THE BIRKHOFF ORTHOGONALITY IN PRE-HILBERT C*-MODULES

PAWEŁ WÓJCIK

(Communicated by R. Bhatia)

Abstract. In this work we characterize the Birkhoff orthogonality for elements and finite dimensional subspaces of a pre-Hilbert C^* -module in terms of a convex hull of continuous linear functionals. The aim of the paper is to present results concerning the *B*-orthogonality and its applications. We also present the results concerning smoothness. Moreover, we give a new proof of the Bhatia–Šemrl theorem.

1. Introduction

Let $(X, \|\cdot\|)$ be a normed space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. If the norm comes from an inner product $\langle \cdot | \cdot \rangle$, there is one natural orthogonality relation: $x \perp y :\Leftrightarrow \langle x | y \rangle = 0$. In general case, there are several notions of orthogonality and one of the most outstanding is the definition introduced by Birkhoff [4] (cf. also James [6]). For $x, y \in X$ we define:

$$x \perp_{\mathsf{B}} y : \Leftrightarrow \forall_{\lambda \in \mathbb{K}} : ||x|| \leq ||x + \lambda y||.$$

This relation is clearly homogeneous, but neither symmetric nor additive, unless the norm comes from an inner product. Of course, in an inner product space we have $\perp_B = \perp$.

An element x is *B*-orthogonal to a subspace $M \subset X$ (i.e., $x \perp_{B} M$) if and only if $x \perp_{B} m$ for all $m \in M$.

Let us recall some basic facts about C^* -algebras and Hilbert C^* -modules and introduce our notation. A C^* -algebra \mathscr{A} is a Banach *-algebra with the norm satisfying the C^* -condition $||a^*a||_{\mathscr{A}} = ||a||_{\mathscr{A}}^2$ for all $a \in \mathscr{A}$. Let V be a normed space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Let \mathscr{A} be a C^* -algebra over the same field. A *positive* element a of a C^* -algebra \mathscr{A} is a self-adjoint element such that $\sigma(a) \subset [0, 1)$. If $a \in \mathscr{A}$ is positive, we write $a \ge 0$.

A right pre-Hilbert C^{*}-module X over a C^{*}-algebra \mathscr{A} is a linear space which is a right \mathscr{A} -module equipped with an \mathscr{A} -valued inner-product $\langle \cdot | \cdot \rangle V \times V \to \mathscr{A}$ that is sesquilinear, positive definite and respects the module action, i.e.,

(C1) $\forall_{\alpha,\beta\in\mathbb{K}} \forall_{x,y,z\in V} \langle x|\alpha y + \beta z \rangle = \alpha \langle x|y \rangle + \beta \langle x|z \rangle$, (C2) $\forall_{x,y\in V} \forall_{a\in\mathscr{A}} \langle x|ya \rangle = \langle x|y \rangle a$, (C3) $\forall_{x,y\in V} \langle x|y \rangle = \langle y|x \rangle^*$, (C4) $\forall_{x\in V} \langle x|x \rangle \ge 0$; if $\langle x|x \rangle = 0$ then x = 0,

© EN, Zagreb Paper OaM-10-44

Mathematics subject classification (2010): 46B20, 46L08, 46L05. *Keywords and phrases*: Pre-Hilbert *C*^{*}-module, continuous linear functional, smoothness.

For a pre-Hilbert C^* -module V the Cauchy–Schwarz inequality holds: $||\langle x|y \rangle||_{\mathscr{A}}^2 \leq ||\langle x|x \rangle||_{\mathscr{A}} \cdot ||\langle y|y \rangle||_{\mathscr{A}}$. In particular, $||x|| := \sqrt{||\langle x|x \rangle||_{\mathscr{A}}}$ defines a norm on V. A pre-Hilbert \mathscr{A} -module which is complete with respect to this norm is called a *Hilbert* C^* -module over \mathscr{A} , or a *Hilbert A-module*.

Obviously, every Hilbert space is a Hilbert C^* -module. Also, every C^* -algebra \mathscr{A} can be regarded as a Hilbert C^* -module over itself with the inner product $\langle x|y \rangle := x^*y$, and the corresponding norm is just the norm on \mathscr{A} because of the C^* -condition.

2. Preliminaries

Let *X* be a normed space over \mathbb{R} or \mathbb{C} . We write B_X for the closed unit ball. Let S_X denote the unit sphere in *X*. The dual space is denoted by X^* . It is easy to see that for two elements x, y of a normed linear space *X*, it holds $x \perp_B y$ if and only if there is a norm one linear functional $f \in X^*$ such that f(x) = ||x|| and f(y) = 0. If we have additional structures on a normed linear space *X*, then we get other characterizations of the Birkhoff orthogonality. One of the first results of this form is the result obtained by Bhatia and Šemrl [2] for the C^* -algebra $\mathscr{B}(\mathscr{H})$ of all bounded linear operators on a Hilbert space \mathscr{H} .

THEOREM 1. [2] Let $A, B \in \mathscr{B}(\mathscr{H})$.

(a) If dim $\mathscr{H} < \infty$, then $A \perp_{\mathsf{B}} B$ if and only if there is a unit vector $x \in \mathscr{H}$ such that ||Ax|| = ||A|| and $\langle Ax|Bx \rangle = 0$.

(b) If dim $\mathscr{H} = \infty$, then $A \perp_{\mathsf{B}} B$ if and only if there is a sequence of unit vectors $(x_n) \subset \mathscr{H}$ such that $\lim_{n \to \infty} ||Ax_n|| = ||A||$ and $\lim_{n \to \infty} \langle Ax_n | Bx_n \rangle = 0$.

The characterization of the Birkhoff orthogonality for elements of a Hilbert C^* module by means of the states of the underlying C^* -algebra was obtained by Arambašić
and Rajić [1]. Here, a *state* is a positive linear functional with norm 1.

THEOREM 2. [1] Let V be a Hilbert \mathscr{A} -module, and $x, y \in V$. Then $x \perp_{B} y$ if and only if there is a positive linear functional $\varphi \in \mathscr{A}^*$ such that $\|\varphi\| = 1$ and $\varphi(\langle x | x \rangle) = \|x\|^2$ and $\varphi(\langle x | y \rangle) = 0$.

In particular, Theorem 2 implies the following.

THEOREM 3. Let V be a Hilbert \mathscr{A} -module, and $x \in V$. Assume that $Y \subset V$ is a finite dimensional linear subspace, and let $x \in V \setminus Y$. Then $x \perp_{B} Y$ if and only if for every $y \in Y$ there is a positive linear functional $\varphi \in \mathscr{A}^*$ such that $\|\varphi\| = 1$ and $\varphi(\langle x | x \rangle) = \|x\|^2$ and $y \in \ker \varphi(\langle x | \cdot \rangle)$.

In the next section, we will show a result similar to Theorem 3.

Let Ext*K* denote the set of all extremal points of a given set *K*. The dual space is denoted by X^* . The next result is known.

THEOREM 4. [7, p. 170] Let X be a normed linear space, $Y = \text{span}\{x_1, ..., x_n\}$ an n-dimensional subspace of X, $x \in X \subset Y$ and $y_o \in Y$. The following statements are equivalent:

(a) $x \perp_{\scriptscriptstyle B} Y$;

(b) There exist h extremal points f_1, \ldots, f_h of S_{X^*} , where $1 \le h \le n+1$ if the scalars are real and $1 \le h \le 2n+1$ if the scalars are complex and h numbers $\lambda_1, \ldots, \lambda_h > 0$ with $\sum_{i=1}^h \lambda_i = 1$, such that

$$\sum_{j=1}^{h} \lambda_j f_j(y) = 0 \quad \text{for all} \quad y \in Y, \quad \text{and} \quad \sum_{j=1}^{h} \lambda_j f_j(x) = \|x\|,$$

(c) There exist h extremal points f_1, \ldots, f_h of S_{X^*} , where $1 \le h \le n+1$ if the scalars are real and $1 \le h \le 2n+1$ if the scalars are complex and h numbers $\lambda_1, \ldots, \lambda_h > 0$ with $\sum_{j=1}^h \lambda_j = 1$, such that

$$\sum_{j=1}^{h} \lambda_j f_j(y) = 0 \quad \text{for all} \quad y \in Y, \quad \text{and} \quad f_j(x) = ||x|| \quad \text{for } j = 1, \dots, h.$$

3. Main result

The four theorems above motivate the following section. Let *X* be a normed space over \mathbb{R} or \mathbb{C} . In this paper, the set $D \subset X$ is called *symmetric*, if

for all $x \in A$, and for all $\gamma \in \mathbb{K}$ with $|\gamma| = 1$, we have $\gamma x \in A$.

A set $\mathcal{N} \subset S_{X^*}$ is called a *-norming set in X if

$$||x|| = \sup\{|x^*(x)| : x^* \in \mathcal{N}\}$$

for all $x \in X$. Let V be a pre-Hilbert \mathscr{A} -module. A set $\mathscr{D} \subset S_V$ is called a *norming* set in V if

$$||x|| = \sup\{||\langle b|x\rangle||_{\mathscr{A}} : b \in \mathscr{D}\}$$

for all $x \in V$. For example, S_{X^*} is a *-norming set in X. Similarly, $\operatorname{Ext} S_{X^*}$ is also *-norming set in X. In general, *-norming set \mathcal{N} need not consist of extreme points and it is even possible to have $\mathcal{N} \cap \operatorname{Ext} S_{X^*} = \emptyset$.

If *K* is dense in *S_V*, then *K* is a norming set in *V*. We say that $E \subset X^*$ is *total* over *X*, if for all $x \in X \setminus \{0\}$, there exists $\varphi \in E$ such that $\varphi(x) \neq 0$.

LEMMA 1. Let X be a normed space. Suppose $M \subset X^*$. If M is a *-norming set in X, then M is total over X.

Proof. Assume, contrary to our claim, that M is not total over X. Then, there exists $x_o \in X \setminus \{0\}$ such that $\varphi(x_o) = 0$ for all $\varphi \in M$. It follows that $0 < ||x_o|| = \sup\{\varphi(x_o) : \varphi \in M\} = \sup\{0 : \varphi \in M\} = 0$, which is a contradiction. \Box

LEMMA 2. Let U be a vector space. Let $M \subset U^*$ be a total set over U. Assume that dim $U^* = p < \infty$. Then there are functionals x_1^*, \ldots, x_p^* in M such that $K := \{x_1^*, \ldots, x_p^*\}$ forms a Hamel basis of U^* .

Proof. It is enough to show that dim(spanM) = dim U^* . Assume, contrary to our claim, that dim(spanM) < dim U^* . Then there are functionals y_1^*, \ldots, y_k^* in M such that span $\{y_1^*, \ldots, y_k^*\}$ = spanM and k < p. It follows that $\bigcap_{j=1}^k \ker y_j^* \neq \{0\}$. Let us fix x_o in $\left(\bigcap_{j=1}^k \ker y_j^*\right) \setminus \{0\}$. Since $M \subset \operatorname{span}\{y_1^*, \ldots, y_k^*\}$, we have $z^*(x_o) = 0$ for all $z^* \in M$. Moreover, $x_o \neq 0$. It means that M is not total over U, and we have a contradiction. \Box

The following considerations have been inspired by Theorems 1, 2 (in particular Theorem 3) and 4. We will prove a new type of characterization of *B*-orthogonality in pre-Hilbert C^* -modules. Namely, we will consider a condition $x \perp_B Y$ instead of $x \perp_B y$ and moreover we will apply the norming sets. Furthermore, we will consider the case over \mathbb{R} and the case over \mathbb{C} simultaneously. What is more, we will consider the Birkhoff orthogonality in pre-Hilbert C^* -modules instead of in Hilbert C^* -modules. We will obtain a characterization of the *B*-orthogonality in which only the norming sets are involved.

Let $\mathcal{N} \subset S_{\mathscr{A}^*}$ be a fixed *-norming set (in \mathscr{A}) and let $\mathscr{D} \subset S_V$ be a fixed norming set (in *V*). We define the following set:

$$\mathscr{F}_{h} := \left\{ \sum_{k=1}^{h} \lambda_{k} a_{k}^{*}(\langle u_{k} | \cdot \rangle) \in V^{*} : a_{k}^{*} \in \mathscr{N}, u_{k} \in \mathscr{D}, \lambda_{k} \ge 0, \sum_{k=1}^{h} \lambda_{k} = 1 \right\}.$$
(1)

It is obvious that

$$\mathscr{F}_h \subset \operatorname{conv} \{ a^*(\langle u | \cdot \rangle) \in V^* : a^* \in \mathscr{N}, u \in \mathscr{D} \} \subset B_{V^*}$$

The symbol B_{V^*} denotes the closed unit ball.

Suppose that Y is a n-dimensional subspace of X. We define a new constant:

$$\vartheta(x) := \inf\{ \mid ||x|| - v^*(x) \mid : v^* \in \mathscr{F}_{n+1}, Y \subset \ker v^* \}$$

in the real case. In a similar way we define

$$\vartheta(x) := \inf \{ \|x\| - v^*(x) \| : v^* \in \mathscr{F}_{2n+1}, Y \subset \ker v^* \}$$

in the complex case. Clearly $\vartheta(x) \ge 0$ for all $x \in V \setminus Y$. Now we prove the main result of this paper.

THEOREM 5. Let V be a pre-Hilbert \mathscr{A} -module, where V, \mathscr{A} are over the same field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Assume that $\mathscr{N} \subset S_{\mathscr{A}^*}$ is a *-norming set (in \mathscr{A}). Suppose that $\mathscr{D} \subset S_V$ is a norming set (in V). Moreover, suppose that \mathscr{N} is symmetric. Let $Y \subset V$ be an *n*-dimensional subspace. Assume $x \in V \setminus Y$. Then the following conditions are equivalent:

(A) $x \perp_{\scriptscriptstyle B} Y$, (B) $\vartheta(x) = 0$.

Proof. We start with proving (B) \Rightarrow (A). Assume, contrary to our claim, that $x \perp_{B} Y$. Let $W := \operatorname{span}(Y \cup \{x\})$. Since W is finite dimensional, there is $w \in W \setminus Y$ such that $w \perp_{B} Y$ (by Riesz's Lemma and the compactness of S_W). It follows that $w = \alpha x + y_1$ for some $\alpha \in \mathbb{K}$, $y_1 \in Y$. It is clear that $\frac{1}{\alpha} w \perp_{B} Y$. We show that $||x|| > ||\frac{1}{\alpha} w||$. If we had $||x|| \leq ||\frac{1}{\alpha} w||$, then we would obtain

$$||x|| \leq ||\frac{1}{\alpha}w|| \leq ||\frac{1}{\alpha}w + y||$$
 for all $y \in Y$.

In particular, putting $-\frac{1}{\alpha}y_1 + y$ in place of y, we would obtain

$$||x|| \le ||\frac{1}{\alpha}w - \frac{1}{\alpha}y_1 + y|| = ||x + y||$$
 for all $y \in Y$.

But then $x \perp_{B} Y$ and we would obtain a contradiction.

Define now $\varepsilon := \frac{1}{2} ||x|| - \frac{1}{2} ||\frac{1}{\alpha}w|| > 0$. Directly from the definition of $\vartheta(x)$, we have

$$\|x\| \leqslant \varepsilon + \left|\sum_{k=1}^{h} \lambda_k a_k^*(\langle u_k | x \rangle)\right| \tag{2}$$

for some $\lambda_1, \ldots, \lambda_h \ge 0$, $a_1^* \ldots, a_h^* \in \mathcal{N}$, $u_1 \ldots, u_h \in \mathcal{D}$ (where h = n+1 in real case or h = 2n+1 in complex case), such that $\sum_{k=1}^h \lambda_k = 1$ and

$$\sum_{k=1}^{h} \lambda_k a_k^*(\langle u_k | y \rangle) = 0 \text{ for all } y \in Y.$$
(3)

Thus we have

$$\begin{split} \varepsilon + \left\| \frac{1}{\alpha} w \right\| &= \frac{1}{2} \| x \| - \frac{1}{2} \left\| \frac{1}{\alpha} w \right\| + \left\| \frac{1}{\alpha} w \right\| = \frac{1}{2} \| x \| + \frac{1}{2} \left\| \frac{1}{\alpha} w \right\| < \frac{1}{2} \| x \| + \frac{1}{2} \| x \| \\ &= \| x \| \stackrel{(2)}{\leq} \varepsilon + \left| \sum_{k=1}^{h} \lambda_k a_k^* (\langle u_k | x \rangle) \right| \stackrel{(x = \frac{1}{\alpha} w - \frac{1}{\alpha} y_1)}{=} \\ &= \varepsilon + \left| \sum_{k=1}^{h} \lambda_k a_k^* \left(\left\langle u_k | \frac{1}{\alpha} w - \frac{1}{\alpha} y_1 \right\rangle \right) \right| \stackrel{(3)}{=} \\ &= \varepsilon + \left| \sum_{k=1}^{h} \lambda_k a_k^* \left(\left\langle u_k | \frac{1}{\alpha} w \right\rangle \right) \right| \leqslant \varepsilon + \sum_{k=1}^{h} \lambda_k \left| a_k^* \left(\left\langle u_k | \frac{1}{\alpha} w \right\rangle \right) \right| \\ &\leqslant \varepsilon + \sum_{k=1}^{h} \lambda_k \| a_k^* \| \cdot \left\| \left\langle u_k | \frac{1}{\alpha} w \right\rangle \right\| \leqslant \varepsilon + \sum_{k=1}^{h} \lambda_k \| u_k \| \cdot \left\| \frac{1}{\alpha} w \right\| \\ &\leqslant \varepsilon + \sum_{k=1}^{h} \lambda_k \left\| \frac{1}{\alpha} w \right\| = \varepsilon + \left\| \frac{1}{\alpha} w \right\| \sum_{k=1}^{h} \lambda_k \leqslant \varepsilon + \left\| \frac{1}{\alpha} w \right\|. \end{split}$$

We get $\varepsilon + \|\frac{1}{\alpha}w\| < \varepsilon + \|\frac{1}{\alpha}w\|$, which is a contradiction.

Now we prove (A) \Rightarrow (B). Let us now define $U := \operatorname{span}(Y \cup \{x\})$ and let us consider any $\varepsilon \in (0,1)$. It is clear that dim $U = n + 1 < \infty$. Then the compactness of S_U implies that there are $w_1, \ldots, w_m \in S_U$ such that

$$S_U \subset \bigcup_{k=1}^m B\left(w_k; \frac{\varepsilon}{4}\right),\tag{4}$$

where $B(w_k; \frac{\varepsilon}{4}) = \{z \in U : ||z - w_k|| < \frac{\varepsilon}{4}\}$. It is easy to check that the set

$$M := \{a^*(\langle u | \cdot \rangle)|_U \in U^* : a^* \in \mathcal{N}, u \in \mathcal{D}\}$$

is *-norming in U. Indeed, for every $p \in U$, from the assumptions we have

$$\begin{split} \|p\| &= \sup \left\{ \| \langle u|p \rangle \| : u \in \mathscr{D} \right\} \\ &= \sup \left\{ \sup \{ |a^*(\langle u|p \rangle)| : a^* \in \mathscr{N} \} : u \in \mathscr{D} \right\} \\ &= \sup \left\{ |a^*(\langle u|p \rangle)| : a^* \in \mathscr{N}, \ u \in \mathscr{D} \right\} \\ &= \sup \left\{ |v^*(p)| : v^* \in M \right\}, \end{split}$$

This means that the set $\{a^*(\langle u|\cdot\rangle)|_U \in U^* : a^* \in \mathcal{N}, u \in \mathcal{D}\}$ is *-norming in U. Therefore there exist $a_1^*, \ldots, a_m^* \in \mathcal{N}, u_1, \ldots, u_m \in \mathcal{D}$ such that

$$|\|w_k\| - |a_k^*(\langle u_k|w_k\rangle)|| < \frac{\varepsilon}{4}$$
 for $k = 1, \dots, m$.

The set \mathcal{N} is symmetric. Thus, without loss of generality, we may assume that

$$|\|w_k\| - a_k^*(\langle u_k | w_k \rangle)| < \frac{\varepsilon}{4} \text{ for } k = 1, \dots, m.$$

$$(5)$$

Then we define $L := \{a_1^*(\langle u_1 | \cdot \rangle)|_U, \dots, a_m^*(\langle u_m | \cdot \rangle)|_U\}$. We have already defined the set

$$M = \{a^*(\langle u | \cdot \rangle)|_U \in U^* : a^* \in \mathscr{N}, u \in \mathscr{D}\}.$$

We have shown that *M* is *-norming in *U*. By Lemma 1, *M* is total over *U*. It follows from Lemma 2 that there is $K \subset M$ such that *K* forms a Hamel basis of U^* .

Without loss of generality, we may assume that

$$K = \{b_1^*(\langle z_1 | \cdot \rangle)|_U, \dots, b_n^*(\langle z_n | \cdot \rangle)|_U, b_{n+1}^*(\langle z_{n+1} | \cdot \rangle)|_U\},\$$

for some $b_1^*(\langle z_1 | \cdot \rangle)|_U, \dots, b_n^*(\langle z_n | \cdot \rangle)|_U, b_{n+1}^*(\langle z_{n+1} | \cdot \rangle)|_U \in M.$

Let us now define the sets

$$E := \{\gamma a_k^*(\langle u_k | \cdot \rangle)|_U \in U^* : k = 1, \dots, m, \ \gamma \in \mathbb{K} \text{ and } |\gamma| = 1\}$$

and

$$F := \{\gamma b_k^*(\langle z_k | \cdot \rangle)|_U \in U^* : k = 1, \dots, n, n+1, \ \gamma \in \mathbb{K} \text{ and } |\gamma| = 1\}$$

and let us introduce the set P defined by

$$P := \operatorname{conv}(E \cup F). \tag{6}$$

The set *P* is convex, absorbing and balanced. Moreover, *P* is compact. Hence this set introduces a new norm $\|\cdot\|_{P}$ in U^* by the Minkowski functional.

Now we can define the function $\|\cdot\|_T : U \to \mathbb{R}$ by $\|x\|_T := \max\{|\varphi(x)| : \varphi \in E \cup F\}$. It is a norm. Indeed, it is easy to show that $\|p+r\|_T \leq \|p\|_T + \|r\|_T$ and $|\alpha| \cdot \|p\|_T = \|\alpha p\|_T$. We prove only an implication $\|p\|_T = 0 \Rightarrow p = 0$. If $p \in U$ and $\|p\|_T = 0$, then $\varphi(p) = 0$ for all $\varphi \in E \cup F$. Moreover $K \subset F$, whence $\varphi(p) = 0$ for all $\varphi \in K$. It is helpful to recall that *K* forms the Hamel basis in U^* . Therefore we obtain p = 0.

It is easy to see that $\|\psi\|_{P} = \sup\{|\psi(x)| : \|x\|_{T} \leq 1\}$. Thus we may say that $\|\cdot\|_{P}$ is the dual norm for $\|\cdot\|_{T}$, i.e., $(U, \|\cdot\|_{T})^{*} = (U^{*}, \|\cdot\|_{P})$. Directly from the definition of $\|\cdot\|_{T}$, we have the following inequality

$$\|v\|_{T} \leq \|v\| \text{ for all } v \in U \setminus \{0\}.$$

$$\tag{7}$$

Next we will prove that

$$(1-\varepsilon)\|v\| \le \|v\|_T \le (1+\varepsilon)\|v\| \text{ for all } v \in U \setminus \{0\}.$$
(8)

It follows from (6) and $a_k^*(\langle u_k | \cdot \rangle)|_U \in E \subset E \cup F$ that

$$|a_k^*(\langle u_k|v\rangle)| \le \max\{|\varphi(v)|: \varphi \in E \cup F\} = \|v\|_T \text{ for all } v \in U.$$
(9)

It follows that

$$\|w_k\| \stackrel{(5)}{\leq} \frac{\varepsilon}{4} + |a_k^*(\langle u_k | w_k \rangle)| \stackrel{(9)}{\leq} \frac{\varepsilon}{4} + \|w_k\|_T$$
(10)

and by (7) we get $0 \leq ||w_k|| - ||w_k||_T$. Then, by (10) we have

$$|\|w_k\| - \|w_k\|_T| \leq \frac{\varepsilon}{4}$$
 for all $k = 1, \dots, m.$ (11)

Fix $v \in U$ such that $v \neq 0$. It is clear that $\frac{v}{\|v\|} \in S_U$. Applying (4) we have

$$\left\|w_{k_o} - \frac{v}{\|v\|}\right\| < \frac{\varepsilon}{4} \tag{12}$$

for some $w_{k_0} \in \{w_1, \ldots, w_m\}$.

Then, we have

$$\begin{aligned} \left| \left\| \frac{v}{\|v\|} \right\| - \left\| \frac{v}{\|v\|} \right\|_{T} \right| &= \left| 1 - \left\| \frac{v}{\|v\|} \right\|_{T} \right| = \left| \|w_{k_{0}}\| - \left\| \frac{v}{\|v\|} \right\|_{T} \right| \\ &\leq \left| \|w_{k_{0}}\| - \|w_{k_{0}}\|_{T} \right| + \left| \|w_{k_{0}}\|_{T} - \left\| \frac{v}{\|v\|} \right\|_{T} \right| \\ &\leq \left| \|w_{k_{0}}\| - \|w_{k_{0}}\|_{T} \right| + \left\| w_{k_{0}} - \frac{v}{\|v\|} \right\|_{T} \overset{(11),(7)}{\leq} \\ &\leq \frac{\varepsilon}{4} + \left\| w_{k_{0}} - \frac{v}{\|v\|} \right\| \overset{(12)}{\leq} \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2} \leqslant \varepsilon. \end{aligned}$$

Thus we get $\left\| \frac{v}{\|v\|} - \frac{v}{\|v\|} \right\|_{T} \le \varepsilon$ for all $v \in U \setminus \{0\}$. From this it is very easy to prove that

 $(1-\varepsilon)\|v\| \leqslant \|v\|_{T} \leqslant (1+\varepsilon)\|v\| \text{ for all } v \in U \setminus \{0\}.$ (13)

Let $\perp_{\mathbb{B}}^{T}$ denote the Birkhoff orthogonality with respect to the norm $\|\cdot\|_{T}$. The space $(U, \|\cdot\|_{T})$ is finite dimensional, whence (applying again Riesz's Lemma and the compactness of the unit sphere $S_{(U, \|\cdot\|_{T})}$) there is $\hat{x} \in U \setminus Y$ such that $\hat{x} \perp_{\mathbb{B}}^{T} Y$. It follows that $\hat{x} = \beta x + y_1$ for some $\beta \in \mathbb{K}$, $y_1 \in Y$.

Since $\widehat{x} \perp_{B}^{T} Y$, it follows that $\frac{1}{\beta} \widehat{x} \perp_{B}^{T} Y$. Now we can apply Theorem 4. There exist h extremal points f_1, \ldots, f_h of $S_{(U, \|\cdot\|_T)^*}$, where $1 \le h \le n+1$ if the scalars are real and $1 \le h \le 2n+1$ if the scalars are complex and h numbers $\lambda_1, \ldots, \lambda_h > 0$ with $\sum_{j=1}^{h} \lambda_j = 1$, such that

$$\sum_{j=1}^{h} \lambda_j f_j(y) = 0 \text{ for all } y \in Y, \text{ and } f_j\left(\frac{1}{\beta}\widehat{x}\right) = \left\|\frac{1}{\beta}\widehat{x}\right\|_T \text{ for } j = 1, \dots, h.$$
 (14)

It follows directly from the definition of $\|\cdot\|_T$ that $\operatorname{Ext}S_{(U,\|\cdot\|_T)^*} \subset E \cup F$. In fact, this means that

$$f_1,\ldots,f_h\in\bigcup_{|\gamma|=1}\gamma\cdot\{a_t^*(\langle u_t|\cdot\rangle)|_U,\ b_j^*(\langle z_j|\cdot\rangle)|_U:t=1,\ldots,m,\ j=1,\ldots,n,n+1\},$$

and hence

$$f_1 = \gamma_1 c_1^* (\langle s_1 | \cdot \rangle)|_U, \ \dots, \ f_h = \gamma_h c_h^* (\langle s_h | \cdot \rangle)|_U \tag{15}$$

for some $|\gamma_j| = 1$, and $c_j^* \in \{a_j^*, b_j^*\}$, and $s_j \in \{u_j, z_j\}$. It follows from (14), (15) that

$$0 = \sum_{j=1}^{h} \lambda_j c_j^*(\langle s_j | y \rangle) \text{ for } y \in Y \text{ and } \gamma_j c_j^*\left(\langle s_j | \frac{1}{\beta} \widehat{x} \rangle\right) \Big|_U = \left\| \frac{1}{\beta} \widehat{x} \right\|_T \text{ for all } j. (16)$$

It follows from $x \perp_{B} Y$ that

$$||x|| \leq \left||x + \frac{1}{\beta}y||$$
 for all $y \in Y$. (17)

Since $\widehat{x} \perp_{B}^{T} Y$, we deduce that $\frac{1}{\beta} \widehat{x} \perp_{B}^{T} Y$ and

$$\left\|\frac{1}{\beta}\widehat{x}\right\|_{T} \leq \left\|\frac{1}{\beta}\widehat{x} - \frac{1}{\beta}y\right\|_{T} \text{ for all } y \in Y.$$
(18)

Thus we have

$$\left\|\frac{1}{\beta}\widehat{x}\right\|_{T}^{(18)} \leqslant \left\|\frac{1}{\beta}\widehat{x} - \frac{1}{\beta}y_{1}\right\|_{T}^{(\widehat{x} = \beta_{X} + y_{1})} \|x\|_{T}^{(13)} \leqslant (1+\varepsilon)\|x\| = \|x\| + \varepsilon \|x\|$$
(19)

and

$$\|x\| - \varepsilon \|x\| = (1 - \varepsilon) \|x\| \stackrel{(17)}{\leqslant} (1 - \varepsilon) \|x + \frac{1}{\beta} y_1\| = (1 - \varepsilon) \left\|\frac{1}{\beta} \widehat{x}\right\| \stackrel{(13)}{\leqslant} \left\|\frac{1}{\beta} \widehat{x}\right\|_T.$$
(20)

It follows from (19), (20) that

$$\left| \|x\| - \left\| \frac{1}{\beta} \widehat{x} \right\|_T \right| \leqslant \varepsilon \|x\|.$$
(21)

Finally, we will show $\vartheta(x) = 0$. Summarizing, we have $\lambda_j \ge 0$, $\sum_{j=1}^h \lambda_j = 1$.

Moreover $\gamma_j c_j^* \in \mathscr{N}$ and $s_j \in \mathscr{D}$, which yields $\sum_{j=1}^h \lambda_j \gamma_j c_j^*(\langle s_j | \cdot \rangle) \in \mathscr{F}_h$. By (16), we can conclude that $Y \subset \ker\left(\sum_{j=1}^h \lambda_j \gamma_j c_j^*(\langle s_j | \cdot \rangle)\right)$. Finally, we deduce

$$\begin{aligned} \left| \|x\| - \sum_{j=1}^{h} \lambda_{j} \gamma_{j} c_{j}^{*}(\langle s_{j} | x \rangle) \right| \stackrel{(\widehat{x} = \beta x + y_{1})}{=} \left\| \|x\| - \sum_{j=1}^{h} \lambda_{j} \gamma_{j} c_{j}^{*}\left(\left\langle s_{j} | \frac{1}{\beta} \widehat{x} - \frac{1}{\beta} y_{1} \right\rangle\right) \right| \\ \stackrel{(16)}{=} \left\| \|x\| - \sum_{j=1}^{h} \lambda_{j} \gamma_{j} c_{j}^{*}\left(\left\langle s_{j} | \frac{1}{\beta} \widehat{x} \right\rangle\right) \right| \\ \stackrel{(16)}{=} \left\| \|x\| - \sum_{j=1}^{h} \lambda_{j} \left\| \frac{1}{\beta} \widehat{x} \right\|_{T} \right| \\ = \left\| \|x\| - \left\| \frac{1}{\beta} \widehat{x} \right\|_{T} \right| \stackrel{(21)}{\leqslant} \varepsilon \|x\|. \end{aligned}$$

Thus we get $\left| \|x\| - \sum_{j=1}^{h} \lambda_j \gamma_j c_j^*(\langle s_j | x \rangle) \right| \leq \varepsilon \|x\|$. Since ε was arbitrary, this implies that $0 = \inf\{\|x\| - v^*(x)\| : v^* \in \mathscr{F}_h, Y \subset \ker v^*\} = \vartheta(x)$. \Box

4. Approximation

We are interested in the applications of Theorem 5. In approximation theory the condition that *x* is Birkhoff orthogonal to *Y* can be interpreted as follows. Suppose $x \in X \setminus Y$. Then the zero vector is the best approximation to *x* among all vectors in *Y*.

LEMMA 3. Let V be a pre-Hilbert \mathscr{A} -module, where V, \mathscr{A} are over the field \mathbb{R} (or \mathbb{C}). Assume that $\mathscr{N} \subset S_{\mathscr{A}^*}$ is a *-norming set (in \mathscr{A}). Suppose that $\mathscr{D} \subset S_V$ is a norming set (in V). Moreover, suppose that \mathscr{N} is symmetric. Let $Y \subset V$ be an *n*-dimensional subspace. Assume $x \in V \setminus Y$. Then the following condition holds:

(i) if $x \perp_{B} Y$, then $||x|| = \sup \{ |v^*(x)| : Y \subset \ker v^*, v^* \in \mathscr{F}_{n+1} \}$ (or \mathscr{F}_{2n+1}). If V, \mathscr{A} are over the field \mathbb{R} , then the following condition also holds:

(*ii*) *if* $x \perp_{\mathsf{B}} Y$, *then* $||x|| = \sup \{v^*(x) : Y \subset \ker v^*, v^* \in \mathscr{F}_{n+1}\}.$

Proof. It is obvious that $||x|| \ge \sup\{|v^*(x)|: v^* \in \mathscr{F}_{n+1}, Y \subset \ker v^*\}$. By Theorem 5 let us choose a sequence $(v_n^*)_{n=1,2,...} \subset \mathscr{F}_{n+1}$ (or \mathscr{F}_{2n+1}) such that $Y \subset \ker v_n^*$ and

$$| ||x_n|| - v_n^*(x) | < \frac{1}{n}$$

It follows from this inequality that

$$||x|| - |v_n^*(x)| \le ||x|| - |v_n^*(x)|| \le ||x|| - v_n^*(x)| < \frac{1}{n}.$$

Now, suppose that V, \mathscr{A} are over the field \mathbb{R} . Since \mathscr{N} is symmetric, we may assume that $v_n^*(x) \in [0, +\infty)$. Thus $||x|| < \frac{1}{n} + v_n^*(x)$, which means that

 $||x|| = \sup \{ v^*(x) : v^* \in \mathscr{F}_{n+1}, Y \subset \ker v^* \}.$

Now we present a different expression for the formula for distance from a given $x \in V$ to a finite dimensional subspace $Y \subset V$.

For $x \in V \setminus Y$ put

$$P_Y(x) := \{ y \in Y : ||x - y|| = \operatorname{dist}(x, Y) \}.$$

THEOREM 6. Let V, \mathcal{N} , D, x, Y be such as in Lemma 3. Then

$$\operatorname{dist}(x,Y) = \sup \{ |v^*(x)| : v^* \in \mathscr{F}_{n+1}, Y \subset \ker v^* \}.$$

In the complex case, we have dist $(x, Y) = \sup\{|v^*(x)| : v^* \in \mathscr{F}_{2n+1}, Y \subset \ker v^*\}.$

Proof. Since the proofs are similar we present only the real case. Since Y is a finite-dimensional subspace, there exists $y_o \in P_Y(x)$. It is easy to check that

$$y_o \in P_Y(x) \Leftrightarrow (x - y_o) \perp_{\mathsf{B}} Y$$
 (22)

Now by applying (22) and Lemma 3 we arrive at the desired assertion. Indeed, we obtain

$$dist(x,Y) = ||x - y_o|| = \sup\{|v^*(x - y_o)| : v^* \in \mathscr{F}_{n+1}, Y \subset \ker v^*\} \\ = \sup\{|v^*(x)| : v^* \in \mathscr{F}_{n+1}, Y \subset \ker v^*\}.$$

In the complex case we obtain $dist(x, Y) = \sup \{v^*(x) : v^* \in \mathscr{F}_{2n+1}, Y \subset kerv^*\}$. \Box

5. Smoothness in spaces $\mathscr{C}(\Omega; \mathscr{A})$

Our aim in this section is to consider smoothness and *B*-orthogonal relation in situations where we use function spaces. Let \mathscr{A} be a real (or complex) C^* -algebra with identity **1**. For a compact topological space Ω we denote by $\mathscr{C}(\Omega; \mathscr{A})$ the normed space of all \mathscr{A} -valued continuous functions with the usual sup-norm $||f||_{\infty} := \sup \{||f(t)||_{\mathscr{A}} : t \in \Omega\}$. It is obvious that $\mathscr{C}(\Omega; \mathscr{A})$ is also a real (or complex) C^* -algebra. In particular, $\mathscr{C}(\Omega; \mathscr{A})$ is also a Hilbert C^* -module over itself with the inner product $\langle f|g \rangle := f^*g$, where $f^*(t) := f(t)^*$, $t \in \Omega$. Now, we obtain another characterization of *B*-orthogonality. For $f \in \mathscr{C}(\Omega; \mathscr{A})$ put $M(f) := \{t \in \Omega : ||f(t)||_{\mathscr{A}} = ||f||_{\infty}\}$. We consider only the case when $M(f) \neq \emptyset$.

PROPOSITION 1. Let \mathscr{A} be a real (or complex) C^* -algebra. Let $f, g \in \mathscr{C}(\Omega; \mathscr{A})$. Assume that $M(f) = \{t_o\}$. Then

$$f \perp_{\scriptscriptstyle \mathrm{B}} g \quad \Leftrightarrow \quad f(t_o) \perp_{\scriptscriptstyle \mathrm{B}} g(t_o).$$

Proof. We start with proving " \Leftarrow ". Suppose that $f(t_o) \perp_{\mathsf{B}} g(t_o)$. Directly from the definition of \perp_{B} , we have $||f(t_o)||_{\mathscr{A}} \leq ||f(t_o) + \lambda g(t_o)||_{\mathscr{A}}$ for $\lambda \in \mathbb{K}$. Thus we have

$$\|f\|_{\infty} = \|f(t_o)\|_{\mathscr{A}} \leq \|f(t_o) + \lambda g(t_o)\|_{\mathscr{A}} \leq \|f + \lambda g\|_{\infty}$$

Therefore $||f||_{\infty} \leq ||f + \lambda g||_{\infty}$ for $\lambda \in \mathbb{K}$.

Now we prove the converse. Let us consider $V := \mathscr{C}(\Omega; \mathscr{A})$ and $\widehat{\mathscr{A}} := \mathscr{C}(\Omega; \mathscr{A})$. We define a inner product

$$\langle \cdot | \cdot
angle : \mathscr{C}(\Omega; \mathscr{A}) \times \mathscr{C}(\Omega; \mathscr{A}) \to \mathscr{C}(\Omega; \mathscr{A}), \qquad \langle h | p
angle := h^* p.$$

Then, the space $V = \mathscr{C}(\Omega; \mathscr{A})$ can be regarded as a Hilbert C^* -module over itself with $\widehat{\mathscr{A}} = \mathscr{C}(\Omega; \mathscr{A})$. Fix an arbitrary element $t \in \Omega$. Fix an arbitrary functional $x^* \in S_{\mathscr{A}^*}$. Define a linear and continuous functional

$$a_{t,x^*}^* \in \mathscr{C}(\Omega;\mathscr{A}) \to \mathbb{K}$$
 by $a_{t,x^*}^* := x^*(f(t)), \quad f \in \mathscr{C}(\Omega;\mathscr{A}).$

Now we define a set $\mathscr{N} := S_{\mathscr{A}^*}$. It is easy to check that the set \mathscr{N} is *-norming and symmetric. Let us consider a set $\mathscr{D} := \{e\}$, where $e \in \mathscr{C}(\Omega; \mathscr{A})$, e(t) = 1 for $t \in \Omega$. The set *D* is norming. Next, we define the following set:

$$\mathscr{F}_{2} := \left\{ \lambda a_{t,x^{*}}^{*}(\langle e | \cdot \rangle) + (1 - \lambda) a_{u,y^{*}}^{*}(\langle e | \cdot \rangle) \in \mathscr{C}(\Omega; \mathscr{A})^{*} : t, u \in \Omega, x^{*}, y^{*} \in \mathscr{N}, \lambda \in [0, 1] \right\}$$

Note that $f \perp_{B} g$ yields $\alpha f \perp_{B} \beta g$ for all $\alpha, \beta \in \mathbb{K}$ (i.e., \perp_{B} is full homogeneous). Without loss of generality, we may assume that ||f|| = 1.

Now, suppose that $f \perp_{B} g$. Applying Lemma 3 we obtain

$$||f|| = \sup \{ |v^*(f)| : g \in \ker v^*, v^* \in \mathscr{F}_2 \}.$$

There are $v_n^* \in \mathscr{F}_2$ such that $|v_n^*(f)| \to ||f||_{\infty}$ and $g \in \ker v_n^*$. By symmetry of \mathscr{N} , we may assume that $v_n^*(f) \in [0, +\infty)$, and then $v_n^*(f) \to ||f||_{\infty}$. This means that

$$\begin{aligned} v_n^*(f) &= \lambda_n a_{t_n, x_n^*}^*(\langle e|f \rangle) + (1 - \lambda_n) a_{u_n, y_n^*}^*(\langle e|f \rangle) \\ &= \lambda_n a_{t_n, x_n^*}^*(e^*f) + (1 - \lambda_n) a_{u_n, y_n^*}^*(e^*f) \\ &= \lambda_n a_{t_n, x_n^*}^*(f) + (1 - \lambda_n) a_{u_n, y_n^*}^*(f) \\ &= \lambda_n x_n^*(f(t_n)) + (1 - \lambda_n) y_n^*(f(u_n)) \end{aligned}$$

for some $x_1^*, x_2^*, x_3^* \dots \in \mathcal{N}, t_1, t_2, t_3, \dots \in \Omega$. Therefore, we obtain

$$\lambda_n x_n^*(f(t_n)) + (1 - \lambda_n) y_n^*(f(u_n)) \to ||f||_{\infty}.$$
(23)

Moreover, $v_n^*(g) = 0$. In a similar way one can prove

$$\lambda_n x_n^*(g(t_n)) + (1 - \lambda_n) y_n^*(g(u_n)) = 0.$$
(24)

The sets [0,1] (or $\mathbb{T}:=\{z\in\mathbb{C}:|z|\leqslant 1\}$) and Ω are compact. The closed unit ball $\overline{B}_{\mathscr{A}^*}$ is weak*-compact. Therefore, without loss of generality, we may assume that there are elements t, u in Ω , functionals $x^*, y^*\in\overline{B}_{\mathscr{A}^*}$, a number $\lambda\in[0,1]$ (or $\lambda\in\mathbb{T}$) and subsequences $\{t_{n_k}\}, \{u_{n_k}\}, \{x_{n_k}^*\}, \{y_{n_k}^*\}, \{\lambda_{n_k}\}$ such that $t_{n_k} \to t, u_{n_k} \to u, x_{n_k}^* \xrightarrow{w^*} x^*, y_{n_k}^* \xrightarrow{w^*} y^*, \lambda_{n_k} \to \lambda$. Clearly $f(t_{n_k}) \to f(t)$. Now the condition (23) becomes

$$\lambda x^*(f(t)) + (1 - \lambda) y^*(f(u)) = ||f||_{\infty}.$$
(25)

It is clear that $g(t_{n_k}) \rightarrow g(t)$. We get from (24)

$$\lambda x^*(g(t)) + (1 - \lambda) y^*(g(u)) = 0.$$
(26)

We will show that $x^*(f(t)) = 1 = y^*(f(u))$. Now, we obtain the equality

$$1 = \|f\|_{\infty} \stackrel{(25)}{=} \lambda x^*(f(t)) + (1 - \lambda)y^*(f(u))$$

and $x^*(f(t)), y^*(f(u)) \in [-1,1]$ (or $x^*(f(t)), y^*(f(u)) \in \mathbb{T}$). It is easy to check that $1 \in \text{Ext}[-1,1]$ (or in complex case $1 \in \text{Ext}\mathbb{T}$). It yields $x^*(f(t)) = 1$ and $y^*(f(u)) = 1$, whence $||x^*|| = ||f(t)|| = 1$ and $||y^*|| = ||f(u)|| = 1$.

Bearing in mind that $M(f) = \{t_o\}$, we have $t_o = t = u$, so $x^*(f(t_o)) = 1$ and $y^*(f(t_o)) = 1$. We can rewrite (25) and (26) in the form

$$\lambda x^{*}(f(t_{o})) + (1 - \lambda)y^{*}(f(t_{o})) = ||f||_{\infty} \text{ and } \lambda x^{*}(g(t_{o})) + (1 - \lambda)y^{*}(g(t_{o})) = 0.$$
(27)

Let us define $w^* := \lambda x^* + (1 - \lambda)y^*$. It follows from (27) that

$$w^*(f(t_o)) = ||f||_{\infty}$$
 and $||w^*|| = 1$ and $w^*(g(t_o)) = 0.$ (28)

Then for $\lambda \in \mathbb{K}$ we have

$$\|f(t_{o})\|_{\mathscr{A}} = \|f\|_{\infty} \stackrel{(28)}{=} w^{*}(f(t_{o})) = |w^{*}(f(t_{o})) + 0|$$

$$\stackrel{(28)}{=} |w^{*}(f(t_{o})) + \lambda w^{*}(g(t_{o}))| = |w^{*}(f(t_{o}) + \lambda g(t_{o}))|$$

$$\stackrel{(28)}{\leqslant} \|f(t_{o}) + \lambda g(t_{o})\|_{\mathscr{A}},$$

thus finally we get $f(t_o) \perp_{B} g(t_o)$. \Box

A normed space $(X, \|\cdot\|)$ is said to be *smooth at the point* $x_o \in X \setminus \{0\}$, if there is a unique $x^* \in X^*$ such that $x^*(x_o) = \|x_o\|$ and $\|x^*\| = 1$. Now, we consider a set $D_{sm}(X) := \{x \in X : X \text{ is smooth at } x\}$. It is well known that the set $D_{sm}(\mathscr{C}(\Omega))$ is dense in $\mathscr{C}(\Omega)$. Moreover, if X is a separable real Banach space, then $D_{sm}(X)$ is dense. Now we will give a characterization of smoothness at a point in terms of the Birkhoff orthogonality (see [5]).

THEOREM 7. [5] Let X be a normed space let $x_o \in X \setminus \{0\}$. Then the following statements are equivalent:

- (i) X is smooth at x_o , i.e., $x_o \in D_{sm}(X)$;
- (ii) the Birkhoff orthogonality is x_o -additive at right, i.e., for every $y, z \in X$ with $x_o \perp y \ x_o \perp_B z$, we have also $x_o \perp_B y + z$.

The next result may be also known, but for the convenience of the readers we present it here.

THEOREM 8. If $f \in \mathscr{C}(\Omega)$, then $f \in D_{sm}(\mathscr{C}(\Omega))$ if and only if there is a unique $t_1 \in \Omega$ such that $|f(t_1)| = ||f||_{\infty}$.

There is a natural question. What happens in a general C^* -algebra $\mathscr{C}(\Omega; \mathscr{A})$ where $\mathscr{A} \neq \mathbb{R}$? Namely, we want to explore the set $D_{sm}(\mathscr{C}(\Omega; \mathscr{A}))$ instead of $D_{sm}(\mathscr{C}(\Omega))$. For $f \in \mathscr{C}(\Omega; \mathscr{A})$ put $M(f) := \{t \in \Omega : ||f(t)||_{\mathscr{A}} = ||f||_{\infty}\}$.

A *semi-ideal* of $\mathscr{C}(\Omega; \mathscr{A})$ is a linear subspace \mathscr{X} of $\mathscr{C}(\Omega; \mathscr{A})$ such that $\varphi \cdot h \in \mathscr{X}$ whenever $\varphi \in \mathscr{C}(\Omega; \mathbb{R}), h \in \mathscr{X}$.

PROPOSITION 2. Let $\mathscr{X} \subset \mathscr{C}(\Omega; \mathscr{A})$ be a semi-ideal (not necessarily closed). If $f \in \mathscr{X}$, $f \neq 0$ and $\overline{\overline{M(f)}} > 1$, then $f \notin D_{sm}(\mathscr{X})$.

Proof. Fix arbitrarily $t_1, t_2 \in M(f)$ such that $t_1 \neq t_2$. By Urysohn's Lemma there is a continuous function $\rho: \Omega \to [0,1]$ such that $\rho(t_1) = 0$ and $\rho(t_2) = 1$. It is obvious that $\rho \cdot f$, $(1-\rho) \cdot f \in \mathscr{C}(\Omega; \mathscr{A})$. Then for $\lambda \in \mathbb{K}$ we have

$$\begin{split} \|f\|_{\infty} &= \|f(t_1)\|_{\mathscr{A}} = \|f(t_1) + \lambda \rho(t_1) \cdot f(t_1)\|_{\mathscr{A}} \leq \|f + \lambda \rho \cdot f\|_{\infty}, \\ \|f\|_{\infty} &= \|f(t_2)\|_{\mathscr{A}} = \|f(t_2) + \lambda (1 - \rho(t_2)) \cdot f(t_2)\|_{\mathscr{A}} \leq \|f + \lambda (1 - \rho) \cdot f\|_{\infty} \end{split}$$

which means that $f \perp_{B} \rho \cdot f$ and $f \perp_{B} (1-\rho) \cdot f$. Since \mathscr{X} is a semi-ideal,

$$\rho f, (1-\rho)f \in \mathscr{X}.$$

On the other hand it is easy to verify that f is not B-orthogonal to f. Thus, f is not B-orthogonal to $\rho \cdot f + (1-\rho) \cdot f$, and Theorem 7 yields $f \notin D_{sm}(\mathscr{X})$. \Box

COROLLARY 1. If $f \in \mathscr{C}(\Omega; \mathscr{A})$ and $\overline{\overline{M(f)}} > 1$, then $f \notin D_{sm}(\mathscr{C}(\Omega; \mathscr{A}))$.

So, the case of $\overline{\overline{M(f)}} > 1$ is clear. Now we will investigate the case where $\overline{\overline{M(f)}} = 1$. Fix $t_o \in \Omega$. We say that subspace $U \subset \mathscr{C}(\Omega; \mathscr{A})$ is t_o -surjective, if for all $a \in \mathscr{A}$, there exists $g \in U$ such that

$$g(t_o) = a$$
, or, equivalently, $\mathscr{A} = \bigcup_{g \in U} \{g(t_o)\}$

It is clear that $\mathscr{C}(\Omega; \mathscr{A})$ is t_o -surjective. On the other hand, t_o -sujective subspace may be small.

EXAMPLE 1. Let us consider $\mathscr{C}([0,1]; \mathbb{R}^2)$ (with some normed space \mathbb{R}^2). Fix $t_o \in (0,1]$. We define $f, g \in \mathscr{C}([0,1]; \mathbb{R}^2)$ by f(t) := (t,0), g(t) := (0,t). It is easy to check that the space $U := \operatorname{span}\{f,g\}$ is t_o -surjective and dim $U = 2 < \dim \mathscr{C}([0,1]; \mathbb{R}^2)$.

The next result establishes the connection between $D_{sm}(\mathscr{C}(\Omega;\mathscr{A}))$ and $D_{sm}(\mathscr{A})$ and $D_{sm}(U)$.

THEOREM 9. Let \mathscr{A} be a real (or complex) C^* -algebra. Suppose that Ω is a compact topological space. Assume that $f \in \mathscr{C}(\Omega; \mathscr{A})$ and $M(f) = \{t_1\}$. The following conditions are equivalent:

(a) $f \in D_{sm}(\mathscr{C}(\Omega; \mathscr{A}));$

(b) $f(t_1) \in D_{sm}(\mathscr{A})$;

(c) there is a t_1 -surjective subspace $U \subset \mathscr{C}(\Omega; \mathscr{A})$ such that $f \in D_{sm}(U)$.

Proof. We start with proving (b) \Rightarrow (a). Fix arbitrarily $g, h \in \mathscr{C}(\Omega; \mathscr{A})$ such that $f \perp_{\mathsf{B}} g$ and $f \perp_{\mathsf{B}} h$. By Proposition 1 we have $f(t_1) \perp_{\mathsf{B}} g(t_1)$ and $f(t_1) \perp_{\mathsf{B}} h(t_1)$. It follows from (b) and Theorem 7 that $f(t_1) \perp_{\mathsf{B}} g(t_1) + h(t_1)$. Using again Proposition 1 we get $f \perp_{\mathsf{B}} g + h$ and Theorem 7 yields $f \in D_{sm}(\mathscr{C}(\Omega; \mathscr{A}))$.

The implications (a) \Rightarrow (c) is obvious. Finally, we prove (c) \Rightarrow (b). Fix arbitrarily $x, y \in \mathscr{A}$ such that $f(t_1) \perp_{B} x$ and $f(t_1) \perp_{B} y$. Since U is t_1 -surjective, there are $g, h \in U$ such that $g(t_1) = x$, $h(t_1) = y$. It follows from (c) and Theorem 7 that $f \perp_{B} g + h$. Using again Proposition 1 we get $f(t_1) \perp_{B} g(t_1) + h(t_1)$, which means $f(t_1) \perp_{B} x + y$. Theorem 7 yields $f(t_1) \in D_{sm}(\mathscr{A})$. \Box

6. Bhatia-Šemrl theorem

Now, we will show a new proof of the Bhatia–Šemrl theorem using Lemma 3. We will use again the new method to obtain the following characterization of B-orthogonality.

THEOREM 10. [2] Let \mathscr{H} be a real Hilbert space. Suppose that dim $\mathscr{H} < \infty$. Let $A, B \in \mathscr{B}(\mathscr{H})$. Then

$$A \perp_{\mathsf{B}} B \quad \Leftrightarrow \quad \exists_{x \in S_{\mathscr{H}}} \ \|Ax\| = \|A\|, \ Ax \perp Bx.$$

We are now ready to prove a real version of the Bhatia–Šemrl theorem using these concepts. Our approach will revolve around Lemma 3 (in particular (*ii*)).

Proof. We start with proving " \Leftarrow ". Suppose that there is a vector x such that ||Ax|| = ||A||, $Ax \perp_{B} Bx$. Thus we have $\langle Ax|Bx \rangle = 0$ hence

$$\begin{split} \|A\|^2 &= \|Ax\|^2 = \langle Ax|Ax \rangle = \langle Ax|Ax \rangle + 0 \\ &= \langle Ax|Ax \rangle + \lambda \langle Ax|Bx \rangle = \langle Ax|Ax + \lambda Bx \rangle \\ &\leq \|Ax\| \cdot \|Ax + \lambda Bx\| \leq \|A\| \cdot \|A + \lambda B\|. \end{split}$$

Therefore $||A|| \leq ||A + \lambda B||$ for $\lambda \in \mathbb{R}$.

Now we prove the converse. Let us consider $V := \mathscr{B}(\mathscr{H})$ and $\mathscr{A} := \mathscr{B}(\mathscr{H})$. We define a inner product

$$\langle \cdot | \cdot \rangle_{\mathscr{B}(\mathscr{H})} : \mathscr{B}(\mathscr{H}) \times \mathscr{B}(\mathscr{H}) \to \mathscr{B}(\mathscr{H}), \qquad \langle M | N \rangle_{\mathscr{B}(\mathscr{H})} := M^* N.$$

Then, the space $V = \mathscr{B}(\mathscr{H})$ can be regarded as a Hilbert C^* -module over itself with $\mathscr{A} = \mathscr{B}(\mathscr{H})$. Fix arbitrarily two vectors $x, y \in \mathscr{H}$. Define a linear and continuous functional

$$a_{x,y}^* \in \mathscr{B}(\mathscr{H}) \to \mathbb{R}$$
 by $a_{x,y}^*(T) := \langle Tx | y \rangle_{\mathscr{H}}, \quad T \in \mathscr{B}(\mathscr{H}).$

Now we define a set $\mathcal{N} := \{a_{x,y}^* \in \mathcal{B}(\mathcal{H})^* : ||x|| = ||y|| = 1\}$. It is easy to check that the set \mathcal{N} is *-norming. Let us consider a set $\mathcal{D} := \{I\}$, where $I \in \mathcal{B}(\mathcal{H})$, I(x) = x. The set D is norming.

We will consider only inner products $\langle \cdot | \cdot \rangle_{\mathscr{B}(\mathscr{H})} : \mathscr{B}(\mathscr{H}) \times \mathscr{B}(\mathscr{H}) \to \mathscr{B}(\mathscr{H})$, $\langle \cdot | \cdot \rangle_{\mathscr{H}} : \mathscr{H} \times \mathscr{H} \to \mathbb{R}$, and to shorten the notation we will write $\langle \cdot | \cdot \rangle_{\mathscr{B}} := \langle \cdot | \cdot \rangle_{\mathscr{B}(\mathscr{H})}$ and $\langle \cdot | \cdot \rangle := \langle \cdot | \cdot \rangle_{\mathscr{H}}$.

We define the the following set:

$$\mathscr{F}_{2} := \left\{ \lambda a_{x,y}^{*}(\langle I | \cdot \rangle_{\mathscr{B}}) + (1 - \lambda) a_{u,w}^{*}(\langle I | \cdot \rangle_{\mathscr{B}}) \in \mathscr{B}(\mathscr{H})^{*} : x, y, u, w \in S_{\mathscr{H}}, \ \lambda \in [0, 1] \right\};$$

compare (1).

Note that $A \perp_{B} B$ yields $\alpha A \perp_{B} \beta B$ for all $\alpha, \beta \in \mathbb{R}$ (i.e., \perp_{B} is full homogeneous). Without loss of generality, we may assume that ||A|| = 1.

Now, suppose that $A \perp_{B} B$. Applying Lemma 3 (in particular (*ii*)) we obtain

$$||A|| = \sup \{v^*(A) : B \in \ker v^*, v^* \in \mathscr{F}_2\}.$$

There are $v_n^* \in \mathscr{F}_2$ such that $v_n^*(A) \to ||A||$ and $B \in \ker v_n^*$. This means that

$$\begin{split} v_n^*(A) &= \lambda_n a_{x_n, y_n}^* \left(\langle I | A \rangle_{\mathscr{B}} \right) + (1 - \lambda_n) a_{u_n, w_n}^* \left(\langle I | A \rangle_{\mathscr{B}} \right) \\ &= \lambda_n a_{x_n, y_n}^* (I^* A) + (1 - \lambda_n) a_{u_n, w_n}^* (I^* A) \\ &= \lambda_n a_{x_n, y_n}^* (A) + (1 - \lambda_n) a_{u_n, w_n}^* (A) \\ &= \lambda_n \left\langle A x_n | y_n \right\rangle + (1 - \lambda_n) \left\langle A u_n | w_n \right\rangle. \end{split}$$

Therefore, we obtain

$$\lambda_n \langle Ax_n | y_n \rangle + (1 - \lambda_n) \langle Au_n | w_n \rangle \to ||A||.$$
⁽²⁹⁾

Moreover, $v_n^*(B) = 0$. In a similar way one can prove

$$\lambda_n \langle Bx_n | y_n \rangle + (1 - \lambda_n) \langle Bu_n | w_n \rangle = 0.$$
(30)

The set [0,1] is compact. Since \mathscr{H} is finite dimensional, $S_{\mathscr{H}}$ is a compact set. Therefore, without loss of generality, we may assume that there are vectors x, y, u, w in $S_{\mathscr{H}}$, a number $\lambda \in [0,1]$ and subsequences $\{x_{n_k}\}, \{y_{n_k}\}, \{u_{n_k}\}, \{w_{n_k}\}, \{\lambda_{n_k}\}$ such that $x_{n_k} \rightarrow x, y_{n_k} \rightarrow y, u_{n_k} \rightarrow u, w_{n_k} \rightarrow w, \lambda_{n_k} \rightarrow \lambda$. Now the condition (29) becomes

$$\lambda \langle Ax|y \rangle + (1 - \lambda) \langle Au|w \rangle = ||A||.$$
(31)

We get from (30)

$$\lambda \langle Bx|y \rangle + (1 - \lambda) \langle Bu|w \rangle = 0.$$
(32)

We will show that $\langle Ax|y \rangle = 1 = \langle Au|w \rangle$. We have

$$1 = ||A|| = \lambda \langle Ax|y \rangle + (1 - \lambda) \langle Au|w \rangle$$

and $\langle Ax|y \rangle$, $\langle Au|w \rangle \in [-1,1]$. It is easy to check that $1 \in \text{Ext}[-1,1]$. So, $\langle Ax|y \rangle = 1$ and $\langle Au|w \rangle = 1$.

We have $\langle Ax|y \rangle = 1$ and $\langle Ax|y \rangle \leq ||Ax|| \cdot ||y|| \leq 1 \cdot 1 = 1$. This implies $\langle Ax|y \rangle = ||Ax|| \cdot ||y||$ and ||Ax|| = 1 = ||y||. So, Ax = y, and hence ||Ax|| = ||A||.

In a similar way, one checks that Au = w and ||Au|| = ||A||. Putting Ax = y, Au = w into (32), we get

$$\lambda \langle Bx|Ax \rangle + (1-\lambda) \langle Bu|Au \rangle = 0.$$
(33)

It follows from (33) that $\langle Bx|Ax \rangle \leq 0 \leq \langle Bu|Au \rangle$ or $\langle Bu|Au \rangle \leq 0 \leq \langle Bx|Ax \rangle$. Without loss of generality, we may assume that

$$\langle Bx|Ax \rangle \leqslant 0 \leqslant \langle Bu|Au \rangle$$
. (34)

We define a set $\mathcal{M}(A) := \{x \in S_{\mathcal{H}} : ||Ax|| = ||A||\}$. It is obvious that $\overline{\mathcal{M}(A)} \ge 2$. We have two possibilities:

Possibility 1: If $\mathcal{M}(A) = 2$, then x = u or x = -u. By (34) we obtain

$$\langle Bx|Ax\rangle \leqslant 0 \leqslant \langle Bu|Au\rangle = \langle B(\pm x)|A(\pm x)\rangle = \langle Bx|Ax\rangle,$$

hence $\langle Bx|Ax \rangle = 0$.

Possibility 2: If $\overline{\mathcal{M}(A)} > 2$, then $\mathcal{M}(A)$ is connected. Indeed, fix arbitrarily two linearly independent vectors $a, b \in \mathcal{M}(A)$, i.e., $a \neq b \neq -a$. Define $\eta : [0,1] \to S_{\mathscr{H}}$ by $\eta(t) := \frac{(1-t)a+tb}{\|(1-t)a+tb\|}$. It is easy to check that η is a path and $\|A(\eta(t))\| = \|A\|$ for all $t \in [0,1]$. This means that $\eta([0,1]) \subset \mathcal{M}(A)$, and therefore $\mathcal{M}(A)$ is connected.

Now, we define a mapping $\varphi : \mathscr{M}(A) \to \mathbb{R}$ by $\varphi(v) := \langle Bv | Av \rangle$, $v \in \mathscr{M}(A)$. Inequalities (34) yield $\varphi(x) \leq 0 \leq \varphi(u)$. The mapping φ is continuous. Moreover, the set $\mathscr{M}(A)$ is connected. Using the Darboux property we get $\varphi(x_o) = 0$ for some $x_o \in \mathscr{M}(A)$. Thus for the vector $x_o \in \mathscr{M}(A)$ we have $\langle Bx_o | Ax_o \rangle = 0$ and $||Ax_o|| = ||A||$, i.e., $||Ax_o|| = ||A||$ and $Ax_o \perp Bx_o$. Whence, in any case $\exists_{x \in S_{\mathscr{H}}} ||Ax|| = ||A||$, $Ax \perp Bx$. \Box

REFERENCES

- LJ. ARAMBAŠIĆ AND R. RAJIĆ, The Birkhoff-James orthogonality in Hilbert C* modules, Linear Algebra Appl. 437 (2012), no. 7, 1913–1929.
- [2] R. BHATIA, P. ŠEMRL, Orthogonality of matrices and some distance problems, Linear Algebra Appl. 287 (1999), no. 1–3, 77–85.
- [3] T. BHATTACHARYYA, P. GROVER, Characterization of Birkhoff-James orthogonality, J. Math. Anal. Appl. 407 (2013), 350–358.
- [4] G. BIRKHOFF, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169–172.
- [5] S. S. DRAGOMIR, Semi-Inner Products and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2004.

- [6] R. C. JAMES, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61 (1947), 265–292.
- [7] I. SINGER, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin, Heidelberg, New York, 1970.

(Received November 27, 2015)

Paweł Wójcik Institute of Mathematics Pedagogical University of Cracow Podchorążych 2, 30-084 Kraków, Poland e-mail: pwojcik@up.krakow.pl

Operators and Matrices www.ele-math.com oam@ele-math.com