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THE BIRKHOFF ORTHOGONALITY IN PRE–HILBERT C∗ –MODULES

PAWEŁ WÓJCIK

(Communicated by R. Bhatia)

Abstract. In this work we characterize the Birkhoff orthogonality for elements and finite di-
mensional subspaces of a pre-Hilbert C∗ -module in terms of a convex hull of continuous linear
functionals. The aim of the paper is to present results concerning the B -orthogonality and its
applications. We also present the results concerning smoothness. Moreover, we give a new proof
of the Bhatia–Šemrl theorem.

1. Introduction

Let (X ,‖·‖) be a normed space over K ∈ {R , C} . If the norm comes from an
inner product 〈·|·〉 , there is one natural orthogonality relation: x⊥y :⇔ 〈x|y〉 = 0. In
general case, there are several notions of orthogonality and one of the most outstanding
is the definition introduced by Birkhoff [4] (cf. also James [6]). For x,y ∈ X we define:

x⊥By :⇔ ∀λ∈K : ‖x‖ � ‖x+ λy‖ .

This relation is clearly homogeneous, but neither symmetric nor additive, unless the
norm comes from an inner product. Of course, in an inner product space we have
⊥B = ⊥ .

An element x is B-orthogonal to a subspace M ⊂ X (i.e.,x⊥BM ) if and only if
x⊥Bm for all m ∈ M .

Let us recall some basic facts about C∗ -algebras and Hilbert C∗ -modules and in-
troduce our notation. A C∗ -algebra A is a Banach ∗ -algebra with the norm satisfying
the C∗ -condition ‖a∗a‖A = ‖a‖2

A for all a ∈ A . Let V be a normed space over
K ∈ {R , C} . Let A be a C∗ -algebra over the same field. A positive element a of a
C∗ -algebra A is a self-adjoint element such that σ(a) ⊂ [0,1) . If a ∈ A is positive,
we write a � 0.

A right pre-Hilbert C∗ -module X over a C∗ -algebra A is a linear space which
is a right A -module equipped with an A -valued inner-product 〈·|·〉V ×V → A that
is sesquilinear, positive definite and respects the module action, i.e.,

(C1) ∀α ,β∈K ∀x,y,z∈V 〈x|αy+ β z〉 = α 〈x|y〉+ β 〈x|z〉 ,
(C2) ∀x,y∈V ∀a∈A 〈x|ya〉 = 〈x|y〉a ,
(C3) ∀x,y∈V 〈x|y〉 = 〈y|x〉∗ ,
(C4) ∀x∈V 〈x|x〉 � 0; if 〈x|x〉 = 0 then x = 0,
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For a pre-Hilbert C∗ -module V the Cauchy–Schwarz inequality holds: ‖〈x|y〉‖2
A

� ‖〈x|x〉‖A · ‖〈y|y〉‖A . In particular, ‖x‖ :=
√‖〈x|x〉‖A defines a norm on V . A

pre-Hilbert A -module which is complete with respect to this norm is called a Hilbert
C∗ -module over A , or a Hilbert A-module.

Obviously, every Hilbert space is a Hilbert C∗ -module. Also, every C∗ -algebra A
can be regarded as a Hilbert C∗ -module over itself with the inner product 〈x|y〉 := x∗y ,
and the corresponding norm is just the norm on A because of the C∗ -condition.

2. Preliminaries

Let X be a normed space over R or C . We write BX for the closed unit ball. Let
SX denote the unit sphere in X . The dual space is denoted by X∗ . It is easy to see that
for two elements x,y of a normed linear space X , it holds x⊥By if and only if there
is a norm one linear functional f ∈X∗ such that f (x)=‖x‖ and f (y)=0. If we have
additional structures on a normed linear space X , then we get other characterizations
of the Birkhoff orthogonality. One of the first results of this form is the result obtained
by Bhatia and Šemrl [2] for the C∗-algebra B(H ) of all bounded linear operators on
a Hilbert space H .

THEOREM 1. [2] Let A,B ∈ B(H ) .
(a) If dimH < ∞ , then A⊥BB if and only if there is a unit vector x ∈ H such

that ‖Ax‖ = ‖A‖ and 〈Ax|Bx〉 = 0 .
(b) If dimH = ∞ , then A⊥BB if and only if there is a sequence of unit vectors

(xn) ⊂ H such that lim
n→∞

‖Axn‖ = ‖A‖ and lim
n→∞

〈Axn|Bxn〉 = 0 .

The characterization of the Birkhoff orthogonality for elements of a Hilbert C∗ -
module by means of the states of the underlying C∗ -algebra was obtained by Arambašić
and Rajić [1]. Here, a state is a positive linear functional with norm 1.

THEOREM 2. [1] Let V be a Hilbert A -module, and x,y ∈V . Then x⊥By if and
only if there is a positive linear functional ϕ ∈ A ∗ such that ‖ϕ‖ = 1 and ϕ(〈x|x〉) =
‖x‖2 and ϕ(〈x|y〉) = 0 .

In particular, Theorem 2 implies the following.

THEOREM 3. Let V be a Hilbert A -module, and x ∈ V . Assume that Y ⊂ V
is a finite dimensional linear subspace, and let x ∈ V \Y . Then x⊥BY if and only if
for every y ∈ Y there is a positive linear functional ϕ ∈ A ∗ such that ‖ϕ‖ = 1 and
ϕ(〈x|x〉) = ‖x‖2 and y ∈ kerϕ(〈x|·〉) .

In the next section, we will show a result similar to Theorem 3.
Let ExtK denote the set of all extremal points of a given set K . The dual space is

denoted by X∗ . The next result is known.
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THEOREM 4. [7, p. 170] Let X be a normed linear space, Y = span{x1, . . . ,xn}
an n-dimensional subspace of X , x ∈ X ⊂Y and yo ∈Y . The following statements are
equivalent:

(a) x⊥BY ;
(b) There exist h extremal points f1, . . . , fh of SX∗ , where 1 � h � n + 1 if the

scalars are real and 1 � h � 2n+1 if the scalars are complex and h numbers λ1, . . . ,λh

> 0 with
h
∑
j=1

λ j = 1 , such that

h
∑
j=1

λ j f j(y) = 0 for all y ∈Y , and
h
∑
j=1

λ j f j(x) = ‖x‖ ,

(c) There exist h extremal points f1, . . . , fh of SX∗ , where 1 � h � n + 1 if the
scalars are real and 1 � h � 2n+1 if the scalars are complex and h numbers λ1, . . . ,λh

> 0 with
h
∑
j=1

λ j = 1 , such that

h
∑
j=1

λ j f j(y) = 0 for all y ∈ Y , and f j(x) = ‖x‖ for j = 1, . . . ,h.

3. Main result

The four theorems above motivate the following section. Let X be a normed space
over R or C . In this paper, the set D ⊂ X is called symmetric, if

for all x ∈ A , and for all γ ∈ K with |γ| = 1, we have γx ∈ A .

A set N ⊂ SX∗ is called a *-norming set in X if

‖x‖ = sup{|x∗(x)| : x∗ ∈ N }
for all x ∈ X . Let V be a pre-Hilbert A -module. A set D ⊂ SV is called a norming
set in V if

‖x‖ = sup{‖〈b|x〉‖A : b ∈ D}
for all x∈V . For example, SX∗ is a *-norming set in X . Similarly, ExtSX∗ is also
*-norming set in X . In general, ∗ -norming set N need not consist of extreme points
and it is even possible to have N ∩ExtSX∗ = /0 .

If K is dense in SV , then K is a norming set in V . We say that E ⊂ X∗ is total
over X , if for all x ∈ X \ {0} , there exists ϕ ∈ E such that ϕ(x) 
= 0.

LEMMA 1. Let X be a normed space. Suppose M ⊂ X∗ . If M is a *-norming set
in X , then M is total over X .

Proof. Assume, contrary to our claim, that M is not total over X . Then, there
exists xo ∈ X \ {0} such that ϕ(xo) = 0 for all ϕ ∈ M . It follows that 0 < ‖xo‖ =
sup{ϕ(xo) : ϕ ∈ M} = sup{0 : ϕ ∈ M} = 0, which is a contradiction. �
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LEMMA 2. Let U be a vector space. Let M ⊂U∗ be a total set over U . As-
sume that dimU∗ = p < ∞ . Then there are functionals x∗1, . . . ,x

∗
p in M such that

K := {x∗1, . . . ,x∗p} forms a Hamel basis of U∗ .

Proof. It is enough to show that dim(spanM) = dimU∗ . Assume, contrary to our
claim, that dim(spanM) < dimU∗ . Then there are functionals y∗1, . . . ,y

∗
k in M such

that span{y∗1, . . . ,y∗k} = spanM and k < p . It follows that
k⋂

j=1
kery∗j 
= {0} . Let us

fix xo in

(
k⋂

j=1
kery∗j

)
\ {0} . Since M ⊂ span{y∗1, . . . ,y∗k} , we have z∗(xo) = 0 for

all z∗ ∈ M . Moreover, xo 
= 0. It means that M is not total over U , and we have a
contradiction. �

The following considerations have been inspired by Theorems 1, 2 (in particular
Theorem 3) and 4. We will prove a new type of characterization of B-orthogonality
in pre-Hilbert C∗ -modules. Namely, we will consider a condition x⊥BY instead of
x⊥By and moreover we will apply the norming sets. Furthermore, we will consider the
case over R and the case over C simultaneously. What is more, we will consider the
Birkhoff orthogonality in pre-Hilbert C∗ -modules instead of in Hilbert C∗ -modules.
We will obtain a characterization of the B-orthogonality in which only the norming
sets are involved.

Let N ⊂ SA ∗ be a fixed *-norming set (in A ) and let D ⊂ SV be a fixed norming
set (in V ). We define the the following set:

Fh :=

{
h

∑
k=1

λka
∗
k(〈uk|·〉) ∈V ∗ : a∗k ∈N ,uk∈D ,λk �0,

h

∑
k=1

λk =1

}
. (1)

It is obvious that

Fh⊂ conv{a∗(〈u|·〉) ∈V ∗ : a∗ ∈N ,u∈D} ⊂ BV∗

The symbol BV∗ denotes the closed unit ball.
Suppose that Y is a n -dimensional subspace of X . We define a new constant:

ϑ(x) := inf{ | ‖x‖−v∗(x) | : v∗ ∈Fn+1, Y ⊂kerv∗}
in the real case. In a similar way we define

ϑ(x) := inf{ | ‖x‖−v∗(x) | : v∗ ∈F2n+1, Y ⊂kerv∗}
in the complex case. Clearly ϑ(x) � 0 for all x ∈V \Y . Now we prove the main result
of this paper.

THEOREM 5. Let V be a pre-Hilbert A -module, where V,A are over the same
field K ∈{R , C} . Assume that N ⊂SA ∗ is a *-norming set (in A ). Suppose that
D ⊂SV is a norming set (in V ). Moreover, suppose that N is symmetric. Let Y ⊂V



THE B-ORTHOGONALITY 717

be an n-dimensional subspace. Assume x∈V \Y . Then the following conditions are
equivalent:

(A) x⊥BY ,
(B) ϑ(x) = 0 .

Proof. We start with proving (B)⇒(A). Assume, contrary to our claim, that x⊥B/ Y .
Let W := span(Y∪{x}) . Since W is finite dimensional, there is w∈W \Y such that
w⊥BY (by Riesz’s Lemma and the compactness of SW ). It follows that w = αx + y1

for some α ∈ K , y1 ∈Y . It is clear that 1
α w⊥BY . We show that ‖x‖>‖ 1

α w‖ . If we
had ‖x‖�‖ 1

α w‖ , then we would obtain

‖x‖ � ‖ 1
α w‖ � ‖ 1

α w+ y‖ for all y ∈ Y .

In particular, putting − 1
α y1 + y in place of y , we would obtain

‖x‖ � ‖ 1
α w− 1

α y1 + y‖= ‖x+ y‖ for all y ∈ Y .

But then x⊥BY and we would obtain a contradiction.
Define now ε := 1

2‖x‖− 1
2‖ 1

α w‖ > 0. Directly from the definition of ϑ(x) , we
have

‖x‖ � ε+

∣∣∣∣∣ h

∑
k=1

λka
∗
k(〈uk|x〉)

∣∣∣∣∣ (2)

for some λ1, . . . ,λh �0, a∗1 . . . ,a∗h∈N , u1 . . . ,uh∈D (where h = n+1 in real case or

h = 2n+1 in complex case), such that
h
∑

k=1
λk =1 and

h

∑
k=1

λka
∗
k(〈uk|y〉)=0 for all y ∈ Y. (3)

Thus we have

ε+
∥∥∥∥ 1

α
w

∥∥∥∥ =
1
2
‖x‖−1

2

∥∥∥∥ 1
α

w

∥∥∥∥+∥∥∥∥ 1
α

w

∥∥∥∥=
1
2
‖x‖+1

2

∥∥∥∥ 1
α

w

∥∥∥∥<
1
2
‖x‖+1

2
‖x‖

= ‖x‖
(2)
� ε+

∣∣∣∣∣ h

∑
k=1

λka
∗
k(〈uk|x〉)

∣∣∣∣∣ (x= 1
α w− 1

α y1)
=

= ε+

∣∣∣∣∣ h

∑
k=1

λka
∗
k

(〈
uk| 1α w− 1

α
y1

〉)∣∣∣∣∣ (3)
=

= ε+

∣∣∣∣∣ h

∑
k=1

λka
∗
k

(〈
uk| 1α w

〉)∣∣∣∣∣� ε+
h

∑
k=1

λk

∣∣∣∣a∗k(〈uk| 1α w

〉)∣∣∣∣
� ε+

h

∑
k=1

λk‖a∗k‖·
∥∥∥∥〈uk| 1α w

〉∥∥∥∥� ε+
h

∑
k=1

λk‖uk‖·
∥∥∥∥ 1

α
w

∥∥∥∥
� ε+

h

∑
k=1

λk

∥∥∥∥ 1
α

w

∥∥∥∥= ε+
∥∥∥∥ 1

α
w

∥∥∥∥ h

∑
k=1

λk � ε +
∥∥∥∥ 1

α
w

∥∥∥∥ .
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We get ε +‖ 1
α w‖ < ε +‖ 1

α w‖ , which is a contradiction.
Now we prove (A)⇒(B). Let us now define U := span(Y ∪{x}) and let us con-

sider any ε ∈ (0,1) . It is clear that dimU = n+ 1 < ∞ . Then the compactness of SU

implies that there are w1, . . . ,wm ∈ SU such that

SU ⊂
m⋃

k=1

B
(
wk;

ε
4

)
, (4)

where B
(
wk; ε

4

)
= {z ∈U : ‖z−wk‖ < ε

4} . It is easy to check that the set

M := {a∗(〈u|·〉)|U ∈U∗ : a∗ ∈ N ,u ∈ D} .

is *-norming in U . Indeed, for every p ∈U , from the assumptions we have

‖p‖ = sup{‖〈u|p〉‖ : u∈D}
= sup{sup{|a∗(〈u|p〉)| : a∗∈N } : u∈D}
= sup{|a∗(〈u|p〉)| : a∗ ∈N , u∈D}
= sup{|v∗(p)| : v∗ ∈ M} ,

This means that the set {a∗(〈u|·〉)|U ∈U∗ : a∗ ∈N ,u ∈D} is *-norming in U . There-
fore there exist a∗1, . . . ,a

∗
m ∈ N , u1, . . . ,um ∈ D such that

| ‖wk‖− |a∗k(〈uk|wk〉)| | < ε
4

for k = 1, . . . ,m.

The set N is symmetric. Thus, without loss of generality, we may assume that

| ‖wk‖−a∗k(〈uk|wk〉) | < ε
4

for k = 1, . . . ,m. (5)

Then we define L := {a∗1(〈u1|·〉)|U , . . . ,a∗m(〈um|·〉)|U} . We have already defined the set

M = {a∗(〈u|·〉)|U ∈U∗ : a∗ ∈ N ,u ∈ D} .

We have shown that M is *-norming in U . By Lemma 1, M is total over U . It follows
from Lemma 2 that there is K ⊂ M such that K forms a Hamel basis of U∗ .

Without loss of generality, we may assume that

K = {b∗1(〈z1|·〉)|U , . . . ,b∗n(〈zn|·〉)|U ,b∗n+1(〈zn+1|·〉)|U } ,

for some b∗1(〈z1|·〉)|U , . . . ,b∗n(〈zn|·〉)|U ,b∗n+1(〈zn+1|·〉)|U ∈ M .
Let us now define the sets

E := {γa∗k(〈uk|·〉)|U ∈U∗ : k = 1, . . . ,m, γ ∈ K and |γ| = 1}
and

F := {γb∗k(〈zk|·〉)|U ∈U∗ : k = 1, . . . ,n,n+1, γ ∈ K and |γ| = 1}
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and let us introduce the set P defined by

P := conv(E ∪F). (6)

The set P is convex, absorbing and balanced. Moreover, P is compact. Hence this set
introduces a new norm ‖·‖P in U∗ by the Minkowski functional.

Now we can define the function ‖·‖T : U →R by ‖x‖T :=max{|ϕ(x)| : ϕ∈E∪F} .
It is a norm. Indeed, it is easy to show that ‖p+ r‖T � ‖p‖T + ‖r‖T and |α|·‖p‖T =
‖α p‖T . We prove only an implication ‖p‖T = 0 ⇒ p = 0. If p∈U and ‖p‖T =0,
then ϕ(p) = 0 for all ϕ ∈ E∪F . Moreover K ⊂ F , whence ϕ(p) = 0 for all ϕ ∈ K .
It is helpful to recall that K forms the Hamel basis in U∗ . Therefore we obtain p = 0.

It is easy to see that ‖ψ‖P = sup{|ψ(x)| :‖x‖T �1} . Thus we may say that ‖·‖P

is the dual norm for ‖·‖T , i.e., (U,‖·‖T )∗ = (U∗,‖·‖P) . Directly from the definition of
‖·‖T , we have the following inequality

‖v‖T � ‖v‖ for all v ∈U \ {0}. (7)

Next we will prove that

(1− ε)‖v‖ � ‖v‖T � (1+ ε)‖v‖ for all v ∈U \ {0}. (8)

It follows from (6) and a∗k(〈uk|·〉)|U ∈ E ⊂ E ∪F that

|a∗k(〈uk|v〉)| � max{|ϕ(v)| : ϕ ∈ E ∪F} = ‖v‖T for all v ∈U. (9)

It follows that

‖wk‖
(5)
<

ε
4

+ |a∗k(〈uk|wk〉)|
(9)
� ε

4
+‖wk‖T (10)

and by (7) we get 0 � ‖wk‖−‖wk‖T . Then, by (10) we have

| ‖wk‖−‖wk‖T | �
ε
4

for all k = 1, . . . ,m. (11)

Fix v ∈U such that v 
= 0. It is clear that v
‖v‖ ∈ SU . Applying (4) we have∥∥∥∥wko −
v
‖v‖
∥∥∥∥<

ε
4

(12)

for some wko ∈ {w1, . . . ,wm} .
Then, we have∣∣∣∣∣

∥∥∥∥ v
‖v‖
∥∥∥∥−∥∥∥∥ v

‖v‖
∥∥∥∥

T

∣∣∣∣∣ =

∣∣∣∣∣1−
∥∥∥∥ v
‖v‖
∥∥∥∥

T

∣∣∣∣∣=
∣∣∣∣∣‖wko‖−

∥∥∥∥ v
‖v‖
∥∥∥∥

T

∣∣∣∣∣
� | ‖wko‖−‖wko‖T |+

∣∣∣∣∣‖wko‖T −
∥∥∥∥ v
‖v‖
∥∥∥∥

T

∣∣∣∣∣
� | ‖wko‖−‖wko‖T |+

∥∥∥∥wko −
v

‖v‖
∥∥∥∥

T

(11),(7)
�

� ε
4

+
∥∥∥∥wko −

v
‖v‖
∥∥∥∥ (12)

� ε
4

+
ε
4

=
ε
2

� ε.
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Thus we get

∣∣∣∣∥∥∥ v
‖v‖
∥∥∥−∥∥∥ v

‖v‖
∥∥∥

T

∣∣∣∣ � ε for all v ∈ U \ {0} . From this it is very easy to

prove that
(1− ε)‖v‖ � ‖v‖T � (1+ ε)‖v‖ for all v ∈U \ {0}. (13)

Let ⊥T
B denote the Birkhoff orthogonality with respect to the norm ‖·‖T . The

space (U,‖·‖T ) is finite dimensional, whence (applying again Riesz’s Lemma and the
compactness of the unit sphere S(U,‖·‖T ) ) there is x̂ ∈U \Y such that x̂⊥T

BY . It follows
that x̂ = βx+ y1 for some β ∈ K , y1 ∈ Y .

Since x̂⊥T
BY , it follows that 1

β x̂⊥T
BY . Now we can apply Theorem 4. There exist

h extremal points f1, . . . , fh of S(U,‖·‖T )∗ , where 1 � h � n+ 1 if the scalars are real
and 1 � h � 2n + 1 if the scalars are complex and h numbers λ1, . . . ,λh > 0 with
h
∑
j=1

λ j = 1, such that

h

∑
j=1

λ j f j(y) = 0 for all y ∈Y, and f j

(
1
β

x̂

)
=
∥∥∥∥ 1

β
x̂

∥∥∥∥
T

for j = 1, . . . ,h. (14)

It follows directly from the definition of ‖·‖T that ExtS(U,‖·‖T )∗ ⊂E ∪F . In fact, this
means that

f1, . . . , fh ∈ ⋃
|γ|=1

γ ·{a∗t (〈ut |·〉)|U , b∗j(
〈
z j|·
〉
)|U : t =1, . . . ,m, j=1, . . . ,n,n+1} ,

and hence
f1 = γ1c

∗
1(〈s1|·〉)|U , . . . , fh = γhc

∗
h(〈sh|·〉)|U (15)

for some |γ j|=1, and c∗j ∈{a∗j ,b∗j} , and s j ∈{u j,z j} . It follows from (14), (15) that

0 =
h

∑
j=1

λ jc
∗
j(
〈
s j|y
〉
) for y∈Y and γ jc

∗
j

(〈
s j| 1β x̂

〉)∣∣∣∣
U
=
∥∥∥∥ 1

β
x̂

∥∥∥∥
T

for all j. (16)

It follows from x⊥BY that

‖x‖ �
∥∥∥∥x+

1
β

y

∥∥∥∥ for all y ∈Y. (17)

Since x̂⊥T
BY , we deduce that 1

β x̂⊥T
BY and∥∥∥∥ 1

β
x̂

∥∥∥∥
T

�
∥∥∥∥ 1

β
x̂− 1

β
y

∥∥∥∥
T

for all y ∈ Y. (18)

Thus we have∥∥∥∥ 1
β

x̂

∥∥∥∥
T

(18)
�
∥∥∥∥ 1

β
x̂− 1

β
y1

∥∥∥∥
T

(x̂=β x+y1)= ‖x‖T

(13)
� (1+ε)‖x‖=‖x‖+ε‖x‖ (19)
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and

‖x‖−ε‖x‖=(1−ε)‖x‖
(17)
� (1−ε)

∥∥∥∥x+ 1
β

y1

∥∥∥∥=(1−ε)
∥∥∥∥ 1

β
x̂

∥∥∥∥ (13)
�
∥∥∥∥ 1

β
x̂

∥∥∥∥
T

. (20)

It follows from (19), (20) that ∣∣∣∣ ‖x‖−∥∥∥∥ 1
β

x̂

∥∥∥∥
T

∣∣∣∣� ε‖x‖. (21)

Finally, we will show ϑ(x) = 0. Summarizing, we have λ j � 0,
h
∑
j=1

λ j = 1.

Moreover γ jc∗j ∈ N and s j ∈ D , which yields
h
∑
j=1

λ jγ jc∗j(
〈
s j|·
〉
) ∈ Fh . By (16),

we can conclude that Y ⊂ ker

(
h
∑
j=1

λ jγ jc∗j(
〈
s j|·
〉
)

)
. Finally, we deduce

∣∣∣∣∣‖x‖− h

∑
j=1

λ jγ jc
∗
j(
〈
s j|x
〉
)

∣∣∣∣∣ (x̂=β x+y1)=

∣∣∣∣∣‖x‖− h

∑
j=1

λ jγ jc
∗
j

(〈
s j| 1β x̂− 1

β
y1

〉)∣∣∣∣∣
(16)=

∣∣∣∣∣‖x‖− h

∑
j=1

λ jγ jc
∗
j

(〈
s j| 1β x̂

〉)∣∣∣∣∣
(16)
=

∣∣∣∣∣‖x‖− h

∑
j=1

λ j

∥∥∥∥ 1
β

x̂

∥∥∥∥
T

∣∣∣∣∣
=

∣∣∣∣∣‖x‖−
∥∥∥∥ 1

β
x̂

∥∥∥∥
T

∣∣∣∣∣ (21)
� ε‖x‖.

Thus we get

∣∣∣∣∣‖x‖− h
∑
j=1

λ jγ jc∗j(
〈
s j|x
〉
)

∣∣∣∣∣� ε‖x‖ . Since ε was arbitrary, this implies that

0 = inf{| ‖x‖− v∗(x) | : v∗ ∈Fh, Y ⊂kerv∗} = ϑ(x) . �

4. Approximation

We are interested in the applications of Theorem 5. In approximation theory the
condition that x is Birkhoff orthogonal to Y can be interpreted as follows. Suppose
x ∈ X \Y . Then the zero vector is the best approximation to x among all vectors in Y .

LEMMA 3. Let V be a pre-Hilbert A -module, where V,A are over the field R

(or C ). Assume that N ⊂ SA ∗ is a *-norming set (in A ). Suppose that D ⊂ SV

is a norming set (in V ). Moreover, suppose that N is symmetric. Let Y ⊂V be an
n-dimensional subspace. Assume x∈V \Y . Then the following condition holds:

(i) if x⊥BY , then ‖x‖ = sup{|v∗(x)| : Y ⊂kerv∗, v∗ ∈Fn+1} (or F2n+1 ).
If V,A are over the field R , then the following condition also holds:
(ii) if x⊥BY , then ‖x‖ = sup{v∗(x) : Y ⊂kerv∗, v∗ ∈Fn+1} .
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Proof. It is obvious that ‖x‖� sup{|v∗(x)| : v∗ ∈Fn+1, Y ⊂kerv∗} . By Theorem
5 let us choose a sequence (v∗n)n=1,2,...⊂Fn+1 (or F2n+1 ) such that Y ⊂kerv∗n and

| ‖xn‖−v∗n(x) | < 1
n .

It follows from this inequality that

‖x‖− |v∗n(x)| � | ‖x‖− |v∗n(x)| | � | ‖x‖− v∗n(x) | < 1
n .

Now, suppose that V,A are over the field R . Since N is symmetric, we may
assume that v∗n(x)∈ [0,+∞) . Thus ‖x‖< 1

n +v∗n(x) , which means that

‖x‖ = sup{v∗(x) : v∗ ∈Fn+1, Y ⊂kerv∗} . �

Now we present a different expression for the formula for distance from a given
x ∈V to a finite dimensional subspace Y ⊂V .

For x ∈V \Y put

PY (x) := {y ∈Y : ‖x− y‖= dist(x,Y )} .

THEOREM 6. Let V , N , D, x , Y be such as in Lemma 3. Then

dist(x,Y ) = sup{|v∗(x)| : v∗ ∈Fn+1, Y ⊂kerv∗} .

In the complex case, we have dist(x,Y )=sup{|v∗(x)| : v∗ ∈F2n+1, Y ⊂kerv∗} .

Proof. Since the proofs are similar we present only the real case. Since Y is a
finite-dimensional subspace, there exists yo ∈ PY (x) . It is easy to check that

yo ∈ PY (x) ⇔ (x− yo)⊥BY (22)

Now by applying (22) and Lemma 3 we arrive at the desired assertion. Indeed, we
obtain

dist(x,Y ) = ‖x− yo‖ = sup{|v∗(x− yo)| : v∗ ∈Fn+1, Y ⊂kerv∗}
= sup{|v∗(x)| : v∗ ∈Fn+1, Y ⊂kerv∗} .

In the complex case we obtain dist(x,Y )=sup{v∗(x) : v∗ ∈F2n+1, Y ⊂kerv∗} . �

5. Smoothness in spaces C (Ω;A )

Our aim in this section is to consider smoothness and B-orthogonal relation in
situations where we use function spaces. Let A be a real (or complex) C∗ -algebra
with identity 1 . For a compact topological space Ω we denote by C (Ω;A ) the
normed space of all A -valued continuous functions with the usual sup-norm ‖ f‖∞ :=
sup{‖ f (t)‖A : t ∈ Ω} . It is obvious that C (Ω;A ) is also a real (or complex) C∗ -
algebra. In particular, C (Ω;A ) is also a Hilbert C∗ -module over itself with the inner
product 〈 f |g〉 := f ∗g , where f ∗(t) := f (t)∗ , t ∈Ω . Now, we obtain another characteri-
zation of B-orthogonality. For f ∈ C (Ω;A ) put M( f ) := {t ∈ Ω : ‖ f (t)‖A = ‖ f‖∞} .
We consider only the case when M( f ) 
= /0 .



THE B-ORTHOGONALITY 723

PROPOSITION 1. Let A be a real (or complex) C∗ -algebra. Let f ,g∈C (Ω;A ) .
Assume that M( f ) = {to} . Then

f⊥B g ⇔ f (to)⊥B g(to) .

Proof. We start with proving ”⇐”. Suppose that f (to)⊥B g(to) . Directly from the
definition of ⊥B , we have ‖ f (to)‖A � ‖ f (to)+ λg(to)‖A for λ ∈ K . Thus we have

‖ f‖∞ = ‖ f (to)‖A � ‖ f (to)+ λg(to)‖A � ‖ f + λg‖∞

Therefore ‖ f‖∞ � ‖ f + λg‖∞ for λ ∈ K .

Now we prove the converse. Let us consider V := C (Ω;A ) and Â := C (Ω;A ) .
We define a inner product

〈·|·〉 : C (Ω;A )×C (Ω;A )→C (Ω;A ) , 〈h|p〉 := h∗p .

Then, the space V = C (Ω;A ) can be regarded as a Hilbert C∗ -module over itself with
Â = C (Ω;A ) . Fix an arbitrary element t ∈ Ω . Fix an arbitrary functional x∗ ∈ SA ∗ .
Define a linear and continuous functional

a∗t,x∗ ∈ C (Ω;A ) → K by a∗t,x∗ := x∗( f (t)) , f ∈ C (Ω;A ) .

Now we define a set N := SA ∗ . It is easy to check that the set N is *-norming and
symmetric. Let us consider a set D := {e} , where e ∈ C (Ω;A ) , e(t) = 1 for t ∈ Ω .
The set D is norming. Next, we define the the following set:

F2 :=
{

λa∗t,x∗(〈e|·〉)+(1−λ )a∗u,y∗(〈e|·〉)∈C (Ω;A )∗ : t,u∈Ω,x∗,y∗ ∈N ,λ ∈ [0,1]
}

Note that f⊥Bg yields α f⊥Bβg for all α,β ∈ K (i.e., ⊥B is full homogeneous).
Without loss of generality, we may assume that ‖ f‖=1.

Now, suppose that f⊥Bg . Applying Lemma 3 we obtain

‖ f‖ = sup{|v∗( f )| : g∈kerv∗, v∗ ∈F2} .

There are v∗n∈F2 such that |v∗n( f )|→‖ f‖∞ and g∈kerv∗n . By symmetry of N , we
may assume that v∗n( f ) ∈ [0,+∞) , and then v∗n( f )→‖ f‖∞ . This means that

v∗n( f ) = λna
∗
tn,x∗n(〈e| f 〉)+(1−λn)a∗un,y∗n(〈e| f 〉)

= λna
∗
tn,x∗n(e

∗ f )+(1−λn)a∗un,y∗n(e
∗ f )

= λna
∗
tn,x∗n( f )+(1−λn)a∗un,y∗n( f )

= λnx
∗
n( f (tn))+(1−λn)y∗n( f (un))

for some x∗1,x
∗
2,x

∗
3 . . . ∈ N , t1,t2,t3, . . . ∈ Ω . Therefore, we obtain

λnx
∗
n( f (tn))+(1−λn)y∗n( f (un)) →‖ f‖∞. (23)

Moreover, v∗n(g) = 0. In a similar way one can prove

λnx
∗
n(g(tn))+(1−λn)y∗n(g(un)) = 0. (24)
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The sets [0,1] (or T :={z∈C : |z|�1} ) and Ω are compact. The closed unit ball BA ∗
is weak*-compact. Therefore, without loss of generality, we may assume that there
are elements t,u in Ω , functionals x∗,y∗ ∈ BA ∗ , a number λ ∈ [0,1] (or λ ∈T) and

subsequences
{
tnk

}
,
{
unk

}
,
{
x∗nk

}
,
{
y∗nk

}
,
{

λnk

}
such that tnk →t , unk →u , x∗nk

w∗→x∗ ,

y∗nk

w∗→y∗ , λnk →λ . Clearly f (tnk )→ f (t) . Now the condition (23) becomes

λx∗( f (t))+(1−λ )y∗( f (u)) = ‖ f‖∞. (25)

It is clear that g(tnk)→g(t) . We get from (24)

λx∗(g(t))+(1−λ )y∗(g(u)) = 0. (26)

We will show that x∗( f (t)) = 1 = y∗( f (u)) . Now, we obtain the equality

1 = ‖ f‖∞
(25)= λx∗( f (t))+(1−λ )y∗( f (u))

and x∗( f (t)),y∗( f (u)) ∈ [−1,1] (or x∗( f (t)),y∗( f (u)) ∈ T). It is easy to check that
1∈ Ext[−1,1] (or in complex case 1∈ ExtT). It yields x∗( f (t)) = 1 and y∗( f (u)) = 1,
whence ‖x∗‖ = ‖ f (t)‖ = 1 and ‖y∗‖ = ‖ f (u)‖ = 1.

Bearing in mind that M( f ) = {to} , we have to = t = u , so x∗( f (to)) = 1 and
y∗( f (to)) = 1. We can rewrite (25) and (26) in the form

λx∗( f (to))+(1−λ )y∗( f (to))=‖ f‖∞ and λx∗(g(to))+(1−λ )y∗(g(to))=0. (27)

Let us define w∗ := λx∗ +(1−λ )y∗ . It follows from (27) that

w∗( f (to))=‖ f‖∞ and ‖w∗‖ = 1 and w∗(g(to))=0. (28)

Then for λ ∈ K we have

‖ f (to)‖A = ‖ f‖∞
(28)= w∗( f (to)) = |w∗( f (to))+0|

(28)
= |w∗( f (to))+ λw∗(g(to))| = |w∗ ( f (to)+ λg(to)) |
(28)
� ‖ f (to)+ λg(to)‖A ,

thus finally we get f (to)⊥Bg(to) . �

A normed space (X ,‖·‖) is said to be smooth at the point xo ∈ X \ {0} , if there
is a unique x∗ ∈ X∗ such that x∗(xo) = ‖xo‖ and ‖x∗‖ = 1. Now, we consider a set
Dsm(X) := {x ∈ X : X is smooth at x} . It is well known that the set Dsm (C (Ω)) is
dense in C (Ω) . Moreover, if X is a separable real Banach space, then Dsm(X) is
dense. Now we will give a characterization of smoothness at a point in terms of the
Birkhoff orthogonality (see [5]).

THEOREM 7. [5] Let X be a normed space let xo ∈ X \ {0} . Then the following
statements are equivalent:
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(i) X is smooth at xo , i.e., xo ∈ Dsm(X);

(ii) the Birkhoff orthogonality is xo -additive at right, i.e.,
for every y,z ∈ X with xo⊥y xo⊥Bz, we have also xo⊥By+ z.

The next result may be also known, but for the convenience of the readers we
present it here.

THEOREM 8. If f ∈ C (Ω) , then f ∈ Dsm (C (Ω)) if and only if there is a unique
t1 ∈ Ω such that | f (t1)| = ‖ f‖∞ .

There is a natural question. What happens in a general C∗ -algebra C (Ω;A )
where A 
= R ? Namely, we want to explore the set Dsm (C (Ω;A )) instead of
Dsm (C (Ω)) . For f ∈ C (Ω;A ) put M( f ) := {t ∈ Ω : ‖ f (t)‖A = ‖ f‖∞} .

A semi-ideal of C (Ω;A ) is a linear subspace X of C (Ω;A ) such that ϕ ·h∈X
whenever ϕ ∈C (Ω; R) , h∈X .

PROPOSITION 2. Let X ⊂ C (Ω;A ) be a semi-ideal (not necessarily closed). If

f ∈ X , f 
= 0 and M( f ) > 1 , then f /∈ Dsm (X ) .

Proof. Fix arbitrarily t1,t2 ∈ M( f ) such that t1 
= t2 . By Urysohn’s Lemma there
is a continuous function ρ : Ω→ [0,1] such that ρ(t1)=0 and ρ(t2)=1. It is obvious
that ρ · f , (1−ρ)· f ∈C (Ω;A ) . Then for λ ∈ K we have

‖ f‖∞ = ‖ f (t1)‖A = ‖ f (t1)+ λ ρ(t1)· f (t1)‖A � ‖ f + λ ρ · f‖∞,

‖ f‖∞ = ‖ f (t2)‖A = ‖ f (t2)+ λ (1−ρ(t2))· f (t2)‖A � ‖ f + λ (1−ρ)· f‖∞,

which means that f⊥Bρ · f and f⊥B(1−ρ)· f . Since X is a semi-ideal,

ρ f , (1−ρ) f ∈ X .

On the other hand it is easy to verify that f is not B-orthogonal to f . Thus, f is not
B-orthogonal to ρ · f +(1−ρ)· f , and Theorem 7 yields f /∈Dsm(X ) . �

COROLLARY 1. If f ∈ C (Ω;A ) and M( f ) > 1 , then f /∈ Dsm (C (Ω;A )) .

So, the case of M( f ) > 1 is clear. Now we will investigate the case where M( f ) =
1. Fix to ∈ Ω . We say that subspace U ⊂ C (Ω;A ) is to -surjective, if for all a ∈ A ,
there exists g ∈U such that

g(to) = a , or, equivalently, A =
⋃

g∈U
{g(to)} .

It is clear that C (Ω;A ) is to -surjective. On the other hand, to -sujective subspace may
be small.

EXAMPLE 1. Let us consider C ([0,1]; R
2) (with some normed space R

2 ). Fix
to ∈ (0,1] . We define f ,g ∈ C ([0,1]; R

2) by f (t) := (t,0) , g(t) := (0,t) . It is easy to
check that the space U := span{ f ,g} is to -surjective and dimU = 2 < dimC ([0,1]; R

2) .
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The next result establishes the connection between Dsm (C (Ω;A )) and Dsm(A )
and Dsm(U) .

THEOREM 9. Let A be a real (or complex) C∗ -algebra. Suppose that Ω is a
compact topological space. Assume that f ∈ C (Ω;A ) and M( f ) = {t1} . The follow-
ing conditions are equivalent:

(a) f ∈ Dsm (C (Ω;A ));
(b) f (t1) ∈ Dsm(A );
(c) there is a t1 -surjective subspace U ⊂ C (Ω;A ) such that f ∈ Dsm(U) .

Proof. We start with proving (b)⇒(a). Fix arbitrarily g,h ∈ C (Ω;A ) such that
f⊥Bg and f⊥Bh . By Proposition 1 we have f (t1)⊥Bg(t1) and f (t1)⊥Bh(t1) . It follows
from (b) and Theorem 7 that f (t1)⊥Bg(t1)+ h(t1) . Using again Proposition 1 we get
f⊥Bg+h and Theorem 7 yields f ∈ Dsm (C (Ω;A )) .

The implications (a)⇒(c) is obvious. Finally, we prove (c)⇒(b). Fix arbitrarily
x,y ∈A such that f (t1)⊥Bx and f (t1)⊥By . Since U is t1 -surjective, there are g,h∈U
such that g(t1) = x , h(t1) = y . It follows from (c) and Theorem 7 that f⊥Bg+h . Using
again Proposition 1 we get f (t1)⊥Bg(t1)+h(t1) , which means f (t1)⊥Bx+ y . Theorem
7 yields f (t1) ∈ Dsm(A ) . �

6. Bhatia–Šemrl theorem

Now, we will show a new proof of the Bhatia–Šemrl theorem using Lemma 3. We
will use again the new method to obtain the following characterization of B-orthogo-
nality.

THEOREM 10. [2] Let H be a real Hilbert space. Suppose that dimH < ∞ .
Let A,B ∈ B(H ) . Then

A⊥BB ⇔ ∃x∈SH
‖Ax‖=‖A‖ , Ax⊥Bx.

We are now ready to prove a real version of the Bhatia–Šemrl theorem using these
concepts. Our approach will revolve around Lemma 3 (in particular (ii)).

Proof. We start with proving ”⇐”. Suppose that there is a vector x such that
‖Ax‖ = ‖A‖ , Ax⊥BBx . Thus we have 〈Ax|Bx〉 = 0 hence

‖A‖2 = ‖Ax‖2 = 〈Ax|Ax〉 = 〈Ax|Ax〉+0

= 〈Ax|Ax〉+ λ 〈Ax|Bx〉 = 〈Ax|Ax+ λBx〉
� ‖Ax‖·‖Ax+ λBx‖� ‖A‖·‖A+ λB‖.

Therefore ‖A‖ � ‖A+ λB‖ for λ ∈ R .
Now we prove the converse. Let us consider V := B(H ) and A := B(H ) . We

define a inner product

〈·|·〉B(H ) : B(H )×B(H )→B(H ) , 〈M|N〉B(H ) := M∗N .
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Then, the space V = B(H ) can be regarded as a Hilbert C∗ -module over itself with
A = B(H ) . Fix arbitrarily two vectors x,y ∈ H . Define a linear and continuous
functional

a∗x,y ∈ B(H ) → R by a∗x,y(T ) := 〈Tx|y〉H , T ∈ B(H ) .

Now we define a set N := {a∗x,y ∈ B(H )∗ : ‖x‖ = ‖y‖ = 1} . It is easy to check that
the set N is *-norming. Let us consider a set D := {I} , where I ∈ B(H ) , I(x) = x .
The set D is norming.

We will consider only inner products 〈·|·〉B(H ) : B(H )×B(H )→ B(H ) ,
〈·|·〉H : H ×H → R , and to shorten the notation we will write 〈·|·〉B := 〈·|·〉B(H )
and 〈·|·〉 := 〈·|·〉H .

We define the the following set:

F2 :=
{

λa∗x,y (〈I|·〉B)+(1−λ )a∗u,w (〈I|·〉B)∈B(H )∗ : x,y,u,w ∈ SH , λ ∈ [0,1]
}

;

compare (1).
Note that A⊥BB yields αA⊥BβB for all α,β ∈ R (i.e., ⊥B is full homogeneous).

Without loss of generality, we may assume that ‖A‖=1.
Now, suppose that A⊥BB . Applying Lemma 3 (in particular (ii)) we obtain

‖A‖ = sup{v∗(A) : B∈kerv∗, v∗ ∈F2} .

There are v∗n∈F2 such that v∗n(A)→‖A‖ and B∈kerv∗n . This means that

v∗n(A) = λna
∗
xn,yn

(〈I|A〉B)+(1−λn)a∗un,wn
(〈I|A〉B)

= λna
∗
xn,yn

(I∗A)+(1−λn)a∗un,wn
(I∗A)

= λna
∗
xn,yn

(A)+(1−λn)a∗un,wn
(A)

= λn 〈Axn|yn〉+(1−λn)〈Aun|wn〉 .
Therefore, we obtain

λn 〈Axn|yn〉+(1−λn)〈Aun|wn〉 → ‖A‖. (29)

Moreover, v∗n(B) = 0. In a similar way one can prove

λn 〈Bxn|yn〉+(1−λn)〈Bun|wn〉 = 0. (30)

The set [0,1] is compact. Since H is finite dimensional, SH is a compact set. There-
fore, without loss of generality, we may assume that there are vectors x,y,u,w in SH ,
a number λ ∈ [0,1] and subsequences

{
xnk

}
,
{
ynk

}
,
{
unk

}
,
{
wnk

}
,
{

λnk

}
such that

xnk →x , ynk →y , unk →u , wnk →w , λnk →λ . Now the condition (29) becomes

λ 〈Ax|y〉+(1−λ )〈Au|w〉 = ‖A‖. (31)

We get from (30)
λ 〈Bx|y〉+(1−λ )〈Bu|w〉 = 0. (32)

We will show that 〈Ax|y〉=1=〈Au|w〉 . We have
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1 = ‖A‖ = λ 〈Ax|y〉+(1−λ )〈Au|w〉

and 〈Ax|y〉 ,〈Au|w〉 ∈ [−1,1] . It is easy to check that 1 ∈ Ext[−1,1] . So, 〈Ax|y〉 = 1
and 〈Au|w〉 = 1.

We have 〈Ax|y〉 = 1 and 〈Ax|y〉 � ‖Ax‖·‖y‖ � 1·1 = 1. This implies 〈Ax|y〉 =
‖Ax‖·‖y‖ and ‖Ax‖=1=‖y‖ . So, Ax = y , and hence ‖Ax‖ = ‖A‖ .

In a similar way, one checks that Au = w and ‖Au‖ = ‖A‖ . Putting Ax = y ,
Au = w into (32), we get

λ 〈Bx|Ax〉+(1−λ )〈Bu|Au〉= 0. (33)

It follows from (33) that 〈Bx|Ax〉 � 0 � 〈Bu|Au〉 or 〈Bu|Au〉 � 0 � 〈Bx|Ax〉 . Without
loss of generality, we may assume that

〈Bx|Ax〉 � 0 � 〈Bu|Au〉 . (34)

We define a set M (A) := {x ∈ SH : ‖Ax‖ = ‖A‖} . It is obvious that M (A) � 2. We
have two possibilities:

Possibility 1: If M (A) = 2, then x = u or x = −u . By (34) we obtain

〈Bx|Ax〉 � 0 � 〈Bu|Au〉= 〈B(±x)|A(±x)〉 = 〈Bx|Ax〉 ,

hence 〈Bx|Ax〉 = 0.

Possibility 2: If M (A) > 2, then M (A) is connected. Indeed, fix arbitrarily two
linearly independent vectors a,b ∈ M (A) , i.e., a 
= b 
= −a . Define η : [0,1] → SH

by η(t) := (1−t)a+tb
‖(1−t)a+tb‖ . It is easy to check that η is a path and ‖A(η(t))‖ = ‖A‖ for

all t ∈ [0,1] . This means that η([0,1]) ⊂ M (A) , and therefore M (A) is connected.
Now, we define a mapping ϕ : M (A) → R by ϕ(v) := 〈Bv|Av〉 , v ∈ M (A) .

Inequalities (34) yield ϕ(x) � 0 � ϕ(u) . The mapping ϕ is continuous. Moreover, the
set M (A) is connected. Using the Darboux property we get ϕ(xo) = 0 for some xo ∈
M (A) . Thus for the vector xo ∈M (A) we have 〈Bxo|Axo〉= 0 and ‖Axo‖= ‖A‖ , i.e.,
‖Axo‖ = ‖A‖ and Axo⊥Bxo . Whence, in any case ∃x∈SH

‖Ax‖=‖A‖ , Ax⊥Bx . �
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