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Abstract. It is well known that contractive representations of the disk algebra are completely
contractive. The Neil algebra A is the subalgebra of the disk algebra consisting of those func-
tions f for which f ′(0) = 0 . There is a complete isometry from the algebra R(W) of rational
functions with poles off of the distinguished variety W = {(z,w) : z2 = w3, |z| < 1} to A . We
prove that there are contractive representations of A which are not completely contractive, and
furthermore provide a Kaiser and Varopoulos inspired example of a representation π of R(W)
whereby π(z) and π(w) are contractions, yet π is not contractive. We also present a character-
ization of those contractive representations of R(W) that are completely contractive. Finally, we
show that by contrast, for the variety V = {(z,w) : z2 = w2, |z| < 1} , all contractive represen-
tations of the algebra R(V ) of rational functions with poles off V are completely contractive,
and we as well provide a simplified proof of Agler’s analogous result over an annulus.

1. Introduction

Let D denote the unit disk in the complex plane and D its closure. The disk
algebra, A(D) , is the closure of analytic polynomials in C(D) , the space of continuous
functions on D with the supremum norm. The Neil algebra is the subalgebra of the
disk algebra given by

A = { f ∈ A(D) : f ′(0) = 0} = C+ z2
A(D).

Constrained algebras, of which A is one of the simplest examples, are of current in-
terest as a venue for function theoretic operator theory, such as Pick interpolation. See
for instance [15, 26, 20, 10] and the references therein.

Let H denote a complex Hilbert space and B(H) the bounded linear operators on
H . A unital representation π : A → B(H) on H is contractive if ‖π( f )‖� ‖ f‖ for all
f ∈A , where ‖ f‖ represents the norm of f as an element of C(D) and ‖π( f )‖ is the
operator norm of π( f ) . Unless otherwise indicated, in this article representations are
unital and contractive.
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Let Mn(A ) denote the n× n matrices with entries from A . The norm ‖F‖ of
an element F = ( f j,�) in Mn(A ) is the supremum of the set {‖F(z)‖ : z ∈ D} , where
‖F(z)‖ is the operator norm of the n×n matrix F(z) . Applying π to each entry of F ,

π (n)(F) = 1n⊗π(F) =
(
π( f j,�)

)

produces an operator on the Hilbert space
⊕n

1 H and ‖π (n)(F)‖ is then its operator
norm. The mapping π is completely contractive if for each n and F ∈ Mn(A ) ,

‖π (n)(F)‖ � ‖F‖.

The following theorem is the first main result of this article.

THEOREM 1.1. There exists a finite dimensional Hilbert space and a unital con-
tractive representation π : A → B(H) which is not completely contractive. In fact,
there exists a 2× 2 matrix rational inner function F (with poles outside of the closed
disk) such that ‖F‖ � 1 , but ‖π(F)‖ > 1 .

Theorem 2.1 gives a necessary and sufficient condition for a unital representation
of A to be completely contractive. An operator T ∈ B(H) is a contraction if it has
operator norm less than or equal to one. Since the algebra A is generated by z2 and
z3 , a contractive representation π of A is determined by the pair of contractions X =
π(z2) and Y = π(z3) . In the spirit of the examples of Kaiser and Varopoulos [28] for
the polydisk Dd (d > 2), Corollary 3.2 asserts the existence of commuting contractions
X and Y such that X3 = Y 2 , but for which the unital representation τ of A with
X = τ(z2) and Y = τ(z3) is not contractive.

Given 0 < q < 1, let A denote the annulus {z∈ C : q < |z|< 1} and A(A) the an-
nulus algebra, consisting of those functions continuous on the closure of A and analytic
in A in the uniform norm. A well known theorem of Agler [1] says that contractive
representations of A(A) are completely contractive. If W is a variety in C

2 which
intersects the (topological) boundary of the bidisk D2 only in the torus T2 , then the set
V = W ∩D2 is called a distinguished variety. The annuli (parametrized by 0 < q < 1)
can be identified with the distinguished varieties determined by

z2 =
w2− t2

1− t2w2

for 0 < t < 1 [27, 12, 13]. The limiting case, z2 = w2 corresponds to two disks in-
tersecting at the origin (0,0) ∈ C2 . Section 6 contains a streamlined proof of Agler’s
result which readily extends to show that contractive representations of the algebra as-
sociated to the variety z2 = w2 are also completely contractive. See Theorem 6.6 and
Corollary 6.11.

The remainder of this introduction places Theorems 1.1 and 2.1 and Corollary 3.2,
as well as Theorem 6.6 and Corollary 6.11 in the larger context of rational dilation.
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1.1. Rational dilation

The Sz.-Nagy dilation theorem states that every contraction operator dilates to a
unitary operator. Unitary operators can be characterized in various ways, and in partic-
ular, they are normal operators with spectrum contained in the boundary of D ; that is,
T . A corollary of the Sz.-Nagy dilation theorem is the von Neumann inequality, which
implies that T is a contraction if and only if ‖p(T )‖ � ‖p‖ for every polynomial p ,
where ‖p‖ is the again the norm of p in C(D) .

More generally, following Arveson [8], given a compact subset X of Cd , let R(X)
denote the algebra of rational functions with poles off X with the norm ‖r‖X equal to
the supremum of the values of |r(x)| for x ∈ X . The set X is a spectral set for the
commuting d -tuple T of operators on the Hilbert space H if the spectrum of T lies
in X and ‖r(T )‖ � ‖r‖X for each r ∈ R(X) . If N is also a d -tuple of commuting
operators with spectrum in X and acting on the Hilbert space K , then T dilates to N
provided there is an isometry V : H → K such that r(T ) = V ∗r(N)V for all r ∈ R(X) .
The rational dilation problem asks: if X is a spectral set for T does T dilate to a tuple
N of commuting normal operators with spectrum in the Shilov boundary of X relative
to the algebra R(X)?

Choosing X to be the closure of a finitely connected domain D in C with analytic
boundary, it turns out the Shilov boundary is the topological boundary and the problem
has a positive answer when X is an annulus [1]. On the other hand, for planar domains
of higher connectivity, rational dilation fails, at least when the Schottky double is hy-
perelliptic (a condition which is automatic for triply connected domains – though it is
felt that for domains of higher connectivity this requirement is probably an artifact of
the proof and rational dilation will likewise fail without this extra condition) [18, 3, 25].

With the choice of X=D
d
, the rational dilation problem becomes, if T=(T1, . . . ,Td)

is a tuple of commuting operators acting on a Hilbert space H and if

‖p(T1, . . . ,Td)‖ � ‖p‖X

for every analytic polynomial p = p(z1, . . . ,zd) in d -variables, does there exist a Hilbert
space K , an isometry V : H → K , and a commuting tuple N = (N1, . . . ,Nd) of normal
operators on K with spectrum in Td (the Shilov boundary of X ) such that p(T ) =
V ∗p(N)V for every polynomial p? Andô’s theorem implies the result is true for the
bidisk D2 . An example due to Parrott implies that rational dilation fails for the polydisk
Dd , d > 2. Thus as things stand, the rational dilation problem has been settled for the
disk, the annulus, hyperelliptic planar domains, and for polydisks.

Arveson [8] gave a profound reformulation of the rational dilation problem in
terms of contractive and completely contractive representations. A tuple T acting on
the Hilbert space H with spectrum in X determines a unital representation of πT of
R(X) on H via πT (r) = r(T ) and the condition that X is a spectral set for T is equiv-
alent to the condition that this representation is contractive.

In this context, a representation π of R(X) is completely contractive if for all n
and all F ∈ Mn(R(X)) , π (n)(F) := (π(Fi, j)) is contractive, the norm of F being given
by ‖F‖∞ = sup{‖F(x)‖ : x ∈ X} with ‖F(x)‖ the operator norm of F(x) . Arveson
showed that T dilates to a tuple N with spectrum in the (Shilov) boundary of X (with
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respect to R(X)) if and only if πT is completely contractive. Thus the rational dilation
problem can be reformulated as: Is every contractive representation of R(X) completely
contractive?

Let W = {(z,w) ∈C2 : z2 = w3} . The mapping from R(W ) to the Neil algebra A
sending p(z,w) to p(t2,t3) is a (complete) isometry. Much of this paper concentrates
on studying the connection between contractive and completely contractive represen-
tations of A , though the results are readily translated to R(W ) . Thus, Theorem 1.1
implies that there are contractive representations of R(W ) which are not completely
contractive.

Note that excluding a cusp at (0,0) , W is a manifold, and this cusp makes things
just different enough so that R(W ) is a tractable though nontrivial algebra on which to
study the rational dilation problem. Indeed, many mathematicians have found distin-
guished varieties to be attractive venues for function theoretic operator theory [26, 5, 6,
4, 21, 29, 20] and in particular, they provide interesting examples when trying to delin-
eate the border between those domains where rational dilation holds and those where it
fails. Theorem 6.6 say that on the distinguished variety V = {(z,w) ∈ D2 : z2 = w2} ,
every contractive representation of R(V ) is completely contractive; that is, rational
dilation holds.

While rational dilation fails for the Neil parabola, in Theorem 2.1 we also provide
a characterization of the completely contractive representations of A [14]. However,
this positive result is not used to establish Theorem 1.1. Rather the proof of Theorem1.1
essentially comes down to a cone separation argument. The mechanics of this argument
appear in Section 3. The construction of the counterexample and preliminary results are
in Section 4. The proof of Theorem 1.1 concludes in Section 5, while the statement and
proof of Theorem 2.1 and general facts about representations of A are the subject of
Section 2.

The article concludes with Section 6, which contains a proof of Agler’s rational
dilation theorem for the annulus that takes advantage of subsequent developments in the
theory of matrix-valued functions of positive real part on multiply connected domains.
As a limiting case, we prove Theorem 6.6, which shows that rational dilation holds for
the algebra R(V ) , V = {(z,w)∈D2 : z2 = w2} . Corollary 6.11 then gives a reasonably
tractable condition to determine if a given representation of R(V ) is contractive, and
hence completely contractive.

2. Representations of A

In this section we characterize the completely contractive representations of A
and consider some examples. The characterization of contractive representations is
essentially contained in the paper [16] on test functions for A , and this is described in
the next section.

As a (unital) Banach algebra, A is generated by the functions z2 and z3 . It
follows that any bounded unital representation is determined by its values on these
two functions. If π : A → B(H) is a bounded representation, X = π(z2) and Y =
π(z3) , then X ,Y are commuting operators which satisfy X3 = Y 2 . If we further insist
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that π is contractive, then X and Y are contractions. In summary, every contractive
representation π : A → B(H) determines a pair of commuting contractions X ,Y such
that X3 = Y 2 . However, as we see in Corollary 3.2, not every such pair gives rise to a
contractive representation.

The following theorem characterizes the completely contractive representations of
A . For Hilbert spaces H ⊆ K , let PH denote the orthogonal projection of K onto H
and |H the inclusion of H into K .

THEOREM 2.1. ([14]) A representation π : A → B(H) is completely contractive
if and only if there is a Hilbert space K ⊃ H and a unitary operator U ∈ B(K) such
that for all n � 0 , n �= 1 ,

π(zn) = PHUn|H . (1)

Theorem 2.1 is a consequence of the Sz.-Nagy dilation theorem together with
applications of the Arveson extension and Stinespring dilation theorems. In the case
of A(D) , by the Sz.-Nagy dilation theorem every completely contractive represen-
tation π : A(D) → B(H) is determined by a contraction T , with π(zn) = Tn , and
Tn = PHUn|H for some unitary U and all n � 0. Thus a simple way to construct
completely contractive representations of A is to fix a contraction T and restrict: put
π(z2) = T 2 and π(z3) = T 3 . However, in spite of Theorem 2.1 it is not the case that
every completely contractive representation of A arises in this way, as we see in Ex-
ample 2.3 below.

Proof of Theorem 2.1. Let π : A → B(H) be a unital, completely contractive
representation. Let A ∗ ⊆ C(T) denote the set of complex conjugates of functions in
A . Then A +A ∗ is an operator system and ρ : A +A ∗ → B(H) given by

ρ( f +g∗) = π( f )+ π(g)∗

is well defined. Since π is unital and A ∩A ∗ = C1, ρ is completely positive. By
the Arveson extension theorem, ρ extends to a unital, completely positive (ucp) map
σ : C(T) → B(H) . By the Stinespring theorem there is a larger Hilbert space K ⊃ H ,
and a unitary U ∈ B(K) such that for all n � 0,

σ(zn) = PHUn|H .

Since π(zn) = σ(zn) for all nonnegative n �= 1, one direction follows.
Conversely, suppose that there is a unitary operator U ∈ B(K) such that for all

n � 0, n �= 1, π(zn) = PHUn|H . Then π̃ defined as π̃(zn) = Un , n ∈ Z defines a
completely contractive representation of C(T) . So π̃ restricted the operator system
A ∩A ∗ is completely positive, as is ρ , its compression to H , by the Stinespring
dilation theorem. Since unital completely positive maps are completely contractive,
π = ρ |A is completely contractive. �

REMARK 2.2. In the above proof, obviously T = PHU |H is a contraction. How-
ever since the restriction of σ to A(D) is not necessarily multiplicative, we cannot
conclude that π(z2) = T 2 and π(z3) = T 3 . Indeed the following example illustrates
this concretely:
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EXAMPLE 2.3. Let K be a separable Hilbert space with orthonormal basis {e j} j∈Z ,
and let U be the bilateral shift. Let H ⊆ K be defined as H = e0∨∨∞

n=2 en . Then H is
invariant for U2 and U3 , and so by Theorem 2.1, π given by π(zn) = PHUn|H =Un|H ,
n � 0, n �= 1, is a completely contractive representation of A .

If it were the case that for some T ∈ B(H) , T 2 = π(z2) and T 3 = π(z3) , it would
follow that

e3 = U3e0 = π(z3) = π(z2)Te0.

However,
〈
π(z2)en,e3

〉
=

〈
U2en,e3

〉
= 0 for n � 0, n �= 1, and hence e3 is orthogonal

to the range of π(z2) . Thus there is no way to define Te0 so that e3 = π(z2)Te0 , and
so there can be no such T .

EXAMPLE 2.4. If π : A → B(H) is a unital contractive representation, then the
image of the generators z2,z3 of A are evidently contractions, S = π(z2) and T =
π(z3) . Further S3 = T 2 . By Andô’s Theorem, there exists a pair of commuting unitaries
X and Y on a larger Hilbert space K containing H such that

SnTm = V ∗XnYmV,

where V is the inclusion of H into K . Because X and Y are unitary and commute,
X∗Y = YX∗ by the Putnam-Fuglede theorem. The operator U = X∗Y is a contraction,
but unfortunately, there is no reason to expect that U2 = X and U3 =Y or equivalently,
X3 =Y 2 . In general then, it will not be the case that V ∗U2n+3mV = SnTm = π(z2n+3m) .
Indeed, Theorems 1.1 and Theorem 2.1 imply that π contractive is not a sufficient
assumption to guarantee the existence of such a U .

It is worth noting that the construction of U = X∗Y via Ando’s Theorem did not
use the full strength of the contractive hypothesis on π , but rather only that S and T
are commuting contractions with S3 = T 2 . Perhaps surprisingly, in view of Corollary
3.2 below, the representation π of A determined by π(z2) = S and π(z3) = T need
not even be contractive.

3. The set of test functions and its cone

Given λ ∈ D , let

ϕλ (z) =
z−λ

1−λ ∗z
, (2)

and let
ψλ (z) = z2ϕλ (z) (3)

the (up to a unimodular constant) Blaschke factor with zero at λ , times z2 . It will be
convenient to let

ψ∞ = z2

and at the same time let ∞ denote the point at infinity in the one point compactification
D∞ of the unit disk D . Let

Ψ = {ψλ : λ ∈ D∞},
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with the topology and Borel structure inherited from D∞ . We refer to this as a set of
test functions. It has the properties that it separates the points of D and for all z ∈ D ,
supψ∈Ψ |ψ(z)| < 1.

Recall that for a set X and C∗ -algebra A , a function k : X ×X → A is called a
kernel. It is a positive kernel if for every finite subset {x1, . . . ,xn} of X , (k(xi,x j)) ∈
Mn(A ) is positive semidefinite.

Let M(Ψ) be the space of finite Borel measures on the set of test functions. Given
a subset S of D , denote by M+(S) = {μ : S× S → M(Ψ)} the collection of positive
kernels on S× S into M(Ψ) . Write μxy for the value of μ at the pair (x,y) . By μ
being positive, we mean that for all finite sets G ⊆ S and all Borel sets ω ⊆ Ψ , the
matrix

(μx,y(ω))x,y∈G (4)

is positive semidefinite. For example, if μ is identically equal to a fixed positive mea-
sure ν , or more generally is of the form μxy = f (x) f (y)∗ν for a fixed positive measure
ν and bounded measurable function f : C → D , or more generally still is a finite sum
of such terms, then it is positive.

Our starting point is the following result from [16, Theorem 3.8] (stated there for
functions of positive real part):

PROPOSITION 3.1. An analytic function f in the disk belongs to A and satisfies
‖ f‖∞ � 1 if and only if there is a positive kernel μ ∈ M+(D) such that

1− f (x) f (y)∗ =
∫

Ψ
(1−ψ(x)ψ(y)∗)dμxy(ψ). (5)

for all x,y ∈ D . Furthermore, Ψ is minimal, in the sense that there is no proper closed
subset of E ⊆ Ψ such that for any f with ‖ f‖∞ � 1 , there exists a μ ∈ M+(D) such
that

1− f (x) f (y)∗ =
∫

E
(1−ψ(x)ψ(y)∗)dμxy(ψ). (6)

For E ⊆ Ψ a closed subset, let C1,E denote the cone consisting of the kernels

(∫
E
(1−ψ(x)ψ(y)∗)dμx,y(ψ)

)
x,y∈D

. (7)

(Equivalently, we could consider only those μ such that μxy is supported in E for all
x,y .) In particular, if we choose E = {z2,z3} , it follows from the above proposition
that there exists a function f ∈A with ‖ f‖∞ � 1 such that 1− f (x) f (y)∗ /∈C1,E . This
yields in our context an analogue of the Kaiser and Varopoulos example for the tridisk:

COROLLARY 3.2. There exists a pair of commuting contractive matrices X ,Y
with X3 =Y 2 , but such that the representation of A determined by π(z2)= X , π(z3) =
Y is not contractive.
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Proof. By a standard cone separation argument (as, for example, in the proof of
Proposition 3.5), there is a bounded representation π of A (determined by a pair of
matrices X ,Y with spectrum in D) such that ‖π(ψ)‖� 1 for each ψ ∈E but ‖π( f )‖>
1. In particular, if we take E to be the closed set {z2,z3} , we see that X = π(z2) and
Y = π(z3) satisfy the conditions of the corollary. �

Because a cone separation argument is used, it is unfortunately not possible by
these means to explicitly construct an example of such a representation.

3.1. The matrix cone

To study the action of representations on M2(A ) , consider a finite subset F ⊆D .
As usual, M2(C) stands for the 2×2 matrices with entries from C . Let X2,F denote
the set of all kernels G : F ×F → M2(C) and L2,F ⊆ XF denote the selfadjoint
kernels F : F ×F → M2(C) , in the sense that F(x,y)∗ = F(y,x) . Finally, write C2,F

for the cone in L2,F of elements of the form

(∫
Ψ(1−ψ(x)ψ(y)∗)dμx,y(ψ)

)
x,y∈F

(8)

where μ = (μx,y)∈M+
2 (F ) is a kernel taking its values μx,y in the 2×2 matrix valued

measure on Ψ such that the measure

M(ω) =
(
μx,y(ω)

)
x,y (9)

takes positive semidefinite values (in MN(M2(C))). Given f : F → C
2 , the kernel

( f (x) f (y)∗)x,y∈F is called a square.

LEMMA 3.3. The cone C2,F is closed and contains all squares.

Proof. For x ∈ F ,
sup
ψ∈Ψ

|ψ(x)| < |x|.

Hence as F is finite, and Ψ is compact, there exists 0 < κ � 1 such that for all x ∈F
and ψ ∈ Ψ

1−ψ(x)ψ(x)∗ � κ .

Consequently, since Γ defined by

Γ(x,y) =
∫

Ψ
(1−ψ(x)ψ(y)∗)dμx,y(ψ)

is in C2,F ,
1
κ

Γ(x,x) � μx,x(Ψ),

where the inequality is in the sense of the positive semidefinite order on 2×2 matrices.
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Now suppose (Γn) is a sequence from C2,F converging to some Γ . For each n
there is a measure μn such that Γn given by

Γn(x,y) =
∫

Ψ
(1−ψ(x)ψ(y)∗)dμn

x,y(ψ).

Hence there exists a κ̃ > 0 such that for all n and all x ∈ F , κ̃ � Γn(x,x) . Conse-
quently, for all n and all x ∈ F ,

κ̃
κ I � μn

x,x.

By positivity of the μn s, it now follows that the measures μn
x,y are uniformly bounded.

Hence there exists a subsequence μn j and a measure μ such that μn j converges weak-
∗ to μ , which therefore is positive. We conclude that

Γ =
∫

Ψ
(1−ψ(x)ψ(y)∗)dμx,y(ψ) ∈C2,F ,

establishing the fact that C2,F is closed.
Now let f : F →C2 be given. Let δ denote the unit scalar point mass at z3 . Then

for ω ⊆ Ψ a Borel subset,

μx,y(ω) = f (x)
1

1− x3y∗3
δ (ω) f (y)∗

defines a positive MF (C)-valued measure and
∫

Ψ
(1−ψ(x)ψ(y)∗)dμx,y(ψ) = f (x) f (y)∗,

showing that C2,F contains the squares. �
Elaborating on the construction at the end of the last proof, if

ν(ω) =
(
νx,y(ω)

)
x,y∈F

is positive semidefinite for every Borel subset ω of Ψ , each νxy a scalar valued mea-
sure, and if f : F → C2 , then

μx,y(ω) = f (x)νx,y(ω) f (y)∗,

defines an MF (M2(C))-valued positive measure μ and
∫

Ψ
(1−ψ(x)ψ(y)∗)dμx,y(ψ) ∈C2,F .

We therefore have the following from [16] (see also [9]).

PROPOSITION 3.4. If g ∈ A is analytic in a neighborhood of the closure of the
disk and if ‖g‖∞ � 1 , then 1−g(x)g(y)∗ ∈C1,F (1) . Thus, if f : F → C2 , then

f (x)(1−g(x)g(y)∗) f (y)∗ ∈C2,F .
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3.2. The cone separation argument

Continue to let F denote a finite subset of D . Given F ∈ M2(A ) , let ΣF,F

denote the kernel
ΣF,F = (1−F(x)F(y)∗)x,y∈F . (10)

Let I denote the ideal of functions in A which vanish on F . Write q : A →A /I for
the canonical projection, which is completely contractive. We use the standard notation
σ(T ) for the spectrum of an operator T on Hilbert space, as well as Ft for the transpose
of the matrix function F . Thus, Ft(z) = F(z)t . Obviously, when F ∈ M2(A ) , Ft is
as well, and ‖F‖∞ = ‖Ft‖∞ .

PROPOSITION 3.5. If F ∈ M2(A ) and ‖F‖ � 1 , but ΣF,F /∈ C2,F , then there
exists a Hilbert space H and representation τ : A /I → B(H) such that for all a ∈ A ,

(i) σ(τ(a)) ⊆ a(F );

(ii) ‖τ(q(a))‖ � 1 when ‖a‖ � 1 ; but

(iii) ‖τ(2)(q(Ft))‖ > 1 ;

that is, the representation τ ◦ q is contractive, but not completely contractive.

Proof. The proof proceeds by a cone separation argument: the representation is
obtained by applying the GNS construction to a linear functional that separates ΣF,F

from C2,F .
The cone C2,F is closed and by assumption ΣF,F is not in the cone. Hence there is

an R-linear functional Λ : LF → R such that Λ(C2,F ) � 0, but Λ(ΣF,F ) < 0. Given
f : F → C2 (that is, f ∈ (C2)F ), recall that the square f f ∗ := ( f (x) f (y)∗)x,y∈F is
in the cone and hence Λ( f f ∗) � 0. Since every element of XF can be expressed
uniquely in the form G = U + iV where U,V ∈ LF , there is a unique extension of Λ
to a C-linear functional Λ : XF → C . With this extended Λ , let H denote the Hilbert
space obtained by giving (C2)F the (pre)-inner product

〈 f ,g〉 = Λ( f g∗)

and passing to the quotient by the space of null vectors (those f for which Λ( f f ∗) = 0
– since F is finite, the quotient will be complete).

Define a representation ρ of A on H by

ρ(g) f (x) = g(x) f (x),

where the scalar valued g multiplies the vector valued f entrywise.
If g ∈ A is analytic in a neighborhood of the closure of the disk and ‖g‖∞ � 1,

then by Proposition 3.4, f (x)(1−g(x)g(y)∗) f (y) ∈C2,F . Thus,

〈 f , f 〉− 〈ρ(g) f ,ρ(g) f 〉 = Λ(( f (x)(1−g(x)g(y)∗) f (y)∗)x,y∈F ) � 0. (11)
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Hence, if ‖g‖∞ � 1, then ‖ρ(g)‖ � 1 and ρ is a contractive representation of A .
Moreover, since the definition of ρ depends only on the values of g on F , it passes
to a contractive representation τ : A /I → B(H) . The restriction of A to F separates
points of F (indeed, the elements of Ψ do so), and so it follows that for each a ∈ A
the eigenvalues of the matrix representing τ(a) constitute the set a(F ) . This proves
(i) and (ii).

To prove (iii), let {e1,e2} denote the standard basis for C2 and let [e j] : F → C2

be the constant function [e j](x) = e j . Note that {eie∗j}2
i, j=1 is a system of 2×2 matrix

units. We find

ρ (2)(Ft)([e1]⊕ [e2]) =
(

F1,1e1 +F2,1e2

F1,2e1 +F2,2e2

)
.

Since

(F1,1e1 +F2,1e2)(F1,1e1 +F2,1e2)∗

= F1,1F
∗
1,1e1e

∗
1 +F2,1F

∗
1,1e2e

∗
1 +F1,1F

∗
2,1e1e

∗
2 +F2,1F

∗
2,1e2e

∗
2

=
(

F1,1F∗
1,1 F1,1F∗

2,1
F2,1F∗

1,1 F2,1F∗
2,1

)
,

and

(F1,2e1 +F2,2e2)(F1,2e1 +F2,2e2)∗

= F1,2F
∗
1,2e1e

∗
1 +F2,2F

∗
1,2e2e

∗
1 +F1,2F

∗
2,2e1e

∗
2 +F2,2F

∗
2,2e2e

∗
2

=
(

F1,1F∗
1,1 F1,1F∗

2,1
F2,1F∗

1,1 F2,1F∗
2,1

)
,

it follows that 〈
ρ (2)(Ft)([e1]⊕ [e2]),ρ (2)(Ft)([e1]⊕ [e2])

〉

= Λ
((

F1,1F∗
1,1 +F1,2F∗

1,2 F1,1F∗
2,1 +F1,2F∗

2,2
F2,1F∗

1,1 +F2,2F∗
1,2 F2,1F∗

2,1 +F2,2F∗
2,2

))

= Λ(FF∗),

and so 〈
(I−ρ (2)(Ft)∗ρ (2)(Ft))[e1]⊕ [e2], [e1]⊕ [e2]

〉
< 0.

We conclude that ‖ρ(Ft)‖ > 1, and since by assumption ‖F‖∞ � 1, the representation
ρ is not 2-contractive, and thus not completely contractive. �

REMARK 3.6. Though it is not needed in what follows, observe that the converse
of the first part of Proposition 3.5 is true: If T is an operator on Hilbert space with
spectrum in F , if ΣF,F ∈C2,F and if ψ(T ) is contractive for all ψ ∈ Ψ , then F(T )
is also contractive.

A proof follows along now standard lines (see, for instance, [17], where the needed
theorems are proved for scalar valued functions, though the proofs remain valid in the
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matrix case). The assumption that ΣF,F ∈C2,F means that F has a Ψ-unitary colliga-
tion transfer function representation. Since the operator T has spectrum in the finite set
F , it determines a representation of A which sends bounded pointwise convergent se-
quences in M2(A ) to weak operator topology convergent sequences. Representations
of M2(A ) with this property and for which ψ(T ) is contractive for all ψ ∈ Ψ , are
contractive.

4. Construction of the counterexample preliminaries

For λ ∈ D\{0} , let

ϕλ =
z−λ

1−λ ∗z
.

Fix distinct points λ1,λ2 ∈ D\{0} . As a shorthand notation, write ϕ j for ϕλ j
. Set

Φ =
(

ϕ1 0
0 1

)
U

(
1 0
0 ϕ2

)
, (12)

where U is a 2×2 unitary matrix with no non-zero entries. To be concrete, choose

U =
1√
2

(
1 1
1 −1

)
.

In particular Φ is a 2×2 matrix inner function with detΦ(λ ) = 0 at precisely the two
nonzero points λ1 and λ2 . The function

F = z2Φ (13)

is in M2(A ) and is a rational inner function, so ‖F‖∞ = 1.
Ultimately we will identify a finite set F and show that ΣF,F �∈ C2,F and thus,

in view of Proposition 3.5 establish Theorem 1.1. In the remainder of this section we
collect some needed preliminary lemmas.

LEMMA 4.1. Given distinct points λ1,λ2 ∈D\{0} and a 2×2 unitary matrix U ,
let

Θ =
(

ϕ1 0
0 1

)
U

(
1 0
0 ϕ2

)
, (14)

where ϕ j = ϕλ j
. The matrix U is diagonal; that is, there exist unimodular constants s

and t such that

Θ =
(

sϕ1 0
0 tϕ2

)
,

if and only if there exist 2×2 unitaries V and W such that

Θ = V ∗
(

ϕ1 0
0 ϕ2

)
W.
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Proof. The forward implication is trivial. For the converse, let {e1,e2} denote
the standard basis for C2 . Evaluating at λ2 it follows that We2 = αe2 . Because W
is unitary, it now follows that W is diagonal. A similar argument shows that V is
diagonal, and the result follows. �

LEMMA 4.2. Suppose μi, j are 2×2 matrix-valued measures on a measure space
(X ,Σ) for i, j = 0,1 . If μi, j(X) = I for all i, j and if for each ω ∈ Σ the 4×4 matrix-
valued measure (block 2×2 matrix with 2×2 matrix entries)

(
μi, j(ω)

)2
i, j=1

is positive semidefinite, then μi, j = μ1,1 for each i, j = 1,2 .

Proof. Fix a unit vector f ∈ C2 and let

νi, j(ω) =
〈
μi, j(ω) f , f

〉
.

It follows that νi, j(X) = 1 and for each ω ∈ Σ

γ(ω) =
(
νi, j(ω)

)2
i, j=1

is positive semidefinite. On the other hand,

γ(X)− γ(ω) � 0

and since γ(X) is rank one (with a one in each entry), there is a constant c = cω such
that

γ(ω) = cγ(X).

Consequently, νi, j(ω) = ν1,1(ω) . By polarization it follows that μi, j = μ1,1 for all
i, j . �

LEMMA 4.3. There exist independent vectors v1,v2 ∈ C
2 and, for any finite sub-

set F of the disc, functions a,b : F →C2 in the span of {x2kλ1
(x)v1,x2kλ2

(x)v2} such
that

I−Φ(x)Φ(y)∗

1− xy∗
= a(x)a(y)∗ +b(x)b(y)∗.

Proof. Let MΦ denote the operator of multiplication by Φ on H2
C2 , the Hardy-

Hilbert space of C2 -valued functions on the disk. Because Φ is unitary-valued on the
boundary, MΦ is an isometry. In fact, MΦ is the product of three isometries in view
of Equation (12). The adjoints of the first and third have one dimensional kernels. The
middle term is unitary and so its adjoint has no kernel. Thus, the kernel of M∗

Φ has
dimension at most two. It is evident that kλ1

e1 is in the kernel of M∗
Φ . Choose a unit

vector v2 in C2 with entries α and β �= 0 such that
(

αϕλ1
(λ2)

β

)
= Ue2,
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with U the unitary appearing in Equation (12). That such a choice of α and β �= 0
is possible follows from the assumption that λ1 �= λ2 which ensures that ϕλ1

(λ2) �= 0,
and the assumption that U has no non-zero entries, giving β �= 0. Further, with this
choice of v2 a simple calculation shows that kλ2

v2 is also in the kernel of M∗
Φ . Hence,

the dimension of the kernel of M∗
Φ is two. Since MΦ is an isometry, I−MΦM∗

Φ is the
projection onto the kernel of M∗

Φ .
Choose an orthonormal basis {a,b} for the kernel of M∗

Φ so that I −MΦM∗
Φ =

aa∗+bb∗ . It now follows that for vectors v,w ∈ C2 ,
〈

I−Φ(x)Φ(y)∗

1− xy∗
v,w

〉
=

〈
(I−MΦM∗

Φ)kyv,kxw
〉

=
〈
(aa∗ +bb∗)kyv,kxw

〉
=

〈
kyv,a

〉〈a,kxw〉+
〈
kyv,b

〉〈b,kxw〉
=〈(a(x)a(y)∗ +b(x)b(y)∗)v,w〉. �

The following is well known.

LEMMA 4.4. Let s be the Szegő kernel,

s(x,y) =
1

1− xy∗
.

If x1, . . . ,xm and y1, . . . ,ym are two m-tuples each of distinct points in the unit disk D ,
then the matrix

M =
(
s(x j,y�)

)n
j,�=1

is invertible.

Proof. Suppose Mc = 0 where c is the vector with entries c1, . . . ,cm . Let

r(x) = ∑c�s(x,y�) = [(1− xy∗1) · · · (1− xy∗m)]−1 ∑c�p�(x),

for polynomials p� of degree at most m−1. Hence r is a rational function with numer-
ator a polynomial p of degree at most m− 1 and denominator which does not vanish
on D . The hypotheses imply that p(x j) = 0 for j = 1,2, . . . ,m . Hence p is identically
zero, as then is r . Since the kernel functions {s(·,t�) : � = 1,2, . . . ,m} form a linearly
independent set in H2(D) , it follows that c = 0. �

Given a 2× 2 matrix valued measure and a vector γ ∈ C2 , let νγ denote the
scalar measure defined by νγ(ω) = γ∗ν(ω)γ . Note that if ν is a positive measure
(that is, takes positive semidefinite values), then each νγ is a positive measure. Let
Ψ0 = Ψ\{ψ∞} .

LEMMA 4.5. Suppose ν is a 2× 2 positive matrix-valued measure on Ψ0 . For
each γ the measure νγ is a nonnegative linear combination of at most two point masses
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if and only if there exist (possibly not distinct) points z1,z2 and positive semidefinite
matrices Q1 and Q2 such that

ν =
2

∑
j=1

δz jQ j,

where δz1 ,δz2 are scalar unit point measures on Ψ supported at ψz1 ,ψz2 , respectively.

Proof. If ν = ∑2
j=1 δz jQ j with z1,z2 and Q1,Q2 as in the statement of the lemma,

then clearly each νγ is a nonnegative linear combination of at most two point masses.
For the converse, the M2 -valued measure ν , expressed as a 2×2 matrix of scalar

measures with respect to the standard orthonormal basis {e1,e2} of C2 has the form

ν =
(

ν11 ν12

ν21 ν22

)
. (15)

Since ν(ω) is a positive matrix for every measurable set ω , it follows that ν11,ν22

are positive measures. Moreover for the off-diagonal entries we have ν21 = ν∗
12 . If ω

is such that ν11(ω) = 0, then by positivity ν12(ω) = 0, and similarly if ν22(ω) = 0.
So it follows that ν12 and ν21 are absolutely continuous with respect to both ν11 and
ν22 . This argument also shows that ν12 and ν21 are supported on the intersection of
the supports for ν11 and ν22 .

Choosing γ = e1 , the hypotheses imply there exist α1,α2 � 0 and points z1,z2

such that

ν11 =
2

∑
j=1

α jδz j .

Likewise there exist points w1,w2 and scalars β1,β2 � 0 such that

ν22 =
2

∑
j=1

β jδw j .

There are several cases to consider. First suppose that the {z1,z2} and {w1,w2}
have no points in common. Then ν12 = 0 = ν21 . Also, for γ = e1 + e2 , by assumption

νγ = ν11 + ν22

has support at two points, and so z1 = z2 and w1 = w2 . It follows that the union of the
supports of ν11 and ν22 has cardinality at most two, yielding the desired result.

Next suppose that the sets {z1,z2} and {w1,w2} have one point in common, say
z1 = w1 . In this case ν12 is supported at z1 and there is a complex number s so that

ν12 = sδz1 .

If s = 0, choose γ = e1 + e2 , so that νγ = ν11 + ν22 . Otherwise set γ = e1 + s∗e2 , in
which case,

νγ = ν11 +2|s|2δz1 + |s|2ν22.

In either case, νγ has support at {z1,z2,w2} and only two of these can be distinct.
The remaining case has the sets {z1,z2} and {w1,w2} equal, and the result is

immediate.
Positivity of ν implies positivity of Q1 and Q2 . �
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5. The proof of Theorem 1.1

Fix a finite set F containing 0,λ1,λ2 and consisting of at least six distinct points.
This choice of F along with the prior choices of Φ and F as in Equations (12) and
(13) remain in effect for the rest of this section. Accordingly, let ΣF = ΣF,F .

We next prove the following diagonalization result.

THEOREM 5.1. If ΣF lies in the cone C2,F ; that is, there exists an M2(C)-valued
positive measure μ such that

I−F(x)F(y)∗ =
∫

Ψ
(1−ψ(x)ψ(y)∗)dμx,y(ψ) x,y ∈ F , (16)

then there exists rank one orthogonal projections Q1,Q2 summing to I , such that, for
x,y ∈ F ,

I−F(x)F(y)∗ = (1− x2y∗2ϕ1(x)ϕ1(y)∗)Q1 +(1− x2y∗2ϕ2(x)ϕ2(y)∗)Q2. (17)

The proof proceeds by a sequence of lemmas which increasingly restrict the mea-
sures μx,y in (16).

Assume that ΣF ∈ C2,F . Multiplying (16) by the Szegő kernel s(x,y) = (1−
xy∗)−1 obtains

(
I−F(x)F(y)∗

1− xy∗

)
x,y∈F

=
(∫

Ψ

(
1−ψ(x)ψ(y)∗

1− xy∗

)
dμx,y(ψ)

)
x,y∈F

. (18)

Next, since F has the form x2Φ(x) ,

I−F(x)F(y)∗

1− xy∗
=

I2− x2y∗2I2 + x2y∗2I2− x2y∗2Φ(x)Φ(y)∗

1− xy∗

=(1+ xy∗)I2 + x2y∗2
(

I−Φ(x)Φ(y)∗

1− xy∗

)
.

Similarly, for the test functions ψλ (x) = x2ϕλ (x) at points λ ∈ D ,

1−ψλ(x)ψλ (y)∗

1− xy∗
= (1+ xy∗)+ x2y∗2

(
1−ϕλ (x)ϕλ (y)∗

1− xy∗

)
. (19)

(Here we take ϕ∞ = 1.) Letting

kλ (x) =

√
1−|λ |2

1−λ ∗x

denote the normalized Szegő kernel at λ ∈ D and using the identity

1−ϕλ(x)ϕλ (y)∗

1− xy∗
= kλ (x)kλ (y)∗, (20)
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for such λ , equation (19) gives,

1−ψλ(x)ψλ (y)∗

1− xy∗
= (1+ xy∗)+ x2y∗2kλ (x)kλ (y)∗.

For λ = ∞ (correspondingly, ψ∞(z) = z2 ),

1−ψ∞(x)ψ∞(y)∗

1− xy∗
= 1+ xy∗.

Putting these computations together, we rewrite (18) as

I−F(x)F(y)∗

1− xy∗
= (1+ xy∗)I2 + x2y∗2

(
I−Φ(x)Φ(y)∗

1− xy∗

)

= (1+ xy∗)
∫

Ψ
dμx,y(ψ)+ x2y∗2

∫
Ψ0

kλ (x)kλ (y)∗ dμx,y(ψ).
(21)

Note that the first integral is over Ψ while the second is just over Ψ0 = Ψ\{z2} since
k∞(x) = 0.

Combining Lemma 4.3 with Equation (21) gives functions a,b : F → C2 as in
that lemma, with

(1+ xy∗)I+x2y∗2 (a(x)a(y)∗ +b(x)b(y)∗)

=
∫

Ψ
(1+ xy∗)dμx,y(ψ)+

∫
Ψ0

x2y∗2 kλ (x)kλ (y)∗ dμx,y(ψ).
(22)

The next step will be to remove the x,y dependence in μ . Introducing some
notation, let

Ã(x,y) =
∫

Ψ
dμx,y(ψ);

R(x,y) =x2y∗2 (a(x)a(y)∗ +b(x)b(y)∗) ; and

R̃(x,y) =(xy∗)2
∫

Ψ0

kλ (x)kλ (y)∗ dμx,y(ψ).

Thus, Ã , R , and R̃ are all positive kernels on F . With this notation and some rear-
ranging of Equation (22), for x,y ∈ F ,

(1+ xy∗)(Ã(x,y)− I) = R(x,y)− R̃(x,y). (23)

Let
K = {x2kλ1

(x)v1,x
2kλ2

(x)v2}, (24)

the set of vectors spanning the kernel of I−MΦM∗
Φ appearing in Lemma 4.3.

LEMMA 5.2. With the above notations, the assumption that ΣF ∈ C2,F and for
x,y ∈ F ,
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(i) The M2(C) valued kernel (Ã− I)(x,y) = (Ã(x,y)− I) is positive semidefinite;

(ii) The M2(C) valued kernel R(x,y)− R̃(x,y) is positive semidefinite with rank at
most two;

(iii) The range of R̃ lies in the range of R, which is in the span of K ; and

(iv) Either

(a) The kernel Ã− I has rank at most one; i.e., there is a function r : F → C
2

such that
Ã(x,y) = I + r(x)r(y)∗, or; (25)

(b) there exist functions r,s : F → C2 such

Ã(x,y) = I + r(x)r(y)∗ + s(x)s(y)∗,

and a point z ∈ F \ {0} such that r(z) = 0 = s(z) .

Proof. Since ψ(0) = 0 for all ψ ∈ Ψ , it follows from (16) that for all y ∈ F ,

I = I−F(0)F(y)∗ =
∫

Ψ
(1−ψ(0)ψ(y)∗)dμ0,y(ψ) =

∫
dμ0,y(λ ) = Ã(0,y).

By positivity we can factor (A(x,y))x,y�=0 =C∗C , and there is a contraction G such that
the row (A(0,y))y�=0 = (I · · · I) = GC . Consequently, (A(x,y))x,y�=0 � (I · · · I)t(I · · · I) ,
and so (i) is seen to hold.

That R− R̃ is positive semidefinite follows from (i) and Equation (23). Since R is
rank two it must be the case that the rank of R− R̃ is rank at most two, completing the
proof of (ii).

By (ii) and Douglas’ lemma, the range of R̃ is contained in the range of R . By
Lemma 4.3, the range of R is spanned by the set K and (iii) follows.

To prove (iv), first note that in any case Equation (23) and (ii) imply Ã− I has rank
at most two; i.e., there exists r,s : F → C

2 such that

Ã− I = r(x)r(y)∗ + s(x)s(y)∗.

From Equation (23), each of r,xr,s,xs lie in the range of R , which equals the span of
K . If r is nonzero at two points in F , then r and xr are linearly independent and
hence span the range of R . In this case, as both s and xs are in the range of R there
exists α j and β j (for j = 1,2) such that

s =α1r+ α2xr

xs =β1r+ β2xr.

It follows that
0 = xs− xs = (β1 +(β2−α1)x+ α2x

2)r(x). (26)
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If α2 = 0, then s is a multiple of r and case (iv)(a) holds. Otherwise, in view of (26),
r is zero with the exception of at most two points. Thus r is zero at two points, one of
which, say z , must be different from 0. Since s must be zero when r is, s(z) = 0 too
and (iv)(b) holds.

The remaining possibility is that both r and s are non-zero at at most one point
each, and these points may be distinct. In this situation r and s have at least two
common zeros, one of which must be different from 0 and again (iv)(b) holds. �

LEMMA 5.3. Under the assumption that ΣF ∈C2,F , the 2×2 matrix-valued ker-
nel Ã is constantly equal to I ; that is, Ã(x,y) = I for all x,y ∈ F .

Proof. In the case that (iv)(a) holds in Lemma 5.2, it (more than) suffices to prove
that the r in Equation (25) is 0. To this end, let R denote the range of R which, by
Lemma 5.2, is spanned by the set K appearing in Equation (24). From Equations (23)
and (25),

R̃+(1+ xy∗)r(x)r(y)∗ = R.

Thus, R contains both r and xr ; that is, both r and xr are in the span of K . Conse-
quently, there exists α j and β j ( j = 1,2) such that

r =x2
2

∑
j=1

α jkλ j
(x)v j

xr =x2
2

∑
j=1

β jkλ j
(x)v j.

Hence,

0 = xr− xr = x2
2

∑
j=1

(β j − xα j)kλ j
(x)v j. (27)

Since the set {v1,v2} is a basis for C2 (see Lemma 4.3), it has a dual basis {w1,w2} .
Taking the inner product with w� in Equation (27) gives,

0 = x2(β�− xα�)kλ�
(x)

for x ∈ F . Choosing x = λ� (which is not zero) implies β� − λ�α� = 0. But then
choosing any x ∈ F different from both 0 and λ j (and using kλ j

(x) �= 0) implies
β�− xα� = 0. Hence α� = 0 = β� and consequently r(x) = 0 for all x .

Now suppose (iv)(b) in Lemma 5.2 holds. In particular, there exists a point z in
F \ {0} such that r(z) = 0 = s(z) . By the same reasoning as in the first part of this
proof, there exist α j and β j such that

r =x2
2

∑
j=1

α jkλ j
(x)v j

s =x2
2

∑
j=1

β jkλ j
(x)v j.
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Taking the inner product with w� and evaluating at z yields

0 = α�kλ�
(z).

Thus α� = 0. Likewise, β� = 0. Thus r = 0 = s and the proof is complete. �

REMARK 5.4. Observe that if it were the case that v1 = v2 in Equation (27), then
it would not be possible to conclude that the α j and β j are 0. Indeed, in such a situ-
ation, choosing β j = (−1) j and α j = (−1) jλ ∗

j gives a non-trivial solution. However,
the case v1 = v2 corresponds to a Φ having the form

Φ =
(

1 0
0 ϕλ1

ϕλ2

)
,

which is explicitly ruled out by our choice of Φ and Lemma 4.1.

LEMMA 5.5. There exists a 2× 2 matrix valued positive measure μ on Ψ such
that μ(Ψ) = I2 and

KΦ(x,y) :=
1−Φ(x)Φ(y)∗

1− xy∗
=

∫
Ψ0

kλ (x)kλ (y)∗ dμ(ψ) (28)

for all x,y ∈ F \ {0} .

Proof. By Lemma 5.3, Ã(x,y) = I for all x,y ∈ F . An examination of the defi-
nition of Ã and application of Lemma 4.2 implies there is a positive measure μ such
that μx,y = μ for all (x,y) . Substituting this representation for μx,y into (21) after some
canceling and rearranging one has,

(xy∗)2
(

I−Φ(x)Φ(y)∗

1− xy∗

)
= x2y∗2

∫
Ψ0

kλ (x)kλ (y)∗ dμ(ψ).

Dividing by (xy∗)2 (and of course excluding either x = 0 or y = 0) gives the result. �

Now that μ has no x,y dependence, the next step is to restrict its support. For this
we employ Lemma 4.3. Recall that μ is a positive 2×2 matrix-valued measure on Ψ .
Let δ∞ denote point mass at the point ψ∞ = z2 .

LEMMA 5.6. Under the assumption that ΣF ∈C2,F , and with notation as above,
there are two points z1,z2 in F such that the measure μ has the form μ = δz1Q1 +
δz2Q2 + δ∞P, where Q1,Q2,P are 2× 2 matrices satisfying 0 � Q1,Q2,P � 1 and
Q1 + Q2 + P = I , and δz1 ,δz2 are scalar unit point measures on Ψ supported at
ψz1 ,ψz2 , respectively.

Proof. We first show that the restriction of μ to D has support at no more than
two points. Accordingly, let ν denote the restriction of μ to D .
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From Lemma 4.3, for x,y ∈ F \ {0} ,

I2−Φ(x)Φ(y)∗

1− xy∗
= a(x)a(y)∗ +b(x)b(y)∗

where a,b are C2 valued functions on F . Fix a vector γ and define a scalar measure
νγ on Ψ by νγ (ω) = γ∗ν(ω)γ . Note that

γ∗ (a(x)a(y)∗ +b(x)b(y)∗)γ =γ∗
(∫

Ψ
kλ (x)kλ (y)∗dμ(ψ)

)
γ

=
∫

Ψ0

kλ (x)kλ (y)dνγ(ψ)

is a kernel of rank (at most) two.
Choosing a three point subset G ⊆ F \ {0} and a nonzero scalar-valued function

c : G → C such that

∑
x,y∈G

c(x)γ∗ (a(x)a(y)∗ +b(x)b(y)∗)γc(y)∗ = 0 (29)

gives

0 =
∫

Ψ0

∣∣∣∣∣ ∑
x∈G

kλ (x)c(x)

∣∣∣∣∣
2

dνγ(ψ), (30)

which means that the function f = ∑x∈G kλ (x)c(x) vanishes for νγ -a.e. on Ψ0 . The
function f is a linear combination of at most three Szegő kernels, and hence can vanish
at at most two points in D . It follows that νγ is supported at at most two points in
D . An application of Lemma 4.5 now implies that there exist points z1,z2 and positive
semidefinite matrices Q1,Q2 such that

ν =
2

∑
j=1

δz jQ j.

Letting P = μ({∞}) , it follows that μ has the promised form,

μ = δz1Q1 + δz2Q2 + δ∞P.

Finally, because μ has total mass equal to the identity,

I = μ(Ψ) = Q1 +Q2 +P. �

To eliminate P and show that the Qi are orthogonal, rank one projections, return
to Equation (28) and rearrange it once again. Recall the identity of Equation (20),
multiply through by 1− xy∗ and use Lemma 5.6. We have by the description of μ
from the previous lemma, for x,y ∈ F \ {0} ,

1−Φ(x)Φ(y)∗ = (1−ϕz1(x)ϕz1(y)
∗)Q1 +(1−ϕz2(x)ϕz2(y)

∗)Q2,
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where ψz1 ,ψz2 are the support points of the measure μ . Using the fact that Q1 +Q2 +
P = I , we obtain, for x,y ∈ F \ {0} ,

Φ(x)Φ(y)∗ = ϕz1(x)ϕz1(y)
∗Q1 + ϕz2(x)ϕz2(y)

∗Q2 +P. (31)

LEMMA 5.7. Let Φ be as above. In the representation (31),

(i) {z1,z2} = {λ1,λ2} ;

(ii) P = 0 ; and

(iii) Q1,Q2 are rank one projections summing to I (and hence mutually orthogonal) .

Proof. By the identity (31)

Φ(λ1)Φ(λ1)∗ = |ϕz1(λ1)|2Q1 + |ϕz2(λ1)|2Q2 +P,

and since detΦ(λ1) = 0, both sides of this equation have rank at most one. It follows
that at least one of ϕz1 ,ϕz2 (and hence exactly one, since the λ j are distinct) must have
a zero at λ1 , since otherwise the three positive matrices Q1,Q2,P would all be scalar
multiples of the same rank one matrix, which violates Q1 +Q2 +P = I . Similarly for
λ2 , so (i) is proved. Further, without loss of generality, it can be assumed that z j = λ j

for j = 1,2.
It follows from evaluating at the λ j that each of Q1,Q2,P has rank at most one.

In particular we have for k, j = 1,2, k �= j ,

Φ(λ j)Φ(λ j)∗ = |ϕk(λ j)|2Qk +P. (32)

This means that ranP ⊆ ranQ1 ∩ ranQ2 . On the other hand, if ranQ1 ∩ ranQ2 �= {0} ,
we have ranQ1 ⊆ ranQ2 or vice versa, which again contradicts Q1 +Q2 +P = 1. Thus
ranQ1 ∨ ranQ2 = C

2 , and so P = 0, which is (ii). Since Q2 = 1−Q1 , if f ∈ kerQ1 ,
then Q2 f = f . However, Q2 is a rank one contraction, so it must be a projection, and
then the same follows for Q1 . Thus we have (iii). �

Proof of Theorem 5.1. Since F(x) = x2Φ(x) , Theorem 5.1 is now immediate from
Lemma 5.7. �

5.1. The proof of Theorem 1.1

The proof of Theorem 1.1 concludes in this subsection. Recall that we are assum-
ing that F(z) = z2Φ(z) , where Φ is as in (12).

Suppose that ΣF ∈C2,F . From Equation (31) and Lemma 5.7, for x,y ∈ F \{0} ,

Φ(x)Φ(y)∗ =
2

∑
j=1

ϕ j(x)ϕ j(y)∗Qj. (33)
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Since the Qj are rank one projections which sum to I , there exists an orthonormal basis
{γ1,γ2} such that

Qj = γ jγ∗j .

Let V be the unitary matrix with columns γ j , and let

G(z) = V

(
ϕ1(z) 0

0 ϕ2(z)

)
.

Observe Φ(x)Φ(y)∗ = G(x)G(y)∗ for x,y ∈ F \ {0} .
Fix ζ ∈ F \ {0,λ1,λ2} . Then Φ(ζ ) is invertible and further Φ(ζ )Φ(ζ )∗ =

G(ζ )G(ζ )∗ . Hence by Douglas’ Lemma, there is a unitary W such that Φ(ζ ) =
G(ζ )W ∗ . Consequently,

0 = Φ(ζ )Φ(y)∗ −G(ζ )G(y)∗ = G(ζ )(Φ(y)W −G(y))∗,

and therefore Φ(y)W = G(y) , for y ∈ F \ {0} . Returning to the definition of G , we
arrive at the conclusion that, for x ∈ F \ {0} ,

Φ(x) =U

(
ϕ1(x) 0

0 ϕ2(x)

)
W ∗. (34)

Now Φ and G are both rational matrix inner functions of degree at most two. Since
F \ {0} contains at least five points it is a set of uniqueness for rational functions of
degree at most two, and hence (34) must hold on all of D . It now follows that, on all of
D ,

Φ = U

(
ϕ1 0
0 ϕ2

)
W ∗.

By Lemma 4.1,

Φ =
(

sϕ1 0
0 tϕ2

)

for unimodular constants sand t , contrary to our choice of Φ in (12). We conclude that
ΣF /∈ C2,F , and so by Proposition 3.5, there exists a contractive representation of A
which is not completely contractive.

6. Rational dilation for the annulus and the variety z2 = w2

This section provides a proof of rational dilation for the annulus along the lines of
[22], but with a major simplification suggested by Agler [2] (see also [3]). Direct appeal
to the systematic study of the extreme rays of functions of positive real part on a mul-
tiply connected domain found in [16, 10] and [11] (see also [19, 18]) also significantly
streamlines the argument. This proof for the annulus, with minor modifications indi-
cated in Subsection 6.5, also establishes rational dilation for the distinguished variety
defined by z2 = w2 .
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6.1. A Naimark dilation Theorem

The following version of the Naimark dilation Theorem will be used to reduce
the extreme rays of functions of positive real part on an annulus to a much smaller
collection.

THEOREM 6.1. Fix positive integers m,n and suppose that A1, . . . ,Am;B1, . . . ,Bm

are rank one positive semidefinite n×n matrices. If

∑Aj = I = ∑B�,

then there exists an isometry V : Cn → Cm and m×m matrices P1, . . . ,Pm;Q1 . . . ,Qm

such that

(i) Each of P1, . . . ,Pm;Q1, . . .Qm are rank one projections;

(ii)

∑Pj = I = ∑Q�;

(iii) and

Aj = V ∗PjV, B� =V ∗Q�V.

Proof. Since for each j , Aj is rank one and positive semidefinite, there exists
a j ∈ Cn such that

Aj = a ja
∗
j .

Let V denote the matrix whose j -th row is a∗j (the 1×n ) matrix. It follows that V is
an m×n matrix and moreover,

V ∗V = ∑a ja
∗
j = I.

Thus V is an isometry. Let Pj = e je∗j , where {e1, . . . ,en} is the standard orthonormal
basis for Cn and note that

V ∗PjV = a ja
∗
j = Aj.

The analogous construction with Bj = b jb∗j produces an isometry W : Rn → Rm

such that
W ∗P�W = B�.

Since V and W are isometries, the mapping U : range(V ) → range(W ) defined
by UVx = Wx is a unitary mapping. Since the codimensions of the range of V and
the range of W are the same, U can be extended to a unitary mapping on Cm . Let
Q� = U∗P�U . Then each Q� is a rank one projection, ∑Q� = I and

V ∗Q�V = V ∗U∗P�UV = W ∗P�W = B�. �
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6.2. Extremal functions of positive real part

As a special case of the results in [10, 11], the matrix-valued functions of positive
real part on an annulus are characterized.

Fix 0 < q < 1 and let A denote the annulus,

A = {z ∈ C : q < |z| < 1},
with its boundary components

∂0 = {|z| = 1}, ∂1 = {|z| = q}.
Let Mn denote the n×n matrices. An analytic function F : A → Mn whose real part

ReF(z) =
F(z)+F(z)∗

2

takes positive definite values in A has an n× n matrix-valued measure μF on ∂ =
∂0∪∂1 for its boundary values. On the other hand, a positive semidefinite n×n matrix-
valued measure μ on ∂ is the boundary values of a matrix-valued harmonic function
H on A . Moreover, H is the real part of analytic function if and only if

μ(∂0) = μ(∂1).

By compressing to the range of μ(∂0) , it can be assumed that μ(∂0) has full rank.
Let Γn denote the set of positive semidefinite n×n matrix-valued measures μ on

∂ such that μ(∂0) = I = μ(∂1) . The results of [10] and [11] imply that the extreme
points of the set Γn have the form,

μ =
m

∑
j=1

Ajδα j +
m

∑
�=1

B�δβ�
, (35)

where for any j, � , each Aj and B� is a rank one, positive semidefinite n× n matrix,
α j ∈ ∂1 and β� ∈ ∂0 and

∑Aj = I = ∑B�.

Repetition is allowed in the sets of points {α j} and {β�} to allow for attaching arbitrary
positive semidefinite matrices to a point on ∂ and Aj or B� may the zero matrix, so
as to ensure that {Aj} and {B�} have the same cardinality. It should be noted that not
every measure of the form in Equation (35) is an extreme point (a characterization is
given in [10, 11]).

For a μ ∈ Γn , let Fμ denote a corresponding analytic function of positive real
part. Thus, the real part of Fμ is the harmonic function whose boundary values are
μ . Such an F is not unique, but any two differ by a matrix C which is skew self-
adjoint, C∗ = −C . Note that the real part of F is zero except at the m points (counting
multiplicity) in the support of μ on each of the components of ∂ .

An operator T has A as a spectral set if σ(T ) ⊆ A and ‖ f (T )‖ � 1 for each
analytic function f : A → D . Here D is the unit disc, {z∈ C : |z|< 1} and σ(T ) is the
spectrum of T . The following proposition is a consequence of the results of [10, 11].
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THEOREM 6.2. Let T be a operator on the Hilbert space H with σ(T )⊆A , and
suppose A is a spectral set for T . Then there exists a normal operator N acting on a
Hilbert space K with σ(N)⊆ ∂ and an isometry V : H →K such that r(T ) =V ∗r(N)V
for all rational functions r with poles off the closure of A if and only if

Fμ(T )+Fμ(T )∗

2
� 0

for each n and each μ as in Equation (35).

REMARK 6.3. The first equivalent condition of the theorem says that T has a
rational dilation to a normal operator with spectrum in the boundary of A .

6.3. Matrix extreme functions of positive real part

There is a particularly nice subset of the extreme points of Γn from which all the
extreme points of Γn can be recovered in a canonical fashion.

Let En denote those elements ν of Γn of the form,

ν =
n

∑
j=1

Ajδα j +
n

∑
�=1

B�δβ�
.

In particular, each Aj B� is a rank one projection with ∑Aj = ∑B� = I .

LEMMA 6.4. Let
G = (Fν − I)(Fν + I)−1.

For each n×n unitary matrix U the function

det(I−G(z)U)

has precisely n zeros on each boundary component of ∂ .

Proof. Because F has positive real part, G is contractive-valued in A . Further, as
the real part of F is 0 , except on a finite subset of ∂ , the function G is unitary-valued
on a cofinite subset of ∂ and hence extends by the reflection principle to a function
analytic in a neighborhood of the closure of A .

On the other hand,
Fν = (I +G)(I−G)−1.

Thus the real part of Fν is zero at z unless 1 is in the spectrum of G(z) . Hence,
det(I−G(z)) has exactly n zeros (counting multiplicity) on each boundary component
of A .

Let U denote the collection of n×n unitary matrices, and let

Uk = {U ∈ U : det(I−G(z)U) has k zeros on ∂0}.
Note that as the zeros of det(I−G(z)U) can only occur on the boundary, this number
of zeros is stable with respect to small perturbations of U . Thus, Uk is open. But
U = ∪Uk is compact, and hence this union is finite. Since Un is not empty and U is
connected, it follows that U = Un . �
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6.4. Rational dilation on A

THEOREM 6.5. ([1, 22]) If the operator T has the annulus as a spectral set, then
T has a normal dilation to an operator with spectrum in the boundary of A .

Proof. It suffices to verify the second of the equivalent conditions in Theorem 6.2.
Accordingly, let such an Fμ be given. By Theorem 6.1, there is an m , an isometry
V : Cn → Cm and rank one projections Pj and Q� as described in that theorem so that

V ∗PjV = Aj, V ∗Q�V = B�.

Consider the measure

ν =
m

∑
j=1

Pjδα j +
m

∑
j=1

Q�δβ�
.

Because the ∑Pj = ∑Q� = I , it follows that there is an m×m matrix-valued analytic
function G of positive real part whose boundary values are the measure μ . Further,
since

V ∗νV = μ ,

if ReG(T ) � 0, then also ReF(T ) � 0. Hence it suffices to prove ReG(T ) � 0 under
the assumption that A is a spectral set for T .

Let
G = (Fν − I)(Fν + I)−1.

Then G is a contractive analytic function in A . By Lemma 6.4, with U = G(1)∗ and
G̃ = GU, the function det(I−G(z)U) has exactly n zeros on each of ∂0 and ∂1 . Let

F̃ = (I + G̃)(I− G̃)−1.

Thus F̃ has positive real part and moreover its boundary values determine a measure μ̃
with support at exactly n points (counting multiplicity) on each boundary component.
On the other hand, the choice of U implies that

μ̃ =
n

∑
j=1

Ã jδγ j + B̃δ1,

where each Ã j is a rank one, positive semidefinite n×n matrix and

B̃ = ∑ Ã j � 0.

Thus,

Re F̃ =
n

∑
j=1

Ã j(δγ j + δ1)

on ∂A .
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Consider now the scalar measures δγ j + δ1 . Each of these measure puts unit mass
on each boundary component ∂0,∂1 , and hence for each j there is a holomorphic func-
tion ψ j of positive real part in A such that

Reψ j = δγ j + δ1

on ∂A . By the assumption that A is a spectral set for T , we have Reψ j(T ) � 0 for
each j .

Now let
Γ = ∑ψ jÃ j.

It follows that Γ and F̃ agree up to a skew symmetric matrix. Thus,

Re F̃(T ) = ReΓ(T ) = ∑(Reψ j(T ))⊗ Ã j � 0.

Hence,
‖G̃(T )‖ � 1;

and thus
‖G(T )‖ � 1;

and so finally,
ReF(T ) � 0,

and the proof is complete. �

6.5. The variety z2 = w2

In this section we consider the hypo-Dirichlet algebra A (V ) of functions which
are analytic on the variety V = {(z,w) ∈ D2 : z2 = w2} in the bidisk and continuous on
its boundary ∂V . The boundary of V consists of the two disjoint circles z = w , and
z = −w with |z| = |w| = 1. The proof of rational dilation for the annulus given above
may be straightforwardly modified to prove the following theorem:

THEOREM 6.6. Every contractive homomorphism π : A (V ) → B(H) is com-
pletely contractive.

The algebra A (V ) is in some sense a limiting case of the annulus algebras. In-
deed for a fixed real number 0 < t < 1, the variety in D2 defined by

z2 =
w2− t2

1− t2w2 (36)

is an open Riemann surface which is topologically an annulus [27], and in fact by
varying t every annulus Aq is conformally equivalent to one of these [12, 13]. The
variety V is of course the limiting case t → 0.

To get started we record some basic facts about V and A (V ) . To fix some
notation: V is the union of the two sheets

V+ = {(z,w) : z = w}, V− = {(z,w) : z = −w}, (37)



DILATIONS AND CONSTRAINED ALGEBRAS 857

which can each be identified with unit disk D via the parametrization ψ+(t) = (t,t)
and ψ−(t) = (t,−t) respectively. The sheets V± intersect only at the origin, and the
boundary of V ∩D2 is the disjoint union of the circles ∂V+ , and ∂V− . We equip
each of these circles with normalized Lebesgue measure (that is, the push-forward of
Lebesgue measure under the maps ψ± ). We also recall that, by definition, a (scalar
or matrix valued) function F is holomorphic on the variety V if and only if for each
point (z,w) ∈ V , there is a neighborhood Ω of this point in C2 such that F extends to
be holomorphic in Ω . A (V ) is then the algebra of functions holomorphic on V and
continuous on V ∪∂V , equipped with the supremum norm, which we denote ‖ f‖V .

Given any function F on V , we let F± denote its restrictions to the disks V± .
In particular, if F is holomorphic on V , then H±(t) := F±(ψ±(t)) are holomorphic
functions on the disk, and H+(0) = H−(0) . The converse is also true:

LEMMA 6.7. Given any pair of holomorphic functions H± : D → Mn(C) with
H+(0) = H−(0) , there exists a holomorphic function F : V → Mn(C) such that F± ◦
ψ± = H± .

Proof. It suffices to assume H±(0) = 0, in which case the function

F(z,w) = (1− (z−w))H+

(
z+w

2

)
+(1− (z+w))H−

(
z−w

2

)
(38)

is holomorphic in D2 and restricts to H± on V± . �
Since polynomials are dense in the disk algebra A (D) , an immediate conse-

quence is that polynomials in z,w are dense in A (V ) . It is also evident that ‖F‖V =
max(‖H+‖∞,‖H−‖∞) , and that A (V ) is a uniform algebra with Shilov boundary ∂V .

PROPOSITION 6.8. Let μ be a finite, nonnegative n× n matrix valued measure
on ∂V . Then there is a function F ∈ Mn(Hol(V )) such that μ = Re F on ∂V if and
only if μ(∂V+) = μ(∂V−) .

Proof. This is more or less immediate from the foregoing description of the holo-
morphic functions on V ; indeed the necessity of the condition μ(∂V+) = μ(∂V−) is
evident since by restricting to each disk μ(∂V±) = F±(0) . Conversely, suppose this
constraint holds. Let μ± denote the restriction of μ to the respective boundary circles.
On each of the disks V± there is a holomorphic function H± , real-valued at the origin,
such that ReH± = μ± on ∂V± , and we have H+(0) = H−(0) = μ(∂V±) . Thus by
the lemma, each H± is the restriction to V± of the same function F , holomorphic on
V . �

One immediate consequence of Proposition 6.8 is that a continuous real-valued
function u on ∂V is the real part of the boundary values of a holomorphic function
on V if and only if

∫
V+

udm =
∫
V− udm . Using this fact and the density of polyno-

mials in A (V ) , it follows that, viewing A (V ) as a subalgebra of C(∂V ) , the clo-
sure of ReA (V ) in CR(∂V ) is equal to the pre-annihilator of the measure m+ −m−
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on ∂V (here m± is Lebesgue measure on ∂V± ). Thus the closure of ReA (V ) in
CR(∂V ) has codimension 1 (in particular A (V ) is a hypo-Dirichlet algebra on ∂V ,
as claimed). Note that the codimension is also 1 in the case of the annulus.

Consider the collection of n×n matrix-valued holomorphic functions on V with
positive real part, normalized to F(0) = In , and let Γn denote the extreme points of this
set. Using Proposition 6.8, the results of [10, 11] are again applicable and exactly as in
the case of the annulus, every extreme point of Γn has the form Fμ for some finitely
supported μ of the form

μ =
m

∑
j=1

Ajδα j +
m

∑
j=1

Bjδβ j
(39)

with {α1, . . .αm},{β1, . . .βm} subsets of ∂V± respectively, and ∑Aj = ∑Bj = I (though
again not every such Fμ is an extreme point).

We say that V is a spectral set for the pair of commuting operators S,T if the
joint spectrum of S,T lies in V and, for every polynomial p(z,w) , we have

‖p(S,T)‖ � ‖p‖V . (40)

Note that this condition forces S2 = T 2 , since p(z,w) = z2 −w2 vanishes on V .
We say that the pair (S,T ) acting on the Hilbert space H has a normal ∂V dila-

tion if there exists a pair of commuting normal operators U,V acting on a Hilbert space
K with spectrum in ∂V and an isometry ι : H → K such that p(S,T ) = ι∗p(U,V )ι
for all polynomials p . By the definition of V and the spectral theorem, the commuting
normal pairs with spectrum in ∂V are precisely the pairs of unitary operators U,V
satisfying U2 =V 2 .

PROPOSITION 6.9. Let S,T be a pair of commuting operators with joint spectrum
in V and suppose V is a spectral set for S,T . Then (S,T ) has a normal ∂V dilation
if and only if

Fμ(S,T )+Fμ(S,T )∗ � 0 (41)

for all μ as in (39).

Proof. If a dilation exists, then (41) holds by the spectral theorem. Conversely,
suppose (41) holds. Then by the Choquet integral arguments of [10, 11], and the fact
that the joint spectral radius of S,T is strictly less than 1, we have that F(S,T ) +
F(S,T )∗ � 0 for all matrix-valued functions F on V with positive real part. In par-
ticular, if P is a matrix-valued polynomial with ‖P‖V < 1, then F = (I +P)(I−P)−1

has positive real part, so F(S,T )+ F(S,T )∗ � 0 and thus ‖P(S,T)‖ � 1. This says
that the map p → p(S,T ) is completely contractive. �

Proof of Theorem 6.6. Let π be a contractive representation of A (V ) , then π
is determined by a pair of commuting contractions S,T satisfying S2 = T 2 . To prove
that π is completely contractive, observe that we may replace S,T by rS,rT for r < 1.
(Note that r2S2 = r2T 2 so rS,rT still determine a homomorphism πr of A (V ) .) In-
deed, since the map p(z,w) → p(rz,rw) is completely contractive on A (V ) , if the
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maps πr are completely contractive then so is π . So, now that ‖S‖,‖T‖< 1, it suffices
to verify the condition of Proposition 6.9. But the proof now reduces to one essentially
identical to the proof given for the annulus above; the boundary components ∂V± play-
ing the roles of ∂0,∂1 . The only modification is to Lemma 6.4. In particular when we
speak of extending G to a neighborhood of a boundary point it should be understood
that this is a neighborhood in the union of the planes z±w = 0 (the full variety z2 = w2

in C2 ); all zero-counting is done here. The proof of Theorem 6.5 then goes through
unchanged. �

The question still remains as to which pairs S,T with S2 = T 2 have V as a spec-
tral set. It is evident that S and T must be contractions, but this alone is not sufficient.
As in the case of the annulus, there is a one-parameter family of conditions that must be
checked. The following is Theorem 9.4 of [7]. For completeness, we include a proof.

THEOREM 6.10. ([7]) Let S,T be commuting operators with S2 = T 2 . Then V
is a spectral set for S,T if and only if

‖λS+(1−λ )T‖ � 1 (42)

for every complex number λ lying on the circle |λ − 1
2 | = 1

2 .

Proof. For the λ described in the theorem one may check that the functions

λ z+(1−λ )w (43)

are bounded by 1 on V , so the condition is necessary.
Conversely, using again the Choquet integral arguments of [10, 11], for V to be a

spectral set it suffices to check that ReFμ(S,T ) � 0 for every extreme point Fμ of the
set of functions of positive real part on V (normalized to F(0,0) = 1). From [10, 11]
we also know that the μ representing these functions are precisely those that put a
single unit point mass on each boundary component. By the description of HolV in
Lemma 6.7, these are the functions whose restrictions satisfy

F+(t) =
1+ αt
1−αt

, F−(t) =
1+ β t
1−β t

(44)

for unimodular constants α,β . Taking Cayley transforms f± = (F± − 1)(F± + 1)−1

we get simply the functions

f+(t) = αt, f−(t) = β t, (45)

and we require ‖ f (S,T )‖ � 1 for all α,β where f is any function on D2 with f |V± =
f± . Multiplying f by α∗ , we may assume α = 1, and now it is straightforward to
check that, putting λ = 1+β

2 , the functions

f (z,w) = λ z+(1−λ )w (46)

do the job. �
Combining Theorems 6.6 and 6.10 we have:
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COROLLARY 6.11. Let S,T be commuting operators on Hilbert space with S2 =
T 2 . Then S,T dilate to a commuting pair of unitaries U,V satisfying U2 = V 2 if and
only if

‖λS+(1−λ )T‖ � 1 (47)

for every complex number λ on the circle |λ − 1
2 | = 1

2 .
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