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Abstract. In this paper, we give the existence and the representations for the group inverse of

block matrices M =
(

M1 A
B D

)
having a sub-block M1 which is a combination of sub-block A

and B , and give the existence and the representations for the group inverse of block matrices(
A B
C D

)
under some conditions. Finally, some numerical examples are given to illustrate our

results.

1. Introduction

Let Cn×n be the set of all n×n complex matrix. For a square matrix A ∈ Cn×n ,
the Drazin inverse of A is the matrix X satisfying

AkXA = Ak XAX = X AX = XA (1)

where k = ind(A) is the index of A , i.e., the smallest nonnegative integer k satisfying
rank(Ak+1) = rank(Ak) . In this case, when ind(A) = 1, X is called the group inverse

of matrix A and denoted by X =A# . If X =A# exists, then it is unique.
Now we give some explanations on notations used in this paper. We denote the

range, null space and rank of a matrix A by R(A), N(A), rank(A) , respectively. Let
Aπ = I −AA# . A matrix A is regular if there exists a matrix X satisfying AXA = A ,
then X is called the {1}-inverse of matrix A . Let Km×n be the set of all m×n matrices
over skew fields. Let PL,M be the transformation that carries any x ∈ Cn×n into its
projection on L along M .

The group inverse of block matrices have numerous applications in many areas,
such as singular differential equations, singular difference equations, Markov chains,
iterative methods and so on [1–4]. So it is an important problem of investigating the
existence and the representations for the group inverse of block matrices. In 1979,
Campbell and Meyer proposed an open problem to find an explicit formula for Drazin
(group) inverse of 2× 2 block matrices. Then authors studied the existence and rep-
resentations for the group inverse of block matrices under different conditions. Until
now, this problem has not been solved completely.
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Recently, more and more authors pay attention to them and a large number of
works can be found in some literatures (Bu et al. 2009; Liu et al. 2012 and so on). For
example, Ge et al. (2012) investigated the group inverse of 2× 2 block matrices over
skew fields or rings and domains. In these papers [7, 8, 9, 14, 16], authors investigated
the existence and representations for the group inverse of block matrices. The main
forms including

(i)

(
0 A
B 0

)
(see [8]);

(ii)

(
A A
B 0

)
(see [14]);

(iii)

(
AmBn A

B 0

)
where m and n are positive intrgers (see [16]);

(iv)

(
c1A+ c2B A

B 0

)
where non-zero element c1 , c2 are in the center of K (see

[16]);

(v)

(
AX +YB A

B 0

)
where AX = XA , A# exists and X is invertible (see [7] and

[9]).
Inspired by the above results, we mainly consider a class of block matrices with

the form

(
M1 A
B D

)
. Obviously, this form include all cases in the above results (i)–(v).

In this paper, we give the necessary and sufficient conditions for the existence as

well as the expressions of the group inverse for block matrices

(
M1 A
B D

)
under some

conditions, and give the existence and the representations for the group inverse of block

matrices

(
A B
C D

)
(there exists matrices X and Y satisfying XA =C , AY = B). Finally,

some numerical examples are given to illustrate our results.
In order to prove the main results, we give some lemmas.

LEMMA 1.1. [1] Let A ∈ C
n×n . Then A# exists if and only if rank(A) =

rank(A2) .

LEMMA 1.2. [7] Let A∈Kn×m , B∈Km×n , rank(A)= rank(B)= rank(AB)=
rank(BA) . Then (AB)# and (BA)# exist, and the following equalities hold

(i) (AB#)A = A(BA)# and (BA)#B = B(AB)# ;

(ii) (AB)# = A[(BA)#]2B and (BA)# = B[(AB)#]2A;

(iii) A(BA)#BA = (AB)#ABA = A and B(AB)#AB = (BA)#BAB = B;

(iv) (BA)#BA = B(AB)#A and (AB)#AB = A(BA)#B.

LEMMA 1.3. [3] Suppose projectors PL,M , where L⊕M = C
n . Then PL,MA = A

if and only if R(A) ⊂ L and APL,M = A if and only if N(A) ⊃ M.

LEMMA 1.4. [7] Let A ∈ Kn×n , A# exists. Then there exists matrices X and Y
satisfying A = YA2 = A2X . In this case, A# = YAX = AX2 = Y 2A.
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2. Main conclusions

THEOREM 2.1. Let M =
(

AX +YB+M0 A
B D

)
∈ Cn×n , where the matrix M0 is

arbitrary, A ∈ Cr×(n−r) , B ∈ C(n−r)×r , D ∈ C(n−r)×(n−r) , DX = B, N(A) ⊃ N(D) ,
R(YB+M0) ⊃ R(A) and (YB+M0)# exists. Then

(i) M# exists if and only if rank(D) = rank(D2) .

(ii) If M# exists, then M# =
(

(YB+M0)# −(YB+M0)#AD#

−D#B(YB+M0)# D#B(YB+M0)#AD# +D#

)
.

Proof. (i) According to Lemma 1.3, we know there exists D(1) satisfying AD(1)D
= A . Then we have

M =
(

I AD(1)

0 I

)(
YB+M0 0

0 D

)(
I 0
X I

)
. (2)

Similarly, we have

M2 =
(

I AD(1)

0 I

)(
(YB+M0)2 (YB+M0)A
B(YB+M0) BA+D2

)(
I 0
X I

)
. (3)

Note that (YB+M0)# exists, then

M2 =
(

I AD(1)

0 I

)(
I 0

B(YB+M0)# I

)(
(YB+M0)2 0

0 B(YB+M0)πA+D2

)

×
(

I (YB+M0)#A
0 I

)(
I 0
X I

)
. (4)

And since R(YB+M0) ⊃ R(A) , then we get (YB+M0)(YB+M0)(1)A = A and

B(YB+M0)πA = B(A− (YB+M0)(YB+M0)#A) = 0. (5)

Then

M2 =
(

I AD(1)

0 I

)(
I 0

B(YB+M0)# I

)(
(YB+M0)2 0

0 D2

)(
I (YB+M0)#A
0 I

)(
I 0
X I

)
.

(6)
Therefore, according to the equations (2) and (6) , we have rank(M) = rank(YB+
M0)+ rank(D) and rank(M2) = rank((YB+M0)2)+ rank(D2) .

Then we obtain the necessary and sufficient conditions for the existence of group
inverse for block matrices M is rank(D) = rank(D2) .

(ii) Since N(D)⊂N(A) and R(A)⊂R(YB+M0) , so there exists matrices D# and
(YB+M0)# satisfying AD#D = A , YB(YB)#A = A .
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Note that M# exists, then k=ind(M )=1. Let S = YB+M0 . Then

MM# =
(

AX +YB+M0 A
B D

)(
(YB+M0)# −(YB+M0)#AD#

−D#B(YB+M0)# D#B(YB+M0)#AD# +D#

)

=
(

AXS# +SS#−AD#BS# −AXS#AD# +SS#AD# +AD#BS#AD# +AD#

BS#−DD#BS# −BS#AD# +DD#BS#AD# +DD#

)

=
(

AXS# +SS#−AD#DXS# −AXS#AD# +SS#AD# +AD#DXS#AD# +AD#

BS#−DD#DXS# −BS#AD# +DD#DXS#AD# +DD#

)

=
(

SS# 0
0 DD#

)

M#M =
(

(YB+M0)# −(YB+M0)#AD#

−D#B(YB+M0)# D#B(YB+M0)#AD# +D#

)(
AX +YB+M0 A

B D

)

=
(

S#AX+S#S−S#AD#B S#A−S#AD#D
−D#BS#AX−D#BS#S+D#BS#AD#B+D#B −D#BS#A+D#BS#AD#D+D#D

)

=
(

S#AX +S#S−S#AD#DX 0
−D#BS#AX −D#B+D#BS#AD#DX +D#B D#D

)

=
(

S#S 0
0 D#D

)

= MM#

MM#M =
(

SS# 0
0 DD#

)(
AX +YB+M0 A

B D

)

=
(

SS#AX +SS#S SS#A
DD#B DD#D

)
=

(
SS#AX +S# SS#A

DD#DX DD#D

)

=
(

AX +YB+M0 A
B D

)
= M

M#MM# =
(

S#S 0
0 D#D

)(
S# −S#AD#

−D#BS# D#BS#AD# +D#

)

=
(

(YB+M0)# −(YB+M0)#AD#

−D#B(YB+M0)# D#B(YB+M0)#AD# +D#

)
= M#

This completes the proof of Theorem 2.1. �

COROLLARY 1. Let M =
(

AX +YB+M0 A
B D

)
, where the matrix M0 is arbi-

trary, A ∈ Cr×(n−r) , B ∈ C(n−r)×r , D ∈ C(n−r)×(n−r) , DX = B, N(A) ⊃ N(D) , S =
YB+M0 and S is invertible. Then
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(i) M# exists if and only if rank(D) = rank(D2) .

(ii) If M# exists, then M# =
(

S−1 −S−1AD#

−D#BS−1 D# +D#BS−1AD#

)
.

THEOREM 2.2. Let M =
(

AX +YB+M0 A
B D

)
∈ Cn×n , where the matrix M0 is

arbitrary, A ∈ Cr×(n−r) , B ∈ C(n−r)×r , D ∈ C(n−r)×(n−r) , YD = A, R(B) ⊂ R(D) ,
R(AX +M0) ⊃ R(A) and (AX +M0)# exists. Then

(i) M# exists if and only if rank(D) = rank(D2) .

(ii) If M# exists, then M# =
(

(AX +M0)# −(AX +M0)#AD#

−D#B(AX +M0)# D#B(AX +M0)#AD# +D#

)
.

The proof is similar to Theorem 2.1.

COROLLARY 2. Let M =
(

AX +YB+M0 A
B D

)
∈ Cn×n , where the matrix M0 is

arbitrary, A∈Cr×(n−r) , B∈C(n−r)×r , D∈C(n−r)×(n−r) , DX = B, YD = A, R(YDX +
M0) ⊃ R(A) and (YDX +M0)# exists. Then

(i) M# exists if and only if rank(D) = rank(D2) .

(ii) If M# exists, then M# =
(

(YDX +M0)# −(YDX +M0)#AD#

−D#B(YDX +M0)# D#B(YDX +M0)#AD# +D#

)
.

THEOREM 2.3. Let M =
(

A B
D DX +YB+M0

)
∈ Cn×n , where the matrix M0 is

arbitrary, A ∈ Cr×r , B ∈ Cr×(n−r) , D ∈ C(n−r)×r , YA = D, R(B) ⊂ R(A) , N(B) ⊃
N(DX +M0) and (DX +M0)# exists. Then

(i) M# exists if and only if rank(A) = rank(A2) .

(ii) If M# exists, then M# =
(

A# +A#B(DX +M0)#DA# −A#B(DX +M0)#

−(DX +M0)#DA# (DX +M0)#

)
.

Proof. (i) According to Lemma 1.3, we know there exists A(1) satisfying AA(1)B =
B . Then we have

M =
(

I 0
Y I

)(
A 0
0 DX +M0

)(
I A(1)B
0 I

)
. (7)

Note that (YB+M0)# exists and N(B) ⊃ N(DX +M0) hold, similarly, we have

M2 =
(

I 0
Y I

)(
I B(DX +M0)#

0 I

)(
A2 0
0 (DX +M0)2

)(
I 0

(DX +M0)#D I

)(
I A(1)B
0 I

)
.

(8)

Therefore, according to the equations (7) and (8), we have rank(M) = rank(DX +
M0)+ rank(A) and rank(M2) = rank((DX +M0)2)+ rank(A2) .

Then we obtain the necessary and sufficient condition for the existence of group
inverse for matrix M is rank(A) = rank(A2) .

(ii) The verify is similar to Theorem 2.1.
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THEOREM 2.4. Let M =
(

A B
D M0 +YB+DX

)
∈ Cn×n , where the matrix M0 is

arbitrary, A ∈ Cr×r , B ∈ Cr×(n−r) , D ∈ C(n−r)×r , AX = B, N(D) ⊃ N(A) , N(B) ⊃
N(YB+M0) and (YB+M0)# exists. Then

(i) M# exists if and only if rank(A) = rank(A2) .

(ii) If M# exists, then M# =
(

A# +A#B(YB+M0)#DA# −A#B(YB+M0)#

−(YB+M0)#DA# (YB+M0)#

)
.

The proof is similar to Theorem 2.3.

COROLLARY 3. Let M =
(

A B
D YB+DX +M0

)
∈ Cn×n , where the matrix M0 is

arbitrary, A∈Cr×r , B∈Cr×(n−r) , D∈C(n−r)×r , YA = D, AX = B, N(B)⊃N(YAX +
M0) and (YAX +M0)# exists. Then

(i) M# exists if and only if rank(A) = rank(A2) .

(ii) If M# exists, then M# =
(

A# +A#B(YAX +M0)#DA# −A#B(YAX +M0)#

−(YAX +M0)#DA# (YAX +M0)#

)
.

COROLLARY 4. Let M =
(

A B
D DX +YB+M0

)
∈ Cn×n , where the matrix M0 is

arbitrary, A ∈ Cr×r , B ∈ Cr×(n−r) , D ∈ C(n−r)×r , YA = D, R(A) ⊂ R(D) and S is
invertible, where S = M0 +DX . Then

(i) M# exists if and only if rank(A) = rank(A2) .

(ii) If M# exists, then M# =
(

A# +A#BS−1DA# −A#BS−1

−S−1DA# S−1

)
.

Now we give the existence and the representations for the group inverse of block

matrices M =
(

A B
C D

)
(there exists matrices X and Y satisfying XA = C , AY = B).

THEOREM 2.5. Let M =
(

A B
C D

)
∈ Cn×n , there exists matrices X and Y satis-

fying XA = C, AY = B and S# exists, S = D−XB, F = A2 +BSπC. Then

(i) M# exists if and only if rank(A) = rank(F) .

(ii) If M# exists, then M# =
(

M1 M2

M3 M4

)
, where

M1 = AF (1)(I +BS#X)AF(1)A;

M2 = AF (1)(I +BS#X)AF(1)BSπ −AF(1)BS#;

M3 = SπCF (1)(I +BS#X)AF(1)A−S#CF (1)A;

M4 = (SπCF(1)(I +BS#X)A−S#C)F (1)BSπ −SπCF (1)BS# +S#.

Proof. We obtain the following by the elementary transformation of matrix M ,

M =
(

I 0
X I

)(
A 0
0 S

)(
I Y
0 I

)
. (9)
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Similarly, we have

M2 =
(

I 0
X I

)(
I BS#

0 I

)(
F 0
0 S2

)(
I 0

S#C I

)(
I Y
0 I

)
. (10)

By the Lemma 1.1 and the two equations (9), (10), we obtain M# exists if and
only if rank(A) = rank(F) .

(ii) According to Lemma 1.4, we know there exists matrices U and V satisfying
M = M2U , M = VM2 .

Let

U =
(

I −Y
0 I

)(
I 0

−S#C I

)(
U1 U2

U3 U4

)(
I Y
0 I

)
(11)

and

V =
(

I X
0 I

)(
V1 V2

V3 V4

)(
I −BS#

0 I

)(
I 0

−X I

)
. (12)

Where U1 = F(1)A , U2 = −F(1)BS#S , U3 = 0, U4 = S# , V1 = AF (1) , V2 = 0,
V3 = −SS#CF (1) , V4 = S# .

So we calculate

M# = VMU

=
(

I X
0 I

)(
V1 V2

V3 V4

)(
I −BS#

0 I

)(
A 0
0 S

)(
I 0

−S#C I

)(
U1 U2

U3 U4

)(
I Y
0 I

)

=
(

I X
0 I

)(
V1 V2

V3 V4

)(
A+BS#C −BS#S
−SS#C S

)(
U1 U2

U3 U4

)(
I Y
0 I

)

=
(

V1 +XV3 V2 +XV4

V3 V4

)(
A+BS#C −BS#S
−SS#C S

)(
U1 U2 +U1Y
U3 U4 +U3Y

)

=
(

M1 M2

M3 M4

)

where

M1 = AF(1)(I+BS#X)AF(1)A

M2 = AF(1)(I+BS#X)AF(1)BSπ−AF (1)BS#

M3 = SπCF (1)(I+BS#X)AF(1)A−S#CF(1)A

M4 = (SπCF (1)(I+BS#X)A−S#C)F (1)BSπ−SπCF(1)BS# +S#.

This completes the proof of Theorem 2.5. �

THEOREM 2.6. Let M =
(

A B
C D

)
∈ Cn×n , there exists matrices X and Y satis-

fying XA = C, AY = B and S# exists, S = D−XB, F = A2 +BSπC. Then

(i) M# exists if and only if rank(A) = rank(F) .
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(ii) If M# exists, then M# =
(

M1 M2

M3 M4

)
, where

M1 = AF (1)A(I +YS#C)F (1)A;

M2 = AF (1)A(I +YS#C)F (1)BSπ −AF(1)BS#;

M3 = SπCF (1)A(I +YS#C)F (1)A−S#CF (1)A;

M4 = (SπCF (1)A(I +YS#C)−S#C)F(1)BSπ −SπCF (1)BS# +S#.

The proof is similar to Theorem 2.5.

REMARK. The results of Theorem 2.5 and Theorem 2.6 have two kinds of differ-
ent forms for M# . It is easy to check the results are correct.

3. Numerical Example

EXAMPLE FOR THEOREM 2.1. Let

M1 =

⎛
⎝ 756 672 420

2184 1944 1212
1652 1472 916

⎞
⎠ , A =

⎛
⎝ 81 108 270

234 312 780
177 236 590

⎞
⎠ , B =

⎛
⎝11 8 7

8 8 4
16 16 8

⎞
⎠

and

D =

⎛
⎝1 2 4

1 1 3
2 2 6

⎞
⎠ .

Then there exists matrices X =

⎛
⎝1 0 1

1 −4 3
2 4 0

⎞
⎠ , Y =

⎛
⎝1 1 0

2 1 3
1 2 2

⎞
⎠ and M0 =

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠

satisfing M1 = AX +YB+M0 , and it is easy to verify the existence for group inverse
of block matrices M .

According to Theorem 2.1, we calculate

D# =

⎛
⎝−2.3333 4.2222 −0.4444

0.3333 −0.5556 −0.1111
0.6667 −1.1111 0.2222

⎞
⎠ ,

G1 =

⎛
⎝ 0.6198 −1.1041 1.1719

−0.0339 0.0729 −0.0703
−1.0781 1.9374 −2.0468

⎞
⎠ .

Then we calculate the subblock G2 , G3 , G4 of matrix M# in the same method.

So we have M# =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.6198 −1.1041 1.1719 0.2500 −0.1667 0.3333
−0.0338 0.0729 −0.0703 −0.6250 0.4167 −0.8333
−1.0781 1.9374 −2.0468 −1.2500 0.8333 −1.6667
−3.5832 6.3332 −6.7498 −1.3333 3.5555 0.8889
0.4583 −0.8333 0.8749 1.3333 −1.2222 1.4445
0.9166 −1.6665 1.7499 2.6666 −2.4444 2.8889

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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EXAMPLE FOR THEOREM 2.5. Let

A =

⎛
⎜⎜⎝

6 3 1 2
4 1 1 2
2 0 0 1
2 1 1 1

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

29 27
19 19
5 9

14 10

⎞
⎟⎟⎠ , C =

(
16 5 3 7
22 10 6 9

)

and

D =
(

0 0
47 29

)
.

Then there exists matrices X =
(

1 0 3 2
2 1 0 3

)
and Y =

⎛
⎜⎜⎝

2 3
3 1
6 0
1 3

⎞
⎟⎟⎠ satisfing XA = C ,

AY = B .

We have G1 =

⎛
⎜⎜⎝

−3.6168 17.6555 −12.3376 −16.8050
5.2484 −25.7145 17.9756 24.4693
1.2779 −6.3999 4.4547 6.0662
3.9705 −19.3146 13.5209 18.4030

⎞
⎟⎟⎠ , and calculate the

subblock G2 , G3 , G4 of matrix M# in the same method.
Then

M# =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3.6168 17.6555 −12.3376 −16.8050 −01.2879 1.4168
5.2484 −25.7145 17.9756 24.4693 1.9589 −2.0484
1.2779 −6.3999 4.4547 6.0662 0.4753 −0.4779
3.9705 −19.3146 13.5209 18.4030 1.4837 −1.5705
−0.8895 4.1904 −2.9641 −4.0220 −0.3763 0.3895
0.8789 −3.9834 2.8308 3.8466 0.3526 −0.3789

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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