ALGORITHM TESTING FOR THE HYPERCYCLICITY OF FINITELY ABELIAN SUBGROUPS OF $G L(n, \mathbb{C})$

Mohamed Elghaoui and Adlene Ayadi

(Communicated by I. M. Spitkovsky)

Abstract

In this paper, we present an algorithm that tests the existence of dense orbits for finitely abelian subgroups of $G L(n, \mathbb{C})$. A test example is given.

1. Introduction

In [1], Ayadi and Marzougui have characterized abelian subgroups of $G L(n, \mathbb{C})$ which are hypercyclic (i.e. having a dense orbit). In this paper, we deal with the algorithmic aspect, we present an algorithm that tests the existence of dense orbits for any abelian finitely generated subgroup G of $G L(n, \mathbb{C})$.

The hypercyclicity condition presented in [1] is related to the density of an additive subgroup of \mathbb{C}^{n}. As a matter of fact, the authors [3] gave a simple criterion to test the density of discrete additive subgroups of \mathbb{R}^{n} and \mathbb{C}^{n}. Our algorithm is actually based heavily on these two papers ([1], [3]). It determines, in the same handwork, explicitly the normal form of the group G (see definition below). For one matrix, the normal form is reduced to the Jordan canonical form and in this case, Weintranb [5] gave an algorithm.

On this matter, we can cite S. Goodwin [4] who gave an algorithm which tests the density of orbits for Borel subgroups.

To state our main results, we need to introduce the following notations and definitions:

Denote by $M_{n}(\mathbb{C})$ the set of complex square matrices of order $n \geqslant 1$, and $G L(n, \mathbb{C})$ the group of the invertible matrices of $M_{n}(\mathbb{C})$.

- The spectrum of a square matrix A, denoted by $\sigma(A)$ is the set of all eigenvalues of A.
- $\mathbb{T}_{n}(\mathbb{C})$ the set of all lower-triangular matrices over \mathbb{C}, of order n and with only one eigenvalue.
- $\mathbb{T}_{n}^{*}(\mathbb{C})=\mathbb{T}_{n}(\mathbb{C}) \cap G L(n, \mathbb{C})$ (i.e. the subset of matrices of $\mathbb{T}_{n}(\mathbb{C})$ having a non zero eigenvalue), it is a subgroup of $G L(n, \mathbb{C})$.
- $\mathbb{D}_{n}(\mathbb{C})$ the set of diagonal matrix of $M_{n}(\mathbb{C})$.

Mathematics subject classification (2010): 37C85, 47A16.
Keywords and phrases: Algorithm, hypercyclicity, generalized eigenspaces, normal form.
This work is supported by the research unit: systèmes dynamiques et combinatoire: 99UR15-15.

- $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and $\mathbb{N}_{0}=\mathbb{N} \backslash\{0\}$.

Let $r \in \mathbb{N}_{0}$ and $\eta=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r}$ such that $\sum_{i=1}^{r} n_{i}=n$. Denote by:

- $\mathscr{K}_{\eta, r}(\mathbb{C})=\left\{M=\operatorname{diag}\left(T_{1}, \ldots, T_{r}\right) \in M_{n}(\mathbb{C}): T_{k} \in \mathbb{T}_{n_{k}}(\mathbb{C}), k=1, \ldots, r\right\}$.
- $\mathscr{K}_{\eta, r}^{*}(\mathbb{C})=\mathscr{K}_{\eta, r}(\mathbb{C}) \cap G L(n, \mathbb{C})$, it is a subgroup of $G L(n, \mathbb{C})$.
- v^{T} the transpose of a vector $v \in \mathbb{C}^{n}$.
- $\mathscr{E}_{n}=\left(e_{1}, \ldots, e_{n}\right)$ the standard basis of \mathbb{C}^{n}.
- I_{n} the identity matrix on \mathbb{C}^{n}.

Denote by:

- $u_{0}=\left[e_{1,1}, \ldots, e_{r, 1}\right]^{T} \in \mathbb{C}^{n}$, where $e_{k, 1}=[1,0, \ldots, 0]^{T} \in \mathbb{C}^{n_{k}}, \quad 1 \leqslant k \leqslant r$.
- $e^{(k)}=\left[0_{\mathbb{C}^{n_{1}}}, \ldots, 0_{\mathbb{C}^{n_{k-1}}}, e_{k, 1}^{T}, 0_{\mathbb{C}^{n} k+1}, \ldots, 0_{\mathbb{C}^{n r}}\right]^{T}, \quad 1 \leqslant k \leqslant r$.

In [1], the authors proved the following
Proposition 1.1. ([1], Proposition 6.1.) Let G be an abelian subgroup of $G L(n, \mathbb{C})$, then there exists $P \in G L(n, \mathbb{C})$ such that $\widetilde{G}=P^{-1} G P$ is a subgroup of $\mathscr{K}_{\eta, r}^{*}(\mathbb{C})$, for some $1 \leqslant r \leqslant n$ and $\eta \in \mathbb{N}_{0}^{r}$.

We say that the group \widetilde{G} is a normal form of G of length r.
THEOREM 1.2. ([1], Theorem 1.3) Let G be an abelian subgroup of $G L(n, \mathbb{C})$ and $P \in G L(n, \mathbb{C})$ such that $P^{-1} G P \subset \mathscr{K}_{\eta, r}^{*}(\mathbb{C})$. Assume that G is generated by $A_{1}=$ $e^{B_{1}}, \ldots, A_{p}=e^{B_{p}}$ with $B_{1}, \ldots, B_{p} \in P \mathscr{K}_{\eta, r}^{*}(\mathbb{C}) P^{-1}$. Then G is hypercyclic if and only if $\sum_{k=1}^{p} \mathbb{Z} B_{k} P u_{0}+2 i \pi \sum_{k=1}^{r} \mathbb{Z} P e^{(k)}$ is a dense additive subgroup of \mathbb{C}^{n}.

Corollary 1.3. Let G be an abelian subgroup of $G L(n, \mathbb{C})$, generated by A_{1}, \ldots, A_{p} and $P \in G L(n, \mathbb{C})$ such that $P^{-1} G P \subset \mathscr{K}_{\eta, r}^{*}(\mathbb{C})$. If $p+r \leqslant 2 n, G$ has no dense orbit.

- A subset V of \mathbb{C}^{n} is called G-invariant if for every $x \in V, G x \subset V$.

2. Algorithm testing for the hypercyclicity of finitely abelian subgroups of $G L(n, \mathbb{C})$

2.1. Normal form of the group \mathbf{G}

Let G be an abelian subgroup of $G L(n, \mathbb{C})$ generated by A_{1}, \ldots, A_{p}.

2.1.1. Determination of generalized eigenspaces of \mathbf{G}

The first part of the algorithm is to determine a matrix $P \in G L(n, \mathbb{C})$ such that $G^{\prime}=P^{-1} G P$ is a subgroup of $\mathscr{K}_{\eta, r}^{*}(\mathbb{C})$ as given in proposition 1.1.

To do so, given the eigenvalues $\lambda_{k, 1}, \ldots, \lambda_{k, r_{k}}$ of $A_{k}, k=1, \ldots, p$, the algorithm determines the corresponding generalized eigenspaces:

$$
E_{k, j}=\operatorname{Ker}\left(A_{k}-\lambda_{k, j} I_{n}\right)^{\alpha_{k, j}}, \quad j=1, \ldots, r_{k}, k=1, \ldots, p
$$

where $\alpha_{k, j}$ is the multiplicity of $\lambda_{k, j}$ and r_{k} the number of distinct eigenvalues of A_{k}. After that, it determines all the intersections:

$$
\bigcap_{k=1}^{p} E_{k, i_{k}}, \quad 1 \leqslant i_{k} \leqslant r_{k}, \text { such that } \bigcap_{k=1}^{p} E_{k, i_{k}} \neq\{0\} .
$$

Denote these spaces by E_{1}, \ldots, E_{r}, called the generalized eigenspaces of G.
Proposition 2.1. The spaces E_{i} defined as above verify:
(i) $\bigoplus_{i=1}^{r} E_{i}=\mathbb{C}^{n}$ and E_{i} are G-invariant.
(ii) For every $M \in G$, and for every $1 \leqslant j \leqslant r$, the restriction $M_{\mid E_{j}}$ has only one eigenvalue.

Proof. (i) Since $E_{1, i_{1}}$ is A_{2}-invariant for every $i_{1}=1, \ldots, r_{1}$, so we have

$$
E_{1, i_{1}}=\bigoplus_{i_{2}=1}^{r_{2}} E_{1, i_{1}} \cap E_{2, i_{2}}
$$

We now apply this argument again, with $E_{1, i_{1}}$ replaced by $E_{1, i_{1}} \cap E_{2, i_{2}}$, to obtain

$$
E_{1, i_{1}} \cap E_{2, i_{2}}=\bigoplus_{i_{3}=1}^{r_{3}}\left(E_{1, i_{1}} \cap E_{2, i_{2}} \cap E_{3, i_{3}}\right)
$$

We continuous in this fashion obtaining

$$
\begin{aligned}
\mathbb{C}^{n} & =\bigoplus_{i_{1}=1}^{r_{1}} E_{1, i_{1}} \\
& =\bigoplus_{i_{1}=1}^{r_{1}} \bigoplus_{i_{2}=1}^{r_{2}}\left(E_{1, i_{1}} \cap E_{2, i_{2}}\right) \\
& =\bigoplus_{i_{1}=1}^{r_{1}} \bigoplus_{i_{2}=1}^{r_{2}} \bigoplus_{i_{3}=1}^{r_{3}}\left(E_{1, i_{1}} \cap E_{2, i_{2}} \cap E_{3, i_{3}}\right) \\
& =\bigoplus_{i_{1}=1}^{r_{1}} \bigoplus_{i_{2}=1}^{r_{2}} \ldots \bigoplus_{i_{p}=1}^{r_{p}}\left(E_{1, i_{1}} \cap E_{2, i_{2}} \cap \ldots \cap E_{p, i_{p}}\right)
\end{aligned}
$$

Finally, by ignoring those intersections which are equal to $\{0\}$, we obtain $\mathbb{C}^{n}=\bigoplus_{i=1}^{r} E_{i}$.
As for every $i=1, \ldots, r, E_{i}=E_{1, i_{1}} \cap \ldots \cap E_{p, i_{p}}$ for some $1 \leqslant i_{k} \leqslant r_{k}, k=1, \ldots, p$, then E_{i} is G-invariant as intersection of the G-invariant subspaces $E_{k, i_{k}}$.
(ii) Let $E_{i}=E_{1, i_{1}} \cap \ldots \cap E_{p, i_{p}}$ for every $i=1, \ldots, r$. As $E_{i} \subset E_{k, i_{k}}$ then $\lambda_{k, i_{k}}$ is the unique eigenvalue of $A_{k \mid E_{i}}$. Since the matrices $\left(A_{k \mid E_{i}}\right)_{1 \leqslant k \leqslant p}$ is pairwise commuting
for every $i=1, \ldots, r$ they are simultaneously trigonalized. It follows that for any $M=A_{1}^{n_{1}} A_{2}^{n_{2}} \ldots A_{p}^{n_{p}} \in G$ with $n_{1}, n_{2}, \ldots, n_{p} \in \mathbb{N}$,

$$
M_{\mid E_{i}}=\left(A_{1 \mid E_{i}}\right)^{n_{1}}\left(A_{2 \mid E_{i}}\right)^{n_{2}} \ldots\left(A_{p \mid E_{i}}\right)^{n_{p}}
$$

and

$$
\sigma\left(M_{\mid E_{i}}\right) \subset \prod_{k=1}^{p} \sigma\left(\left(A_{k \mid E_{i}}\right)^{n_{k}}\right)=\left\{\prod_{k=1}^{p} \lambda_{k, i_{k}}^{n_{k}}\right\}
$$

Therefore $\sigma\left(M_{\mid E_{i}}\right)=\left\{\prod_{k=1}^{p} \lambda_{k, i_{k}}^{n_{k}}\right\}$.
At this state, the algorithm determines the number r of generalized eigenspaces of G which corresponds to the number of blocs in the normal form of each matrix of G. If $p+r \leqslant 2 n$ then there is no need to proceed further since by Corollary $1.3, G$ has no dense orbit.

The next step consists in finding a basis \mathscr{C}_{i} for each space E_{i} and so by juxtaposing, a new basis $\mathscr{C}=\left(\mathscr{C}_{1}, \ldots, \mathscr{C}_{r}\right)$ of \mathbb{C}^{n}. Denote by R the transition matrix from \mathscr{E}_{n} to \mathscr{C} and by $\widehat{A_{k}}=R^{-1} A_{k} R, k=1, \ldots, p$. Then $\widehat{A_{k}}=\operatorname{diag}\left(\widehat{A}_{k, 1}, \ldots, \widehat{A}_{k, r}\right)$. Actually, the set $\left\{A_{1}, \ldots, A_{p}\right\}$ has been simultaneously block diagonalized.

A step further in order to simplify the structure of G, is to simultaneously trigonalize the set $\left\{\widehat{A}_{1, i}, \ldots, \widehat{A}_{p, i}\right\}, i=1, \ldots, r$. Since these matrices are pairwise commuting, so they have some common eigenvectors $\left(v_{r_{1}+1}, \ldots, v_{n_{i}}\right)$. We complete these vectors to obtain a basis $\mathscr{R}_{i}=\left(w_{1}, \ldots, w_{r_{1}}, v_{r_{1}+1}, \ldots, v_{n_{i}}\right)$ of E_{i}. Denote by $Q_{i, 1}$ the transition matrix from the standard basis $\mathscr{E}_{n_{i}}$ of E_{i} to \mathscr{R}_{i}. Then, for every $k=1, \ldots, p$, we have

$$
Q_{i, 1}^{-1} \widehat{A}_{k, i} Q_{i, 1}=\left[\begin{array}{cc}
\widehat{A}_{k, i}^{(1)} & 0 \\
L_{k, i}^{(1)} & \mu_{k} I_{n_{i}-r_{1}}
\end{array}\right]
$$

with $\widehat{A}_{k, i}^{(1)} \in G L\left(r_{1}, \mathbb{C}\right)$ and $L_{k, i}^{(1)} \in M_{n_{i}-r_{1}, r_{1}}(\mathbb{C})$. Now, we consider the set of matrices $\left(\widehat{A}_{k, i}^{(1)}\right)_{1 \leqslant k \leqslant p}$ which are also pairwise commuting. Therefore, we can apply the same type of reduction as before to obtain a transition matrix $\widehat{Q}_{i, 2} \in G L\left(r_{1}, \mathbb{C}\right)$ such that we get $\widehat{Q}_{i, 2}^{-1} \widehat{A}_{k, i}^{(1)} \widehat{Q}_{i, 2}=\left[\begin{array}{cc}\widehat{A}_{k, i}^{(2)} & 0 \\ L_{k, i}^{(2)} & \mu_{k} I_{r_{1}-r_{2}}\end{array}\right]$ with $\widehat{A}_{k, i}^{(2)} \in G L\left(r_{2}, \mathbb{C}\right)$ and $L_{k, i}^{(2)} \in M_{r_{1}-r_{2}, r_{2}}(\mathbb{C})$. Set $Q_{i, 2}=Q_{i, 1}\left[\begin{array}{cc}\widehat{Q}_{i, 2} & 0 \\ 0 & I_{n_{i}-r_{1}}\end{array}\right]$. Then

$$
Q_{i, 2}^{-1} \widehat{A}_{k, i} Q_{i, 2}=\left[\begin{array}{cc}
{\left[\begin{array}{cc}
\widehat{A}_{k, i}^{(2)} & 0 \\
L_{k, i}^{(2)} & \mu_{k} I_{r_{1}-r_{2}}
\end{array}\right]} & 0 \\
L_{k, i}^{(1)} \widehat{Q}_{i, 2} & \mu_{k} I_{n_{i}-r_{1}}
\end{array}\right], k=1, \ldots, p
$$

So, we continuous this process until we end up with a final basis of E_{i} (eventually a transition matrix called Q_{i}) so that $Q_{i}^{-1} \widehat{A}_{k, i} Q_{i}=\mathscr{T}_{k, i} \in \mathbb{T}_{n_{i}}^{*}(\mathbb{C}), k=1, \ldots, p$. Hence,
if $Q=\operatorname{diag}\left(Q_{1}, \ldots, Q_{r}\right)$ and $P=R Q$, then

$$
\widetilde{A_{k}}:=P^{-1} A_{k} P=Q^{-1} R^{-1} A_{k}(R Q)=Q^{-1} \widehat{A_{k}} Q=\operatorname{diag}\left(\mathscr{T}_{k, 1}, \ldots, \mathscr{T}_{k, r}\right)
$$

where $\mathscr{T}_{k, i} \in \mathbb{T}_{n_{i}}^{*}(\mathbb{C})$.

2.2. Determination of matrices B_{k}

In this section, the algorithm shall construct matrices $B_{1}, \ldots, B_{p} \in \mathscr{K}_{\eta, r}(\mathbb{C})$ satisfying $\widetilde{A}_{k}=e^{B_{k}}, k=1, \ldots, p$. Recall that $\widetilde{A}_{k}=P^{-1} A_{k} P=\operatorname{diag}\left(\mathscr{T}_{k, 1}, \ldots, \mathscr{T}_{k, r}\right)$ where $\mathscr{T}_{k, i} \in \mathbb{T}_{n_{i}}^{*}(\mathbb{C})$. So it suffices to construct $T_{k, i} \in \mathbb{T}_{n_{i}}(\mathbb{C})$ so that $e^{T_{k, i}}=\mathscr{T}_{k, i}$ and then we take $B_{k}=\operatorname{diag}\left(T_{k, 1}, \ldots, T_{k, r}\right)$. So we need a method to construct for $T \in \mathbb{T}_{m}^{*}(\mathbb{C})$, $1 \leqslant m \leqslant n$, a matrix $N \in \mathbb{T}_{m}(\mathbb{C})$ such that $e^{N}=T$. For this, we use the following lemma:

Lemma 2.2. ([1], Lemma 2.2) If $N \in M_{n}(\mathbb{C})$ has only one eigenvalue such that $e^{N} \in \mathbb{T}_{n}^{*}(\mathbb{C})$ then $N \in \mathbb{T}_{n}(\mathbb{C})$.

Let $J(\theta)$ denote the Jordan block in $\mathbb{T}_{m}(\mathbb{C})$ associated with θ (with lower-triangular form):

$$
J(\theta)=\left[\begin{array}{ccccc}
\theta & & & & 0 \\
1 & \ddots & & & \\
0 & \ddots & \ddots & & \\
\vdots & \ddots & \ddots & \ddots & \\
0 & \ldots & 0 & 1 & \theta
\end{array}\right]
$$

Then we have:

$$
e^{J(\theta)}=e^{\theta}\left[\begin{array}{cccccc}
1 & & & & & 0 \\
1 & \ddots & & & & \\
\frac{1}{2} & \ddots & \ddots & & & \\
\vdots & \ddots & \ddots & \ddots & & \\
\vdots & \ddots & \ddots & \ddots & \ddots & \\
\frac{1}{(m-1)!} & \cdots & \cdots & \frac{1}{2} & 1 & 1
\end{array}\right]
$$

Since $\operatorname{dim}\left(\operatorname{Ker}\left(e^{J(\theta)}-e^{\theta} I_{m}\right)\right)=1, J\left(e^{\theta}\right)$ is the Jordan normal form of $e^{J(\theta)}$, so there is a matrix $U \in G L(m, \mathbb{C})$ such that:

$$
\begin{equation*}
U^{-1} e^{J(\theta)} U=J\left(e^{\theta}\right) \tag{2.1}
\end{equation*}
$$

Let $T \in \mathbb{T}_{m}^{*}(\mathbb{C})$ and let $J=\operatorname{diag}\left(J_{1}(\lambda), \ldots, J_{S}(\lambda)\right) \in \mathbb{T}_{m}(\mathbb{C})$, where

$$
J_{i}(\lambda)=\left[\begin{array}{ccccc}
\lambda & & & & 0 \\
1 & \ddots & & & \\
0 & \ddots & \ddots & & \\
\vdots & \ddots & \ddots & \ddots & \\
0 & \ldots & 0 & 1 & \lambda
\end{array}\right] \in \mathbb{T}_{n_{i}}(\mathbb{C})
$$

and $\sum_{i=1}^{s} n_{i}=m$, be the Jordan normal form of T. Since $\lambda \neq 0$, there exists $\mu \in \mathbb{C}$ such that $e^{\mu}=\lambda$. Applying equation 2.1 to each block of J, we obtain:

$$
\begin{aligned}
J & =\operatorname{diag}\left(J_{1}(\lambda), \ldots, J_{s}(\lambda)\right) \\
& =\operatorname{diag}\left(J_{1}\left(e^{\mu}\right), \ldots, J_{s}\left(e^{\mu}\right)\right. \\
& =\operatorname{diag}\left(U_{1}^{-1} e^{J_{1}(\mu)} U_{1}, \ldots, U_{s}^{-1} e^{J_{s}(\mu)} U_{s}\right) \\
& =U^{-1} e^{J^{\prime}} U
\end{aligned}
$$

where $U=\operatorname{diag}\left(U_{1}, \ldots, U_{s}\right) \quad$ and $\quad J^{\prime}=\operatorname{diag}\left(J_{1}(\mu), \ldots, J_{s}(\mu)\right)$.
There exists $V \in G L(m, \mathbb{C})$ such that $V^{-1} T V=J$. Take $N=V U^{-1} J^{\prime} U V^{-1}$, it follows that $e^{N}=T$. Since $e^{N}=T \in \mathbb{T}_{m}^{*}(\mathbb{C})$ and as N has only one eigenvalue, so by Lemma 2.2, $N \in \mathbb{T}_{m}(\mathbb{C})$.

2.3. Hypercyclicity of the group G

The last step of this algorithm, is to check the hypercyclicity of G using theorem 1.2, i.e. $H(G):=\sum_{k=1}^{p} \mathbb{Z} B_{k} u_{0}+2 \pi i \sum_{k=1}^{r} \mathbb{Z} e^{(k)}$ is a dense additive subgroup of \mathbb{C}^{n}. To do so, we apply the algorithm given in [3] for the complex case. In order to make this article self contained, we briefly outline the different steps of this algorithm.

Let $q=p+r$. If $q \leqslant 2 n$ or $\sum_{k=1}^{p} \mathbb{R} B_{k} u_{0}+2 \pi i \sum_{k=1}^{r} \mathbb{R} e^{(k)} \neq \mathbb{C}^{n}$, then $H(G)$ is not dense in \mathbb{C}^{n}, otherwise, $q>2 n$ and $\sum_{k=1}^{p} \mathbb{R} B_{k} u_{0}+2 \pi i \sum_{k=1}^{r} \mathbb{R} e^{(k)}=\mathbb{C}^{n}$. Let us write $H(G)=\sum_{k=1}^{q} \mathbb{Z} u_{k}$ where $\left(u_{k}=B_{k} u_{0}\right)_{k=1, \ldots, p}$ and $\left(u_{p+k}=2 \pi i e^{(k)}\right)_{k=1, \ldots, r}$. We can assume that $\left(u_{1}, \ldots, u_{2 n}\right)$ is a \mathbb{R}-basis of \mathbb{C}^{n}.

Set $\widetilde{H}(G)=\sum_{k=1}^{q} \mathbb{Z} \tilde{u}_{k}$, where $\tilde{u}_{k}=\left[\mathfrak{R}\left(u_{k}\right), \mathfrak{I}\left(u_{k}\right)\right]^{T}$.
For every $k=2 n+1, \ldots, q$, let $\alpha_{k, i}$ be the coordinates of \tilde{u}_{k} in the basis $\left(\tilde{u}_{1}, \ldots, \tilde{u}_{2 n}\right)$, i.e. $\quad \tilde{u}_{k}=\sum_{i=1}^{2 n} \alpha_{k, i} \tilde{u}_{i}$. Suppose that $1, \alpha_{k, i_{1}}, \ldots, \alpha_{k, i_{r_{k}}}$ is the longest sequence extracted from the list $\left\{1, \alpha_{k, 1}, \ldots, \alpha_{k, 2 n}\right\}$ which contains 1 and such that its elements are independent over \mathbb{Q}. Then set $I_{k}:=\left\{i_{1}, \ldots, i_{r_{k}}\right\}$.

The next step is to write the scalars $\alpha_{k, j}$ for every $j \notin I_{k}$ as a function of 1 and the scalars $\left\{\alpha_{k, i} i \in I_{k}\right\}$, i.e.

$$
\alpha_{k, j}=t_{k, j}+\sum_{i \in I_{k}} \gamma_{j, i}^{(k)} \alpha_{k, i}
$$

where $\gamma_{j, i_{1}}^{(k)}, \ldots, \gamma_{j, i_{r_{k}}}^{(k)}, t_{k, j} \in \mathbb{Q}$.
Moreover, we define the vectors $u_{k, j}^{\prime}, j \in I_{k}, k=2 n+1, \ldots, q$ as

$$
u_{k, j}^{\prime}=q_{k} \tilde{u}_{j}+\sum_{i \notin I_{k}} m_{i, j}^{(k)} \tilde{u}_{i}
$$

where $q_{k} \in \mathbb{N}^{*}$ and $m_{i, j}^{(k)} \in \mathbb{Z}$, are such that

$$
\gamma_{i, j}^{(k)}=\frac{m_{i, j}^{(k)}}{q_{k}}
$$

Finally, let $M_{\tilde{H}(G)}$ be the matrix of the coordinates of all the vectors $u_{k, j}^{\prime}$. Then by (Theorem 4.1, [3]) $H(G)$ is dense in \mathbb{C}^{n} if and only if

$$
\operatorname{rank}\left(M_{\tilde{H}(G)}\right)=2 n
$$

3. The algorithm outline

1. Given the eigenvalues of $A_{1}, A_{2}, \ldots, A_{p}$, determine the corresponding generalized eigenspaces $E_{k, j}, j=1, \ldots, r_{k}, k=1, \ldots, p$.
2. Determine all the intersections $\bigcap_{k=1}^{p} E_{k, i_{k}} \neq\{0\}, \quad 1 \leqslant i_{k} \leqslant r_{k}$ and obtain the generalized eigenspaces $E_{1}, E_{2}, \ldots, E_{r}$ of G.
3. If $p+r \leqslant 2 n$ then G is not hypercyclic.
4. Otherwise, compute the normal form of G, i.e. determine the set $\left\{\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots, \widetilde{A}_{p}\right\}$.
5. Construct the matrices B_{k} such that $\widetilde{A}_{k}=e^{B_{k}}, k=1, \ldots, p$.
6. If $\sum_{k=1}^{p} \mathbb{R} B_{k} u_{0}+2 \pi i \sum_{k=1}^{r} \mathbb{R} e^{(k)} \neq \mathbb{C}^{n}$ then G is not hypercyclic.
7. Otherwise, consider the additive group $H(G)=\sum_{k=1}^{p} \mathbb{Z} B_{k} u_{0}+2 \pi i \sum_{k=1}^{r} \mathbb{Z} e^{(k)}$ and determine $\widetilde{H}(G)$ and $M_{\tilde{H}(G)}$ as described in the last section.
8. G is hypercyclic if and only if $\operatorname{rank}\left(M_{\tilde{H}(G)}\right)=2 n$.

4. Example

Let G be the subgroup of $G L(3, \mathbb{C})$ generated by $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and A_{6}, where:

$$
\begin{gathered}
A_{1}=\left[\begin{array}{ccc}
e & 3-2 e+i-2+e-i \\
0 & 2+i & -1-i \\
0 & 1+i & -i
\end{array}\right] \\
A_{2}=\left[\begin{array}{ccc}
1 & -2+2 e^{\sqrt{2}} & 1-e^{\sqrt{2}} \\
0 & e^{\sqrt{2}} & 0 \\
0 & 0 & e^{\sqrt{2}}
\end{array}\right] \\
A_{3}=\left[\begin{array}{ccc}
e^{\sqrt{3}} & -2 e^{\sqrt{3}}+2 e^{i} & e^{\sqrt{3}}-e^{i} \\
0 & e^{i} & 0 \\
0 & 0 & e^{i}
\end{array}\right] \\
A_{4}=\left[\begin{array}{ccc}
e^{i \sqrt{5}} & \sqrt{2}(\sqrt{2}+i) e-2 e^{i \sqrt{5}} & e^{i \sqrt{5}}-(1+i \sqrt{2}) e \\
0 & (1+i \sqrt{2}) e & -i \sqrt{2} e \\
0 & i \sqrt{2} e & (1-i \sqrt{2}) e
\end{array}\right] \\
A_{5}=\left[\begin{array}{ccc}
e & 2-2 e+\sqrt{7}+i \sqrt{2} & e-1-\sqrt{7}-i \sqrt{2} \\
0 & 1+\sqrt{7}+i \sqrt{2} & -\sqrt{7}-i \sqrt{2} \\
0 & \sqrt{7}+i \sqrt{2} & 1-\sqrt{7}-i \sqrt{2}
\end{array}\right] \\
A_{6}=\left[\begin{array}{ccc}
1 & i \sqrt{2} & -i \sqrt{2} \\
0 & 1+i \sqrt{2} & -i \sqrt{2} \\
0 & i \sqrt{2} & 1-i \sqrt{2}
\end{array}\right]
\end{gathered}
$$

The spectrum $\sigma\left(A_{k}\right)$ of A_{k} are:

$$
\begin{array}{ll}
\sigma\left(A_{1}\right)=\{1, e\} & \sigma\left(A_{2}\right)=\left\{1, e^{\sqrt{2}}\right\} \\
\sigma\left(A_{3}\right)=\left\{e^{\sqrt{3}}, e^{i}\right\} & \sigma\left(A_{4}\right)=\left\{e, e^{i \sqrt{5}}\right\} \\
\sigma\left(A_{5}\right)=\{1, e\} & \sigma\left(A_{6}\right)=\{1\}
\end{array}
$$

Here $r=2$ which corresponds to two generalized eigenspaces E_{1} and E_{2} for G of dimension:

$$
\operatorname{dim}\left(E_{1}\right)=1, \quad \operatorname{dim}\left(E_{2}\right)=2
$$

The normal form of G is given by:

$$
\begin{array}{ll}
\widetilde{A}_{1}=\left[\begin{array}{lll}
e & 0 & \\
0 & {\left[\begin{array}{cc}
1 & 0 \\
\frac{1}{2}+\frac{1}{2} i & 1
\end{array}\right]}
\end{array}\right] & \widetilde{A}_{2}=\left[\begin{array}{cc}
1 & 0 \\
0\left[\begin{array}{cc}
e^{\sqrt{2}} & 0 \\
0 & e^{\sqrt{2}}
\end{array}\right]
\end{array}\right] \\
\widetilde{A}_{3}=\left[\begin{array}{cc}
e^{\sqrt{3}} & 0 \\
0 & {\left[\begin{array}{cc}
e^{i} & 0 \\
0 & e^{i}
\end{array}\right]}
\end{array}\right] & \widetilde{A}_{4}=\left[\begin{array}{cc}
e^{i \sqrt{5}} & 0 \\
0 & {\left[\begin{array}{cc}
e & 0 \\
\frac{\sqrt{2}}{2} & e i
\end{array}\right]}
\end{array}\right] \\
\widetilde{A}_{5}=\left[\begin{array}{ccc}
e & 0 & \\
0\left[\begin{array}{cc}
1 & 0 \\
\frac{\sqrt{7}}{2}+i \frac{\sqrt{2}}{2} & 1
\end{array}\right]
\end{array}\right] & \widetilde{A}_{6}=\left[\begin{array}{ccc}
1 & 0 \\
0\left[\begin{array}{cc}
1 & 0 \\
i \frac{\sqrt{2}}{2} & 1
\end{array}\right]
\end{array}\right]
\end{array}
$$

The matrices B_{k} such that $e^{B_{k}}=\tilde{A}_{k}, k=1, \ldots, 6$ are given by:

$$
\begin{array}{ll}
B_{1}=\left[\begin{array}{ccc}
1 & 0 & \\
0\left[\begin{array}{cc}
0 & 0 \\
\frac{1}{2}+\frac{1}{2} & i
\end{array}\right]
\end{array}\right] & B_{2}=\left[\begin{array}{lc}
0 & 0 \\
0\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right]
\end{array}\right] \\
B_{3}=\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & {\left[\begin{array}{cc}
i & 0 \\
0 & i
\end{array}\right]}
\end{array}\right] & B_{4}=\left[\begin{array}{cc}
i \sqrt{5} & 0 \\
0 & {\left[\begin{array}{cc}
1 & 0 \\
\frac{\sqrt{2}}{2} & i
\end{array}\right]}
\end{array}\right] \\
B_{5} & =\left[\begin{array}{ccc}
1 & 0 \\
0\left[\begin{array}{cc}
0 & 0 \\
\frac{\sqrt{7}}{2}+\frac{\sqrt{2}}{2} & i
\end{array}\right]
\end{array}\right]
\end{array}
$$

By Theorem 1.2, G is hypercyclic if and only if the complex additive group $H(G)=$ $\sum_{k=1}^{6} \mathbb{Z} B_{k} u_{0}+2 \pi i \mathbb{Z} e_{1}+2 \pi i \mathbb{Z} e_{2}$ is dense, where $u_{0}=[1,1,0]^{T}$.

We get

$$
\begin{aligned}
& u_{1}=\left[1,0, \frac{1}{2}+\frac{1}{2} i\right]^{T} \quad u_{2}=[0, \sqrt{2}, 0]^{T} u_{3}=[\sqrt{3}, i, 0]^{T} u_{4}=\left[i \sqrt{5}, 1, \frac{\sqrt{2}}{2} i\right]^{T} \\
& u_{5}=\left[1,0, \frac{\sqrt{7}}{2}+\frac{\sqrt{2}}{2} i\right]^{T} u_{6}=\left[0,0, \frac{\sqrt{2}}{2} i\right]^{T} u_{7}=[2 \pi i, 0,0]^{T} u_{8}=[0,2 \pi i, 0]^{T}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \tilde{u}_{1}=\left[1,0, \frac{1}{2}, 0,0, \frac{1}{2}\right]^{T} \quad \tilde{u}_{2}=[0, \sqrt{2}, 0,0,0,0]^{T} \quad \tilde{u}_{3}=[\sqrt{3}, 0,0,0,1,0]^{T} \\
& \tilde{u}_{4}=\left[0,1,0, \sqrt{5}, 0, \frac{\sqrt{2}}{2}\right]^{T} \quad \tilde{u}_{5}=\left[1,0, \frac{\sqrt{7}}{2}, 0,0, \frac{\sqrt{2}}{2}\right]^{T} \tilde{u}_{6}=\left[0,0,0,0,0, \frac{\sqrt{2}}{2}\right]^{T} \\
& \tilde{u}_{7}=[0,0,0,2 \pi, 0,0]^{T} \quad \tilde{u}_{8}=[0,0,0,0,2 \pi, 0]^{T}
\end{aligned}
$$

We have $\widetilde{H}(G)=\sum_{k=1}^{8} \mathbb{Z} \tilde{u}_{k}$.
The vectors \tilde{u}_{7} and \tilde{u}_{8} can be expressed in the basis $\left(\tilde{u}_{1}, \tilde{u}_{2}, \ldots, \tilde{u}_{6}\right)$ as

$$
\begin{aligned}
& \tilde{u}_{7}=-\pi \frac{\sqrt{10}}{5} \tilde{u}_{2}+2 \pi \frac{\sqrt{5}}{5} \tilde{u}_{4}-2 \pi \frac{\sqrt{5}}{5} \tilde{u}_{6} \\
& \tilde{u}_{8}=-\pi \frac{7 \sqrt{3}+\sqrt{21}}{3} \tilde{u}_{1}+2 \pi \tilde{u}_{3}+\pi \frac{\sqrt{3}+\sqrt{21}}{3} \tilde{u}_{5}+\pi \frac{\sqrt{42}-2 \sqrt{21}+7 \sqrt{6}-2 \sqrt{3}}{6} \tilde{u}_{6}
\end{aligned}
$$

Now, we apply the algorithm given in [3] (see Theorem 4.1). We get the sets:
$I_{7}=\{2,4\}$ and $I_{8}=\{1,3,5,6\}$ obtained by using the fact that π is a transcendental number and that the set $\{\sqrt{n}: \mathrm{n}$ is a squarefree number $\}$ is linearly independent over \mathbb{Q} [2]. (Recall that an integer is squarefree if its prime factorization contains no prime more than once).

Now the vectors $u_{k, j}^{\prime}, j \in I_{k}, k=7,8$ are:

$$
\begin{aligned}
u_{7,2}^{\prime} & =\tilde{u}_{2} \\
u_{7,4}^{\prime} & =\tilde{u}_{4}-\tilde{u}_{6} \\
u_{8,1}^{\prime} & =\tilde{u}_{1} \\
u_{8,3}^{\prime} & =\tilde{u}_{3} \\
u_{8,5}^{\prime} & =\tilde{u}_{5} \\
u_{8,6}^{\prime} & =\tilde{u}_{6}
\end{aligned}
$$

The matrix $M_{\widetilde{H}(G)}$ is given by:

$$
M_{\widetilde{H}(G)}=\left[\begin{array}{rrrrrr}
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Since $\operatorname{rank}\left(M_{\widetilde{H}(G)}\right)=6$, we apply (Theorem 4.1, [3]) to get that $H(G)$ is dense in \mathbb{R}^{6}. We conclude by Theorem 1.2 that G is hypercyclic.

REFERENCES

[1] A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of $G L(n, C)$, Foliations 2005: World Scientific, Hackensack, NJ, (2006), 47-69.
[2] Eric Jaffe, Linearly Independent Integer Roots over the Scalar Field \mathbb{Q}, The University of Chicago, 2007 Summer VIGRE Program for Undergraduates.
[3] M. Elghaoui and A. Ayadi, Appl. Gen. Topol. 16, no. 2 (2015), 127-139.
[4] S. Goodwin, Algorithmic testing for dense orbits of Borel subgroups, Journal of pure and Applied Algebra 197 (2005), 171-181.
[5] S. H. Weintraub, Jordan Canonical form, Theory and Practice, Morgan Claypool, C 2009.

Mohamed Elghaoui
University of Carthage Faculty of science of Bizerte

Tunisia
e-mail: elghaoui.mohamed@yahoo.fr
Adlene Ayadi
University of Gafsa
Faculty of science of Gafsa
Tunisia
e-mail: adlenesoo@yahoo.com

