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Abstract. In this note we observe inclusion systems of Hilbert modules over the C∗-algebra of
all compact operators acting on a Hilbert space. We prove that if each Hilbert C∗-module in the
generated product system is strictly complete, then it is possible to construct a bijection between
the set of all units of an inclusion system and a quotient (by a suitable equivalence relation) of a
certain set of units in the generated product system. Thereby we obtain a generalization of the
result that provides the existence of a bijection between the set of all units in an inclusion system
of Hilbert spaces and the set of all units in the generated product system (B. V. R. Bhat and M.
Mukherjee [Inclusion systems and amalgamated products of product systems, Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 13 (2010), no. 1, 1–26]).

1. Introduction and preliminary results

Inclusion systems are parametrized families of Hilbert spaces exactly like product
systems except that unitaries, as the linking maps, are replaced by isometries. These
objects appear in the field of product systems. Associating product systems to CP-
semigroups is actually performed using the inclusion systems and the inductive limit
procedure, as being done in [7]. In [6] B. V. Rajarama Bhat and Mithun Mukherjee
define inclusion systems of Hilbert spaces and use the essence of the above mentioned
method from [7] to show that every inclusion system gives rise to a product system in a
natural way by taking inductive limits. They also notice that basic properties of product
systems such as, for example, existence of units and structure of morphisms can be read
of at the level of inclusion systems.

The purpose of this paper is to generalize the notion of inclusion system of Hilbert
spaces from [6] and to obtain part of similar results as therein but in a more general con-
text. We observe inclusion systems of two-sided Hilbert modules over the C∗-algebra
of all compact operators acting on a Hilbert space and use the concept of extensions of
Hilbert C∗-modules (from [3]) to get the result. In detail, we prove that if each Hilbert
C∗-module in the generated product system is strictly complete, then it is possible to
construct a bijection between the set of all units of an inclusion system and a quotient
(by a suitable equivalence relation) of a certain set of units in the generated product sys-
tem. Also, we notice that it is a generalization of the result that provides the existence
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of a bijection between the set of all units in an inclusion system of Hilbert spaces and
the set of all units in the generated product system [6].

A Hilbert C∗-module over a C∗-algebra B is a right B -module E equipped with
an B -valued inner product 〈·, ·〉 , linear over B in the second and conjugate linear in
the first variable, so that E is complete with respect to the norm ‖·‖=

√‖〈·, ·〉‖ . Let us
denote by 〈E,E〉 the closed linear span of all elements of the form 〈x,y〉 ∈B, x,y ∈ E .
E is said to be a full Hilbert C∗-module if 〈E,E〉 = B . If E and F are Hilbert B -
modules, we denote by Ba(E,F) the Banach space of all adjointable operators E → F .
The ideal of “compact” operators is denoted by K(E,F) . When E = F , we write
Ba(E) and K(E) instead of Ba(E,F) and K(E,F) . A Hilbert A −B module is
a Hilbert B -module with a non-degenerate ∗ -representation of a C∗-algebra A by
elements in the C∗-algebra Ba(E) of adjointable (and, therefore, bounded and right
linear) homomorphisms on E . For basic facts about Hilbert modules over C∗-algebras
we refer the reader to [9], [11], [13].

1.1. Extensions of Hilbert C∗-modules

In [3] the concept of extensions of Hilbert C∗-modules is developed:

DEFINITION 1. Let E be a full Hilbert C∗-module over a C∗-algebra B . An
extension of E is a triple (Ẽ,A ,Φ) so that

1. A is a C∗-algebra containing B as an ideal;

2. Ẽ is a Hilbert A -module;

3. Φ : E → Ẽ is a map satisfying 〈Φ(x),Φ(y)〉 = 〈x,y〉 (x,y ∈ E) ;

4. ImΦ = ẼB , i.e. ImΦ is the ideal submodule of Ẽ associated to B . An exten-
sion (Ẽ,A ,Φ) is said to be essential if B is an essential ideal in A .

By 3, the map Φ is a B -linear isometry of Hilbert C∗-modules and, hence, E
and Φ(E) are unitarily equivalent Hilbert C∗-modules.

Let us denote by Ed the Hilbert C∗-module over the multiplier algebra M(B) (B
is a non unital C∗-algebra) consisting of all adjointable maps from B to E with the
inner product 〈r,s〉 = r∗s so that the resulting norm coincides with the operator norm
on Ed . Let Γ : E → Ed be defined by Γ(x) = rx , where rx(b) = xb, b ∈ B . As it can
be seen in [3], (Ed ,M(B),Γ) is an essential extension of E . There hold

Γ(xb) = Γ(x)b, x ∈ E, b ∈ B;

〈Γ(x),Γ(y)〉 = 〈x,y〉, x,y ∈ E,
(1)

i.e. Γ is a B -linear isometry and E and Γ(E) are unitarily equivalent Hilbert C∗-
modules. Also, if we use the identification

E � x ↔ rx = Γ(x) ∈ Ed, (2)

then E = EdB is a submodule of Ed corresponding to the essential ideal B in M(B) .
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The strict topology on Ed with respect to Γ(E) (or the Γ(E)-strict topology) is
defined by the family of seminorms r 
→ ‖〈r,x〉‖ (x ∈ Γ(E)) and r 
→ ‖rb‖ (b ∈ B) . A
net (ri) in Ed converges Γ(E)-strictly to r ∈ Ed (which is denoted by r = (st.) lim

i
ri )

if and only if the following two conditions are satisfied:

1. 〈r,Γ(x)〉 = lim
i
〈ri,Γ(x)〉 (x ∈ E) ,

2. rb = lim
i

rib (b ∈ B) .

Using [3, Definition 1.5], we quote [3, Theorem 1.8] as

THEOREM 1. Let E be a full Hilbert B -module. Then (Ed ,M(B),Γ) is a E -
strictly complete extension of E , i.e. Ed is complete in the strict topology with respect
to the ideal submodule EdB = ImΓ .

DEFINITION 2. A full Hilbert C∗-module E is said to be strictly complete if Ed =
Γ(E) .

If E is a full Hilbert C∗-module over a unital C∗-algebra B (1 ∈ B ), then E is
strictly complete since for each r ∈ Ed there holds r = rr(1) = Γ(r(1)) ∈ Γ(E) . Hence,
Ed = Γ(E) . The converse is not true [3, Example 2.6]. Also, each full Hilbert C∗-
module so that K(E) is a unital C∗-algebra is strictly complete. The above two classes
are the only known classes of strictly complete modules [4]. The question that is raised
in [3] is to determine all strictly complete full Hilbert C∗-modules.

1.2. Hilbert C∗-modules over the C∗-algebra of compact operators

In [2] Hilbert C∗-modules over C∗-algebras of compact operators on a Hilbert
space are described. The important result is stated in Proposition 1 of the above men-
tioned paper and in the discussion that precedes it. We quote them here:

Let E be an abitrary Hilbert C∗-module over the C∗-algebra of all compact op-
erators K(H) with dimH = ∞ . Consider the ideal HS ⊂ K(H) of all Hibert-Schmidt
operators on H and let E0

HS = span(EHS) be the linear span of

EHS = {xb| x ∈ E, b ∈ HS} .

Obviously, E0
HS is a submodule of E and, also, it is a right module over the H∗ -algebra

HS . The inner product, defined on E , applied to the elements of E0
HS takes values in

the trace class τ ⊂ HS . That provides E0
HS with the inner product (·, ·) = tr(〈·, ·〉) .

(H∗ -modules are discussed in [1].)

PROPOSITION 1. [2, Proposition 1] Let E be a Hilbert C∗-module over K(H) .
Then there is a Hilbert H∗ -module EHS ⊂ E over the H∗ -algebra HS ⊂ K(H) . There
is a norm ‖ · ‖HS on EHS defined by ‖x‖2

HS = tr(〈x,x〉) satisfying

‖x‖ � ‖x‖HS, x ∈ EHS. (3)
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The submodule EHS = E0
HS

‖·‖HS
(the completion is with respect to ‖ · ‖HS ) is dense in

E with respect to the original C∗-module norm on E .

REMARK 1. EHS is a Hilbert space with the inner product (·, ·) = tr(〈·, ·〉) .

Throughout the whole paper, B denotes the C∗-algebra K(H) of all compact
operators on a Hilbert space H . If dimH = ∞ , B is a non unital C∗-algebra. Also,
every Hilbert B -module E is full since B = K(H) has no nontrivial closed two-sided
ideals. It is already known that each bounded B -linear operator acting on a Hilbert
B -module is adjointable ([10], [8]). So, all the mappings between Hilbert B -modules
that we mention here are adjointable.

2. Inclusion systems

We begin this section with the definition of an inclusion system of Hilbert B−B
modules and then we show that every inclusion system gives rise to a product system
in a natural way, by taking inductive limits. That technique is not significantly different
from the one given in [6, Section 2].

REMARK 2. We note that a technical result [13, Proposition A.10.10], that is go-
ing to be used in the proof of Theorem 2, is proved for two-sided Hilbert modules where
the left C∗-algebra and the right C∗-algebra are different. However, taking into account
the definition of the inner tensor product of two-sided Hilbert modules (Definition 3
below), we consider inclusion systems of Hilbert B−B modules.

DEFINITION 3. An inclusion system (E,β ) is a family of Hilbert B−B mod-
ules E = (Et)t>0 , together with two-sided (B−B linear) isometries

βs,t : Es+t → Es⊗Et (s,t > 0),

fulfilling the co-associativity condition

(βr,s⊗ IEt)βr+s,t = (IEr ⊗βs,t)βr,s+t ∀r,s,t > 0.

Here ⊗ stands for the so-called inner tensor product obtained by identifications ub⊗
v ∼ u⊗ bv , u⊗ vb ∼ (u⊗ v)b , bu⊗ v ∼ b(u⊗ v) , (u ∈ Et , v ∈ Es , b ∈ B ) and then
completing in the inner product 〈u⊗ v,u1⊗ v1〉 = 〈v,〈u,u1〉v1〉 .

If all βs,t are unitaries, then (E,β ) is said to be a product system.

REMARK 3. Every product system is an inclusion system. As it has been done
in [6, Section 2], we point out a possible problem with terminology since the link-
ing unitary mappings for ’product system’ usually map Es ⊗Et to Es+t and they are
associative. Here we take their adjoint mappings which are co-associative.
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Consider an inclusion system (E,β ) . For t > 0, Jt = {(tn,tn−1, . . . ,t1)| ti >
0, ∑n

i=1 ti = t, n � 1} . For s = (sm,sm−1, . . . ,s1) ∈ Js and t = (tn,tn−1, . . . ,t1) ∈ Jt the
joint tuple s � t ∈ Js+t is defined by s � t = (sm,sm−1, . . . ,s1,tn,tn−1, . . . ,t1) ∈ Js+t .
There is a partial order on Jt : t � s = (sm,sm−1, . . . ,s1) if for each i ∈ {1,2, . . . ,m}
there is (unique) si ∈ Jsi , such that t = sm � sm−1 � ... � s1 . For t = (tn, tn−1, . . . ,t1)∈
Jt , Et = Etn ⊗Etn−1 ⊗ . . .⊗Et1 . For s = (sm,sm−1, . . . ,s1) � t = (sm � sm−1 � ... �
s1) ∈ Jt the map βt,s : Es → Et is defined by βt,s = βsm,sm ⊗βsm−1,sm−1 ⊗ . . .⊗βs1,s1 ,
where βs,s : Es → Es is defined inductively: βs,s = IEs and for s = (sm,sm−1, . . . ,s1) ∈
Js , βs,s is the composition of maps

(βsm,sm−1 ⊗ I)(βsm+sm−1,sm−2 ⊗ I) · · ·(βsm+...+s3,s2 ⊗ I)βsm+...+s2,s1 . (4)

As in the proof of [6, Lemma 4], it can be obtained that the family (Et)t∈Jt , together
with the family of two-sided isometries (βt,s)s�t∈Jt , forms an inductive system of
Hilbert B−B modules in the sense that

βs,s = IEs , s ∈ Jt ;

βt,sβs,r = βt,r, r � s � t ∈ Jt .

THEOREM 2. Let (E,β ) be an inclusion system. For t > 0 , let Et = indlim
s∈Jt

Es

be an inductive limit of Es over Jt . Then E = (Et)t>0 has the structure of a product
system of Hilbert B−B modules.

Proof. The proof is obtained similarly as the proof for [6, Theorem 5]. Let t > 0.
By [13, Proposition A.10.10], Et is a Hilbert B−B module. By [13, Remark A.10.7]
the canonical mappings is : Es → Et (s ∈ Jt ) are two-sided isometries. They satisfy

isβs,r = ir, r � s ∈ Jt . (5)

Let s, t > 0. Given any element r ∈ Js+t , there are s ∈ Js and t ∈ Jt so that s � t � r .
As Js � Jt ⊂ Js+t , by the property of the inductive limit construction, it follows that

Es+t = indlim
r∈Js+t

Er = indlim
s�t∈Js�Jt

Es�t = indlim
s�t∈Js�Jt

Es ⊗Et.

Consider the map is ⊗ it : Es�t → Es ⊗ Et . There holds that s′ � t′ � s � t ∈
Js � Jt implies s′ � s, t′ � t . Since βs�t,s′�t′ = βs,s′ ⊗ βt,t′ , it follows that (is ⊗
it)βs�t,s′�t′ = isβs,s′ ⊗ itβt,t′ = is′ ⊗ it′ . By the universal property of the inductive
limit construction, we conclude that there is a unique isometry Bs,t : Es+t → Es⊗Et so
that

Bs,t is�t = is ⊗ it. (6)

For every t > 0, Et = span{is(a)| a ∈ Es, s ∈ Jt} (from the inductive limit con-
struction). Hence, it is obvious that Bs,t is a unitary map. Also, it is B −B lin-
ear and by (6) and associativity of Es ⊗ Et = Es�t (s ∈ Js, t ∈ Jt ) it follows that
(Br,s⊗ IEt)Br+s,t = (IEr ⊗Bs,t)Br,s+t ∀r,s,t > 0. �
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DEFINITION 4. The product system (E ,B) , constructed in the previous theorem,
is called the product system generated by the inclusion system (E,β ) .

REMARK 4. If (E,β ) is already a product system, then its generated product sys-
tem is that system itself.

Similarly as in [6], we define morphisms and units of an inclusion system of
Hilbert modules:

DEFINITION 5. Let (E,β ) and (F,γ) be two inclusion systems. Let C = (Ct)t>0

be a family of two-sided mappings Ct : Et → Ft so that there is p∈R satisfying ‖Ct‖�
et p .

• If Cs+t = γ∗s,t(Cs ⊗Ct)βs,t ∀s,t > 0, then C is a weak morphism (or just a mor-
phism);

• If γs,tCs+t = (Cs ⊗Ct)βs,t ∀s,t > 0, then C is a strong morphism.

Clearly, every strong morphism is a weak morphism but the converse is not true.
Also, these two notions coincide for product systems since all the linking maps are
unitaries.

DEFINITION 6. Let (E,β ) be an inclusion system. Let u = (ut)t>0 be a family
of vectors ut ∈ Et so that there is p ∈ R satisfying ‖ut‖ � et p for all t > 0 and there is
t0 > 0 so that ut0 �= 0.

• If us+t = β ∗
s,t(us ⊗ut) ∀s,t > 0, then u is a weak unit (or just a unit);

• If βs,tus+t = us ⊗ut ∀s,t > 0, then u is a strong unit.

The set of all units in (E,β ) is denoted by UE .

REMARK 5. Every strong unit is a weak unit, but the converse is not true. Clearly,
for product systems these two notions coincide.

3. The result

In this section we present the main results.
Let (E,β ) be an inclusion system (Definition 3) and denote its generated product

system by (E ,B) . Let t > 0. For t � s ∈ Jt and x ∈ Et , by (5),

〈(iti∗t − isi
∗
s)x,x〉 = 〈(iti∗t − itβt,sβ ∗

t,si
∗
t)x,x〉 = 〈(IEt −βt,sβ ∗

t,s)i
∗
tx, i

∗
tx〉 � 0,

since βtsβ ∗
t,s : Et → Et is a projection. Therefore, {isi∗s : Et → Et | s ∈ Jt} is an increa-

sing net of projections in Ba(Et) . By [2, Theorem 5, Remark 5(a)], it follows that
Ba(Et) and Ba((Et)HS) are ∗ -isomorphic C∗-algebras, where the map A 
→ A|(Et)HS
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provides an isomorphism. So, according to the Hilbert space structure of the H∗ -
module (Et)HS , the net of projections isi∗s|(Et)HS

: (Et)HS → (Et)HS, s ∈ Jt , strongly
converges to a projection

Pt ∈ Ba((Et)HS), Im(Pt) = span{isi∗sx, x ∈ (Et)HS, s ∈ Jt}‖·‖HS
. (7)

There is a unique operator P̃t ∈ Ba(Et) that extends Pt . By [2, Lemma 3] there holds

P̃t = P̃t
∗

(8)

and since (Et)HS is dense in Et with respect to the original norm ‖ · ‖ (Proposition 1),
we obtain that

P̃t
2
= P̃t . (9)

By (3),
‖isi∗sx− P̃tx‖ � ‖isi∗sx− P̃tx‖HS = ‖isi∗sx−Ptx‖HS, x ∈ (Et)HS

and, therefore, for every x ∈ (Et)HS , the net {isi∗sx| s ∈ Jt} converges to P̃t x with
respect to the original norm in Et . Since the net {‖isi∗s‖Ba(Et)| s ∈ Jt} is bounded and
(Et)HS is dense in Et , we conclude that

for x ∈ Et , the net {isi∗sx| s ∈ Jt} converges to P̃tx (10)

with respect to the original norm ‖ · ‖ in Et .
Let u = (ut) be a unit in (E,β ) with ‖ut‖ � et p for some p ∈ R . Fix t > 0 and

define us = usm ⊗ usm−1 ⊗ . . .⊗ us1 for s = (sm,sm−1, . . . ,s1) ∈ Jt . For s � t ∈ Jt , it
follows easily (from the definition of βt,s ) that

us = β ∗
t,sut. (11)

LEMMA 1. Let B = K(H) be the C∗-algebra of all compact operators acting
on a Hilbert space H . Let (E,β ) be an inclusion system with the generated product
system (E ,B) . Let u = (ut) be a unit in (E,β ) .

1. For b ∈ B , (P̃t(isus)b)s∈Jt is a convergent net in Et (t > 0 ).

2. For x ∈ Et ,
(
〈P̃t(isus),x〉

)
s∈Jt

is a convergent net in B (t > 0 ).

Proof. There is p ∈ R so that ‖ut‖ � et p for every t > 0.
1. For t � s ∈ Jt , by (11), there holds

〈ut,ut〉− 〈us,us〉 = 〈ut,ut〉− 〈β ∗
t,sut,β ∗

t,sut〉 = 〈ut,ut〉− 〈ut,βt,sβ ∗
t,sut〉

= 〈ut,(IEt −βt,sβ ∗
t,s)ut〉 � 0,

since βt,sβ ∗
t,s : Et → Et is a projection.

Thus, we see that (〈us,us〉)s∈Jt is an increasing net of self-adjoint operators in
K(H) = B which is uniformly bounded (‖〈us,us〉‖ � e2t p ) and, therefore, it strongly
converges in B(H) .
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Let b ∈ B . For t � s ∈ Jt , by (5) and (11) we have

‖itutb− isusb‖2 = ‖〈itutb− isusb, itutb− isusb〉‖
= ‖〈itutb, itutb〉− 〈itutb, isusb〉− 〈isusb, itutb〉+ 〈isusb, isusb〉‖
= ‖b∗〈itut, itut〉b−b∗〈itut, isus〉b−b∗〈isus, itut〉b+b∗〈isus, isus〉b‖
= ‖b∗〈ut,ut〉b−b∗〈us,us〉b−b∗〈us,us〉b+b∗〈us,us〉b‖
= ‖b∗〈ut,ut〉b−b∗〈us,us〉b‖.

As b∈B = K(H) and the net (〈us,us〉)s∈Jt strongly converges in B(H) , it follows that
the net (b∗〈ut,ut〉b)t∈Jt uniformly converges in B . Hence, (itutb)t∈Jt is a convergent
net in Et . Since

‖P̃t(itut)b− P̃t(isus)b‖ = ‖P̃t(itutb)− P̃t(isusb)‖ � ‖itutb− isusb‖,
it follows that the net (P̃t(isus)b)s∈Jt converges in Et .

2. For t � s ∈ Jt , by (5) and (11), it follows that

isi
∗
situt = isβ ∗

t,si
∗
t itut = isus. (12)

Let x ∈ Et . By (12) there holds

‖〈itut− isus, P̃t x〉‖ = ‖〈(IEt − isi
∗
s)itut, P̃tx〉‖ = ‖〈itut,(IEt − isi

∗
s)(P̃t x)〉‖

� et p‖(IEt − isi
∗
s)(P̃t x)‖ = et p‖P̃tx− isi

∗
s(P̃tx)‖.

By (10), the net {isi∗s(P̃t x)| s ∈ Jt} converges to P̃t(P̃tx)
(9)
= P̃tx . By (8) it follows that

(〈P̃t(isus),x〉)s∈Jt is a Cauchy net in B and, therefore, it converges. �

THEOREM 3. Let B = K(H) be the C∗-algebra of all compact operators acting
on a Hilbert space H . Let (E,β ) be an inclusion system with the generated product
system (E ,B) .

1. The canonical map i = (it)t>0 , it : Et → Et , is an isometric strong morphism of
these inclusion systems.

2. If each Hilbert C∗-module Et is strictly complete, then there is a bijection

f : V/∼ → UE , f ([v]) = (i∗t (P̃tvt))t>0,

where V = {v ∈ UE | (P̃t vt)t>0 ∈ UE } and ∼ is an equivalence relation on V
defined by

v ∼ w ⇔ P̃t vt = P̃twt ∀t > 0.

Proof. 1. Let s, t > 0. Since (s+t)� (s,t)∈ Js+t , there holds i(s+t) = i(s,t)β(s,t),s+t
by (5). By (4), β(s,t),s+t = βs,t and, therefore, using also (6),

Bs,t is+t = Bs,t i(s,t)βs,t = (is ⊗ it)βs,t ∀s,t > 0.
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2. Let v ∈ V . There is k ∈ R so that ‖vt‖ � etk for all t > 0. Therefore,
‖i∗t (P̃t vt)‖ � etk for each t > 0. For s,t > 0 there holds

β ∗
s,t(i

∗
s (P̃svs)⊗ i∗t (P̃t vt)) = β ∗

s,t(i
∗
s ⊗ i∗t )(P̃svs⊗ P̃tvt) = [(is ⊗ it)βs,t ]∗(P̃svs⊗ P̃tvt)

= [Bs,t is+t ]∗(P̃svs⊗ P̃tvt) = i∗s+tB
∗
s,t(P̃svs ⊗ P̃tvt)

= i∗s+t(P̃s+tvs+t).

The last equality holds since (P̃tvt)t>0 ∈UE . Therefore, we obtain that (i∗t (P̃t vt))t>0 is
a unit in (E,β ) . Also, if v′ ∈ V so that v′ ∼ v , it follows that P̃tv′t = P̃t vt for all t > 0,
implying (i∗t (P̃tv′t))t>0 = (i∗t (P̃t vt))t>0 . We conclude that f is a well defined map.

Let t > 0. For s = (sn, . . . ,s1) ∈ Jt , denote Es = Esn ⊗·· ·⊗Es1 . Let is : Es → Et

be the canonical map and let Bs,t : Et → Es be the map defined similarly as in (4). By
(6) it follows

Bs,t is = isn ⊗·· ·⊗ is1 . (13)

For any unit v ∈ UE , vs = vsn ⊗·· ·⊗ vs1 and there holds

B∗
s,t vs = vt . (14)

Injectivity of the mapping f :
Consider [v], [w] ∈ V/∼ so that f ([v]) = f ([w]) , i.e. i∗t (P̃t vt) = i∗t (P̃twt) for all

t > 0.
Let t > 0. For s = (sn, . . . ,s1) ∈ Jt , by (14) and (13),

i∗s(P̃tvt) = i∗sB
∗
s,t(P̃svs) = (Bs,t is)∗(P̃svs)

= (i∗sn ⊗·· ·⊗ i∗s1)(P̃snvsn ⊗·· ·⊗ P̃s1vs1) = i∗sn(P̃snvsn)⊗·· ·⊗ i∗s1(P̃s1vs1)

= i∗sn(P̃snwsn)⊗·· ·⊗ i∗s1(P̃s1ws1) = i∗s(P̃twt).

That implies isi∗s(P̃tvt) = isi∗s(P̃twt) and, by (10) and (9), P̃tvt = P̃twt . Hence, v ∼ w ,
i.e. [v] = [w] .

Surjectivity of the mapping f :
Let u be a unit in (E,β ) . There is p ∈ R so that ‖ut‖ � et p for all t > 0.
Let t > 0. According to Lemma 1, using (1), we conclude that (Γ(P̃t(isus)))s∈Jt

is a Γ(Et)-strictly Cauchy net in (Et)d . By Theorem 1, there is gt ∈ (Et)d so that

gt = (st.) lim
s∈Jt

Γ(P̃t(isus)),

i.e.

1. 〈gt ,Γ(x)〉 = lim
s∈Jt

〈Γ(P̃t(isus)),Γ(x)〉, x ∈ Et ;

2. gtb = lim
s∈Jt

Γ(P̃t(isus))b, b ∈ B.

Since Et is strictly complete, there is vt ∈ Et so that gt = Γ(vt) (Definiton 2). By (1)
and (2), the above equalities may be rewritten as
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1’. 〈vt ,x〉 = lim
s∈Jt

〈P̃t(isus),x〉, x ∈ Et ;

2’. vtb = lim
s∈Jt

P̃t(isus)b, b ∈ B.

Let s ∈ Jt and x ∈ (Et)HS . By (8) and the equation 1’, it follows that

〈isi∗svt ,x〉 = 〈vt , isi
∗
sx〉 = lim

r∈Jt
〈P̃t(irur), isi∗sx〉 = lim

r∈Jt
〈irur, P̃t(isi∗sx)〉. (15)

As isi∗s : (Et)HS → (Et)HS , it follows that P̃t(isi∗sx) = Pt(isi∗sx) . Also, since isi∗sx ∈
Im(Pt) (by (7)), there holds Pt(isi∗sx) = isi∗sx (by (9)). Hence, using (5) and (11), it
follows that

lim
r∈Jt

〈irur, P̃t(isi∗sx)〉 = lim
r∈Jt

〈irur, isi
∗
sx〉 = lim

r∈Jt
〈isi∗sirur,x〉

= lim
r∈Jt

〈isβ ∗
r,sur,x〉 = lim

r∈Jt
〈isus,x〉 = 〈isus,x〉.

Combining (15) and (16), it follows that 〈isi∗svt ,x〉 = 〈isus,x〉 for x ∈ (Et)HS . Since
(Et)HS is dense in Et with respect to the original norm in Et , we obtain that 〈isi∗svt ,x〉=
〈isus,x〉 for every x ∈ Et and, hence, isi∗svt = isus . By (10) we see that the net
{isus| s ∈ Jt} converges to P̃tvt in Et .

We assert that (P̃tvt)t>0 ∈ UE :
For x1,x2, . . . ,xk ∈ Es and y1,y2, . . . ,yk ∈ Et (k � 1), by (6), there holds

〈Bs,t(P̃s+t vs+t),∑
i

xi⊗ yi〉=∑
i
〈P̃s+tvs+t ,B

∗
s,t(xi ⊗ yi)〉

= ∑
i

lim
s�t∈Js�Jt

〈is�tus�t,B
∗
s,t(xi ⊗ yi)〉 = ∑

i

lim
s�t∈Js�Jt

〈(is ⊗ it)(us ⊗ut),xi ⊗ yi〉

= ∑
i

lim
s�t∈Js�Jt

〈isus⊗ itut,xi ⊗ yi〉 = ∑
i

lim
s�t∈Js�Jt

〈itut,〈isus,xi〉yi〉

= ∑
i
〈P̃tvt ,〈P̃svs,xi〉yi〉 = ∑

i
〈P̃svs⊗ P̃tvt ,xi ⊗ yi〉 = 〈P̃svs ⊗ P̃tvt ,∑

i
xi⊗ yi〉.

Therefore, we obtain that (P̃tvt)t>0 ∈ UE and, by (9), (P̃tvt)t>0 ∈ V .
For x ∈ Et , by (5) and (11), it follows that

〈i∗t (P̃t vt),x〉 = 〈P̃tvt , it x〉 = lim
r∈Jt

〈irur, it x〉 = lim
r∈Jt

〈i∗t irur,x〉 = lim
r∈Jt

〈β ∗
r,t i

∗
rirur,x〉

= lim
r∈Jt

〈β ∗
r,t ur,x〉 = lim

r∈Jt
〈ut ,x〉 = 〈ut ,x〉,

implying i∗t (P̃tvt) = ut .
Let us denote û = (P̃t vt)t>0 ∈ V . Hence, [û] ∈ V/∼ and

f ([û]) = (i∗t (P̃tvt))t>0 = (ut)t>0 = u. �

COROLLARY 1. Let B be the C∗-algebra of all bounded operators acting on a
Hilbert space H of dimension n∈ N (B = Mn(C)) . Let (E,β ) be an inclusion system
of Hilbert B −B modules with the generated product system (E ,B) . The map i∗
provides a bijection between the set of all units of (E ,B) and the set of all units of
(E,β ) by letting it act point-wise on units.



INCLUSION SYSTEMS OF HILBERT MODULES 711

Proof. We notice that B = K(H) = HS . Let t > 0. By Proposition 1, Et = (Et)HS

is a Hilbert space with the inner product (·, ·) = tr(〈·, ·〉) . For s � t ∈ Jt , by (5) there
holds isi∗siti∗t = isi∗s . Therefore, since Et = span{is(a)| a ∈ Es, s ∈ Jt} , the increasing
net of projections (isi∗s)s∈Jt strongly converges to identity operator on Et with respect
to the original norm in Et . By (10), P̃t = IEt . Since B is a unital C∗-algebra, each Et

in (E ,B) is a strictly complete Hilbert module. The set V reduces to the set of all units
in (E ,B) , i.e. V = UE , and the equivalence relation ∼ reduces to the equality of units.
Hence, V/∼ = UE . Now it follows that f : UE → UE , f (v) = (i∗t vt)t>0 , i.e. f = i∗ is
a bijection. �

REMARK 6. In particular, we obtain a generalization of the result given by Bhat
and Mukherjee in [6, Theorem 10] where they proved the existence of a bijection be-
tween the set of all units in an inclusion system of Hilbert spaces (B = C) and the set
of all units in the generated product system.
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[1] D. BAKIĆ AND B. GULJAŠ, Operators on Hilbert H∗ -modules, J. Operator Theory 46 (2001), 123–
137.
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