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THE BIRKHOFF ORTHOGONALITY IN PRE-HILBERT C*-MODULES

PAWEL WOJICIK

(Communicated by R. Bhatia)

Abstract. In this work we characterize the Birkhoff orthogonality for elements and finite di-
mensional subspaces of a pre-Hilbert C* -module in terms of a convex hull of continuous linear
functionals. The aim of the paper is to present results concerning the B-orthogonality and its
applications. We also present the results concerning smoothness. Moreover, we give a new proof
of the Bhatia—Semrl theorem.

1. Introduction

Let (X,||-||) be a normed space over K € {R,C}. If the norm comes from an
inner product (-|-), there is one natural orthogonality relation: xLy:< (x|y) =0. In
general case, there are several notions of orthogonality and one of the most outstanding
is the definition introduced by Birkhoff [4] (cf. also James [6]). For x,y € X we define:

xloy o Viex [l < Ile+2y-

This relation is clearly homogeneous, but neither symmetric nor additive, unless the
norm comes from an inner product. Of course, in an inner product space we have
Ly=1.

An element x is B-orthogonal to a subspace M C X (i.e.,x 1 ;M) if and only if
xLlym forall me M.

Let us recall some basic facts about C* -algebras and Hilbert C*-modules and in-
troduce our notation. A C*-algebra <7 is a Banach *-algebra with the norm satisfying
the C*-condition |a*a||,s = ||a||?, for all a € o/. Let V be a normed space over
K e {R,C}. Let o7 be a C*-algebra over the same field. A positive element a of a
C*-algebra &7 is a self-adjoint element such that o(a) C [0,1). If a € & is positive,
we write a > 0.

A right pre-Hilbert C*-module X over a C*-algebra <f is a linear space which
is a right <7 -module equipped with an <7 -valued inner-product {-|-)V x V — & that
is sesquilinear, positive definite and respects the module action, i.e.,

(C1) Yy peig Vagcev {(xloty+B2) = ot (x]y) + B (x]2).

(C2) Vx,er Vaco <x|ya> = <x‘y>a,

(C3) Vx,er <x|y> = <y|x>*’

(C4) Vyey (x|x) = 0;if (x|x) =0 then x =0,
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For a pre-Hilbert C*-module V the Cauchy—Schwarz inequality holds: || (x[y) ||,
< x| - || 9Iy) ||z - In particular, ||x|| := /]| (x|x)||» defines a normon V. A
pre-Hilbert .7 -module which is complete with respect to this norm is called a Hilbert
C*-module over <f , or a Hilbert A-module.

Obviously, every Hilbert space is a Hilbert C* -module. Also, every C*-algebra ./
can be regarded as a Hilbert C*-module over itself with the inner product (x|y) := x"y,
and the corresponding norm is just the norm on &/ because of the C*-condition.

2. Preliminaries

Let X be a normed space over R or C. We write By for the closed unit ball. Let
Sx denote the unit sphere in X . The dual space is denoted by X*. It is easy to see that
for two elements x,y of a normed linear space X, it holds x_Lzy if and only if there
is a norm one linear functional f € X* such that f(x)=|x|| and f(y)=0. If we have
additional structures on a normed linear space X, then we get other characterizations
of the Birkhoff orthogonality. One of the first results of this form is the result obtained
by Bhatia and Semrl [2] for the C*-algebra Z(.#) of all bounded linear operators on
a Hilbert space 7.

THEOREM 1. [2] Let A,B € B(7).

(a) If dimJ? < oo, then A1 yB if and only if there is a unit vector x € F€ such
that ||Ax|| = ||A|| and {Ax|Bx) =0.

(b) If dim % = oo, then A_LyB if and only if there is a sequence of unit vectors
(xn) C A such that nlglgo||Aan = ||A]| and ,}E}.}o (Axp|Bx,) = 0.

The characterization of the Birkhoff orthogonality for elements of a Hilbert C*-
module by means of the states of the underlying C* -algebra was obtained by Arambasic¢
and Raji¢ [1]. Here, a state is a positive linear functional with norm 1.

THEOREM 2. [1] Let V be a Hilbert <7 -module, and x,y € V. Then x_Lgy if and
only if there is a positive linear functional ¢ € o/* suchthat ||@|| =1 and ¢({x|x)) =

Ix]* and @({xly)) = 0.

In particular, Theorem 2 implies the following.

THEOREM 3. Let V be a Hilbert </ -module, and x € V. Assume that Y CV
is a finite dimensional linear subspace, and let x € V\Y. Then x 1Y if and only if
for every y € Y there is a positive linear functional ¢ € o/* such that ||@|| =1 and

@ ({x]x)) = [|x]|* and y € ker p((x]-)).

In the next section, we will show a result similar to Theorem 3.
Let ExtK denote the set of all extremal points of a given set K. The dual space is
denoted by X*. The next result is known.
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THEOREM 4. [7, p. 170] Let X be a normed linear space, Y = span{xi,...,x,}
an n-dimensional subspace of X, x€ X CY and y, €Y. The following statements are

equivalent:
(a) x LY,
(b) There exist h extremal points f1,...,fn of Sx+, where 1 <h<n+1 if the
scalars are real and 1 < h <2n+ 1 if the scalars are complex and h numbers Ay, ..., A,
h

>0 with Y, Aj =1, such that
=1

J=

>

h h
121 Aifiy)=0 forall yeY, and '21 Aifi(x) =|lx
Jj= j=
(c) There exist h extremal points fi,...,fn of Sx=, where 1 < h<n+1 if the
scalars are real and 1 < h < 2n+ 1 if the scalars are complex and h numbers Ay,. .., A
h
>0 with 3, Aj =1, such that

Jj=1

h
Zlkjfj(y)zo forall yeY, and fj(x)=|x| for j=1,...,h.
j:

3. Main result

The four theorems above motivate the following section. Let X be a normed space
over R or C. In this paper, the set D C X is called symmetric, if

forall x€ A, andforall y€ K with |y|=1, we have yx€A.
A set A C Sx- is called a *-norming set in X if
[[x[| = sup{|x"(x)| : x* € A"}

for all x € X. Let V be a pre-Hilbert <7 -module. A set 2 C Sy is called a norming
setin 'V if

x| = sup{[l (blx) [|or - b € 7}

for all x€V. For example, Sy+ is a *-norming set in X. Similarly, ExtSy+ is also
*-norming set in X . In general, *-norming set .#/” need not consist of extreme points
and it is even possible to have .4/ NExtSx+ = 0.

If K is dense in Sy, then K is a norming set in V. We say that £ C X* is fotal
over X, if for all x € X'\ {0}, there exists ¢ € E such that ¢(x) # 0.

LEMMA 1. Let X be a normed space. Suppose M C X*. If M is a *-norming set
in X, then M is total over X .

Proof. Assume, contrary to our claim, that M is not total over X. Then, there
exists x, € X \ {0} such that ¢(x,) =0 for all ¢ € M. It follows that 0 < ||x,|| =
sup{Q(x,) : @ € M} =sup{0: ¢ € M} =0, which is a contradiction. [J
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LEMMA 2. Let U be a vector space. Let M CU* be a total set over U. As-
sume that dimU* = p <eo. Then there are functionals xi,...,x, in M such that
K:={x],...,x,} forms a Hamel basis of U*.

Proof. 1t is enough to show that dim(spanM) = dimU™*. Assume, contrary to our
claim, that dim(spanM) < dimU*. Then there are functionals yj,...,y; in M such

k
that span{y7,...,y;} =spanM and k < p. It follows that () kery; # {O}. Let us
J=1

k
fix x, in | ) keryj | \ {0}. Since M C span{yj,...,y;}, we have z*(x,) = 0 for
j=1

all z* € M. Moreover, x, # 0. It means that M is not total over U, and we have a
contradiction. [l

The following considerations have been inspired by Theorems 1, 2 (in particular
Theorem 3) and 4. We will prove a new type of characterization of B-orthogonality
in pre-Hilbert C*-modules. Namely, we will consider a condition x1 Y instead of
x_Lsy and moreover we will apply the norming sets. Furthermore, we will consider the
case over R and the case over C simultaneously. What is more, we will consider the
Birkhoff orthogonality in pre-Hilbert C*-modules instead of in Hilbert C*-modules.
We will obtain a characterization of the B-orthogonality in which only the norming
sets are involved.

Let A4 C S+ be afixed *-norming set (in .«7') and let & C Sy be a fixed norming
set (in V). We define the the following set:

h h
ﬂh::{Zkka,’;(wk-))eV*: LIZE,/V,I/L]{E@,A]{ZO, Z?Lkzl}. (1)
k=1 k=1

It is obvious that
Fp C conv{a*((u|-)) eV*: a* e N ue P} C By~

The symbol By« denotes the closed unit ball.
Suppose that Y is a n-dimensional subspace of X . We define a new constant:

O (x) :=inf{ | ||x||[=v*(x) | : v* € .Fpp1, Y Ckerv*'}
in the real case. In a similar way we define
O (x):=inf{ | |[x||—v*(x) | : v* € Faps1, ¥ Ckerv*}

in the complex case. Clearly ©¥(x) > 0 for all x € V\ Y. Now we prove the main result
of this paper.

THEOREM 5. Let V be a pre-Hilbert </ -module, where V., of are over the same
field K e {R,C}. Assume that N C Sy~ is a *-norming set (in < ). Suppose that
2 C Sy is a norming set (in V). Moreover, suppose that A is symmetric. Let Y CV
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be an n-dimensional subspace. Assume x€V \Y. Then the following conditions are
equivalent:

(A) xLlgY,
B) ¥(x)=0

Proof. We start with proving (B)=>(A). Assume, contrary to our claim, that x 1/, ¥
Let W:=span(YU{x}). Since W is finite dimensional, there is we€ W \ Y such that
wlyY (by Riesz’s Lemma and the compactness of Sw). It follows that w = ox + y;
for some o € K, y; €Y. Itis clear that Zw_L,Y. We show that [x| > [|Zw]|. If we
had |[x]| <||<w]|, then we would obtain

Ixll < [ gwll < lgw+y] forall yey.

In particular, putting — oY1+ in place of y, we would obtain

x| < [[w—Lyi+y]=|x+y| forall ye Y.

But then x_ ;Y and we would obtam a contradiction.

Define now € := 1x|| — $||2w|| > 0. Directly from the definition of ¥(x), we
have
h
el < &+ 3 Axati (Gauel)) )
k=1
forsome Ay,..., 4,20, aj...,a;€N ", ui...,up€ 2 (where h=n-+1 inreal case or

h
h=2n+1 in complex case), such that ¥ A;=1 and
k=1

h
Y Aeag ((uly)) =0 forall y €Y. 3)
=1

Thus we have

1

Il !
L |
o 2

o

£+

|
—w+

Sl |l < 45
wl|==|x|l+= || =w| < z|]x]|+ =z ]]x
2l o 2 2

2) el 1
el D et | 3 (el | C )

k=1

3)

gt )
(k)

g Alla]|-
<erZh

h
<£+Z/lk

(i) < e+ZAk||uk

e

(o)
4

U 1
> A <e+H—wH.
=1 o

’1
—w
o
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We get €+ || Lw|| < &+ || 2w]|, which is a contradiction.

Now we prove (A)=-(B). Let us now define U := span(¥Y U {x}) and let us con-
sider any € € (0,1). Itis clear that dimU = n+ 1 < eo. Then the compactness of Sy
implies that there are wy,...,w,, € Sy such that

" .
Sy CkUIB(wk,4>, )

where B(Wk; f—;) ={zeU:|z—w < %}. Itis easy to check that the set
M= {a*((u-))|, €U*:a" € N ,ue P}.

is *-norming in U . Indeed, for every p € U, from the assumptions we have

Ipll =sup{|[ (ulp) || : u€ 2}
= sup{sup{|a*((u|p))|:a* € N} :uc D}
=sup{|la"((ulp))|:a" €N, uec 2}
= sup{[v*(p)|:v" e M},

This means that the set {a*((u|-))|, € U*:a* € A" ,u € P} is *-norming in U . There-
fore there exist aj,...,a,, € A, ui,...,u,y € 2 such that

. €
| [wiell — laz ((ug|wi))] | < ) for k=1,...,m.
The set ./" is symmetric. Thus, without loss of generality, we may assume that
€
[ Iwell = i (Gurlwi)) | < 7 for k=1,....m. S)

Then we define L := {a}((u1|)) ay,((uml|-))|, }. We have already defined the set

lysees

M ={a*((u]-))|, €U :a* € N ,uec D}.

We have shown that M is *-normingin U. By Lemma 1, M is total over U. It follows
from Lemma 2 that there is K C M such that K forms a Hamel basis of U*.
Without loss of generality, we may assume that

K ={b1(G1l Dy ba((al DIy bia (nsa [Ny 3

for some b7 ((z1[))|ys- -2 bn({znl D)y bpyr (@[], € M.
Let us now define the sets

E = {ya;((ur]-))|, €U* 1 k=1,....,m, ye Kand |y| =1}
and

={ri(al Ny €U” : k=1,....n,n+1, y€ Kand [y] =1}
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and let us introduce the set P defined by
P:=conv(EUF). (6)

The set P is convex, absorbing and balanced. Moreover, P is compact. Hence this set
introduces a new norm ||-||, in U* by the Minkowski functional.

Now we can define the function ||-||,: U — R by ||x||, :=max{|@(x)|: p€EUF}.
It is a norm. Indeed, it is easy to show that ||p+ |, < |pll, + 7|, and |a|-||p|, =
|leepll, . We prove only an implication ||p||, =0 = p=0. If peU and ||p||, =0,
then @(p) =0 forall ¢ € EUF. Moreover K C F, whence ¢(p) =0 forall ¢ € K.
It is helpful to recall that K forms the Hamel basis in U*. Therefore we obtain p = 0.

It is easy to see that || y/||, =sup{|y(x)|: |lx||, <1}. Thus we may say that [-||,
is the dual norm for ||-||,, i.e., (U,]]|l;)* = (U*,||-|l,). Directly from the definition of
|||l » we have the following inequality

Ivll, < vl forall ve U\ {0}, )
Next we will prove that
(=) <[Pl < (1 +e)lvl forall veU\{0}. (@)
It follows from (6) and a; ((ux|-))|, € E C EUF that
|lag ((ug|v))| < max{|@(v)|: @ € EUF} = |v||, forall veU. )
It follows that
ol 2 &+ b b)) < 5+ el (10)
and by (7) we get 0 < ||wy|| — ||wk||, . Then, by (10) we have
| will = hwell, | <§ forall k=1,...,m. (11)

Fix v € U such that v # 0. It is clear that m € Sy . Applying (4) we have

€
'wko—L - (12)
for some wy, € {wy,...,wn}.
Then, we have
v v
izl | =1- = e~ 5
vl v, I,
< e =MW Ml [+ e, [l —
v (1D),(7)
< | wi [l = NIwa Nl 1 + il S
I,
< 8+ % <2>s € 8<e
E i, - 2 CL8_S e
Syt Tl S taTzs
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(=)l < v, < L+ )] forall ve U\ {0}, (13)

v
i,

Thus we get < e forall ve U\{0}. From this it is very easy to

v
vl

prove that

Let 1T denote the Birkhoff orthogonality with respect to the norm ||-||,. The
space (U, ||-]|,) is finite dimensional, whence (applying again Riesz’s Lemma and the
compactness of the unit sphere Sy . )) there is X€U\Y such that x1TY. It follows
that X = Bx+y; forsome B € K, y; €Y.

Since X 1TY, it follows that ﬁxJ_TY Now we can apply Theorem 4. There exist
h extremal points fi,..., fp of S W) where 1 < h < n—+1 if the scalars are real
and 1 < h < 2n+1 if the scalars are complex and & numbers A;,...,A;, > 0 with

h
Y A; =1, such that
j=1

for j=1,....h. (14)

h
ijfj(y)zo forall yeY, and fj( ) HﬁA‘
=1

It follows directly from the definition of ||-||, that ExtS(y |.|,)» CEUF . In fact, this
means that

iy fn GlL‘le-{a;‘(wt\-))\w b;‘-(<z,-|->)\u ct=1,....m, j=1,....n,n+1},
Y=

and hence
Sr=nci((stlDlys - fi = men((sal-)ly (15)
for some |y;|=1, and ¢} €{aj,b}}, and s; € {u;,z;}. It follows from (14), (15) that

for all j. (16)

C At (o1is
0= Aicj((sjly)) for yeY and y;c] <<Sjﬁx>) =
=1 U

It follows from x_L,Y that

1
x| < x+EyH forall yeY. (17)

Since ¥ 17V, we deduce that ﬁxJ_TY and

forall yeY. (18)

I, <l w

T
Thus we have

(18) 1 1

B ﬁ}ﬂ

(x: ﬁx+Y1

[l HT <ol =l +eldl 19

T
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and
1 1 [ 1
[x[| —&l|x]| = (1— S)IIXH (1 €)||x+n =X < || 2% (20)
B B
It follows from (19), (20) that
1_|
Il = || x| | <ellx]l. 2D
B llr

h
Finally, we will show 9 (x) = 0. Summarizing, we have 1; >0, ¥ A; =1.
h
Moreover ¥;¢; € A" and s; € 7, which yields Y, A;%;¢5((s;]-)) € Z. By (16),
J=1

h
we can conclude that ¥ C ker( > kjyjc’;(<sj|->)> . Finally, we deduce
=i

. h
(x=Bxtvy1) " 1 .1 >>
= x||= Y Ajyici | (sjlx——
b3, 2 5 ({silg5-g»
(16) L ®
= Il =2 Ave5 (s
j=1

7

< el

h
Il = Z/M%Cﬁ(@jl@)
=

h
(16
= |- X 4
=

#,:

Thus we get |||x|| — Z Ajyjc (<sj lx))| < €l|x||. Since & was arbitrary, this implies that

T

= |(Ixl-

= inf{| ||xH—v*(x) | vieFy, Y Ckervi =9(x). O

4. Approximation

We are interested in the applications of Theorem 5. In approximation theory the
condition that x is Birkhoff orthogonal to ¥ can be interpreted as follows. Suppose
x € X\ Y. Then the zero vector is the best approximation to x among all vectors in Y .

LEMMA 3. Let V be a pre-Hilbert </ -module, where V,of are over the field R
(or C). Assume that N C S+ is a *-norming set (in </ ). Suppose that 9 C Sy
is a norming set (in 'V ). Moreover, suppose that A is symmetric. Let Y CV be an
n-dimensional subspace. Assume x€V \ Y. Then the following condition holds:

(i) if x LY, then ||x|| = sup{|v*(x)|: Y Ckerv*, v: € Z, 11} (or Font1)

If V,of are over the field R, then the following condition also holds:

(ii) if xL,Y, then ||x|| =sup{v*(x): ¥ Ckerv*, v €.%,;}.
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Proof. Ttis obvious that ||x|| > sup{|v*(x)|: v*€.%,+1, ¥ Ckerv*}. By Theorem
5 let us choose a sequence (v;;)u—12,...C F11 (or Fa,11) such that ¥ Ckerv}, and

[ el =i () | < 5
It follows from this inequality that
Il = Gl < | llll = @) 1< | el = v | < 5

Now, suppose that V, o7 are over the field R. Since ./ is symmetric, we may

assume that v};(x) € [0,+e0). Thus ||x|| < 2-v*(x), which means that
lx[| = sup {v*(x) : v €.%,11, Y Ckerv*}. O

Now we present a different expression for the formula for distance from a given
x € V to a finite dimensional subspace Y C V.
For x e V\ Y put

Pr(x):={yeY:|x—y| =dist(x,Y)}.

THEOREM 6. Let V, A, D, x, Y be such as in Lemma 3. Then
dist(x,Y) = sup{|v*(x)| : v € Fp1, ¥ Ckerv*}.

In the complex case, we have dist(x,Y)=sup{|v*(x)| : v* € Foyt1, ¥ Ckerv*}.

Proof. Since the proofs are similar we present only the real case. Since Y is a
finite-dimensional subspace, there exists y, € Py(x). It is easy to check that

Yo EPr(x) & (x—y,) LY (22)

Now by applying (22) and Lemma 3 we arrive at the desired assertion. Indeed, we
obtain

dist(x,Y) = ||x —yo|| = sup{|v* (x —yo)| : v E€Fpy1, Y Ckerv'}
= sup{|v*(x)|: v'€Fut1, Y Ckerv'}.

In the complex case we obtain dist(x,Y)=sup {v*(x) : v €.F,11, ¥ Ckerv*}. O

5. Smoothness in spaces %' (Q;.<7)

Our aim in this section is to consider smoothness and B-orthogonal relation in
situations where we use function spaces. Let <7 be a real (or complex) C*-algebra
with identity 1. For a compact topological space Q we denote by € (Q;.7) the
normed space of all ./ -valued continuous functions with the usual sup-norm || f||. :=
sup{||f ()|l :t € Q}. It is obvious that € (Q;.7) is also a real (or complex) C*-
algebra. In particular, € (€2;.<7) is also a Hilbert C*-module over itself with the inner
product {f|g) := f*g, where f*(¢):= f(¢)*, t € Q. Now, we obtain another characteri-
zation of B-orthogonality. For f € €(Q;«7) put M(f) :={t € Q: || f(t)||er = || [} -
We consider only the case when M(f) # 0.
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PROPOSITION 1. Let <7 be a real (or complex) C* -algebra. Let f,g € € (Q; o).
Assume that M(f) = {t,}. Then

flsg < f(to)J—Bg(ta)'

Proof. We start with proving ” <. Suppose that f(z,)L;g(#,). Directly from the
definition of L, we have ||f(t)]|.or < || f(to) +Ag(to)| s for A € K. Thus we have

1fllee = 11 Go)ller < 11.f(t0) +Ag(t0) |l s < [.f + Aglleo
Therefore || f|eo < ||/ + A8l for A € K.
Now we prove the converse. Let us consider V := % (Q; %) and o = C(Q; ).
We define a inner product
() C( Q) xC( Q) =C (), (hlp):=h"p.

Then, the space V = %'(Q;.«/) can be regarded as a Hilbert C* -module over itself with

of =€ (Q; /). Fix an arbitrary element 7 € Q. Fix an arbitrary functional x* € S/« .
Define a linear and continuous functional

a4, €EC(Qd)—>K by a.=x(f(t), feC(E).

Now we define a set .4 := S +. Itis easy to check that the set .4 is *-norming and
symmetric. Let us consider a set & := {e}, where e € €(Q;%7), e(t) =1 for t € Q.
The set D is norming. Next, we define the the following set:

:{Aa;x*(<e|->)+(1—7t)a:7y*((e\-))6%(9;&%)* LueQxty e N e, 1}}

Note that f1,g yields oof L;Bg forall o, € K (i.e., L is full homogeneous).
Without loss of generality, we may assume that || f]|=1.
Now, suppose that /L g. Applying Lemma 3 we obtain

I7]l = sup{|v*(f)| : g€kerv*, v:eF,}.

There are v} € .%, such that |v;(f)|— ||f]|~ and g €kerv. By symmetry of .4, we
may assume that v;;(f) € [0,+ee), and then v} (f) — || f]|- . This means that

el ) +(1=2An)ay, (el f)
= Mty o (" )+ (1=Mn)ay, (€ f)
( )+(1_7Ln)a:n,y;“,(f)
= 2, (f (0n)) A+ (1= 20)y, (f (1))

for some x7,x3,x5... € A, t1,12,13,... € Q. Therefore, we obtain

Pony (f (80)) 4 (1=2)y, (f (1)) = [|f | o- (23)

Moreover, v;(g) = 0. In a similar way one can prove

P (8(1)) 4 (1= 2n)yy (8 (n)) = 0. 24)
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The sets [0,1] (or T:={z€ C :|z|<1})and Q are compact. The closed unit ball B+
is weak*-compact. Therefore, without loss of generality, we may assume that there
are elements 7,u in Q, functionals x*,y* € B+, a number A € [0,1] (or A € T) and

subsequences {1y, }, {un, }. {xzk}, {yj‘,k}, {An, } suchthat 1, —1, uy, —u, X ﬂx*,

Ve gy*, Ay, — A . Clearly f(t,,)— f(t). Now the condition (23) becomes

Ax(fO)+A=2)y" (f () = I/ ]l (25)
It is clear that g(z,, ) — g(t). We get from (24)
2o (g(0))+ (1 2)y* (g(a)) = 0. (26)

We will show that x*(f()) = 1 = y*(f(u)). Now, we obtain the equality

L= flle B Ax* (£(0) +(1-A)y" (f ()

and x*(f(2)),y*(f(u)) € [-1,1] (or x*(f(¢)),y*(f(u)) € T). Itis easy to check that
1 € Ext[—1,1] (or in complex case 1 € ExtT). Ityields x*(f(z)) =1 and y*(f(u)) =1,
whence [x*|| = [[f(1)[| = 1 and [[y*[| = [[f ()] = 1.

Bearing in mind that M(f) = {r,}, we have t, =t = u, so x*(f(#,)) = 1 and
Y (f(1,)) = 1. We can rewrite (25) and (26) in the form

A (f(t0))+(1=2)y" (f (1)) =l fllo and  Ax"(g(t0))+(1=A)y"(8(5)) =0. (27)
Let us define w* := Ax* + (1 — A)y™. It follows from (27) that
w(f(to)) =[fll= and [w'|=1 and w"(g(t))=0. (28)

Then for A € K we have

28)

£ = 1l E " (£)) = " (£(2)) 40
W (1)) + AW (g(00))] = " (£(10) + 28(10))]
(2<8) ||f(t()) +A‘g(t0)H~9f’

thus finally we get f(1,) Lsg(2,). O

A normed space (X, ||-]|) is said to be smooth at the point x, € X \ {0}, if there
is a unique x* € X* such that x*(x,) = ||x,|| and ||x*|| = 1. Now, we consider a set
Dgn(X) := {x € X : X is smooth at x}. It is well known that the set Dy, (¢'(Q)) is
dense in %'(Q2). Moreover, if X is a separable real Banach space, then Dj;,(X) is
dense. Now we will give a characterization of smoothness at a point in terms of the
Birkhoff orthogonality (see [5]).

THEOREM 7. [5] Let X be a normed space let x, € X \ {0}. Then the following
statements are equivalent:
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(1) X is smooth at x,, i.e., x5 € Dgy(X);

(ii) the Birkhoff orthogonality is x, -additive at right, i.e.,
for every y,z € X with x, 1y x,1yz, we have also x, Lzy—+z.

The next result may be also known, but for the convenience of the readers we
present it here.

THEOREM 8. If f € €(Q), then f € Dy, (¢ (Q)) if and only if there is a unique
t1 € Q such that |f(t1)]| = || f]]-

There is a natural question. What happens in a general C*-algebra %(Q;.«/)
where &/ # R? Namely, we want to explore the set Dy, (¢(€2;47)) instead of
Du (€(Q). For f € €(Q:/) put M(f) = {r € Q: | f(1) oy = | fll=} -

A semi-ideal of € (Q;<7) is alinear subspace 2 of € (Q; <) such that ¢p-he 2
whenever 9 €6 (Q;R), he 2.

PROPOSITION 2. Let 2 C € (Q;7) be a semi-ideal (not necessarily closed). If

feEX, f#0and M(f) > 1, then f & Dy (Z).

Proof. Fix arbitrarily 11,1, € M(f) such that ¢; #t,. By Urysohn’s Lemma there
is a continuous function p: Q— [0,1] such that p(7;)=0 and p(f;)=1. Itis obvious
that p-f, (1—p)-f €€ (Q;47). Then for A € K we have

(£l = IF ) = 1f (1) +Ap (1) -f(t1) |l r < |f + AP Sl
[fllee = [ f(@)llr = | f(t2) + A(1=p(22))-f(t2) | < f +A(1=p)-flws

which means that fLyp-f and fLz(1—p)-f. Since 2" is a semi-ideal,

pf. (I-p)fe2.

On the other hand it is easy to verify that f is not B-orthogonal to f. Thus, f is not
B-orthogonalto p-f+ (1—p)-f, and Theorem 7 yields f ¢ D, (2°). O

COROLLARY 1. If f € €(Q;.%7) and M(f) > 1, then f ¢ Dy (€' (Q;.47)).

So, the case of M(f) > 1 is clear. Now we will investigate the case where M(f) =
1. Fix 1, € Q. We say that subspace U C € (Q;«) is t,-surjective, if for all a € o,
there exists g € U such that
g(ty) =a, orequivalently, o = | {g(t5)}.
gelU
It is clear that €' (Q; ) is 1, -surjective. On the other hand, 7, -sujective subspace may
be small.

EXAMPLE 1. Let us consider %([0,1]; R?) (with some normed space R?). Fix
t, € (0,1]. We define f,g € €([0,1]; R?) by f(t) := (¢,0), g(t) := (0,7). It is easy to
check that the space U := span{f, g} is t,-surjective and dimU =2 < dim%([0,1]; R?).



726 P. WOICIK

The next result establishes the connection between Dy, (4'(Q2;.27)) and Dy, (o)
and Dy, (U).

THEOREM 9. Let o7 be a real (or complex) C*-algebra. Suppose that Q is a
compact topological space. Assume that f € € (Q;.a7) and M(f) = {t,}. The follow-
ing conditions are equivalent:

(@) fE€ Dy (F(Q;e));

(b) f(tl) S Dsm(%);

(c) there is a t| -surjective subspace U C € (Q;.</) such that f € Dgy(U).

Proof. We start with proving (b)=-(a). Fix arbitrarily g,h € € (Q; <) such that
fLlsg and f1,h. By Proposition 1 we have f(r1) Lyg(z1) and f(¢1)Lysh(z1). It follows
from (b) and Theorem 7 that f(7;)Lsg(¢1)+ h(t;). Using again Proposition 1 we get
fLsg+h and Theorem 7 yields f € Dy, (¢(Q;%7)).

The implications (a)=>(c) is obvious. Finally, we prove (c)=-(b). Fix arbitrarily
X,y € o suchthat f(¢;)Lsx and f(¢;)Lyy. Since U is 1, -surjective, there are g,h € U
such that g(t1) = x, h(¢;) =y. It follows from (c) and Theorem 7 that f 1 ,g+h. Using
again Proposition 1 we get f(¢;)Lsg(t1) +h(t1), which means f(¢;) Lyx+y. Theorem
7 yields f(t) € Dgu(=/). O

6. Bhatia-Semrl theorem

Now, we will show a new proof of the Bhatia—Semrl theorem using Lemma 3. We
will use again the new method to obtain the following characterization of B-orthogo-
nality.

THEOREM 10. [2] Let JZ be a real Hilbert space. Suppose that dim ¢ < oo,
Let A,B € HB(H). Then

ALB & s, |Ax]|=|A, AxLBx.

We are now ready to prove a real version of the Bhatia—Semrl theorem using these
concepts. Our approach will revolve around Lemma 3 (in particular (i7)).

Proof. We start with proving ”<". Suppose that there is a vector x such that
||Ax|| = ||A]|, AxLyBx. Thus we have (Ax|Bx) =0 hence

1A = [|Ax]|* = (Ax|Ax) = (Ax|Ax) +0
= (Ax|Ax) + A (Ax|Bx) = (Ax|Ax+ ABx)
< [JAx]|-[|Ax+ABx]|| < [|A]]-[|A + AB]|.
Therefore ||A|| < ||[A+ABJ| for L € R.

Now we prove the converse. Let us consider V := Z(5) and «f := B(H). We
define a inner product

(1) gy : B(A)<B(A)—B(H),  (MIN) g ) :=MN.
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Then, the space V = %(7¢) can be regarded as a Hilbert C*-module over itself with
of = (). Fix arbitrarily two vectors x,y € .. Define a linear and continuous
functional

@, €B(H)—R by ai(T):=(Txly),,, TEecRBH).

Now we define a set A" := {a;, € ()" : ||x|| = ||y|| = 1}. It is easy to check that
the set ./ is *-norming. Let us consider a set ¥ := {I}, where I € B(), I(x) =x.
The set D is norming.

We will consider only inner products (-[-) )+ B(H) x B(H) — B(H),
([} + A x A — R, and to shorten the notation we will write (-[-) 5 := (-[*) 5(»)
and () == (-[-) -

We define the the following set:

Fyim A, (1) )+ (1=, (1)) €BH) 2 X300 € Sy A€ [0,1]}

compare (1).

Note that A1 ;B yields A L ;BB forall o, € R (i.e., L is full homogeneous).
Without loss of generality, we may assume that ||A]|=1.

Now, suppose that AL ;B. Applying Lemma 3 (in particular (7i)) we obtain

|A|| = sup{v*(A) : Bekerv*, ve.F}.
There are v €.%, such that v}(A)— ||A|| and B€kerv;. This means that

vi(A) = Muag, , ((T1A) ) +(1=Mn)ay, , ((T|A) 5)
= hod’ , (PFA)+(1—Dp)a, , (I'A)

XnsYn Un,Wp
= ha,, (A)+(1=2n)ay, ,, (A)

= A (Axp|yn) +(1=2A,) (Auy|wy,) .
Therefore, we obtain
Aoy (A |yn) + (1= 20) (At | W) — [|A]l- (29)
Moreover, v;(B) = 0. In a similar way one can prove
D (Bl i)+ (1= 1) (Butalw,) = 0. (30)

The set [0, 1] is compact. Since 7 is finite dimensional, S, is a compact set. There-
fore, without loss of generality, we may assume that there are vectors x,y,u,w in S,
anumber A € [0,1] and subsequences {x,, }, {vn, }. {tn, }» {wn, }, {An;} such that
Xny =X, Y =, Un, — U, Wy, =W, A,, — A . Now the condition (29) becomes

A (Ax]y)+(1=2) (Aulw) = [|A]]. (€2

We get from (30)
A (Bx|y)+(1—2) (Bulw) = 0. (32)

We will show that (Ax|y) =1 =(Au|w). We have
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1= [|A]| = A (Ax]y)+(1-2) (Au|w)

and (Ax|y), (Aulw) € [—1,1]. It is easy to check that 1 € Ext[—1,1]. So, (Ax|y) =1
and (Aulw) = 1.

We have (Ax|y) =1 and (Ax|y) < ||Ax||-|ly|| < 1-1 =1. This implies (Ax|y) =
[[Ax]|-[[y[| and [|Ax[|=1={ly]|. So, Ax =y, and hence [|Ax|| = [|A]|.

In a similar way, one checks that Au = w and |Au|| = ||A]|. Putting Ax =y,
Au = w into (32), we get

A (Bx|Ax)+(1—2) (Bu|Au) = 0. (33)

It follows from (33) that (Bx|Ax) < 0 < (Bu|Au) or (Bu|Au) < 0 < (Bx|Ax). Without
loss of generality, we may assume that

(Bx|Ax) < 0 < (Bul|Au). (34)
We define a set .#Z (A) := {x € S : ||Ax|| = ||A||}. It is obvious that .Z(A) > 2. We
have two possibilities:

Possibility 1: If .4 (A) =2, then x =u or x = —u. By (34) we obtain
(Bx|Ax) < 0 < (Bu|Au) = (B(+x)|A(%x)) = (Bx|Ax),

hence (Bx|Ax) =0.
Possibility 2: If .# (A) > 2, then .# (A) is connected. Indeed, fix arbitrarily two
linearly independent vectors a,b € .#(A), i.e., a # b # —a. Define n: [0,1] — S

by n(z) := Miﬂiz“ It is easy to check that 1 is a path and ||A(n(z))|| = ||A|| for

all 7 € [0,1]. This means that 11([0,1]) C .#(A), and therefore .# (A) is connected.
Now, we define a mapping ¢: .#Z(A) — R by @(v) := (Bv|Av), v € #(A).
Inequalities (34) yield ¢(x) <0 < ¢(u). The mapping ¢ is continuous. Moreover, the
set .# (A) is connected. Using the Darboux property we get ¢(x,) = 0 for some x, €
A (A). Thus for the vector x, € .#(A) we have (Bx,|Ax,) =0 and ||Ax,|| = ||A]. i.e.,
|Ax,|| = ||A|| and Ax, LBx,. Whence, in any case 3yes,, [|Ax||=||Al|, AxLBx. O
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