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CROSSED PRODUCTS AND MF ALGEBRAS

WEIHUA LI AND STEFANOS ORFANOS

(Communicated by D. Hadwin)

Abstract. We prove that the crossed product A �α G of a unital finitely generated MF algebra
A by a discrete finitely generated amenable residually finite group G is an MF algebra, provided
that the action α is almost periodic. This generalizes a result of Hadwin and Shen. We also
construct two examples of crossed product C∗ -algebras whose BDF Ext semigroups are not
groups.

Introduction

The purpose of this note is to generalize two recent results concerning crossed
products. The first is:

THEOREM 1. (Hadwin–Shen [4]) Suppose that A is a finitely generated unital
MF algebra and α is a homomorphism from Z into Aut(A ) such that there is a se-
quence of integers 0 � n1 < n2 < · · · satisfying

lim
j→∞

‖α(n j)a−a‖= 0

for any a ∈ A . Then A �α Z is an MF algebra.

And the second is:

THEOREM 2. (Orfanos [5]) Let A be a separable unital quasidiagonal algebra
and G a discrete countable amenable residually finite group with a sequence of Følner
sets Fn and tilings of the form G = KnLn . Assume α : G→Aut(A ) is a homomorphism
such that

max
l∈Ln∩KnK−1

n Fn

‖α(l)a−a‖→ 0 as n → ∞

for any a ∈ A . Then A �α G is also quasidiagonal.

which were both motivated by
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THEOREM 3. (Pimsner–Voiculescu [6]) Suppose that A is a separable unital qua-
sidiagonal algebra and α is a homomorphism from Z into Aut(A ) such that there is
a sequence of integers 0 � n1 < n2 < · · · satisfying

lim
j→∞

‖α(n j)a−a‖= 0

for any a ∈ A . Then A �α Z is also quasidiagonal.

MF algebras are important in their own right but also due to their connection to
Voiculescu’s topological free entropy dimension for a family of self-adjoint elements
x1, . . . ,xn in a unital C∗ -algebra A ([8]). The definition of topological free entropy di-
mension requires that Voiculescu’s norm microstate space of x1, . . . ,xn is “eventually”
nonempty, which is equivalent to saying that the C∗ -subalgebra generated by x1, . . . ,xn

in A is an MF algebra. So it is crucial to determine if a C∗ -algebra is MF, in which
case its Voiculescu’s topological free entropy dimension is well-defined.

In the next section we describe another connection, that between MF algebras and
the Brown–Douglas–Fillmore Ext semigroup (introduced in [2]). We will then exhibit
two new examples of crossed product C∗ -algebras whose Ext semigroup fails to be a
group.

Background

We start with a few well-known definitions and facts.

DEFINITION 1. A discrete countable group G is amenable if there is a se-
quence of finite sets {Fn}∞

n=1 (called a Følner sequence) such that lim
n→∞

Fn = G and

lim
n→∞

|Fn�Fns|/|Fn| = 0 for any s ∈ G . The group G is residually finite if for every

e �= x ∈ G , there is a finite index normal subgroup L of G such that L �= xL . Stated
differently, finite index normal subgroups of G separate points in G . A tiling of G is a
decomposition G = KL , with K a finite set, so that every x ∈ G is uniquely written as
a product of an element in K and an element in L .

LEMMA 1. Assume G is a discrete countable group. Then G is amenable and
residually finite if and only if G has a Følner sequence {Fn}∞

n=1 for which there exists
a separating sequence of finite index normal subgroups Ln and a sequence of finite
subsets Kn ⊃ Fn such that G has a tiling of the form G = KnLn for all n � 1 .

THEOREM 4. A discrete group G is amenable if and only if C∗
r (G) ∼= C∗(G) .

Let A be a C∗ -algebra. If G is amenable and if there is a homomorphism α : G →
Aut(A ) , then A �α ,r G ∼= A �α G.

Quasidiagonal operators were first considered by Halmos.

DEFINITION 2. A separable family of operators {T1,T2, . . .}⊂B(H ) is quasidi-
agonal if there exists a sequence of finite rank projections {Pn}∞

n=1 such that Pn → I
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in SOT and ‖PnTj − TjPn‖ → 0 for all j � 1 as n → ∞ . A separable C*-algebra is
quasidiagonal if it has a faithful ∗ -representation to a quasidiagonal set of operators.

THEOREM 5. (Rosenberg [7]) Let G be a discrete group. If C∗
r (G) is a quasidi-

agonal algebra, then G is amenable.

MF algebras were introduced by Blackadar and Kirchberg in [1].

DEFINITION 3. A separable C∗ -algebra A is an MF algebra if there is an em-
bedding from A to

∞

∏
t=1

MNt (C)/
∞

∑
t=1

MNt (C)

for positive integers {Nt}∞
t=1 . If A = {At}∞

t=1 is an element of the above C*-algebra,
define its norm by ‖A‖ = limsup

t→∞
‖At‖MNt (C) .

THEOREM 6. (Blackadar–Kirchberg [1]) A separable C∗ -algebra A is MF if
and only if every finitely generated C∗ -subalgebra of A is MF. Subalgebras of MF
algebras are also MF. Every quasidiagonal algebra A is MF and the converse is true
if, in addition, A is nuclear.

An exciting result connecting quasidiagonal and MF algebras on one hand, and
Brown–Douglas–Fillmore theory of extensions on the other, is the following.

THEOREM 7. Let A be a unital separable MF algebra. If A is not quasidiago-
nal, then Ext(A ) fails to be a group.

EXAMPLE 1. (Haagerup–Thorbjørnsen [3]) The reduced group C∗ -algebra of the
free group on n generators, namely C∗

r (Fn) , is an MF algebra but it is not quasidiagonal
or nuclear (since Fn is not amenable). Therefore, Ext(C∗

r (Fn)) is not a group.

More examples of this flavor were exhibited in [4].

Preliminary facts

Here we state a few facts that will be used extensively in the rest of this note.
In what follows, C(X1, . . . ,Xm) will denote the set of all non-commutative complex
polynomials in X1, . . . ,Xm,X∗

1 , . . . ,X∗
m . The first result gives equivalent definitions for

an MF algebra. Refer to [4] and the references therein for a proof.

PROPOSITION 1. Suppose A is a unital C∗ -algebra generated by a family of
elements a1, . . . ,am in A . Then the following are equivalent:

(i) A is an MF algebra.
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(ii) For any ε > 0 and any finite subset { f1, . . . , fJ} of C(X1, . . . ,Xm) , there is a
positive integer N and a family of matrices {A1, . . . ,Am} in MN(C) , such that

max
1� j�J

∣∣‖ f j(A1, . . . ,Am)‖MN (C)−‖ f j(a1, . . . ,am)‖A

∣∣< ε.

(iii) Suppose π : A → B(H ) is a faithful ∗ -representation of A on an infinite di-
mensional separable complex Hilbert space H . Then there is a family
{[a1]n, . . . , [am]n}∞

n=1 ⊂ B(H ) such that

(a) For each n � 1 , {[a1]n, . . . , [am]n} ⊂ B(H ) is quasidiagonal;

(b) ‖ f([a1]n, . . . , [am]n)‖B(H ) → ‖ f(a1, . . . ,am)‖A as n → ∞ , for any f ∈
C(X1, . . . ,Xm);

(c) [ai]n → π(ai) in ∗ -SOT as n → ∞ , for every 1 � i � m.

Let G be a discrete countable amenable residually finite group, equipped with
Følner sets Fn , finite sets Kn and finite index normal subgroups Ln such that Fn ⊂ Kn

and G = KnLn is a tiling of G for every n � 1. Consider the family {ξyLn : y ∈ Kn} ⊂
�2(G) , with ξyLn = ∑

x∈yLn

φn(x)δx and

φn(x) =

√
|Kn ∩Fnx|

|Fn| .

The following two lemmas can be found in [5]. The second is a consequence of the
first.

LEMMA 2. Assume G and ξyLn are as above. The following are true:

(i) For every n � 1 , {ξyLn : y ∈ Kn} is an orthonormal family of vectors.

(ii) For any s ∈ G,

λ (s)ξyLn = ξsyLn + ∑
x∈yLn

(φn(x)−φn(sx))δsx,

with

∑
x∈yLn

|φn(x)−φn(sx)|2 � |Fn�Fns|
|Fn| .

LEMMA 3. Assume G and ξyLn are as above. If PyLnξ = 〈ξ ,ξyLn〉ξyLn and Pn =
∑

y∈Kn

PyLn , then

(i) For every n � 1 , Pn is a self-adjoint projection in B(�2(G)) and rank Pn = |Kn| .

(ii) Pn → I in SOT as n→∞; and for any s∈G, ‖Pnλ (s)−λ (s)Pn‖2 � 4
|Fn�Fns|

|Fn| →
0 as n → ∞ .
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Main result

Let A = 〈a1, . . . ,am〉 be a unital finitely generated MF C∗ -algebra. We first es-
tablish three claims related to our main result.

For y∈Kn , s∈ S = {s1,s2, . . . ,sk}∪{e}⊂G and 1 � i � m , consider the elements
α(y−1s−1)ai ∈A , the quasidiagonal set

{[
α(y−1s−1)ai

]
n : 1 � i � m,s ∈ S,y ∈ Kn

}⊂
B(H ) obtained from part (a) of Proposition 1(iii), and a sequence of finite rank pro-
jections Qn in B(H ) such that Qn → I in SOT as n → ∞ and Qn asymptotically
commutes with all elements in the above-mentioned set. For every 1 � i � m , positive
integer n and s ∈ S , define

A(s)
i = ∑

y∈Kn

Qn
[
α(y−1s−1)ai

]
n Qn ⊗PyLn , Ai = A(e)

i , and Us = Qn⊗Pnλ (s)Pn.

CLAIM 1. For any ε > 0 and any finite subset {q1, . . . ,qJ} of C(X1, . . . ,X(k+1)m) ,
there is a positive integer n such that, for N = rank (Qn⊗Pn) ,

max
1� j�J

∣∣∣∣∣
∥∥∥q j

(
A1, . . . ,A

(sk)
1 , . . . ,Am, . . . ,A(sk)

m

)∥∥∥
MN(C)

−∥∥q j
(
a1, . . . ,α(s−1

k )a1, . . . ,am, . . . ,α(s−1
k )am

)∥∥
A

∣∣∣∣∣< ε.

Proof. For every 1 � j � J ,∥∥∥q j

(
A1, . . . ,A

(sk)
m

)∥∥∥
MN (C)

= max
y∈Kn

{∥∥q j
(
Qn
[
α(y−1)a1

]
n Qn, . . . ,Qn

[
α(y−1s−1

k )am
]
n Qn

)∥∥
MN/|Kn |(C)

}

by Lemma 2(i). Now use the quasidiagonality of {[α(y−1s−1)ai]n : 1 � i � m,s ∈ S,
y ∈ Kn} , with n sufficiently large, to obtain, for every 1 � j � J ,∣∣∣∣∥∥q j

(
Qn
[
α(y−1)a1

]
n Qn, . . . ,Qn

[
α(y−1s−1

k )am
]
n Qn

)∥∥
MN/|Kn |(C)

− ∥∥q j
([

α(y−1)a1
]
n , . . . ,

[
α(y−1s−1

k )am
]
n

)∥∥
B(H )

∣∣∣< ε
2
,

and part (b) of Proposition 1(iii) to get∣∣∣∣∣∥∥q j
([

α(y−1)a1
]
n , . . . ,

[
α(y−1s−1

k )am
]
n

)∥∥
B(H )

−∥∥q j
(
α(y−1)a1, . . . ,α(y−1s−1

k )am
)∥∥

A

∣∣∣∣∣< ε
2
.

The last norm is equal to
∥∥q j
(
a1, . . . ,α(s−1

k )am
)∥∥

A
since α(y−1) is a ∗ -automorphism.

�
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CLAIM 2. For any s1, . . . ,sk ∈ G, any ε > 0 , and any finite subset {p1, . . . , pJ}
of C(X1, . . . ,Xk) , there is a positive integer n such that for N = rank (Qn⊗Pn) ,

max
1� j�J

∣∣∣∥∥p j
(
Us1 , . . . ,Usk

)∥∥
MN(C) −

∥∥p j (λ (s1), . . . ,λ (sk))
∥∥

B(�2(G))

∣∣∣< ε.

Proof. It follows from Lemma 3(ii) and the definition of the projections Qn . �
Let ε > 0 and s ∈ Fn ⊂ G . Choose appropriately large positive integer n so that

|Fn�Fns| < ε2|Fn|/4. Assume that for every 1 � i � m , the action is almost periodic,
in the sense that

max
l∈Ln∩FnKnK−1

n

‖α(l)ai −ai‖→ 0 as n → ∞.

CLAIM 3. For A(s)
i , Ai , Us as above and sufficiently large positive integer n,∥∥∥U∗

s AiUs−A(s)
i

∥∥∥
MN (C)

< ε .

Proof. Without loss of generality, start with a unit vector η ∈QnH and compute,
for y ∈ Kn , ∥∥∥(U∗

s AiUs −A(s)
i

)
η ⊗ ξyLn

∥∥∥2

=

∥∥∥∥∥U∗
s Aiη ⊗Pn

(
ξsyLn + ∑

x∈yLn

(φn(x)−φn(sx))δsx

)
−A(s)

i η ⊗ ξyLn

∥∥∥∥∥
2

�
∥∥∥U∗

s Aiη ⊗ ξsyLn −A(s)
i η ⊗ ξyLn

∥∥∥2
+

ε2

4
, by Lemma 2(ii).

Let sy = zl′ = lz with z ∈ Kn and l, l′ ∈ Ln . Then l = syz−1 ∈ Ln∩FnKnK−1
n and ξsyLn

= ξzLn , which gives

∥∥∥U∗
s Aiη ⊗ ξzLn −A(s)

i η ⊗ ξyLn

∥∥∥2

=
∥∥U∗

s Qn
[
α(z−1)ai

]
n η ⊗ ξzLn −Qn

[
α(y−1s−1)ai

]
n η ⊗ ξyLn

∥∥2

=

∥∥∥∥∥Qn
[
α(z−1)ai

]
n η⊗Pn

(
ξyLn+ ∑

x∈yLn

(φn(sx)−φn(x))δx

)
−Qn

[
α(y−1s−1)ai

]
n η⊗ξyLn

∥∥∥∥∥
2

�
∥∥Qn

([
α(z−1)ai

]
n−
[
α(y−1s−1)ai

]
n

)
η ⊗ ξyLn

∥∥2
+

ε2

4

�
∥∥[α(z−1)ai

]
n−
[
α(y−1s−1)ai

]
n

∥∥2
+

ε2

4
.

By part (b) of Proposition 1(iii),

∥∥[α(z−1)ai
]
n−
[
α(y−1s−1)ai

]
n

∥∥2

B(H ) <
∥∥α(z−1)ai−α(y−1s−1)ai

∥∥2
A

+
ε2

4
.
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Finally,
∥∥α(z−1)ai −α(y−1s−1)ai

∥∥2
A

= ‖ai−α(l)ai‖2
A <

ε2

4
by the almost peri-

odicity of the action.
Overall, for sufficiently large n ,∥∥∥(U∗

s AiUs−A(s)
i

)
η ⊗ ξyLn

∥∥∥2
< ε2. �

We are now ready to state the main result.

THEOREM 8. Let A = 〈a1, . . . ,am〉 be a unital finitely generated MF algebra and
G = 〈s1, . . . ,sk〉 a discrete finitely generated amenable residually finite group with a
sequence of Følner sets Fn and tilings of the form G = KnLn . Assume α : G→ Aut(A )
is a homomorphism such that for every 1 � i � m,

max
l∈Ln∩FnKnK−1

n

‖α(l)ai −ai‖→ 0 as n → ∞.

Then A �α G is also MF.

Proof. We will show that A �α G is an MF algebra by using Proposition 1. More
specifically, we will show that for any ε > 0 and any finite subset { f1, . . . , fJ} of
C(X1, . . . ,Xm+k) , there is a positive integer N and a family of matrices {A1, . . . ,Am,
Us1 , . . . ,Usk} in MN(C) , such that

max
1� j�J

∣∣∣∣∣∥∥ f j (a1, . . . ,am,λ (s1), . . . ,λ (sk))
∥∥

A �α G

−∥∥ f j
(
A1, . . . ,Am,Us1 , . . . ,Usk

)∥∥
MN (C)

∣∣∣∣∣< ε.

Let { f1, . . . , fJ}⊂C(X1, . . . ,Xm+k) , and A1, . . . ,Am,Us1 , . . . ,Usk ,N as in Claims 1-
3. We first prove that for every 1 � j � J and sufficiently large n ,∥∥ f j (a1, . . . ,am,λ (s1), . . . ,λ (sk))

∥∥
A �αG �

∥∥ f j
(
A1, . . . ,Am,Us1 , . . .Usk

)∥∥
MN (C) .

Consider an enumeration of all polynomials in C(X1, . . . ,X(k+1)m) (respectively, in
C(X1, . . .Xk)) with rational coefficients. For each t = 1,2, . . . , we can find a positive
integer nt and Nt = rank (Qnt ⊗Pnt ) , such that, by Claim 1 (respectively, Claim 2) and
for all 1 � j � t ,

∣∣∣∣∣
∥∥∥q j

(
A1, . . . ,A

(sk)
1 , . . . ,Am, . . . ,A(sk)

m

)∥∥∥
MNt (C)

−∥∥q j
(
a1, . . . ,α(s−1

k )a1, . . . ,am, . . . ,α(s−1
k )am

)∥∥
A

∣∣∣∣∣< 1
t
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(respectively,∣∣∣∥∥p j
(
Us1 , . . . ,Usk

)∥∥
MNt (C)−

∥∥p j (λ (s1), . . . ,λ (sk))
∥∥

C�
r (G)

∣∣∣< 1
t
).

Let, for every 1 � i � m and s ∈ S ,

A
(s)
i =

{
A(s)

i

}∞

t=1
∈

∞

∏
t=1

MNt (C)/
∞

∑
t=1

MNt (C) , Ai = A
(e)
i ,

and

Us = {Us}∞
t=1 ∈

∞

∏
t=1

MNt (C)/
∞

∑
t=1

MNt (C),

and C denote the C∗ -algebra generated by
{
A1, . . . ,A

(sk)
1 , . . . ,Am, . . . ,A

(sk)
m

}
. Conse-

quently, there are embeddings ρ1 : A → C and ρ2 : C∗
r (G) → C , given by

ρ1
(
α(s−1)ai

)
= A

(s)
i and ρ2 (λ (s)) = Us

with the property that (ρ1,ρ2) is a covariant homomorphism (by Claim 3). Therefore,

there exists a ∗ -homomorphism ρ : A �α G → C , with ρ
(
α(s−1)ai

)
= A

(s)
i , and

ρ (λ (s)) = Us . It follows that for all 1 � j � J ,∥∥ f j (a1, . . . ,am,λ (s1), . . . ,λ (sk))
∥∥

A �αG �
∥∥ f j
(
A1, . . . ,Am,Us1 , . . . ,Usk

)∥∥
C

= limsup
t→∞

∥∥ f j
(
A1, . . . ,Am,Us1 , . . . ,Usk

)∥∥
MNt (C) .

It remains to show that for every 1 � j � J and sufficiently large n ,∥∥ f j (a1, . . . ,am,λ (s1), . . . ,λ (sk))
∥∥

A �αG �
∥∥ f j
(
A1, . . . ,Am,Us1 , . . . ,Usk

)∥∥
MN (C) + ε.

There exist a positive integer D and families of monomials p(d)
j ∈ C(X1, . . . ,Xk)

and polynomials q(d)
j ∈ C(X1, . . . ,X(k+1)m) for 1 � d � D and 1 � j � J , such that

f j(a1, . . . ,am,λ (s1), . . . ,λ (sk))

=
D

∑
d=1

p(d)
j (λ (s1), . . . ,λ (sk))q(d)

j

(
a1, . . . ,α(s−1

k )a1, . . . ,am, . . . ,α(s−1
k )am

)
by the covariance relation for crossed products. Similarly, for sufficiently large n , we
can get

f j
(
A1, . . . ,Am,Us1 , . . . ,Usk

)
=

D

∑
d=1

p(d)
j

(
Us1 , . . . ,Usk

)
q(d)

j

(
A1, . . . ,A

(sk)
m

)
+ r j

(
A1, . . . ,A

(sk)
m ,Us1 , . . . ,Usk

)

with
max

1� j�J

∥∥∥r j

(
A1, . . . ,A

(sk)
m ,Us1 , . . . ,Usk

)∥∥∥
MN (C)

<
ε
3
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by Claim 3 and repeated use of the approximate covariance relation AiUs = UsA
(s)
i +

r(Ai,A
(s)
i ,Us) .

We then have

∥∥ f j (a1, . . . ,am,λ (s1), . . . ,λ (sk))
∥∥

A �α G −∥∥ f j
(
A1, . . . ,Am,Us1 , . . . ,Usk

)∥∥
MN(C)

<
D

∑
d=1

∥∥∥p(d)
j (λ (s1), . . . ,λ (sk))

∥∥∥
C∗(G)

∥∥∥q(d)
j

(
a1, . . . ,α(s−1

k )am
)∥∥∥

A

−
D

∑
d=1

∥∥∥p(d)
j

(
Us1 , . . . ,Usk

)∥∥∥
MN (C)

∥∥∥q(d)
j

(
A1, . . . ,A

(sk)
m

)∥∥∥
MN (C)

+
ε
3

�
D

∑
d=1

∥∥∥p(d)
j (λ (s1), . . . ,λ (sk))

∥∥∥
C∗(G)

×
(∥∥∥q(d)

j

(
a1, . . . ,α(s−1

k )am
)∥∥∥

A
−
∥∥∥q(d)

j

(
A1, . . . ,A

(sk)
m

)∥∥∥
MN (C)

)

+
D

∑
d=1

(∥∥∥p(d)
j (λ (s1), . . . ,λ (sk))

∥∥∥
C∗(G)

−
∥∥∥p(d)

j

(
Us1 , . . . ,Usk

)∥∥∥
MN (C)

)

×
∥∥∥q(d)

j

(
A1, . . . ,A

(sk)
m

)∥∥∥
MN (C)

+
ε
3
.

Finally, note that
∥∥∥q(d)

j

(
A1, . . . ,A

(sk)
m

)∥∥∥
MN(C)

�
∥∥∥q(d)

j

(
a1, . . . ,α(s−1

k )am
)∥∥∥

A
+ 1

for n sufficiently large, so define

M = max
1� j�J

{
D

∑
d=1

∥∥∥p(d)
j (λ (s1), . . . ,λ (sk))

∥∥∥
C∗(G)

,
D

∑
d=1

∥∥∥q(d)
j

(
a1, . . . ,α(s−1

k )am
)∥∥∥

A
+D

}

and use Claims 1 and 2 with a larger n if necessary, to obtain, for all 1 � d � D and
1 � j � J ,

∥∥∥q(d)
j

(
a1, . . . ,α(s−1

k )am
)∥∥∥

A
−
∥∥∥q(d)

j

(
A1, . . . ,A

(sk)
m

)∥∥∥
MN (C)

<
ε

3M
, and

∥∥∥p(d)
j (λ (s1), . . . ,λ (sk))

∥∥∥
C∗(G)

−
∥∥∥p(d)

j

(
Us1 , . . . ,Usk

)∥∥∥
MN (C)

<
ε

3M
. �

REMARK. Every discrete group is the inductive limit of its finitely generated sub-
groups. In particular, a discrete maximally almost periodic group is the inductive limit
of its residually finite subgroups. Moreover, the inductive limit of MF algebras is an
MF algebra. Therefore, Theorem 8 remains true if one assumes G to be any discrete
countable amenable residually finite group, and can be extended to all discrete count-
able amenable maximally almost periodic groups whose finitely generated subgroups
satisfy the approximate periodicity condition. One could also assume that A is sepa-
rable, rather than finitely generated, because of Theorem 6.
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Examples

We may now use this result to construct more exotic examples of crossed product
C∗ -algebras whose BDF Ext semigroup is not a group.

EXAMPLE 2. Consider the integer Heisenberg group, which can be defined ab-
stractly as

H = 〈s,t| [[s,t],s] , [[s,t],t]〉.
or in a concrete way, as the subgroup of SL3(Z) generated by

s =

⎛
⎝1 1 0

0 1 0
0 0 1

⎞
⎠ and t =

⎛
⎝1 0 0

0 1 1
0 0 1

⎞
⎠ , with u = [s,t] = s−1t−1st =

⎛
⎝1 0 1

0 1 0
0 0 1

⎞
⎠ .

Every element of H can be uniquely written in the form sktlum , for k, l.m ∈ Z . The
sets

Kn =
{

sktlum : −n
2

< k, l,m � n
2

}
have subsets Fn =

{
sktlum : −√ n

2 < k, l �
√ n

2 ,− n
2 < m � n

2

}
that form a Følner se-

quence, and if we define Ln = 〈sn,tn,un〉 then H = KnLn is a tiling for every n � 1.
Indeed, Ln is normal since

(sktlum)(snptnqunr) (sktlum)−1 = snptnqun(r+qk−pl) ∈ Ln

and for any k, l,m ∈ Z , one can find unique − n
2 < k′, l′,m′ � n

2 and p,q,r ∈ Z , such
that

sktlum = sk′+nptl
′+nqum′+n(r−pl′) = (sk′tl

′
um′

)(snptnqunr) ∈ KnLn.

Assume now that A is a unital finitely generated non-quasidiagonal MF algebra
(e.g. A =C∗

r (F2)) and let an action α : H → Aut(A ) be induced by α(s)a = α(t)a =
e2πθ ia where a ∈ A and 0 � θ � 1. Consider a positive integer n with the property
that nθ approximates an integer. Then α is approximately periodic on Ln∩FnKnK−1

n .
It follows that (A ,H,α) satisfies the conditions of Theorem 8, and thus the crossed
product A �α H is a non-quasidiagonal MF algebra, therefore its Ext semigroup fails
to be a group.

EXAMPLE 3. Consider the Lamplighter group, which can be defined abstractly as

Λ = 〈s,t|s2, [t jst− j,tlst−l] : j, l ∈ Z〉.
or otherwise, as the semidirect product (

⊕
Z Z2) � Z , where the action is by shifting

the copies of Z2 along Z . By denoting t jst− j = s j , we may write each element of Λ
uniquely as s j1s j2 · · · s jk t

j0 with j1 < j2 < · · · < jk and j0 in Z . Let

Fn=Kn=
{

s j1s j2 · · · s jk t
j0 : −n

2
< j0 � n

2
, −n

2
< j1 < j2 < · · · < jk � n

2
,0 � k � n

}
.

The Følner condition follows immediately from Fns = Fn and |Fn�Fnt|= 2|Fn|/n . Let
Ln be the subgroup of Λ generated by tn and s js j+n for all − n

2 < j � n
2 . Note that
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Ln contains all elements s jsl with l− j divisible by n , and in fact, Ln is normal in Λ ,
since, for s j1s j2 · · ·s jk t

j0 ∈ Λ and sl1sl2 · · ·slmtl0 ∈ Ln , we have(
s j1s j2 · · · s jkt

j0
)(

sl1sl2 · · ·slmtl0
)(

s j1s j2 · · ·s jk t
j0
)−1

=
(
s j1s j1+l0

) · · ·(s jk s jk+l0

)(
sl1+ j0sl2+ j0 · · · slm+ j0t

l0
)

which is in Ln . Moreover, Λ = KnLn is a tiling for every n � 1, since any s j1s j2 · · · s jk t
j0

∈ Λ can be decomposed into

(sr1sr2 · · ·srmtr0)
(
sr1−r0 · · · srm−r0s j1−r0 · · · s jk−r0t

j0−r0
) ∈ KnLn

with 0 � m � k � n , − n
2 < r0,r1, . . . rm � n

2 , j0− r0 divisible by n , and the cardinality
of the set (c+nZ)∩ {r1, . . . ,rm, j1, . . . , jk} to be an even number (or zero) for each
c = 1, . . . ,n . To verify the uniquess of such a decomposition, one can easily compute
that K−1

n Kn ∩Ln = {e} for all n � 1.
Having studied the group in detail, let us now consider A to be any unital finitely

generated non-quasidiagonalMF algebra and let an action α : Λ → Aut(A ) be induced
by α(s)a = a∗ , and α(t)a = e2πθ ia where a∈A and 0 � θ � 1. Again, for a positive
integer n with the property that nθ approximates an integer, α is approximately peri-
odic on Ln∩KnKnK−1

n . It follows that (A ,Λ,α) satisfies the conditions of Theorem 8,
and thus the crossed product A �α Λ is a non-quasidiagonalMF algebra, hence its Ext
semigroup is not a group.
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