these vectors
to obtain a basis Ri = (w1, . . . ,wr1 ,vr1+1, . . . ,vni) of Ei . Denote by Qi,1 the transition
matrix from the standard basis Eni of Ei to Ri . Then, for every k = 1, . . . , p , we have

Q−1
i,1 Âk,iQi,1 =

[
Â(1)

k,i 0

L(1)
k,i μkIni−r1

]

with Â(1)
k,i ∈ GL(r1,C) and L(1)

k,i ∈ Mni−r1,r1(C) . Now, we consider the set of matrices(
Â(1)

k,i

)
1�k�p

which are also pairwise commuting. Therefore, we can apply the same

type of reduction as before to obtain a transition matrix Q̂i,2 ∈ GL(r1,C) such that we

get Q̂−1
i,2 Â(1)

k,i Q̂i,2 =

[
Â(2)

k,i 0

L(2)
k,i μkIr1−r2

]
with Â(2)

k,i ∈GL(r2,C) and L(2)
k,i ∈Mr1−r2,r2(C) . Set

Qi,2 = Qi,1

[
Q̂i,2 0
0 Ini−r1

]
. Then

Q−1
i,2 Âk,iQi,2 =

⎡⎢⎣
[

Â(2)
k,i 0

L(2)
k,i μkIr1−r2

]
0

L(1)
k,i Q̂i,2 μkIni−r1

⎤⎥⎦ , k = 1, . . . , p.

So, we continuous this process until we end up with a final basis of Ei (eventually
a transition matrix called Qi ) so that Q−1

i Âk,iQi = Tk,i ∈ T∗
ni
(C) , k = 1, . . . , p . Hence,



HYPERCYCLICITY OF FINITELY ABELIAN SUBGROUPS OF GL(n,C) 673

if Q = diag(Q1, . . . ,Qr) and P = RQ , then

Ãk := P−1AkP = Q−1R−1Ak(RQ) = Q−1ÂkQ = diag(Tk,1, . . . ,Tk,r)

where Tk,i ∈ T∗
ni
(C) .

2.2. Determination of matrices Bk

In this section, the algorithm shall construct matrices B1, . . . ,Bp ∈ Kη,r(C) satis-
fying Ãk = eBk , k = 1, . . . , p . Recall that Ãk = P−1AkP = diag(Tk,1, . . . ,Tk,r) where
Tk,i ∈ T∗

ni
(C) . So it suffices to construct Tk,i ∈ Tni(C) so that eTk,i = Tk,i and then

we take Bk = diag(Tk,1, . . . ,Tk,r) . So we need a method to construct for T ∈ T∗
m(C) ,

1 � m � n , a matrix N ∈ Tm(C) such that eN = T . For this, we use the following
lemma:

LEMMA 2.2. ([1], Lemma 2.2) If N ∈ Mn(C) has only one eigenvalue such that
eN ∈ T∗

n(C) then N ∈ Tn(C) .

Let J(θ ) denote the Jordan block in Tm(C) associated with θ (with lower-triangular
form):

J(θ ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θ 0

1
. . .

0
. . .

. . .
...

. . .
. . .

. . .
0 . . . 0 1 θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Then we have:

eJ(θ) = eθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1
. . .

1
2

. . .
. . .

...
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
1

(m−1)! . . . . . . 1
2 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since dim

(
Ker(eJ(θ) − eθ Im)

)
= 1, J(eθ ) is the Jordan normal form of eJ(θ) , so there

is a matrix U ∈ GL(m,C) such that:

U−1 eJ(θ)U = J(eθ ). (2.1)
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Let T ∈ T∗
m(C) and let J = diag(J1(λ ), . . . ,Js(λ )) ∈ Tm(C) , where

Ji(λ ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ 0

1
. . .

0
. . .

. . .
...

. . .
. . .

. . .
0 . . . 0 1 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Tni(C)

and
s
∑
i=1

ni = m , be the Jordan normal form of T . Since λ �= 0, there exists μ ∈ C

such that eμ = λ . Applying equation 2.1 to each block of J , we obtain:

J = diag(J1(λ ), . . . ,Js(λ ))
= diag(J1(eμ), . . . ,Js(eμ)
= diag(U−1

1 eJ1(μ)U1, . . . ,U−1
s eJs(μ)Us)

= U−1 eJ′ U

where U = diag(U1, . . . ,Us) and J′ = diag(J1(μ), . . . ,Js(μ)) .
There exists V ∈ GL(m,C) such that V−1TV = J . Take N = VU−1J′UV−1 , it

follows that eN = T . Since eN = T ∈ T∗
m(C) and as N has only one eigenvalue, so by

Lemma 2.2, N ∈ Tm(C) .

2.3. Hypercyclicity of the group G

The last step of this algorithm, is to check the hypercyclicity of G using theorem

1.2, i.e. H(G) :=
p
∑

k=1
ZBku0 + 2π i

r
∑

k=1
Ze(k) is a dense additive subgroup of Cn . To

do so, we apply the algorithm given in [3] for the complex case. In order to make this
article self contained, we briefly outline the different steps of this algorithm.

Let q = p + r . If q � 2n or
p
∑

k=1
RBku0 + 2π i

r
∑

k=1
Re(k) �= Cn , then H(G) is not

dense in Cn , otherwise, q > 2n and
p
∑

k=1
RBku0 + 2π i

r
∑

k=1
Re(k) = Cn . Let us write

H(G) =
q
∑

k=1
Zuk where (uk = Bku0)k=1,...,p and

(
up+k = 2π i e(k)

)
k=1,...,r

. We can

assume that (u1, . . . ,u2n) is a R-basis of Cn .

Set H̃(G) =
q
∑

k=1
Zũk , where ũk = [ℜ(uk),ℑ(uk)]T .

For every k = 2n+1, . . . ,q , let αk,i be the coordinates of ũk in the basis (ũ1, . . . , ũ2n) ,

i.e. ũk =
2n
∑
i=1

αk,iũi . Suppose that 1,αk,i1 , . . . ,αk,irk
is the longest sequence extracted

from the list {1,αk,1, . . . ,αk,2n} which contains 1 and such that its elements are inde-
pendent over Q . Then set Ik := {i1, . . . , irk} .
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The next step is to write the scalars αk, j for every j /∈ Ik as a function of 1 and the
scalars {αk,i i ∈ Ik} , i.e.

αk, j = tk, j + ∑
i∈Ik

γ(k)
j,i αk,i

where γ(k)
j,i1

, . . . ,γ(k)
j,irk

,tk, j ∈ Q .

Moreover, we define the vectors u′k, j, j ∈ Ik, k = 2n+1, . . . ,q as

u′k, j = qkũ j + ∑
i/∈Ik

m(k)
i, j ũi

where qk ∈ N∗ and m(k)
i, j ∈ Z , are such that

γ(k)
i, j =

m(k)
i, j

qk

Finally, let MH̃(G) be the matrix of the coordinates of all the vectors u′k, j .
Then by (Theorem 4.1, [3]) H(G) is dense in Cn if and only if

rank
(
MH̃(G)

)
= 2n

3. The algorithm outline

1. Given the eigenvalues of A1,A2, . . . ,Ap , determine the corresponding generalized
eigenspaces Ek, j, j = 1, . . . ,rk, k = 1, . . . , p .

2. Determine all the intersections
p⋂

k=1
Ek,ik �= {0}, 1 � ik � rk and obtain the general-

ized eigenspaces E1,E2, . . . ,Er of G .

3. If p+ r � 2n then G is not hypercyclic.

4. Otherwise, compute the normal form of G , i.e. determine the set {Ã1, Ã2, . . . , Ãp} .

5. Construct the matrices Bk such that Ãk = eBk , k = 1, . . . , p .

6. If
p
∑

k=1
RBku0 +2π i

r
∑

k=1
Re(k) �= Cn then G is not hypercyclic.

7. Otherwise, consider the additive group H(G) =
p

∑
k=1

ZBku0 + 2π i
r
∑

k=1
Ze(k) and de-

termine H̃(G) and MH̃(G) as described in the last section.

8. G is hypercyclic if and only if rank
(
MH̃(G)

)
= 2n .
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4. Example

Let G be the subgroup of GL(3,C) generated by A1 ,A2 , A3 , A4 , A5 and A6 ,
where:

A1 =

⎡⎣ e 3−2e+ i −2+ e− i
0 2+ i −1− i
0 1+ i −i

⎤⎦
A2 =

⎡⎢⎣ 1 −2+2e
√

2 1− e
√

2

0 e
√

2 0

0 0 e
√

2

⎤⎥⎦
A3 =

⎡⎣ e
√

3 −2e
√

3 +2ei e
√

3− ei

0 ei 0
0 0 ei

⎤⎦
A4 =

⎡⎣ ei
√

5
√

2(
√

2+ i)e−2ei
√

5 ei
√

5 − (1+ i
√

2)e
0 (1+ i

√
2)e −i

√
2e

0 i
√

2e (1− i
√

2)e

⎤⎦
A5 =

⎡⎣ e 2−2e+
√

7+ i
√

2 e−1−√
7− i

√
2

0 1+
√

7+ i
√

2 −√
7− i

√
2

0
√

7+ i
√

2 1−√
7− i

√
2

⎤⎦
A6 =

⎡⎣ 1 i
√

2 −i
√

2
0 1+ i

√
2 −i

√
2

0 i
√

2 1− i
√

2

⎤⎦
The spectrum σ(Ak) of Ak are:

σ(A1) = {1,e} σ(A2) = {1,e
√

2}
σ(A3) = {e

√
3,ei} σ(A4) = {e,ei

√
5}

σ(A5) = {1,e} σ(A6) = {1}
Here r = 2 which corresponds to two generalized eigenspaces E1 and E2 for G of
dimension:

dim(E1) = 1, dim(E2) = 2

The normal form of G is given by:

Ã1 =

⎡⎣ e 0

0

[
1 0

1
2 + 1

2 i 1

]⎤⎦ Ã2 =

⎡⎢⎣ 1 0

0

[
e
√

2 0

0 e
√

2

]⎤⎥⎦

Ã3 =

⎡⎣ e
√

3 0

0

[
ei 0
0 ei

]⎤⎦ Ã4 =

⎡⎢⎣ ei
√

5 0

0

[
e 0√
2

2 e i e

]⎤⎥⎦
Ã5 =

⎡⎣ e 0

0

[
1 0√

7
2 + i

√
2

2 1

]⎤⎦ Ã6 =

⎡⎣ 1 0

0

[
1 0

i
√

2
2 1

]⎤⎦
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The matrices Bk such that eBk = Ãk , k = 1, . . . ,6 are given by:

B1 =

⎡⎣1 0

0

[
0 0

1
2 + 1

2 i 0

]⎤⎦ B2 =

⎡⎣ 0 0

0

[√
2 0

0
√

2

]⎤⎦
B3 =

⎡⎣√
3 0

0

[
i 0
0 i

]⎤⎦ B4 =

⎡⎣ i
√

5 0

0

[
1 0√
2

2 i 1

]⎤⎦
B5 =

⎡⎣1 0

0

[
0 0√

7
2 +

√
2

2 i 0

]⎤⎦ B6 =

⎡⎣ 0 0

0

[
0 0√
2

2 i 0

]⎤⎦
By Theorem 1.2, G is hypercyclic if and only if the complex additive group H(G) =
6
∑

k=1
ZBku0 +2π i Ze1 +2π i Ze2 is dense, where u0 = [1,1,0]T .

We get

u1 =
[
1,0, 1

2 + 1
2 i

]T
u2 =

[
0,
√

2,0
]T

u3 =
[√

3, i,0
]T

u4 =
[
i
√

5,1,
√

2
2 i

]T

u5 =
[
1,0,

√
7

2 +
√

2
2 i

]T
u6 =

[
0,0,

√
2

2 i
]T

u7 = [2π i,0,0]T u8 = [0,2π i,0]T

Therefore

ũ1 =
[
1,0, 1

2 ,0,0, 1
2

]T
ũ2 =

[
0,
√

2,0,0,0,0
]T

ũ3 =
[√

3,0,0,0,1,0
]T

ũ4 =
[
0,1,0,

√
5,0,

√
2

2

]T
ũ5 =

[
1,0,

√
7

2 ,0,0,
√

2
2

]T
ũ6 =

[
0,0,0,0,0,

√
2

2

]T

ũ7 = [0,0,0,2π ,0,0]T ũ8 = [0,0,0,0,2π ,0]T

We have H̃(G) =
8

∑
k=1

Zũk .

The vectors ũ7 and ũ8 can be expressed in the basis (ũ1, ũ2, . . . , ũ6) as

ũ7 = −π
√

10
5

ũ2 +2π
√

5
5

ũ4−2π
√

5
5

ũ6

ũ8 = −π
7
√

3+
√

21
3

ũ1 +2π ũ3 + π
√

3+
√

21
3

ũ5 + π
√

42−2
√

21+7
√

6−2
√

3
6

ũ6

Now, we apply the algorithm given in [3] (see Theorem 4.1). We get the sets:
I7 = {2,4} and I8 = {1,3,5,6} obtained by using the fact that π is a transcen-

dental number and that the set {√n : n is a squarefree number} is linearly independent
over Q [2]. (Recall that an integer is squarefree if its prime factorization contains no
prime more than once).
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Now the vectors u′k, j , j ∈ Ik , k = 7,8 are:

u′7,2 = ũ2

u′7,4 = ũ4− ũ6

u′8,1 = ũ1

u′8,3 = ũ3

u′8,5 = ũ5

u′8,6 = ũ6

The matrix MH̃(G) is given by:

MH̃(G) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 −1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
Since rank(MH̃(G)) = 6, we apply (Theorem 4.1, [3]) to get that H(G) is dense in R6 .
We conclude by Theorem 1.2 that G is hypercyclic.
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