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SOME GRUSS’ TYPE INEQUALITIES FOR
TRACE OF OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR

(Communicated by Raiil Curto)

Abstract. Some inequalities of Griiss’ type for trace of operators in Hilbert spaces, under suitable
assumptions for the involved operators, are given.

1. Introduction

In 1935, G. Griiss [31] proved the following integral inequality which gives an
approximation of the integral mean of the product in terms of the product of the integrals
means as follows:

_ 1.1
‘b a/ fWgxdx b— a/ Sl (LD
D —
< @—9)(r ),
where f, g:[a,b] — R are integrable on [a,b] and satisfy the condition
P<flx) <P, y<gx)<T (1.2)

for each x € [a,b], where ¢,®,y,T" are given real constants.

Moreover, the constant % is sharp in the sense that it cannot be replaced by a
smaller one.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [38, Chapter X] estab-
lished the following discrete version of Griiss’ inequality:

Let a = (ay,...,an), b= (by,.. ,bn) be two n—tuples of real numbers such that

<a;<Rand s< b<Sf0rz—1 .,n. Then one has

\—{ ](1—%[%])(R—r)(S—s), (1.3)

where [x] denotes the integer part of x, x € R.
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For a simple proof of (1.1) as well as for some other integral inequalities of Griiss
type, see Chapter X of the book [38].

For other related results see the papers [1]-[3], [8]-[10], [11]-[13], [17]-[24],
[29], [40], [50] and the references therein.

In [18], in order to generalize the above result in abstract structures the author has
proved the following Griiss’ type inequality in real or complex inner product spaces.

THEOREM 1. (Dragomir, 1999, [18]) Let (H,(.,.)) be an inner product space over
K(XK=RC) and ec H,|le|| =1. If @, y, ®, T are real or complex numbers and x,
y are vectors in H such that the conditions

Re (®e — x,x — @e) > 0 and Re (Te — y,y — ye) > 0 (1.4)

hold, then we have the inequality
1
(5.3) = (.6} (e} < 7 [@— o] IT— 7. (15)

The constant % is best possible in the sense that it can not be replaced by a smaller
constant.

For other results of this type, see the recent monograph [21] and the references
therein.

Let A be a selfadjoint linear operator on a complex Hilbert space (H;(.,.)). The
Gelfand map establishes a *-isometrically isomorphism @ between the set C (Sp(A))
of all continuous functions defined on the spectrum of A, denoted Sp (A), and the C*-
algebra C* (A) generated by A and the identity operator 1y on H as follows:

For any f, g€ C(Sp(A)) and any ¢, 3 € C we have

(i) ®(af+Pg)=oa®(f)+BP(g);

(i) ®(fg) = D)@ (g) and & () = ®(f)’;

(i) [|@ () = /1] := sup,espa) 1f ()]

(iv) @ (fp) =1y and ®(f;) =A, where fy(t)=1and f; (t) =t¢, forr € Sp(A).

With this notation we define

f(A):=d(f) forall f € C(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on Sp (A),
then f(r) >0 forany r € Sp(A) implies that f(A) >0, i.e. f(A) is a positive operator
on H. Moreover, if both f and g are real valued functions on Sp (A) then the following
important property holds:

f(t) > g(r) forany t € Sp(A) implies that f (A) > g (A) (P)

in the operator order of B(H).
In the recent paper [26], we obtained amongst other the following refinement of
the Griiss inequality:
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THEOREM 2. (Dragomir, 2009, [26]) Let A be a selfadjoint operator on the Hilbert
space (H;(.,.)) and assume that Sp (A) C [m,M] for some scalars m <M. If f and g
are continuous on [m,M] and 'y := min,c(y, p) f (¢) and T := max,e(pp) f (¢) then

[(f(A)g(A)x,x) = (f (A)x,x) (g (A) x,x)| (1.6)

-7 [l - g@re?] < L r-pa-9)

f(A
<Ll
<3 4

for each x € H with ||x|| = 1, where & := minc |,y & (t) and A := max,c(, g ()

In order to state some Griiss’ type inequalities for trace operators on complex
Hilbert spaces we need some preparations as follows.

2. Some facts on trace of operators

Let (H,(-,-)) be a complex Hilbert space and {e;};.; an orthonormal basis of H.
We say that A € % (H) is a Hilbert-Schmidt operator if

> lAe|* < oo 2.1)

icl

Itis well know that, if {e;},, and { f j}j ., are orthonormal bases for H and A € Z (H)

then
Y el = 3 flas|’ =3 a5 (2.2)
icl jel jel

showing that the definition (2.1) is independent of the orthonormal basis and A is a
Hilbert-Schmidt operator iff A* is a Hilbert-Schmidt operator.

Let %, (H) the set of Hilbert-Schmidt operators in % (H). For A € %, (H) we
define

1/2
Al = <2Aei2> (2.3)

icl

for {e;};c; an orthonormal basis of H. This definition does not depend on the choice
of the orthonormal basis.

Using the triangle inequality in /% (I), one checks that %, (H) is a vector space
and that ||-||, is a norm on %, (H), which is usually called in the literature as the
Hilbert-Schmidt norm.

Denote the modulus of an operator A € % (H) by |A| := (A*A)"/2.

Because |||A|x|| = ||Ax|| for all x € H, A is Hilbert-Schmidt iff |A| is Hilbert-
Schmidtand ||A||, = |||A]||,. From (2.2) we have thatif A € %, (H), then A* € %, (H)
and |4, = [|A"].

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:
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THEOREM 3. We have
(i) (%2 (H),||-|l,) is a Hilbert space with inner product

(A,B),:= (Aei,Bej) =Y (B*Ae;,e;) (2.4)

icl icl

and the definition does not depend on the choice of the orthonormal basis {e;};;
(ii) We have the inequalities

1] < (Al (2.5)
forany A € %, (H) and
IAT [, [ITAll, < T Al (2.6)
forany A€ %, (H) and T € B(H);
(iii) %, (H) is an operator ideal in B (H), i.e.
% (H)%,(H) % (H) € %, (H);

(iv) Byin (H) , the space of operators of finite rank, is a dense subspace of %> (H) ;
(v) $,(H) C % (H), where # (H) denotes the algebra of compact operators
on H.

If {e;},; an orthonormal basis of H, we say that A € Z(H) is trace class if

Al ==Y (|A] e, ei) < oo. (2.7)
icl
The definition of [|A||; does not depend on the choice of the orthonormal basis {e;};.; .
We denote by % (H) the set of trace class operators in Z (H).
The following proposition holds:

PROPOSITION 1. If A € (H), then the following are equivalent:
(i) A€ % (H);

(ii) |A]'? € 2, (H):

(ii) A (or |A|) is the product of two elements of %, (H).

The following properties are also well known:
THEOREM 4. With the above notations:

(i) We have
[All, = [[A™[]; and A, < [IAll, (2.8)

forany Ae %, (H);
(ii) %, (H) is an operator ideal in 8 (H), i.e.

B (H)% (H)%(H)C % (H);

(iii) We have
%, (H) %2 (H) =% (H);
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(iv) We have
|All, =sup{(A,B), | BE %2 (H), ||B| < 1};

(v) (%1 (H),||-|;) is a Banach space.
(iv) We have the following isometric isomorphisms

P\ (H)=2K(H) and %, (H)" = % (H),
where K (H)" is the dual space of K (H) and %, (H)" is the dual space of %, (H).
We define the trace of a trace class operator A € %) (H) to be

tr (A) = Z (Ae,-,e,-) s (2.9)

icl

where {e;};.; an orthonormal basis of H. Note that this coincides with the usual defi-
nition of the trace if H is finite-dimensional. We observe that the series (2.9) converges
absolutely and it is independent from the choice of basis.

The following result collects some properties of the trace:

THEOREM 5. We have
(i) IfAe€ P (H) then A* € $,(H) and

tr(A*) =tr(A); (2.10)
(i) IfA€ By (H) and T € B (H), then AT, TA € $, (H) and
tr (AT) = tr (TA) and |tr (AT)| < ||A|| I T (2.11)
(iii) tr (+) is a bounded linear functional on %, (H) with ||tr|| = 1;
(iv)If A, B€ B, (H) then AB, BA € %, (H) and tr(AB) = tr(BA);
(v) Bfin (H) is a dense subspace of %, (H).
Utilising the trace notation we obviously have that

(A,B), = tr (B*A) = tr (AB*) and [JA|? = tr (A*A) = tr (|A|2)

forany A, B€ %, (H).
The following Holder’s type inequality has been obtained by Ruskai in [42]

ltr (AB)| < tr(JAB|) < [tr<|A|1/a>]a [tr(|B|1/(1_a)>] b (2.12)

where o € (0,1) and A,B € 2 (H) with |A|Y/* |B|Y/1=% ¢ 2, (H).

In particular, for o = % we get the Schwarz inequality

ltr (AB)| < tr (|AB]) < [tr (|A|2>] 2 [tr <|B|2>] 2 2.13)
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with A, B € %, (H).

For the theory of trace functionals and their applications the reader is referred to
[45].

For some classical trace inequalities see [14], [16], [39] and [49], which are con-
tinuations of the work of Bellman [5]. For related works the reader can refer to [4], [6],
[14], [301, [331, [34], [36], [43] and [46].

3. Some Griiss’ type trace inequalities

We denote by B, (H) :={P: P € %, (H) and P > 0}.
We have the following result:

THEOREM 6. Forany A, C € % (H) and P € %, (H)\ {0} we have the inequal-
ity

tr(PAC)  tr(PA) tr (PC) ‘ 3.1)

w(P)  w(P) w(P)

<inf A~ A-1u] ﬁtf (‘ (C‘ tifg’;) 1H> PD

w(PicP) jeeperp]
w(P) | uw(P)

<inf||[A—A- 1y
AeC

where ||-|| is the operator norm.

Proof. We observe that, for any A € C we have

t(l) {(A MH)< (};C)IH)] (3.2)
e 2]
<P> H )]

w(PAC) (PA) r PC
wP)  w(P) wP)

tr
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Taking the modulus in (3.2) and utilizing the properties of the trace, we have

tr (P) tr(P) tr(P)

« [P (A—Alp) (C— tﬁf@? 1”)}
1

o I;)C')
(C (P) “’) P)

for any A € C, where for the last inequality we used the inequality (2.11).

tr(PAC)  tr(PA) tr (PC) ' (3.3)

1
<JJA=Alg| mtr(

Utilising Schwarz’s inequality (2.13) we also have

o(|(e-emn)r)
(e ) e

1/2
< [tr( (C— tr (PC) 1H> pl/2 2)] [t (P)]'/2.

tr(P)
2
! ) (3.5)
* r 1

o2 -2
wo{{e- ) e 5

r tr

r
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By (3.4) and (3.5) we get

o (e} < (1)

and by (3.3) we have
tr(PAC)  tr(PA) tr(PC) ‘

12

2
) tr(P)

)

tr (PC)
tr (P)

w(P)  w(P) w(P) (36)

<l4- A“”()Q( )

1/2
«(lcPr)
< A=A 14|l -
forany A € C.

tr(P)
Taking the infimum over A € C in (3.6) we get the desired result (3.1). [J

tr (PC) |*
tr(P)

COROLLARY 1. Forany C € % (H) and P € %, (H)\ {0} we have the inequal-

ity
tr P|C|2 2
< ( )_ tr (PC) 37)
tr (P) tr (P)
1 tr (PC)
u@“(@ umloﬂ)
1/2
tr (P|C|2> tI’(PC) 2
<1 —u- _
S nf €= L [ w(P) w(P) :
In particular, we have
tr (P|C|2> tI’(PC) 2
_ <i —u-1yl?. .
OS —wip) w(p) | S mnLlC—u-tul 38)

Proof. 1f we take in (3.1) A = C* then we get
tr(PC*C)  tr(PC*) tr (PC) '

w) )
(I 5i)7)

)
1/2
tr(P\c\z) 2
< i ).
S flC" =4 bl — ’

<nf €72 Ly | s
reC (

tr (PC)
| w(P)




SOME GRUSS’ TYPE INEQUALITIES

931
which is clearly equivalent to (3.7).

The inequality (3.8) follows from the inequality between the second and fourth
termin (3.7). O

COROLLARY 2. Forany C € #(H) and P € % (H)\ {0} we have the inequal-
ity

w(PC?) (tr (PC))2

tr(P) tr(P)

(3.9)

< )EIE%HC—JL x| %“ (' (C_ ttr(g;i) IH) PD

tr<P|C|2>
<inf [C—A-1
fnt il =

12
| (PC) 2

tr (P)

Following [27], for the complex numbers ¢, B and the bounded linear operator T
we define the following transform

Gap (T):=(T"—al) (BI-T),

where by T* we denote the adjoint of T'

We list some properties of the transform %7, g (-) that are useful in the following
(i) Forany o, € C and T € B(H) we have

Gop(l)=(1-0)(B-1)I,

Coo(T)=—(al=T) (al —T),
Gop (VT) =7’ Cap (T) foreach y € C\{0},
(o (T)]" = €0 (T)
and

Gy (T") = Cop(T) =TT —TT".
(ii) The operator T € B(H) is normal if and only if %E (T*) = €op(T) for each
o, eC.
We recall that a bounded linear operator T on the complex Hilbert space (H, (-,-))
is called accretive if Re(Ty,y) >0 forany y € H
Utilizing the following identity
Re (Cop (T)x,x) =Re <<5,3 o (T)x,x)

(3.10)
e

that holds for any scalars o/, 8 and any vector x € H with ||x|| = 1 we can give a simple
characterization result that is useful in the following
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LEMMA 1. For o,3 € C and T € B(H) the following statements are equivalent:
(i) The transform €, g (T) (or; equivalently €3 o (T)) is accretive;
(ii) The transform €55 (T*) (or, equivalenily ¢ 5 (T*)) is accretive;

(iii) We have the norm inequality

o+ p 1
T — <z f—«o 3.11
[r- 2L < - a1
or, equivalently, -
o] 1
T*—#-I <5IB-al. (3.12)

REMARK 1. Inorder to give examples of operators T € B(H) and numbers o, 3 €
C such that the transform ¢, g (T') is accretive, it suffices to select a bounded linear
operator S and the complex numbers z,w with the property that ||S — z/|| < |w| and, by
choosing T =S, ot =3 (z+w) and B = J (z—w) we observe that T satisfies (3.11),
ie., Gop(T) is accretive.

COROLLARY 3. Let a,3 € C and A € B(H) such that the transform 6 g (A) is
accretive, or, equivalently

o+
-1
2

1
A— <-|B-al.
eas RHLEL

Forany C € #(H) and P € %, (H)\ {0} we have the inequality

tr(PAC) tr(PA) tr(PC)
w(P)  w(P) t(P) ' (3.13)
1 1 tr (PC)
<3l (|(e= 5 w)7)
1/2
<! w(PICF) Ju(ee) P
S Bl = v e
In particular; if C € % (H) is such that 6, g (C) is accretive, then
tr (P\CE) e (PC) )
S uP) | u(P) G-19

()

w(PICP) jeer]
w(P) | t(P)

1 1 5
<5IB- <;IB—af.
S1B—al J1B—a
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Also

n(PC%__(u(PC))2 3.15)

tr (P) tr (P)

g2

tr(PICP) 12

| 1
<= p— — < 2B =
<3 B-a w (P) SzB-a

tr(PC) |*

tr (P)

‘ 2

We have the following Griiss type inequality:

COROLLARY 4. Let o, B, v, 6 € C and A, C € B(H) such that the transforms
Cap(A) and €y 5(C) are accretive. Then for any P € %] (H)\ {0} we have the
inequality

tr(PAC) tr(PA)tr(PC)| 1
H@)_WW)uww<zﬁ—aY—&- (3.16)

REMARK 2. In the case when A is a selfadjoint operator and mly <A < Mly
for some real numbers m < M, then

m—+M 1
A— ly| < =(M—m)1p,
’ 7 lu| <z (M=m)lx
which implies that
m—+M 1
— lpl| < (M —m).
HA 7w 2( m)

Then by (3.13) we have

tr (P) tr(P) tr(P)

<30 miggye (| (- ) )

2
u@mﬁ )]
M=m) | — )~

(3.17)

tr(PAC)  tr(PA) tr (PC) ’

tr (PC)
tr (P)

forany P € %, (H)\ {0} and C € #(H).
If C is a selfadjoint operator and kly < C < K1y for some real numbers k < K,
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then
w(PC?)  (u(PC)\?
= (P) ( tr(P) ) (3.18)
1 1 tr (PC)
< E(K_k> tr(P)tr< (C— = (P 1H> pD
1 tr (Pc2) tr(PC) 2 1/2 1
gE(K—k) tI‘(P) _<tr(P)> gZ(K_k)27
forany P € %’f (H)\ {0}.
We have the following Griiss type inequality
tr(PAC) tr(PA)tr(PC)| 1
w(P)  w(P) w(P) ' S g (M=m)(K—k) (3.19)

provided that mly <A < Mly and kly <C < Kly.

Let .4, (C) be the space of all square matrices of order n with complex elements
and A € ./, (C) be a Hermitian matrix such that Sp(A) C [m, M| for some scalars m,
M with m < M. Then for any C € .#,(C) we have

A | ) BCes
1/2
tr (|CJ? 2
g%(M—m) (n )_ triC) 7

where 1, is the identity matrix in .#, (C).
If C is a Hermitian matrix such that Sp (C) C [k, K] for some scalars k, K with

k < K, then
0< r(C?) <tr(c))2 § %(K k)ltr<'c— (), ) G321
2 . 211/2

In the case when the operator A is a function of selfadjoint operators we have the
following result as well.

THEOREM 7. Let S be a selfadjoint operator with Sp (S) C [m,M] and f : [m,M] —
C a continuous function of bounded variation on [m,M|. For any C € B (H) and
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P e % (H)\ {0} we have the inequality

w(Pf(S)C)  w(Pf(S)) w(PC) ' (3.22)

tr (P) tr(P) tr(P)

<V i (I(c- %))
2] 1/2

If the function f : [m,M] — C is Lipschitzian with the constant L > 0 on [m,M],

tr (PC)
| u(P)

M
where \/ (f) is the total variation of f on the interval.

i.e.
lf (@)= f(s)| <Llt—s]
forany t,s € [m,M], then

L0 _ues P(;:)) o ‘ .
R (f S>)1 ok (C tir(ZDC)) “’)PD
s
cufo-so9n,| [0 o]
forany C € 2 (H) and P € ] (H)\ {0}.
Proof. From the inequality (3.3) we have
0. g

<|IF(S) = Ayl — tr( ) (‘(C_ %IH) P’)

forany A € C.
From (3.24) we get
tr(Pf(S)C) tr(Pf(S)) tr(PC)
w(P)  w(P) u(P) ‘ (3:25)
f(m)+f(M) 1 tr (PC)
< rior- HE | (|- ) )
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Since f is of bounded variation on [m,M], then we have

- LS00 |0t 10— 1) 526
< S IF @)~ )|+ 1 ()~ £ O]
| M
forany r € [m,M].
From (3.26) we get in the order % (H) that
M
‘f(S)— MM' < %\/(f) Ly,
which implies that
M
Hf(S) SEALORS LT é\/(f) 1y (3.27)

Making use of (3.25) and (3.27) we get the first inequality (3.22). The second part is
obvious.
From (3.24) we have

w(PF(S)C) u(Pf(S)) tf(PC)’ (3.28)
tr(P) tr(P) tr(P) '
<=1 (5 ) ol (1~ ) 1)

any C € #(H) and P € %] (H)\ {0}.
Since
[f(6) = f(s) S LJt—s]
for any 7,s € [m,M], then we have in the order # (H) that
[f(S)=f(s)1u| < LIS —slyl
for any s € [m,M]. In particular, we have

F(8)~f (t:r(éf;)) 1| < L‘S— w(SP),

which implies that

f(S)—f(ffo) » ’ <LHS— RiCLN

and by (3.28) we get the first inequality in (3.23).
The second part is obvious. []
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REMARK 3. If we take f (1) =1 in (3.22), then we get the inequality (3.17) while
from (3.23) we obtain

tr (PSC)  tr(PS) tr (PC)
w(P)  w(P) w(P) (3:29)
e (PS) R ~ u(PC)
<|s— 2 e (| (e S ) )
1/2
@) " (PICF)  Jue(pe) P
= H Cw@) | w®) | u(P)
forany C € #(H) and P € % (H) \ {0}.
The case of selfadjoint operators C is as follows:
[m,M] and f :

COROLLARY 5. Let S be a selfadjoint operator with Sp(S) C
[m,M] — C a continuous function of bounded variation on [m,M|. If C is selfadjoint
with Sp (C) C [n,N] for some real numbers n < N and P € B, (H)\ {0}, then we

have the inequality

tr(Pf(S)C) w(Pf(S)) u(PC) ‘
tr(P) tr(P) tr(P)

cHngiae(e-25)7)

1 w(PC?) [ (PC)\? oy M
<7 V( )l w(P) —(tr(P)) <z M=m\/ ().

(3.30)

m

If the function f : [m,M] — C is Lipschitzian with the constant L > 0 on [m,M],

then
g
<tfs- Sl e (-5 )
H tr PS tr Pc2 tr PC)) i
tr(P)
g%(M—n)LHS )
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4. Some examples

If we write the inequality (3.22) for the function f : [m,M] C [0,00) — [0,00),
f(r)=1t", r>0, then we get

2000
<500 - ([ (e~ )7
L e (PIeP) e p -
<3 ‘””{ ) |u() ] |
while from (3.23) we have
.-

<arls= 5 e (| (e~ S w) 7))
w(PS)|| | (P |C|2> tr (PC) |? .
SA NS H w®) | w(P)

for any S a selfadjoint operator with Sp (S) C [m,M], any C € Z (H) and P € %, (H)\
{0}, where

M Vifr> 1,
Ay =
rm™~Vif r e (0,1).

If C is selfadjoint with Sp (C) C [n,N] for some real numbers n < N then from (4.1)
and (4.2) we get the power inequalities

< — (M —m")(N—n) (4.3)

tr(PS'C)  tr(PS") tr(PC) ' 1

w(P)  w(P) uw(P)| 4
and
tr (PS"C) tr(PS") tr(PC) 1 tr (PS)
wP)  w(P) w(P) '< AN =m)||S=0 H ‘4

If we write the inequality (3.22) for the function f : [m,M] C (0,) = R, f(¢) =
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Int, then we have

tr (CPInS) tr(PInS) tr(PC)
w(P)  w(P) w(P) *5)
<50 (5) (| (e %))
1. (M tr(PIC?|2> tr (PC) | "
g?“(%)[ wP) | (P ] ’
while from (3.23) we have
e v
1 r(PS 1 r (PC
S HS‘ o | (‘ () PD
t(P|C|? ks
2 [ ]

forany S a selfadjoint operator with Sp (S) C [m,M], any C € #(H) and P € %, (H)\
{0}.

If C is selfadjoint with Sp(C) C [n,N] for some real numbers n < N then from
(4.5) and (4.6) we have

tr (CPInS) tr(PInS) tr(PC) 1 M
wP)  u(P) u(P) ‘ SgW=min <_> 7
nd
’ tr(CPInS)  tr(PInS) tr(PC) ‘ N—nll, t(PS) H 48)
tr (P) tr(P) tr(P) | 2m tr (P) ’

If we write the inequality (3.22) for the function f : [m,M] C (0,0) = R, f(¢) =
t~!, then we have

tr(P) tr(P) tr(P)

o520

ciMom [“ (Picr) } N

‘tr (Ps~'C)  w(PS™Y) &r(PC) 49)

tr (PC)
tr (P)

T2 mM tr(P)
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while from (3.23) we have

tr(PS7IC)  tr(PS™') e (PC)
wr(P)  w(P) w(P)

ol e (e ) )

- tr (PS) H [tr (P|C|2> 2] 1/2
tr(P) tr (

X m2
P)
forany S a selfadjoint operator with Sp (S) C [m,M], any C € Z(H) and P € %, (H)\
{05
If C is selfadjoint with Sp(C) C [n,N] for some real numbers n < N then from
(4.9) and (4.10) we have

(4.10)

tr (PC)
tr(P)

1

\m2

tr(PS7IC)  w(PS') w(PC)| _ 1M-—m
w®) w @) w@) |~ mm N @10
and

w(PS'C)  w(PS")u(PC)| N-—n|, (PS) “.12)

w(P)  w(P) u(P)| > 2m? | wu(P) '

Now, if we take C = S in (4.1), then we get
r+1 r

tr (PS™)  tr(PS") tr (PS) 4.13)

w(P)  w(P) w(P)
< %(Mr"”r) tr(lP)tr< (S_ t:r(g“i) 1H> PD

1 Tuees?) fues)\?]Y
<5 (M _m)[ w(P) _<tr(P)>
< Z 0 ) (= m),

for any S a selfadjoint operator with Sp(S) C [m,M] C [0,e0) and any P € %, (H)\
{0}
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Also, if we take C = § in (4.5), then we obtain

tr(PSInS) (PlnS) tr (PS)
tr (P) (P) P)

<3 () (|- ) )

(4.14)

(-
< Lormm ()

for any S a selfadjoint operator with Sp(S) C [m,M] C (0,%) and any P € %, (H)\

{o}.
Finally, if we take C = S in (4.9), then we get

tr (PS™1) tr(PS)
wr(P) w(P)

<3 (|5 ) )

(4.15)

IM—m |t(PS?)  [w(PS)\? 2
S 3 Tam ltr(P) _<tr(P)>

1 (M —m)?
sS4 omM

for any S a selfadjoint operator with Sp(S) C [m,M] C (0,) and any P € %, (H) \
{0}

From the first and last terms in (4.15) we get the Kantorovich type inequality

tr(PS™) w(PS) 1 (M+m)*
w(P) «w(P) 4 mM

We notice that, the positivity of the first terms in (4.13), (4.14) and (4.15) follows
from the CebySev’s type trace inequality obtained in [28].
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