SOME GRÜSS' TYPE INEQUALITIES FOR TRACE OF OPERATORS IN HILBERT SPACES

Silvestru Sever Dragomir

(Communicated by Raúl Curto)

Abstract

Some inequalities of Grüss' type for trace of operators in Hilbert spaces, under suitable assumptions for the involved operators, are given.

1. Introduction

In 1935, G. Grüss [31] proved the following integral inequality which gives an approximation of the integral mean of the product in terms of the product of the integrals means as follows:

$$
\begin{align*}
& \left|\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} g(x) d x\right| \tag{1.1}\\
& \leqslant \frac{1}{4}(\Phi-\phi)(\Gamma-\gamma)
\end{align*}
$$

where $f, g:[a, b] \rightarrow \mathbb{R}$ are integrable on $[a, b]$ and satisfy the condition

$$
\begin{equation*}
\phi \leqslant f(x) \leqslant \Phi, \gamma \leqslant g(x) \leqslant \Gamma \tag{1.2}
\end{equation*}
$$

for each $x \in[a, b]$, where $\phi, \Phi, \gamma, \Gamma$ are given real constants.
Moreover, the constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller one.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [38, Chapter X] established the following discrete version of Grüss' inequality:

Let $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right)$ be two n-tuples of real numbers such that $r \leqslant a_{i} \leqslant R$ and $s \leqslant b_{i} \leqslant S$ for $i=1, \ldots, n$. Then one has

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i}-\frac{1}{n} \sum_{i=1}^{n} a_{i} \cdot \frac{1}{n} \sum_{i=1}^{n} b_{i}\right| \leqslant \frac{1}{n}\left[\frac{n}{2}\right]\left(1-\frac{1}{n}\left[\frac{n}{2}\right]\right)(R-r)(S-s) \tag{1.3}
\end{equation*}
$$

where $[x]$ denotes the integer part of $x, x \in \mathbb{R}$.

[^0]For a simple proof of (1.1) as well as for some other integral inequalities of Grüss type, see Chapter X of the book [38].

For other related results see the papers [1]-[3], [8]-[10], [11]-[13], [17]-[24], [29], [40], [50] and the references therein.

In [18], in order to generalize the above result in abstract structures the author has proved the following Grüss' type inequality in real or complex inner product spaces.

THEOREM 1. (Dragomir, 1999, [18]) Let $(H,\langle.,\rangle$.$) be an inner product space over$ $\mathbb{K}(\mathbb{K}=\mathbb{R}, \mathbb{C})$ and $e \in H,\|e\|=1$. If $\varphi, \gamma, \Phi, \Gamma$ are real or complex numbers and x, y are vectors in H such that the conditions

$$
\begin{equation*}
\operatorname{Re}\langle\Phi e-x, x-\varphi e\rangle \geqslant 0 \text { and } \operatorname{Re}\langle\Gamma e-y, y-\gamma e\rangle \geqslant 0 \tag{1.4}
\end{equation*}
$$

hold, then we have the inequality

$$
\begin{equation*}
|\langle x, y\rangle-\langle x, e\rangle\langle e, y\rangle| \leqslant \frac{1}{4}|\Phi-\varphi||\Gamma-\gamma| . \tag{1.5}
\end{equation*}
$$

The constant $\frac{1}{4}$ is best possible in the sense that it can not be replaced by a smaller constant.

For other results of this type, see the recent monograph [21] and the references therein.

Let A be a selfadjoint linear operator on a complex Hilbert space $(H ;\langle.,\rangle$.$) . The$ Gelfand map establishes a $*$-isometrically isomorphism Φ between the set $C(\operatorname{Sp}(A))$ of all continuous functions defined on the spectrum of A, denoted $\operatorname{Sp}(A)$, and the C^{*} algebra $C^{*}(A)$ generated by A and the identity operator 1_{H} on H as follows:

For any $f, g \in C(\operatorname{Sp}(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have
(i) $\Phi(\alpha f+\beta g)=\alpha \Phi(f)+\beta \Phi(g)$;
(ii) $\Phi(f g)=\Phi(f) \Phi(g)$ and $\Phi(\bar{f})=\Phi(f)^{*}$;
(iii) $\|\Phi(f)\|=\|f\|:=\sup _{t \in \operatorname{Sp}(A)}|f(t)|$;
(iv) $\Phi\left(f_{0}\right)=1_{H}$ and $\Phi\left(f_{1}\right)=A$, where $f_{0}(t)=1$ and $f_{1}(t)=t$, for $t \in \operatorname{Sp}(A)$.

With this notation we define

$$
f(A):=\Phi(f) \text { for all } f \in C(\operatorname{Sp}(A))
$$

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on $\operatorname{Sp}(A)$, then $f(t) \geqslant 0$ for any $t \in \operatorname{Sp}(A)$ implies that $f(A) \geqslant 0$, i.e. $f(A)$ is a positive operator on H. Moreover, if both f and g are real valued functions on $\operatorname{Sp}(A)$ then the following important property holds:

$$
\begin{equation*}
f(t) \geqslant g(t) \text { for any } t \in \operatorname{Sp}(A) \text { implies that } f(A) \geqslant g(A) \tag{P}
\end{equation*}
$$

in the operator order of $B(H)$.
In the recent paper [26], we obtained amongst other the following refinement of the Grüss inequality:

Theorem 2. (Dragomir, 2009, [26]) Let A be a selfadjoint operator on the Hilbert space $(H ;\langle.,\rangle$.$) and assume that \mathrm{Sp}(A) \subseteq[m, M]$ for some scalars $m<M$. If f and g are continuous on $[m, M]$ and $\gamma:=\min _{t \in[m, M]} f(t)$ and $\Gamma:=\max _{t \in[m, M]} f(t)$ then

$$
\begin{align*}
& |\langle f(A) g(A) x, x\rangle-\langle f(A) x, x\rangle\langle g(A) x, x\rangle| \tag{1.6}\\
& \leqslant \frac{1}{2}(\Gamma-\gamma)\left[\|g(A) x\|^{2}-\langle g(A) x, x\rangle^{2}\right]^{1 / 2} \leqslant \frac{1}{4}(\Gamma-\gamma)(\Delta-\delta)
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$, where $\delta:=\min _{t \in[m, M]} g(t)$ and $\Delta:=\max _{t \in[m, M]} g(t)$.
In order to state some Grüss' type inequalities for trace operators on complex Hilbert spaces we need some preparations as follows.

2. Some facts on trace of operators

Let $(H,\langle\cdot, \cdot\rangle)$ be a complex Hilbert space and $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H. We say that $A \in \mathscr{B}(H)$ is a Hilbert-Schmidt operator if

$$
\begin{equation*}
\sum_{i \in I}\left\|A e_{i}\right\|^{2}<\infty \tag{2.1}
\end{equation*}
$$

It is well know that, if $\left\{e_{i}\right\}_{i \in I}$ and $\left\{f_{j}\right\}_{j \in J}$ are orthonormal bases for H and $A \in \mathscr{B}(H)$ then

$$
\begin{equation*}
\sum_{i \in I}\left\|A e_{i}\right\|^{2}=\sum_{j \in I}\left\|A f_{j}\right\|^{2}=\sum_{j \in I}\left\|A^{*} f_{j}\right\|^{2} \tag{2.2}
\end{equation*}
$$

showing that the definition (2.1) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A^{*} is a Hilbert-Schmidt operator.

Let $\mathscr{B}_{2}(H)$ the set of Hilbert-Schmidt operators in $\mathscr{B}(H)$. For $A \in \mathscr{B}_{2}(H)$ we define

$$
\begin{equation*}
\|A\|_{2}:=\left(\sum_{i \in I}\left\|A e_{i}\right\|^{2}\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

for $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H. This definition does not depend on the choice of the orthonormal basis.

Using the triangle inequality in $l^{2}(I)$, one checks that $\mathscr{B}_{2}(H)$ is a vector space and that $\|\cdot\|_{2}$ is a norm on $\mathscr{B}_{2}(H)$, which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator $A \in \mathscr{B}(H)$ by $|A|:=\left(A^{*} A\right)^{1 / 2}$.
Because $\||A| x\|=\|A x\|$ for all $x \in H, A$ is Hilbert-Schmidt iff $|A|$ is HilbertSchmidt and $\|A\|_{2}=\||A|\|_{2}$. From (2.2) we have that if $A \in \mathscr{B}_{2}(H)$, then $A^{*} \in \mathscr{B}_{2}(H)$ and $\|A\|_{2}=\left\|A^{*}\right\|_{2}$.

The following theorem collects some of the most important properties of HilbertSchmidt operators:

THEOREM 3. We have
(i) $\left(\mathscr{B}_{2}(H),\|\cdot\|_{2}\right)$ is a Hilbert space with inner product

$$
\begin{equation*}
\langle A, B\rangle_{2}:=\sum_{i \in I}\left\langle A e_{i}, B e_{i}\right\rangle=\sum_{i \in I}\left\langle B^{*} A e_{i}, e_{i}\right\rangle \tag{2.4}
\end{equation*}
$$

and the definition does not depend on the choice of the orthonormal basis $\left\{e_{i}\right\}_{i \in I}$;
(ii) We have the inequalities

$$
\begin{equation*}
\|A\| \leqslant\|A\|_{2} \tag{2.5}
\end{equation*}
$$

for any $A \in \mathscr{B}_{2}(H)$ and

$$
\begin{equation*}
\|A T\|_{2},\|T A\|_{2} \leqslant\|T\|\|A\|_{2} \tag{2.6}
\end{equation*}
$$

for any $A \in \mathscr{B}_{2}(H)$ and $T \in \mathscr{B}(H)$;
(iii) $\mathscr{B}_{2}(H)$ is an operator ideal in $\mathscr{B}(H)$, i.e.

$$
\mathscr{B}(H) \mathscr{B}_{2}(H) \mathscr{B}(H) \subseteq \mathscr{B}_{2}(H)
$$

(iv) $\mathscr{B}_{\text {fin }}(H)$, the space of operators of finite rank, is a dense subspace of $\mathscr{B}_{2}(H)$;
(v) $\mathscr{B}_{2}(H) \subseteq \mathscr{K}(H)$, where $\mathscr{K}(H)$ denotes the algebra of compact operators on H.

If $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H, we say that $A \in \mathscr{B}(H)$ is trace class if

$$
\begin{equation*}
\|A\|_{1}:=\sum_{i \in I}\langle | A\left|e_{i}, e_{i}\right\rangle<\infty . \tag{2.7}
\end{equation*}
$$

The definition of $\|A\|_{1}$ does not depend on the choice of the orthonormal basis $\left\{e_{i}\right\}_{i \in I}$. We denote by $\mathscr{B}_{1}(H)$ the set of trace class operators in $\mathscr{B}(H)$.

The following proposition holds:
Proposition 1. If $A \in \mathscr{B}(H)$, then the following are equivalent:
(i) $A \in \mathscr{B}_{1}(H)$;
(ii) $|A|^{1 / 2} \in \mathscr{B}_{2}(H)$;
(ii) $A($ or $|A|)$ is the product of two elements of $\mathscr{B}_{2}(H)$.

The following properties are also well known:

THEOREM 4. With the above notations:

(i) We have

$$
\begin{equation*}
\|A\|_{1}=\left\|A^{*}\right\|_{1} \text { and }\|A\|_{2} \leqslant\|A\|_{1} \tag{2.8}
\end{equation*}
$$

for any $A \in \mathscr{B}_{1}(H)$;
(ii) $\mathscr{B}_{1}(H)$ is an operator ideal in $\mathscr{B}(H)$, i.e.

$$
\mathscr{B}(H) \mathscr{B}_{1}(H) \mathscr{B}(H) \subseteq \mathscr{B}_{1}(H)
$$

(iii) We have

$$
\mathscr{B}_{2}(H) \mathscr{B}_{2}(H)=\mathscr{B}_{1}(H)
$$

(iv) We have

$$
\|A\|_{1}=\sup \left\{\langle A, B\rangle_{2} \mid B \in \mathscr{B}_{2}(H),\|B\| \leqslant 1\right\}
$$

(v) $\left(\mathscr{B}_{1}(H),\|\cdot\|_{1}\right)$ is a Banach space.
(iv) We have the following isometric isomorphisms

$$
\mathscr{B}_{1}(H) \cong K(H)^{*} \text { and } \mathscr{B}_{1}(H)^{*} \cong \mathscr{B}(H)
$$

where $K(H)^{*}$ is the dual space of $K(H)$ and $\mathscr{B}_{1}(H)^{*}$ is the dual space of $\mathscr{B}_{1}(H)$.
We define the trace of a trace class operator $A \in \mathscr{B}_{1}(H)$ to be

$$
\begin{equation*}
\operatorname{tr}(A):=\sum_{i \in I}\left\langle A e_{i}, e_{i}\right\rangle \tag{2.9}
\end{equation*}
$$

where $\left\{e_{i}\right\}_{i \in I}$ an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is finite-dimensional. We observe that the series (2.9) converges absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:
THEOREM 5. We have
(i) If $A \in \mathscr{B}_{1}(H)$ then $A^{*} \in \mathscr{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}\left(A^{*}\right)=\overline{\operatorname{tr}(A)} \tag{2.10}
\end{equation*}
$$

(ii) If $A \in \mathscr{B}_{1}(H)$ and $T \in \mathscr{B}(H)$, then $A T, T A \in \mathscr{B}_{1}(H)$ and

$$
\begin{equation*}
\operatorname{tr}(A T)=\operatorname{tr}(T A) \text { and }|\operatorname{tr}(A T)| \leqslant\|A\|_{1}\|T\| \tag{2.11}
\end{equation*}
$$

(iii) $\operatorname{tr}(\cdot)$ is a bounded linear functional on $\mathscr{B}_{1}(H)$ with $\|\operatorname{tr}\|=1$;
(iv) If $A, B \in \mathscr{B}_{2}(H)$ then $A B, B A \in \mathscr{B}_{1}(H)$ and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$;
(v) $\mathscr{B}_{\text {fin }}(H)$ is a dense subspace of $\mathscr{B}_{1}(H)$.

Utilising the trace notation we obviously have that

$$
\langle A, B\rangle_{2}=\operatorname{tr}\left(B^{*} A\right)=\operatorname{tr}\left(A B^{*}\right) \text { and }\|A\|_{2}^{2}=\operatorname{tr}\left(A^{*} A\right)=\operatorname{tr}\left(|A|^{2}\right)
$$

for any $A, B \in \mathscr{B}_{2}(H)$.
The following Hölder's type inequality has been obtained by Ruskai in [42]

$$
\begin{equation*}
|\operatorname{tr}(A B)| \leqslant \operatorname{tr}(|A B|) \leqslant\left[\operatorname{tr}\left(|A|^{1 / \alpha}\right)\right]^{\alpha}\left[\operatorname{tr}\left(|B|^{1 /(1-\alpha)}\right)\right]^{1-\alpha} \tag{2.12}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $A, B \in \mathscr{B}(H)$ with $|A|^{1 / \alpha},|B|^{1 /(1-\alpha)} \in \mathscr{B}_{1}(H)$.
In particular, for $\alpha=\frac{1}{2}$ we get the Schwarz inequality

$$
\begin{equation*}
|\operatorname{tr}(A B)| \leqslant \operatorname{tr}(|A B|) \leqslant\left[\operatorname{tr}\left(|A|^{2}\right)\right]^{1 / 2}\left[\operatorname{tr}\left(|B|^{2}\right)\right]^{1 / 2} \tag{2.13}
\end{equation*}
$$

with $A, B \in \mathscr{B}_{2}(H)$.
For the theory of trace functionals and their applications the reader is referred to [45].

For some classical trace inequalities see [14], [16], [39] and [49], which are continuations of the work of Bellman [5]. For related works the reader can refer to [4], [6], [14], [30], [33], [34], [36], [43] and [46].

3. Some Grüss' type trace inequalities

We denote by $\mathscr{B}_{1}^{+}(H):=\left\{P: P \in \mathscr{B}_{1}(H)\right.$ and $\left.P \geqslant 0\right\}$.
We have the following result:

Theorem 6. For any $A, C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$ we have the inequality

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.1}\\
& \leqslant \inf _{\lambda \in \mathbb{C}}\left\|A-\lambda \cdot 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \inf _{\lambda \in \mathbb{C}}\left\|A-\lambda \cdot 1_{H}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

where $\|\cdot\|$ is the operator norm.

Proof. We observe that, for any $\lambda \in \mathbb{C}$ we have

$$
\begin{align*}
& \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left[P\left(A-\lambda 1_{H}\right)\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right)\right] \tag{3.2}\\
& =\frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left[P A\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right)\right] \\
& -\frac{\lambda}{\operatorname{tr}(P)} \operatorname{tr}\left[P\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right)\right] \\
& =\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} .
\end{align*}
$$

Taking the modulus in (3.2) and utilizing the properties of the trace, we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.3}\\
& =\frac{1}{\operatorname{tr}(P)}\left|\operatorname{tr}\left[P\left(A-\lambda 1_{H}\right)\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right)\right]\right| \\
& =\frac{1}{\operatorname{tr}(P)}\left|\operatorname{tr}\left[\left(A-\lambda 1_{H}\right)\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right]\right| \\
& \leqslant\left\|A-\lambda 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right)
\end{align*}
$$

for any $\lambda \in \mathbb{C}$, where for the last inequality we used the inequality (2.11).
Utilising Schwarz's inequality (2.13) we also have

$$
\begin{align*}
& \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \tag{3.4}\\
& =\operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P^{1 / 2} P^{1 / 2}\right|\right) \\
& \leqslant\left[\operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P^{1 / 2}\right|^{2}\right)\right]^{1 / 2}[\operatorname{tr}(P)]^{1 / 2} .
\end{align*}
$$

Observe that

$$
\begin{align*}
& \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P^{1 / 2}\right|^{2}\right) \tag{3.5}\\
& =\operatorname{tr}\left(\left(\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P^{1 / 2}\right)^{*}\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P^{1 / 2}\right) \\
& =\operatorname{tr}\left(P^{1 / 2}\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right)^{*}\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P^{1 / 2}\right) \\
& =\operatorname{tr}\left(\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right)^{*}\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right) \\
& =\operatorname{tr}\left(\left(C^{*}-\frac{\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}}{1} 1_{H}\right)\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right) \\
& =\operatorname{tr}\left[\left(|C|^{2}-\frac{\left.\left.\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} C^{*}+\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2} 1_{H}\right) P\right]}{=\left(\frac{\operatorname{tr}\left(|C|^{2} P\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right) \operatorname{tr}(P) .}\right.\right.
\end{align*}
$$

By (3.4) and (3.5) we get

$$
\operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \leqslant\left(\frac{\operatorname{tr}\left(|C|^{2} P\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right)^{1 / 2} \operatorname{tr}(P)
$$

and by (3.3) we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.6}\\
& \leqslant\left\|A-\lambda \cdot 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant\left\|A-\lambda \cdot 1_{H}\right\|\left(\frac{\operatorname{tr}\left(|C|^{2} P\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right)^{1 / 2}
\end{align*}
$$

for any $\lambda \in \mathbb{C}$.
Taking the infimum over $\lambda \in \mathbb{C}$ in (3.6) we get the desired result (3.1).
Corollary 1. For any $C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$ we have the inequality

$$
\begin{align*}
0 & \leqslant \frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2} \tag{3.7}\\
& \leqslant \inf _{\mu \in \mathbb{C}}\left\|C-\mu \cdot 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \inf _{\mu \in \mathbb{C}}\left\|C-\mu \cdot 1_{H}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

In particular, we have

$$
\begin{equation*}
0 \leqslant \frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2} \leqslant \inf _{\mu \in \mathbb{C}}\left\|C-\mu \cdot 1_{H}\right\|^{2} \tag{3.8}
\end{equation*}
$$

Proof. If we take in (3.1) $A=C^{*}$ then we get

$$
\begin{aligned}
& \left|\frac{\operatorname{tr}\left(P C^{*} C\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P C^{*}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \\
& \leqslant \inf _{\lambda \in \mathbb{C}}\left\|C^{*}-\lambda \cdot 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \inf _{\lambda \in \mathbb{C}}\left\|C^{*}-\lambda \cdot 1_{H}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{aligned}
$$

which is clearly equivalent to (3.7).
The inequality (3.8) follows from the inequality between the second and fourth term in (3.7).

Corollary 2. For any $C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$ we have the inequality

$$
\begin{align*}
& \left|\frac{\operatorname{tr}\left(P C^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right)^{2}\right| \tag{3.9}\\
& \leqslant \inf _{\lambda \in \mathbb{C}}\left\|C-\lambda \cdot 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \inf _{\lambda \in \mathbb{C}}\left\|C-\lambda \cdot 1_{H}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

Following [27], for the complex numbers α, β and the bounded linear operator T we define the following transform

$$
\mathscr{C}_{\alpha, \beta}(T):=\left(T^{*}-\bar{\alpha} I\right)(\beta I-T)
$$

where by T^{*} we denote the adjoint of T.
We list some properties of the transform $\mathscr{C}_{\alpha, \beta}(\cdot)$ that are useful in the following:
(i) For any $\alpha, \beta \in \mathbb{C}$ and $T \in B(H)$ we have:

$$
\begin{gathered}
\mathscr{C}_{\alpha, \beta}(I)=(1-\bar{\alpha})(\beta-1) I, \quad \mathscr{C}_{\alpha, \alpha}(T)=-(\alpha I-T)^{*}(\alpha I-T), \\
\mathscr{C}_{\alpha, \beta}(\gamma T)=|\gamma|^{2} \mathscr{C}_{\frac{\alpha}{\gamma}, \frac{\beta}{\gamma}}(T) \quad \text { for each } \gamma \in \mathbb{C} \backslash\{0\}, \\
{\left[\mathscr{C}_{\alpha, \beta}(T)\right]^{*}=\mathscr{C}_{\beta, \alpha}(T)}
\end{gathered}
$$

and

$$
\mathscr{C}_{\bar{\beta}, \bar{\alpha}}\left(T^{*}\right)-\mathscr{C}_{\alpha, \beta}(T)=T^{*} T-T T^{*}
$$

(ii) The operator $T \in B(H)$ is normal if and only if $\mathscr{C}_{\bar{\beta}, \bar{\alpha}}\left(T^{*}\right)=\mathscr{C}_{\alpha, \beta}(T)$ for each $\alpha, \beta \in \mathbb{C}$.

We recall that a bounded linear operator T on the complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$ is called accretive if $\operatorname{Re}\langle T y, y\rangle \geqslant 0$ for any $y \in H$.

Utilizing the following identity

$$
\begin{align*}
\operatorname{Re}\left\langle\mathscr{C}_{\alpha, \beta}(T) x, x\right\rangle & =\operatorname{Re}\left\langle\mathscr{C}_{\beta, \alpha}(T) x, x\right\rangle \tag{3.10}\\
& =\frac{1}{4}|\beta-\alpha|^{2}-\left\|\left(T-\frac{\alpha+\beta}{2} I\right) x\right\|^{2}
\end{align*}
$$

that holds for any scalars α, β and any vector $x \in H$ with $\|x\|=1$ we can give a simple characterization result that is useful in the following:

Lemma 1. For $\alpha, \beta \in \mathbb{C}$ and $T \in B(H)$ the following statements are equivalent:
(i) The transform $\mathscr{C}_{\alpha, \beta}(T)\left(\right.$ or, equivalently $\left.\mathscr{C}_{\beta, \alpha}(T)\right)$ is accretive;
(ii) The transform $\mathscr{C}_{\bar{\alpha}, \bar{\beta}}\left(T^{*}\right)\left(\right.$ or, equivalently $\left.\mathscr{C}_{\bar{\beta}, \bar{\alpha}}\left(T^{*}\right)\right)$ is accretive;
(iii) We have the norm inequality

$$
\begin{equation*}
\left\|T-\frac{\alpha+\beta}{2} \cdot I\right\| \leqslant \frac{1}{2}|\beta-\alpha| \tag{3.11}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left\|T^{*}-\frac{\bar{\alpha}+\bar{\beta}}{2} \cdot I\right\| \leqslant \frac{1}{2}|\beta-\alpha| \tag{3.12}
\end{equation*}
$$

REMARK 1. In order to give examples of operators $T \in B(H)$ and numbers $\alpha, \beta \in$ \mathbb{C} such that the transform $\mathscr{C}_{\alpha, \beta}(T)$ is accretive, it suffices to select a bounded linear operator S and the complex numbers z, w with the property that $\|S-z I\| \leqslant|w|$ and, by choosing $T=S, \alpha=\frac{1}{2}(z+w)$ and $\beta=\frac{1}{2}(z-w)$ we observe that T satisfies (3.11), i.e., $\mathscr{C}_{\alpha, \beta}(T)$ is accretive.

Corollary 3. Let $\alpha, \beta \in \mathbb{C}$ and $A \in B(H)$ such that the transform $\mathscr{C}_{\alpha, \beta}(A)$ is accretive, or, equivalently

$$
\left\|A-\frac{\alpha+\beta}{2} \cdot I\right\| \leqslant \frac{1}{2}|\beta-\alpha|
$$

For any $C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$ we have the inequality

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.13}\\
& \leqslant \frac{1}{2}|\beta-\alpha| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2}|\beta-\alpha|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

In particular, if $C \in \mathscr{B}(H)$ is such that $\mathscr{C}_{\alpha, \beta}(C)$ is accretive, then

$$
\begin{align*}
0 & \leqslant \frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2} \tag{3.14}\\
& \leqslant \frac{1}{2}|\beta-\alpha| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2}|\beta-\alpha|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2} \leqslant \frac{1}{4}|\beta-\alpha|^{2}
\end{align*}
$$

Also

$$
\begin{align*}
& \left|\frac{\operatorname{tr}\left(P C^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right)^{2}\right| \tag{3.15}\\
& \leqslant \frac{1}{2}|\beta-\alpha| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2}|\beta-\alpha|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2} \leqslant \frac{1}{4}|\beta-\alpha|^{2}
\end{align*}
$$

We have the following Grüss type inequality:

Corollary 4. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ and $A, C \in B(H)$ such that the transforms $\mathscr{C}_{\alpha, \beta}(A)$ and $\mathscr{C}_{\gamma, \delta}(C)$ are accretive. Then for any $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$ we have the inequality

$$
\begin{equation*}
\left|\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \leqslant \frac{1}{4}|\beta-\alpha||\gamma-\delta| \tag{3.16}
\end{equation*}
$$

REMARK 2. In the case when A is a selfadjoint operator and $m 1_{H} \leqslant A \leqslant M 1_{H}$ for some real numbers $m<M$, then

$$
\left|A-\frac{m+M}{2} 1_{H}\right| \leqslant \frac{1}{2}(M-m) 1_{H}
$$

which implies that

$$
\left\|A-\frac{m+M}{2} 1_{H}\right\| \leqslant \frac{1}{2}(M-m)
$$

Then by (3.13) we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.17}\\
& \leqslant \frac{1}{2}(M-m) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2}(M-m)\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

for any $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$ and $C \in \mathscr{B}(H)$.
If C is a selfadjoint operator and $k 1_{H} \leqslant C \leqslant K 1_{H}$ for some real numbers $k<K$,
then

$$
\begin{align*}
0 & \leqslant \frac{\operatorname{tr}\left(P C^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right)^{2} \tag{3.18}\\
& \leqslant \frac{1}{2}(K-k) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2}(K-k)\left[\frac{\operatorname{tr}\left(P C^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right)^{2}\right]^{1 / 2} \leqslant \frac{1}{4}(K-k)^{2}
\end{align*}
$$

for any $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$.
We have the following Grüss type inequality

$$
\begin{equation*}
\left|\frac{\operatorname{tr}(P A C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P A)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \leqslant \frac{1}{4}(M-m)(K-k) \tag{3.19}
\end{equation*}
$$

provided that $m 1_{H} \leqslant A \leqslant M 1_{H}$ and $k 1_{H} \leqslant C \leqslant K 1_{H}$.
Let $\mathscr{M}_{n}(\mathbb{C})$ be the space of all square matrices of order n with complex elements and $A \in \mathscr{M}_{n}(\mathbb{C})$ be a Hermitian matrix such that $\operatorname{Sp}(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. Then for any $C \in \mathscr{M}_{n}(\mathbb{C})$ we have

$$
\begin{align*}
\left|\frac{\operatorname{tr}(A C)}{n}-\frac{\operatorname{tr}(A)}{n} \frac{\operatorname{tr}(C)}{n}\right| & \leqslant \frac{1}{2}(M-m) \frac{1}{n} \operatorname{tr}\left(\left|C-\frac{\operatorname{tr}(C)}{n} I_{n}\right|\right) \tag{3.20}\\
& \leqslant \frac{1}{2}(M-m)\left[\frac{\operatorname{tr}\left(|C|^{2}\right)}{n}-\left|\frac{\operatorname{tr}(C)}{n}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

where I_{n} is the identity matrix in $\mathscr{M}_{n}(\mathbb{C})$.
If C is a Hermitian matrix such that $\mathrm{Sp}(C) \subseteq[k, K]$ for some scalars k, K with $k<K$, then

$$
\begin{align*}
0 & \leqslant \frac{\operatorname{tr}\left(C^{2}\right)}{n}-\left(\frac{\operatorname{tr}(C)}{n}\right)^{2} \leqslant \frac{1}{2}(K-k) \frac{1}{n} \operatorname{tr}\left(\left|C-\frac{\operatorname{tr}(C)}{n} I_{n}\right|\right) \tag{3.21}\\
& \leqslant \frac{1}{2}(K-k)\left[\frac{\operatorname{tr}\left(C^{2}\right)}{n}-\left(\frac{\operatorname{tr}(C)}{n}\right)^{2}\right]^{1 / 2} \leqslant \frac{1}{4}(K-k)^{2}
\end{align*}
$$

In the case when the operator A is a function of selfadjoint operators we have the following result as well.

THEOREM 7. Let S be a selfadjoint operator with $\operatorname{Sp}(S) \subseteq[m, M]$ and $f:[m, M] \rightarrow$ \mathbb{C} a continuous function of bounded variation on $[m, M]$. For any $C \in \mathscr{B}(H)$ and
$P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$ we have the inequality

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P f(S) C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P f(S))}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.22}\\
& \leqslant \frac{1}{2} \bigvee_{m}^{M}(f) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2} \bigvee_{m}^{M}(f)\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

where $\bigvee_{m}^{M}(f)$ is the total variation of f on the interval.
If the function $f:[m, M] \rightarrow \mathbb{C}$ is Lipschitzian with the constant $L>0$ on $[m, M]$, i.e.

$$
|f(t)-f(s)| \leqslant L|t-s|
$$

for any $t, s \in[m, M]$, then

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P f(S) C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P f(S))}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.23}\\
& \leqslant L\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant L\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

for any $C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$.

Proof. From the inequality (3.3) we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P f(S) C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P f(S))}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.24}\\
& \leqslant\left\|f(S)-\lambda 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right)
\end{align*}
$$

for any $\lambda \in \mathbb{C}$.
From (3.24) we get

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P f(S) C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P f(S))}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.25}\\
& \leqslant\left\|f(S)-\frac{f(m)+f(M)}{2} 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right)
\end{align*}
$$

Since f is of bounded variation on $[m, M]$, then we have

$$
\begin{align*}
\left|f(t)-\frac{f(m)+f(M)}{2}\right| & =\left|\frac{f(t)-f(m)+f(t)-f(M)}{2}\right| \tag{3.26}\\
& \leqslant \frac{1}{2}[|f(t)-f(m)|+|f(M)-f(t)|] \\
& \leqslant \frac{1}{2} \bigvee_{m}^{M}(f)
\end{align*}
$$

for any $t \in[m, M]$.
From (3.26) we get in the order $\mathscr{B}(H)$ that

$$
\left|f(S)-\frac{f(m)+f(M)}{2} 1_{H}\right| \leqslant \frac{1}{2} \bigvee_{m}^{M}(f) 1_{H}
$$

which implies that

$$
\begin{equation*}
\left\|f(S)-\frac{f(m)+f(M)}{2} 1_{H}\right\| \leqslant \frac{1}{2} \bigvee_{m}^{M}(f) 1_{H} \tag{3.27}
\end{equation*}
$$

Making use of (3.25) and (3.27) we get the first inequality (3.22). The second part is obvious.

From (3.24) we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P f(S) C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P f(S))}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.28}\\
& \leqslant\left\|f(S)-f\left(\frac{\operatorname{tr}(S P)}{\operatorname{tr}(P)}\right) 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right)
\end{align*}
$$

any $C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$.
Since

$$
|f(t)-f(s)| \leqslant L|t-s|
$$

for any $t, s \in[m, M]$, then we have in the order $\mathscr{B}(H)$ that

$$
\left|f(S)-f(s) 1_{H}\right| \leqslant L\left|S-s 1_{H}\right|
$$

for any $s \in[m, M]$. In particular, we have

$$
\left|f(S)-f\left(\frac{\operatorname{tr}(S P)}{\operatorname{tr}(P)}\right) 1_{H}\right| \leqslant L\left|S-\frac{\operatorname{tr}(S P)}{\operatorname{tr}(P)} 1_{H}\right|
$$

which implies that

$$
\left\|f(S)-f\left(\frac{\operatorname{tr}(S P)}{\operatorname{tr}(P)}\right) 1_{H}\right\| \leqslant L\left\|S-\frac{\operatorname{tr}(S P)}{\operatorname{tr}(P)} 1_{H}\right\|
$$

and by (3.28) we get the first inequality in (3.23).
The second part is obvious.

REMARK 3. If we take $f(t)=t$ in (3.22), then we get the inequality (3.17) while from (3.23) we obtain

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P S C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.29}\\
& \leqslant\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

for any $C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$.

The case of selfadjoint operators C is as follows:

Corollary 5. Let S be a selfadjoint operator with $\operatorname{Sp}(S) \subseteq[m, M]$ and f : $[m, M] \rightarrow \mathbb{C}$ a continuous function of bounded variation on $[m, M]$. If C is selfadjoint with $\mathrm{Sp}(C) \subseteq[n, N]$ for some real numbers $n<N$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash\{0\}$, then we have the inequality

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P f(S) C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P f(S))}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.30}\\
& \leqslant \frac{1}{2} \bigvee_{m}^{M}(f) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2} \bigvee_{m}^{M}(f)\left[\frac{\operatorname{tr}\left(P C^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right)^{2}\right]^{1 / 2} \leqslant \frac{1}{4}(M-n) \bigvee_{m}^{M}(f)
\end{align*}
$$

If the function $f:[m, M] \rightarrow \mathbb{C}$ is Lipschitzian with the constant $L>0$ on $[m, M]$, then

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(P f(S) C)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P f(S))}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{3.31}\\
& \leqslant L\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left.\|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P \right\rvert\,\right) \\
& \leqslant L\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right\|\left[\frac{\operatorname{tr}\left(P C^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right)^{2}\right]^{1 / 2} \\
& \leqslant \frac{1}{2}(M-n) L\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right\|
\end{align*}
$$

4. Some examples

If we write the inequality (3.22) for the function $f:[m, M] \subset[0, \infty) \rightarrow[0, \infty)$, $f(t)=t^{r}, r>0$, then we get

$$
\begin{align*}
& \left|\frac{\operatorname{tr}\left(P S^{r} C\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P S^{r}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{4.1}\\
& \leqslant \frac{1}{2}\left(M^{r}-m^{r}\right) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2}\left(M^{r}-m^{r}\right)\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

while from (3.23) we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}\left(P S^{r} C\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P S^{r}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{4.2}\\
& \leqslant \Delta_{r}\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \Delta_{r}\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

for any S a selfadjoint operator with $\mathrm{Sp}(S) \subseteq[m, M]$, any $C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash$ $\{0\}$, where

$$
\Delta_{r}:=\left\{\begin{array}{l}
r M^{r-1} \text { if } r \geqslant 1 \\
r m^{r-1} \text { if } r \in(0,1)
\end{array}\right.
$$

If C is selfadjoint with $\operatorname{Sp}(C) \subseteq[n, N]$ for some real numbers $n<N$ then from (4.1) and (4.2) we get the power inequalities

$$
\begin{equation*}
\left|\frac{\operatorname{tr}\left(P S^{r} C\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P S^{r}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \leqslant \frac{1}{4}\left(M^{r}-m^{r}\right)(N-n) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\operatorname{tr}\left(P S^{r} C\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P S^{r}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \leqslant \frac{1}{2} \Delta_{r}(N-n)\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right\| \tag{4.4}
\end{equation*}
$$

If we write the inequality (3.22) for the function $f:[m, M] \subset(0, \infty) \rightarrow \mathbb{R}, f(t)=$
$\ln t$, then we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(C P \ln S)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P \ln S)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{4.5}\\
& \leqslant \frac{1}{2} \ln \left(\frac{M}{m}\right) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2} \ln \left(\frac{M}{m}\right)\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

while from (3.23) we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}(C P \ln S)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P \ln S)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{4.6}\\
& \leqslant \frac{1}{m}\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{m}\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

for any S a selfadjoint operator with $\operatorname{Sp}(S) \subseteq[m, M]$, any $C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash$ $\{0\}$.

If C is selfadjoint with $\operatorname{Sp}(C) \subseteq[n, N]$ for some real numbers $n<N$ then from (4.5) and (4.6) we have

$$
\begin{equation*}
\left|\frac{\operatorname{tr}(C P \ln S)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P \ln S)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \leqslant \frac{1}{4}(N-n) \ln \left(\frac{M}{m}\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\operatorname{tr}(C P \ln S)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P \ln S)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \leqslant \frac{N-n}{2 m}\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right\| \tag{4.8}
\end{equation*}
$$

If we write the inequality (3.22) for the function $f:[m, M] \subset(0, \infty) \rightarrow \mathbb{R}, f(t)=$ t^{-1}, then we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}\left(P S^{-1} C\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P S^{-1}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{4.9}\\
& \leqslant \frac{1}{2} \frac{M-m}{m M} \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2} \frac{M-m}{m M}\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

while from (3.23) we have

$$
\begin{align*}
& \left|\frac{\operatorname{tr}\left(P S^{-1} C\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P S^{-1}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \tag{4.10}\\
& \leqslant \frac{1}{m^{2}}\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right\| \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(C-\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{m^{2}}\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right\|\left[\frac{\operatorname{tr}\left(P|C|^{2}\right)}{\operatorname{tr}(P)}-\left|\frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right|^{2}\right]^{1 / 2}
\end{align*}
$$

for any S a selfadjoint operator with $\operatorname{Sp}(S) \subseteq[m, M]$, any $C \in \mathscr{B}(H)$ and $P \in \mathscr{B}_{1}^{+}(H) \backslash$ $\{0\}$.

If C is selfadjoint with $\operatorname{Sp}(C) \subseteq[n, N]$ for some real numbers $n<N$ then from (4.9) and (4.10) we have

$$
\begin{equation*}
\left|\frac{\operatorname{tr}\left(P S^{-1} C\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P S^{-1}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \leqslant \frac{1}{4} \frac{M-m}{m M}(N-n) \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\operatorname{tr}\left(P S^{-1} C\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P S^{-1}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P C)}{\operatorname{tr}(P)}\right| \leqslant \frac{N-n}{2 m^{2}}\left\|S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right\| \tag{4.12}
\end{equation*}
$$

Now, if we take $C=S$ in (4.1), then we get

$$
\begin{align*}
0 & \leqslant \frac{\operatorname{tr}\left(P S^{r+1}\right)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}\left(P S^{r}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} \tag{4.13}\\
& \leqslant \frac{1}{2}\left(M^{r}-m^{r}\right) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2}\left(M^{r}-m^{r}\right)\left[\frac{\operatorname{tr}\left(P S^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right)^{2}\right]^{1 / 2} \\
& \leqslant \frac{1}{4}\left(M^{r}-m^{r}\right)(M-m)
\end{align*}
$$

for any S a selfadjoint operator with $\operatorname{Sp}(S) \subseteq[m, M] \subset[0, \infty)$ and any $P \in \mathscr{B}_{1}^{+}(H) \backslash$ $\{0\}$.

Also, if we take $C=S$ in (4.5), then we obtain

$$
\begin{align*}
0 & \leqslant \frac{\operatorname{tr}(P S \ln S)}{\operatorname{tr}(P)}-\frac{\operatorname{tr}(P \ln S)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} \tag{4.14}\\
& \leqslant \frac{1}{2} \ln \left(\frac{M}{m}\right) \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2} \ln \left(\frac{M}{m}\right)\left[\frac{\operatorname{tr}\left(P S^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right)^{2}\right]^{1 / 2} \\
& \leqslant \frac{1}{4}(M-m) \ln \left(\frac{M}{m}\right)
\end{align*}
$$

for any S a selfadjoint operator with $\operatorname{Sp}(S) \subseteq[m, M] \subset(0, \infty)$ and any $P \in \mathscr{B}_{1}^{+}(H) \backslash$ $\{0\}$.

Finally, if we take $C=S$ in (4.9), then we get

$$
\begin{align*}
0 & \leqslant \frac{\operatorname{tr}\left(P S^{-1}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}-1 \tag{4.15}\\
& \leqslant \frac{1}{2} \frac{M-m}{m M} \frac{1}{\operatorname{tr}(P)} \operatorname{tr}\left(\left|\left(S-\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} 1_{H}\right) P\right|\right) \\
& \leqslant \frac{1}{2} \frac{M-m}{m M}\left[\frac{\operatorname{tr}\left(P S^{2}\right)}{\operatorname{tr}(P)}-\left(\frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)}\right)^{2}\right]^{1 / 2} \\
& \leqslant \frac{1}{4} \frac{(M-m)^{2}}{m M}
\end{align*}
$$

for any S a selfadjoint operator with $\operatorname{Sp}(S) \subseteq[m, M] \subset(0, \infty)$ and any $P \in \mathscr{B}_{1}^{+}(H) \backslash$ $\{0\}$.

From the first and last terms in (4.15) we get the Kantorovich type inequality

$$
1 \leqslant \frac{\operatorname{tr}\left(P S^{-1}\right)}{\operatorname{tr}(P)} \frac{\operatorname{tr}(P S)}{\operatorname{tr}(P)} \leqslant \frac{1}{4} \frac{(M+m)^{2}}{m M}
$$

We notice that, the positivity of the first terms in (4.13), (4.14) and (4.15) follows from the Čebyšev's type trace inequality obtained in [28].

REFERENCES

[1] G. A. Anastassiou, Grüss type inequalities for the Stieltjes integral, Nonlinear Funct. Anal. Appl. 12 (2007), no. 4, 583-593.
[2] G. A. Anastassiou, Chebyshev-Grüss type and comparison of integral means inequalities for the Stieltjes integral, Panamer. Math. J. 17 (2007), no. 3, 91-109.
[3] G. A. Anastassiou, Chebyshev-Grüss type inequalities via Euler type and Fink identities, Math. Comput. Modelling 45 (2007), no. 9-10, 1189-1200.
[4] T. Ando, Matrix Young inequalities, Oper. Theory Adv. Appl. 75 (1995), 33-38.
[5] R. Bellman, Some inequalities for positive definite matrices, in: E.F. Beckenbach (Ed.), General Inequalities 2, Proceedings of the 2nd International Conference on General Inequalities, Birkhäuser, Basel, 1980, pp. 89-90.
[6] E. V. Belmega, M. Jungers and S. Lasaulce, A generalization of a trace inequality for positive definite matrices, Aust. J. Math. Anal. Appl. 7 (2010), no. 2, Art. 26, 5 pp.
[7] N. G. de Bruijn, Problem 12, Wisk. Opgaven, 21 (1960), 12-14.
[8] P. Cerone, On some results involving the Čebyšev functional and its generalisations, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 55, 17 pp.
[9] P. Cerone, On Chebyshev functional bounds, Differential \& difference equations and applications, 267-277, Hindawi Publ. Corp., New York, 2006.
[10] P. Cerone, it On a Čebyšev-type functional and Grüss-like bounds, Math. Inequal. Appl. 9 (2006), no. 1, 87-102.
[11] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math. 38 (2007), no. 1, 37-49.
[12] P. Cerone and S. S. Dragomir, New bounds for the Čebyšev functional, Appl. Math. Lett. 18 (2005), no. 6, 603-611.
[13] P. Cerone and S. S. Dragomir, Chebychev functional bounds using Ostrowski seminorms, Southeast Asian Bull. Math. 28 (2004), no. 2, 219-228.
[14] D. Chang, A matrix trace inequality for products of Hermitian matrices, J. Math. Anal. Appl. 237 (1999) 721-725.
[15] L. Chen and C. Wong, Inequalities for singular values and traces, Linear Algebra Appl. 171 (1992), 109-120.
[16] I. D. Coop, On matrix trace inequalities and related topics for products of Hermitian matrix, J. Math. Anal. Appl. 188 (1994) 999-1001.
[17] S. S. Dragomir, Grüss inequality in inner product spaces, The Australian Math Soc. Gazette, 26(1999), no. 2, 66-70.
[18] S. S. Dragomir, A generalization of Grüss' inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82.
[19] S. S. Dragomir, Some discrete inequalities of Grüss type and applications in guessing theory, Honam Math. J., 21 (1) (1999), 145-156.
[20] S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. of Pure and Appl. Math., 31 (4) (2000), 397-415.
[21] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc, New York, 2005, x+249 pp.
[22] S. S. Dragomir and G. L. Booth, On a Grüss-Lupaş type inequality and its applications for the estimation of p-moments of guessing mappings, Mathematical Communications, 5 (2000), 117-126.
[23] S. S. Dragomir, A Grüss type integral inequality for mappings of r-Hölder's type and applications for trapezoid formula, Tamkang J. of Math., 31 (1) (2000), 43-47.
[24] S. S. Dragomir and I. Fedotov, An inequality of Grüss' type for Riemann-Stieltjes integral and applications for special means, Tamkang J. of Math., 29 (4) (1998), 286-292.
[25] S. S. Dragomir, Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces, Linear Multilinear Algebra 58 (2010), no. 7-8, 805-814. Preprint RGMIA Res. Rep. Coll., 11(2008), Supp. Art. 9. [Online http://rgmia.org/v11 (E) .php]
[26] S. S. Dragomir, Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, Ital. J. Pure Appl. Math. No. 28 (2011), 207-224. Preprint RGMIA Res. Rep. Coll. 11 (2008), Supp. Art. 11. [Online http://rgmia.org/v11(E).php]
[27] S. S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators in Hilbert spaces. Linear Algebra Appl. 428 (2008), no. 11-12, 2750-2760.
[28] S. S. Dragomir, Some Čebyšev's type trace inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 111.
[29] A. M. Fink, A treatise on Grüss' inequality, Analytic and Geometric Inequalities, 93-113, Math. Appl. 478, Kluwer Academic Publ., 1999.
[30] S. Furuichi and M. Lin, Refinements of the trace inequality of Belmega, Lasaulce and Debbah, Aust. J. Math. Anal. Appl. 7 (2010), no. 2, Art. 23, 4 pp.
[31] G. GRÜSs, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x$ $\int_{a}^{b} g(x) d x$, Math. Z., 39 (1935), 215-226.
[32] T. Furuta, J. Mićıć Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[33] H. D. Lee, On some matrix inequalities, Korean J. Math. 16 (2008), no. 4, pp. 565-571.
[34] L. Liv, A trace class operator inequality, J. Math. Anal. Appl. 328 (2007) 1484-1486.
[35] Z. Liv, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral, Soochow J. Math., 30 (4) (2004), 483-489.
[36] S. Manjegani, Hölder and Young inequalities for the trace of operators, Positivity 11 (2007), 239250.
[37] A. Matković, J. Pečarić and I. Perić, A variant of Jensen's inequality of Mercer's type for operators with applications Linear Algebra Appl. 418 (2006), no. 2-3, 551-564.
[38] D. S. Mitrinović, J. E. PeČARIĆ and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
[39] H. Neudecker, A matrix trace inequality, J. Math. Anal. Appl. 166 (1992) 302-303.
[40] B. G. Pachpatte, A note on Grüss type inequalities via Cauchy's mean value theorem, Math. Inequal. Appl. 11 (2008), no. 1, 75-80.
[41] J. Pečarić, J. MićIć and Y. Seo, Inequalities between operator means based on the Mond-Pečarić method, Houston J. Math. 30 (2004), no. 1, 191-207
[42] M. B. Ruskai, Inequalities for traces on von Neumann algebras, Commun. Math. Phys. 26 (1972), 280-289.
[43] K. Shebrawi and H. Albadawi, Operator norm inequalities of Minkowski type, J. Inequal. Pure Appl. Math. 9 (1) (2008), 1-10, article 26.
[44] K. Shebrawi and H. Albadawi, Trace inequalities for matrices, Bull. Aust. Math. Soc. 87 (2013), 139-148.
[45] B. Simon, Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
[46] Z. UluköK and R. TÜrkmen, On some matrix trace inequalities, J. Inequal. Appl. 2010, Art. ID 201486, 8 pp.
[47] X. Yang, A matrix trace inequality, J. Math. Anal. Appl. 250 (2000) 372-374.
[48] X. M. Yang, X. Q. Yang and K. L. Teo, A matrix trace inequality, J. Math. Anal. Appl. 263 (2001), 327-331.
[49] Y. Yang, A matrix trace inequality, J. Math. Anal. Appl. 133 (1988) 573-574.
[50] C.-J. ZHAO AND W.-S. CHEUNG, On multivariate Grüss inequalities, J. Inequal. Appl. 2008, Art. ID 249438, 8 pp.
http://rgmia.org/dragomir

[^0]: Mathematics subject classification (2010): 47A63, 47A99.
 Keywords and phrases: Trace class operators, Hilbert-Schmidt operators, trace, Grüss' type inequalities, trace inequalities for matrices.

