MINKOWSKI PRODUCT OF CONVEX SETS AND PRODUCT NUMERICAL RANGE

Chi-Kwong Li, Diane Christine Pelejo, Yiu-Tung Poon and Kuo-Zhong Wang

In memory of Leiba Rodman

(Communicated by F. Kittaneh)

Abstract

Let K_{1}, K_{2} be two compact convex sets in C. Their Minkowski product is the set $K_{1} K_{2}=\left\{a b: a \in K_{1}, b \in K_{2}\right\}$. We show that the set $K_{1} K_{2}$ is star-shaped if K_{1} is a line segment or a circular disk. Examples for K_{1} and K_{2} are given so that K_{1} and K_{2} are triangles (including interior) and $K_{1} K_{2}$ is not star-shaped. This gives a negative answer to a conjecture by Puchala et. al concerning the product numerical range in the study of quantum information science. Additional results and open problems are presented.

1. Introduction

Let K_{1}, K_{2} be compact convex sets in \mathbf{C}. We study the Minkowski product of the sets defined and denoted by

$$
K_{1} K_{2}=\left\{a b: a \in K_{1}, b \in K_{2}\right\} .
$$

This topic arises naturally in many branches of research. For example, in numerical analysis, computations are subject to errors caused by the precision of the machines and round-off errors. Sometimes measurement errors in the raw data may also affect the accuracy. So, when two real numbers a and b are multiplied, the actual answer may actually be the product of numbers in two intervals containing a and b; when two complex numbers a and b are multiplied, the actual answer may actually be the product of numbers from two regions in the complex plane. The study of the product set also has applications in computer-aided design, reflection and refraction of wavefronts in geometrical optics, stability characterization of multi-parameter control systems, and the shape analysis and procedural generation of two-dimensional domains. For more discussion about these topics, see [3] and the references therein. Another application comes from the study of quantum information science. For a complex $n \times n$ matrix A, its numerical range is defined and denoted by

$$
W(A)=\left\{x^{*} A x: x \in \mathbf{C}^{n}, x^{*} x=1\right\} .
$$

The numerical range of a matrix is always a compact convex set and carries a lot of information about the matrix, e.g., see [5].

Denote by $X \otimes Y$ the Kronecker product of two matrices or vectors. Then the decomposable numerical range of $T \in M_{m} \otimes M_{n} \equiv M_{m n}$ is defined by

$$
W^{\otimes}(T)=\left\{\left(x^{*} \otimes y^{*}\right) T(x \otimes y): x \in \mathbf{C}^{m}, y \in \mathbf{C}^{n}, x^{*} x=y^{*} y=1\right\}
$$

which is a subset of $W(T)$. In the context of quantum information science, this set corresponds to the collection of $\langle T, P \otimes Q\rangle$, where $P \in M_{m}, Q \in M_{n}$ are pure states (i.e., rank one orthogonal projections). In particular, if $T=A \otimes B$ with $(A, B) \in M_{m} \times M_{n}$, then
$W^{\otimes}(A \otimes B)=\left\{\left(x^{*} \otimes y^{*}\right)(A \otimes B)(x \otimes y): x \in \mathbf{C}^{m}, y \in \mathbf{C}^{n}, x^{*} x=y^{*} y=1\right\}=W(A) W(B)$.
So, the set $W^{\otimes}(A \otimes B)$ is just the Minkowski product of the two compact convex sets $W(A)$ and $W(B)$. In particular, the following was proved in [8]. (Their proofs concern the product numerical range that can be easily adapted to general compact convex sets.)

Proposition 1.1. Suppose K_{1}, K_{2} are compact convex sets in \mathbf{C}.
(a) The set $K_{1} K_{2}$ is simply connected.
(b) If $0 \in K_{1} \cup K_{2}$, then $K_{1} K_{2}$ is star-shaped with 0 as a star center.

It was conjectured in [8] that the set $K_{1} K_{2}$ is always star-shaped. In this paper, we will show that the conjecture is not true in general (Section 3.1). The proof depends on a detailed analysis of the product sets of two closed line segments (Section 2). Then we obtain some conditions under which the product set of two convex polygons is starshaped (Sections 3.2). Furthermore, we show that $K_{1} K_{2}$ is star-shaped for any compact convex set K_{2} if K_{1} is a closed line segment or a closed circular disk in Sections 4 and 5. Some additional results and open problems are mentioned in Section 6. In particular, in Theorem 6.2, we will improve the following result, which is a consequence of the simply connectedness of $K_{1} K_{2}$ [8, Proposition 1].

Proposition 1.2. Suppose K_{1}, K_{2} are compact convex sets in \mathbf{C} and $p \in K_{1} K_{2}$. Then $K_{1} K_{2}$ is star-shaped with p as a star center if and only if $K_{1} K_{2}$ contains the line segment joining p to ab for any $a \in \partial K_{1}$ and $b \in \partial K_{2}$. Here, ∂K denotes the boundary of K.

In our discussion, we denote by $K\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ the convex hull of the set $\left\{z_{1}, \ldots\right.$, $\left.z_{m}\right\} \subseteq \mathbf{C}$. In particular, $K\left(z_{1}, z_{2}\right)$ is the line segment in \mathbf{C} joining z_{1}, z_{2}. Also, if $K_{1}=\{\alpha\}$, we write $K_{1} K_{2}=\alpha K_{2}$.

2. The product set of two segments

We first give a complete description of the set $K_{1} K_{2}$ when $K_{1}=K\left(\alpha_{1}, \alpha_{2}\right)$ and $K_{2}=K\left(\beta_{1}, \beta_{2}\right)$ are two line segments. McAllister has plotted some examples in [7] but the analysis is not complete. In the context of product numerical range, it is known, see
for example, [6, Theorem 4.3], that $W(T)$ is a line segment if and only if T is normal with collinear eigenvalues. In such a case, $W(T)=W\left(T_{0}\right)$ for a normal matrix $T_{0} \in M_{2}$ having the two endpoints of $W(T)$ as its eigenvalues. Thus, the study of $K_{1} K_{2}$ when K_{1}, K_{2} are closed line segments corresponds to the study of $W^{\otimes}(A \otimes B)=W(A) W(B)$ for $A \in M_{m}, B \in M_{n}$ with special structure, and $W^{\otimes}(A \otimes B)=W^{\otimes}\left(A_{0} \otimes B_{0}\right)$ for some normal matrices $A_{0}, B_{0} \in M_{2}$. We have the following result.

THEOREM 2.1. Let $K_{1}=K\left(\alpha_{1}, \alpha_{2}\right)$ and $K_{2}=K\left(\beta_{1}, \beta_{2}\right)$ be two line segments in C. Then $K_{1} K_{2}$ is a star-shaped subset of $K\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}\right)$.

In general, $K\left(\alpha_{1}, \ldots, \alpha_{n}\right) K\left(\beta_{1}, \ldots, \beta_{m}\right) \subseteq K\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \ldots, \alpha_{i} \beta_{j}, \ldots, \alpha_{n} \beta_{m}\right)$ because

$$
\left(\sum_{i} p_{i} \alpha_{i}\right)\left(\sum_{j} q_{j} \beta_{j}\right)=\left(\sum_{i, j} p_{i} q_{j} \alpha_{i} \beta_{j}\right)
$$

and $\sum_{i} p_{i}=1$ and $\sum_{j} q_{j}=1$ imply that $\sum_{i, j} p_{i} q_{j}=1$. The key point of Theorem 2.1 is the star-shapedness of the product of two line segments in \mathbf{C}.

We will give a complete description of the set $K_{1} K_{2}$ in the following. If one or both of the line segments K_{1}, K_{2} lie(s) in a line passing through origin, the description is relatively easy as shown in the following.

Proposition 2.2. Let $K_{1}=K\left(\alpha_{1}, \alpha_{2}\right)$ and $K_{2}=K\left(\beta_{1}, \beta_{2}\right)$ be two line segments in \mathbf{C}.

1. If both $K\left(0, \alpha_{1}, \alpha_{2}\right)$ and $K\left(0, \beta_{1}, \beta_{2}\right)$ are line segments, then $K_{1} K_{2}$ is the line segment

$$
K\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}\right)
$$

2. Suppose $K\left(0, \alpha_{1}, \alpha_{2}\right)$ is a line segment and $K\left(0, \beta_{1}, \beta_{2}\right)$ is not.
(2.a) If $0 \in K\left(\alpha_{1}, \alpha_{2}\right)$, then $K_{1} K_{2}=K\left(0, \alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}\right) \cup K\left(0, \alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}\right)$ is the union of two triangles (one of them may degenerate to $\{0\}$) meeting at 0 , which is the star center of $K_{1} K_{2}$.
(2.b) If $0 \notin K\left(\alpha_{1}, \alpha_{2}\right)$ then $K_{1} K_{2}=K\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}\right)$.

Proof. 1. There exist $\alpha, \beta, a_{1}, a_{2}, b_{1}, b_{2} \in \mathbf{R}$ such that $K_{1}=\left\{r e^{i \alpha}: a_{1} \leqslant r \leqslant b_{1}\right\}$ and $K_{2}=\left\{r e^{i \beta}: a_{2} \leqslant r \leqslant b_{2}\right\}$. So, we have

$$
K_{1} K_{2}=\left\{r e^{i(\alpha+\beta)}: a_{3} \leqslant r \leqslant b_{3}\right\} \text { for some } a_{3}, b_{3} \in \mathbf{R}
$$

(2.a) Evidently, $K_{1} K_{2}=K\left(0, \alpha_{1}\right) K_{2} \cup K\left(0, \alpha_{2}\right) K_{2}$ and $K\left(0, \alpha_{i}\right) K_{2} \subseteq K\left(0, \alpha_{i} \beta_{1}, \alpha_{i} \beta_{2}\right)$ for $i=1,2$. We are going to show that $K\left(0, \alpha_{i}\right) K\left(\beta_{1}, \beta_{2}\right)=K\left(0, \alpha_{i} \beta_{1}, \alpha_{i} \beta_{2}\right)$ for $i=1,2$.

Clearly, $0 \in K\left(0, \alpha_{i}\right) K\left(\beta_{1}, \beta_{2}\right)$. If $x \in K\left(0, \alpha_{i} \beta_{1}, \alpha_{i} \beta_{2}\right) \backslash\{0\}$, then there exist $s, t \geqslant 0$ with $0<s+t \leqslant 1$ such that $x=s \alpha_{i} \beta_{1}+t \alpha_{i} \beta_{2}$. Therefore, $x=a b$, where

$$
a=(s+t) \alpha_{i} \in K\left(0, \alpha_{i}\right) \quad \text { and } \quad b=\frac{s}{s+t} \beta_{1}+\frac{t}{s+t} \beta_{2} \in K\left(\beta_{1}, \beta_{2}\right)
$$

Thus $K\left(0, \alpha_{i}\right) K\left(\beta_{1}, \beta_{2}\right)=K\left(0, \alpha_{i} \beta_{1}, \alpha_{i} \beta_{2}\right)$ and $K_{1} K_{2}=K\left(0, \alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}\right) \cup K\left(0, \alpha_{1} \beta_{1}\right.$, $\alpha_{1} \beta_{2}$.
(2.b) Let $x \in K\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}\right)$. Then $x=s \alpha_{1} \beta_{1}+t \alpha_{1} \beta_{2}+u \alpha_{2} \beta_{1}+$ $v \alpha_{2} \beta_{2}$ for some $s, t, u, v \geqslant 0$ with $s+t+u+v=1$. Since $0 \notin K\left(\alpha_{1}, \alpha_{2}\right), \alpha_{2}=k \alpha_{1}$ for some $k>0$, then $x=\left(p \alpha_{1}+(1-p) \alpha_{2}\right)\left(q \beta_{1}+(1-q) \beta_{2}\right)$, where

$$
p=s+t, \quad q=\frac{s+u k}{s+t+k(u+v)} \in[0,1] .
$$

The situation is more involved if neither $K\left(0, \alpha_{1}, \alpha_{2}\right)$ nor $K\left(0, \beta_{1}, \beta_{2}\right)$ is a line segment. To describe the shape of $K_{1} K_{2}$ in such a case, we put the two segments in a certain "canonical" position. More specifically, the next proposition shows that we can find α_{0} and $\beta_{0} \in \mathbf{C}$ such that $\alpha_{0}^{-1} K_{1}$ and $\beta_{0}^{-1} K_{2}$ lie in the vertical line $\{z \in \mathbf{C}$: $\Re(z)=1\}$ 。

Proposition 2.3. Let $K_{1}=K\left(\alpha_{1}, \alpha_{2}\right)$ and $K_{2}=K\left(\beta_{1}, \beta_{2}\right)$ be two line segments in \mathbf{C} such that neither $K\left(0, \alpha_{1}, \alpha_{2}\right)$ nor $K\left(0, \beta_{1}, \beta_{2}\right)$ is a line segment. Let

$$
\begin{equation*}
\alpha_{0}=\frac{\alpha_{1} \overline{\alpha_{2}}-\alpha_{2} \overline{\alpha_{1}}}{2\left(\overline{\alpha_{2}}-\overline{\alpha_{1}}\right)} \text { and } \beta_{0}=\frac{\beta_{1} \overline{\beta_{2}}-\beta_{2} \overline{\beta_{1}}}{2\left(\overline{\beta_{2}}-\overline{\beta_{1}}\right)} \tag{1}
\end{equation*}
$$

Then α_{0} (respectively, β_{0}) is the point on the line passing through α_{1} and α_{2} (respectively, β_{1} and β_{2}) closest to 0 . We have

$$
\begin{equation*}
\frac{\alpha_{1}}{\alpha_{0}}=1+a_{1} i, \quad \frac{\alpha_{2}}{\alpha_{0}}=1+a_{2} i, \quad \frac{\beta_{1}}{\beta_{0}}=1+b_{1} i, \quad \frac{\beta_{2}}{\beta_{0}}=1+b_{2} i \tag{2}
\end{equation*}
$$

for some a_{1}, a_{2}, b_{1} and $b_{2} \in \mathbf{R}$.
Proof. The line passing through α_{1} and α_{2} is given by the parametric equation $r(t)=\alpha_{1}+t\left(\alpha_{1}-\alpha_{2}\right), t \in \mathbf{R} . \alpha_{0}$ in (1) is obtained by minimizing $|r(t)|^{2}$. Similarly, we have β_{0}. By direct calculation we have (2) with

$$
\begin{array}{ll}
a_{1}=\frac{\alpha_{1} \overline{\alpha_{2}}+\alpha_{2} \overline{\alpha_{1}}-2\left|\alpha_{1}\right|^{2}}{i\left(\alpha_{1} \overline{\alpha_{2}}-\alpha_{2} \overline{\alpha_{1}}\right)}, & a_{2}=\frac{\alpha_{1} \overline{\alpha_{2}}+\alpha_{2} \overline{\alpha_{1}}-2\left|\alpha_{2}\right|^{2}}{i\left(\alpha_{2} \overline{\alpha_{1}}-\alpha_{1} \overline{\alpha_{2}}\right)} \\
b_{1}=\frac{\beta_{1} \overline{\beta_{2}}+\beta_{2} \overline{\beta_{1}}-2\left|\beta_{1}\right|^{2}}{i\left(\beta_{1} \overline{\beta_{2}}-\beta_{2} \overline{\beta_{1}}\right)}, & b_{2}=\frac{\beta_{1} \overline{\beta_{2}}+\beta_{2} \overline{\beta_{1}}-2\left|\beta_{2}\right|^{2}}{i\left(\beta_{2} \overline{\beta_{1}}-\beta_{1} \overline{\beta_{2}}\right)}
\end{array}
$$

We can now describe $K_{1} K_{2}$ for two line segments $K_{1}=K\left(\alpha_{1}, \alpha_{2}\right)$ and $K_{2}=$ $K\left(\beta_{1}, \beta_{2}\right)$ in the "canonical" position. Because $K\left(\alpha_{1}, \alpha_{2}\right) K\left(\beta_{1}, \beta_{2}\right)$ is a simply connected set, we focus on the description of the boundary and the set of star centers of $K_{1} K_{2}$ in the following.

THEOREM 2.4. Let $K_{1}=K\left(\alpha_{1}, \alpha_{2}\right)$ and $K_{2}=K\left(\beta_{1}, \beta_{2}\right)$ with $\alpha_{1}=1+i a_{1}, \alpha_{2}=$ $1+i a_{2}, \beta_{1}=1+i b_{1}, \beta_{2}=1+i b_{2}$ such that $a_{1}<a_{2}$ and $b_{1}<b_{2}$. Assume $a_{1} \leqslant b_{1}$; otherwise, interchange the roles of K_{1} and K_{2}. Then one of the following holds.
(a) $a_{1}<a_{2} \leqslant b_{1}<b_{2}$. Then $K_{1} K_{2}$ is the convex quadrilateral $K\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{1}\right.$, $\left.\alpha_{2} \beta_{2}\right)$, which will degenerate to the triangle $K\left(\alpha_{1} \beta_{1}, a_{1} \beta_{2}, \alpha_{2} \beta_{2}\right)$ if $a_{2}=b_{1}$; see Figure 1 (a) and (a.i).
(b) $a_{1} \leqslant b_{1}<a_{2} \leqslant b_{2}$. Then $K_{1} K_{2} \subseteq K\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{2}\right)$, and the boundary of $K_{1} K_{2}$ consists of the line segments $K\left(\alpha_{2}^{2}, \alpha_{2} \beta_{2}\right), K\left(\alpha_{2} \beta_{2}, \alpha_{1} \beta_{2}\right), K\left(\alpha_{1} \beta_{2}, \alpha_{1} \beta_{1}\right)$, $K\left(\alpha_{1} \beta_{1}, \beta_{1}^{2}\right)$, and the curve $\mathbf{E}=\left\{(1+\text { si })^{2}: s \in\left[b_{1}, a_{2}\right]\right\} \subseteq \mathbf{C}$. Here, $K\left(\alpha_{2}^{2}, \alpha_{2} \beta_{2}\right)$ lies on the tangent line of the curve \mathbf{E} at α_{2}^{2}, and $K\left(\beta_{1}^{2}, \alpha_{1} \beta_{1}\right)$ lies on the tangent line of the curve \mathbf{E} at β_{1}^{2}. The set of star centers equals $K\left(\alpha_{1}, \beta_{1}\right) K\left(\alpha_{2}, \beta_{2}\right)$, which may be a quadrilateral, a line or a point; see Figure 1 (b), (b.i), (b.ii), b(iii).
(c) Suppose $a_{1}<b_{1}<b_{2}<a_{2}$. Then the boundary of $K_{1} K_{2}$ consists of the line segments $K\left(\beta_{2}^{2}, \alpha_{2} \beta_{2}\right), K\left(\alpha_{2} \beta_{2}, \alpha_{2} \beta_{1}\right), K\left(\alpha_{2} \beta_{1}, \beta_{1} \beta_{2}\right), K\left(\beta_{1} \beta_{2}, \alpha_{1} \beta_{2}\right), K\left(\alpha_{1} \beta_{2}\right.$, $\left.\alpha_{1} \beta_{1}\right), K\left(\beta_{1}^{2}, \alpha_{1} \beta_{1}\right)$ and the curve segment $\left\{(1+s i)^{2}: s \in\left[b_{1}, b_{2}\right]\right\} \subseteq \mathbf{C}$. Here, $K\left(\beta_{2}^{2}, \alpha_{2} \beta_{2}\right)$ lies on the tangent line of the curve \mathbf{C} at β_{2}^{2}, and $K\left(\beta_{1}^{2}, \alpha_{1} \beta_{1}\right)$ lies on the tangent line of the curve \mathbf{C} at β_{1}^{2}. The unique star center is $\beta_{1} \beta_{2}$; see Figure 1 (c).

(a) $a_{1}<a_{2}<b_{1}<b_{2}$,

(a.i) $a_{1}<a_{2}=b_{1}<b_{2}$.

(b) $a_{1}<b_{1}<a_{2}<b_{2}$,

(b.i) $a_{1}=b_{1}<a_{2}<b_{2}$,

Figure 1. The set $K\left(1+a_{1} i, 1+a_{2} i\right) K\left(1+b_{1} i, 1+b_{2} i\right)$ described in Theorem 2.4.

To prove Theorem 2.4, we need the following lemma that treat some special cases of the theorem. It turns out that these special cases are the building blocks for the general case.

Lemma 2.5. Let $a_{1}<a_{2} \leqslant b_{1}<b_{2}$. Then
(a) $K\left(1+a_{1} i, 1+a_{2} i\right) K\left(1+b_{1} i, 1+b_{2} i\right)$ is the quadrilateral (or triangle if $a_{2}=b_{1}$), $\mathbf{K}=K\left(\left(1+a_{1} i\right)\left(1+b_{1} i\right),\left(1+a_{1} i\right)\left(1+b_{2} i\right),\left(1+a_{2} i\right)\left(1+b_{1} i\right),\left(1+a_{2} i\right)\left(1+b_{2} i\right)\right)$.
(b) $K\left(1+a_{1} i, 1+a_{2} i\right) K\left(1+a_{1} i, 1+a_{2} i\right)$ is the simply connected region bounded by the line segments
$\mathbf{L}_{1}=K\left(\left(1+a_{1} i\right)^{2},\left(1+a_{1} i\right)\left(1+a_{2} i\right)\right), \quad \mathbf{L}_{2}=K\left(\left(1+a_{2} i\right)^{2},\left(1+a_{1} i\right)\left(1+a_{2} i\right)\right)$,
and the curve $\mathbf{E}=\left\{(1+s i)^{2}: s \in\left[a_{1}, a_{2}\right]\right\}$. The set \mathbf{L}_{1} is a segment of the tangent line of \mathbf{E} at $\left(1+a_{1} i\right)^{2}$, and \mathbf{L}_{2} is a segment of the tangent line of \mathbf{E} at $\left(1+a_{2} i\right)^{2}$.
Proof. (a) Suppose $\alpha_{j}=1+a_{j} i$ and $\beta_{j}=1+b_{j} i$ for $j=1,2$ are such that $a_{1}<$ $a_{2} \leqslant b_{1}<b_{2}$. Let $K_{1}=K\left(\alpha_{1}, \alpha_{2}\right)$ and $K_{2}=K\left(\beta_{1}, \beta_{2}\right)$. It suffices to show that the union of the line segments

$$
\ell_{1}=\beta_{2} K_{1}, \quad \ell_{2}=\beta_{1} K_{1}, \quad \ell_{3}=\alpha_{2} K_{2}, \quad \ell_{4}=\alpha_{1} K_{2}
$$

forms the boundary of the quadrilateral (or triangle) \mathbf{K}, that is, the union is a simple closed curve. By simply connectedness and the fact that $K_{1} K_{2}$ is a subset of \mathbf{K}, we get the desired conclusion. For the convenience of discussion, we will identify $x+i y \in \mathbf{C}$ with $(x, y) \in \mathbf{R}^{2}$ and $(x, y, 0) \in \mathbf{R}^{3}$. Note that since $\arg \left(\alpha_{1} \beta_{1}\right)<$ $\arg \left(\alpha_{2} \beta_{1}\right), \arg \left(\alpha_{1} \beta_{2}\right)<\arg \left(\alpha_{2} \beta_{2}\right)$, it suffices to show that $\alpha_{1} \beta_{2}$ and $\alpha_{2} \beta_{1}$ are on opposite sides of the line ℓ passing through $\alpha_{1} \beta_{1}$ and $\alpha_{2} \beta_{2}$. This is true if and only if the cross product $\left(\alpha_{2} \beta_{1}-\alpha_{2} \beta_{2}\right) \times\left(\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}\right)$ and $\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{2}\right) \times\left(\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}\right)$ are pointing in opposite directions, that is
$\operatorname{det}\left[\begin{array}{l}\mathfrak{R}\left(\alpha_{2} \beta_{1}-\alpha_{2} \beta_{2}\right) \mathfrak{R}\left(\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}\right) \\ \mathfrak{I}\left(\alpha_{2} \beta_{1}-\alpha_{2} \beta_{2}\right) \mathfrak{I}\left(\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}\right)\end{array}\right] \cdot \operatorname{det}\left[\begin{array}{l}\mathfrak{R}\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{2}\right) \mathfrak{R}\left(\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}\right) \\ \mathfrak{I}\left(\alpha_{1} \beta_{2}-\alpha_{2} \beta_{2}\right) \mathfrak{I}\left(\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}\right)\end{array}\right] \leqslant 0$
The expression on the left hand side is

$$
\begin{gathered}
{\left[\left(b_{1}-b_{2}\right)\left(a_{2}-a_{1}\right)\left(a_{2}-b_{1}\right)\right] \cdot\left[\left(b_{1}-b_{2}\right)\left(a_{2}-a_{1}\right)\left(b_{2}-a_{1}\right)\right]} \\
=\left(b_{1}-b_{2}\right)^{2}\left(a_{2}-a_{1}\right)^{2}\left(a_{2}-b_{1}\right)\left(b_{2}-a_{1}\right)
\end{gathered}
$$

Since $a_{2} \leqslant b_{1}$ and $b_{2}>a_{1}$, then we are done.
To prove (b), first note that $\mathbf{L}_{1}, \mathbf{L}_{2}$ and \mathbf{E} are clearly in $K_{1} K_{1}$. Direct calculation shows that \mathbf{L}_{1} with equation $x=1-a_{1}\left(y-a_{1}\right)$ and \mathbf{L}_{2} with equation $x=1-a_{2}\left(y-a_{2}\right)$ are tangent to the parabola \mathbf{E} with equation $x=1-\frac{y^{2}}{4}$ at the points $\left(1-a_{1}^{2}, 2 a_{1}\right)$ and $\left(1-a_{2}^{2}, 2 a_{2}\right)$ respectively.

Since $K_{1} K_{1}$ is simply connected, the region

$$
\begin{equation*}
\mathbf{S}=\left\{x+i y: 1-\frac{y^{2}}{4} \leqslant x \leqslant 1-a_{1}\left(y-a_{1}\right), 1-a_{2}\left(y-a_{2}\right)\right\} \tag{3}
\end{equation*}
$$

which is the region enclosed by $\mathbf{L}_{1}, \mathbf{L}_{2}$ and \mathbf{E} is a subset of $K_{1} K_{1}$. Now, suppose $x+i y \in K_{1} K_{1}$. Then there exist r and s with $a_{1} \leqslant r, s \leqslant a_{2}$ such that

$$
x+i y=(1+i r)(1+i s)=1-r s+i(r+s)
$$

Note that

$$
x=1-r s \geqslant 1-\frac{1}{4}(r+s)^{2}=1-\frac{y^{2}}{4}
$$

always holds. Also, if $a \leqslant t \leqslant b$, then $(a+b-t) t \geqslant a b$. Since

$$
a_{1} \leqslant r \leqslant s+r-a_{1} \text { and } s+r-a_{2} \leqslant r \leqslant a_{2},
$$

we have $r s \geqslant a_{1}\left(s+r-a_{1}\right), a_{2}\left(s+r-a_{2}\right)$. Hence,

$$
\begin{aligned}
& x=1-r s \leqslant 1-a_{1}\left(r+s-a_{1}\right)=1-a_{1}\left(y-a_{1}\right), \quad \text { and } \\
& x=1-r s \leqslant 1-a_{2}\left(r+s-a_{2}\right)=1-a_{2}\left(y-a_{2}\right) .
\end{aligned}
$$

This shows that $K_{1} K_{1}$ lies inside \mathbf{S}. Thus $K_{1} K_{1}=\mathbf{S}$.

Proof of Theorem 2.4. Suppose $K_{1}=K\left(1+i a_{1}, 1+i a_{2}\right)$ and $K_{2}=K\left(1+i b_{1}, 1+\right.$ $i b_{2}$) such that $a_{1} \leqslant a_{2}, b_{1} \leqslant b_{2}$. We show that if $K_{1} K_{2}$ can be written as the union of subsets of the form in Lemma 2.5. In fact, if $\left[a_{1}, a_{2}\right] \cap\left[b_{1}, b_{2}\right]=\left[c_{1}, c_{2}\right]$, then

$$
K_{1} K_{2}=\left(\alpha_{0} \beta_{0}\right)[(A C) \cup(A B) \cup(C C) \cup(C B)]
$$

where $C=K\left(1+c_{1} i, 1+c_{2} i\right), B=K\left(1+b_{1} i, 1+b_{2} i\right) \backslash C$ and $A=K\left(1+a_{1} i, 1+a_{2} i\right) \backslash$ C. By Lemma 2.5, we get the conclusion.

By Theorem 2.4, we have the following corollary giving information about the star center of the product of two line segments without putting them in the "canonical" position.

Corollary 2.6. Let $K_{1}=K\left(\alpha_{1}, \alpha_{2}\right)$ an $K_{2}=K\left(\beta_{1}, \beta_{2}\right)$, where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in$ \mathbb{C} such that $\arg \left(\alpha_{1}\right)<\arg \left(\alpha_{2}\right)<\arg \left(\alpha_{1}\right)+\pi$ and $\arg \left(\beta_{1}\right)<\arg \left(\beta_{2}\right)<\arg \left(\beta_{1}\right)+\pi$. Then $K_{1} K_{2}$ is star-shaped and one of the following holds.
(a) There exists $\xi \in \mathbb{C}$ such that $\xi K_{1} \subseteq K_{2}$. Equivalently, the segments $K\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}\right)$ and $K\left(\alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}\right)$ intersect at $\xi \alpha_{1} \alpha_{2}$. In this case, $\xi \alpha_{1} \alpha_{2}$ is the unique starcenter of $K_{1} K_{2}$.
(b) There exists $\xi \in \mathbb{C}$ such that $\xi K_{2} \subseteq K_{1}$. Equivalently, the segments $K\left(\alpha_{1} \beta_{1}, \alpha_{2} \beta_{1}\right)$ and $K\left(\alpha_{1} \beta_{2}, \alpha_{2} \beta_{2}\right)$ intersect at $\xi \beta_{1} \beta_{2}$. In this case, $\xi \beta_{1} \beta_{2}$ is the unique starcenter of $K_{1} K_{2}$.
(c) Condition (a) and (b) do not hold, and every point in $K\left(\beta_{1} \alpha_{2}, \beta_{2} \alpha_{1}\right)$ is a star center of $K_{1} K_{2}$

3. The product set of two convex polygons

In this section, we study the product set of two convex polygons (including interior). It is known that for every convex polygon K_{1} with vertexes μ_{1}, \ldots, μ_{n}, then $K_{1}=W(T)$ for $T=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) \in M_{n}$. In Section 3.1, we will show that the product set of two convex polygons may not be star-shaped. In particular, we have a product set of two triangles that are not star-shaped. This gives a negative answer to the conjecture in [8].

3.1. Products of polygons that are not star-shaped

In this subsection, we show that there are examples of convex sets K_{1} and K_{2} such that $K_{1} K_{2}$ is not star-shaped. The first example has the form $K_{1}=K_{2}=K\left(\alpha_{1}, \bar{\alpha}_{1}, \alpha_{2}\right)$, where $\alpha_{2} \notin \mathbf{R}$. One can regard $K_{1}=W(T)$ with $T=\operatorname{diag}\left(\alpha_{1}, \bar{\alpha}_{1}, \alpha_{2}\right) \in M_{3}$ so that the set $W^{\otimes}(T \otimes T)=W(T) W(T)$ is not star-shaped. We can construct another example of the form $K_{1}=K_{2}=K\left(\alpha_{1}, \bar{\alpha}_{1}, \alpha_{2}, \bar{\alpha}_{2}\right)$, which is symmetric about the real axis, such that $K_{1} K_{2}$ is not star-shaped. One can regard $K_{1}=W(A)$ for a real normal matrix $A \in M_{4}$ with eigenvalues $\alpha_{1}, \bar{\alpha}_{1}, \alpha_{2}, \bar{\alpha}_{2}$ so that $W^{\otimes}(A \otimes A)$ is not star-shaped.

EXAMPLE 3.1. Let $K_{1}=K\left(e^{i \frac{\pi}{3}}, e^{-i \frac{\pi}{3}}, 0.95 e^{i \frac{\pi}{4}}\right)$. Then $K_{1} K_{1}$ is not star-shaped.
Proof. Let $\alpha_{1}=e^{i \frac{\pi}{3}}$ and $\alpha_{2}=0.95 e^{i \frac{\pi}{4}}, K_{1}=K\left(\alpha_{1}, \overline{\alpha_{1}}, \alpha_{2}\right)$. Then $1=\alpha_{1} \overline{\alpha_{1}}$, $0.95^{2} i=\alpha_{2}^{2} \in K_{1} K_{1}$. We are going to show that a) if s is a star center of $K_{1} K_{1}$, then $s=1$ and $\mathbf{b})(1-t)+t 0.95^{2} i \notin K_{1} K_{1}$ for all $t \in(0,1)$.

Let S be a closed and bounded subset of \mathbf{C}, with $0 \notin S$. Suppose $t \in \mathbf{R}$ and $S \cap\left\{r e^{i t}: r>0\right\} \neq \emptyset$. Let $\rho_{0}^{S}(t)=\min \left\{r>0: r e^{i t} \in S\right\}$ and $\rho_{1}^{S}(t)=\max \left\{r>0: r e^{i t} \in\right.$ $S\}$.

Let $L_{1}=K\left(\alpha_{1}, \overline{\alpha_{1}}\right), S_{1}=K_{1} K_{1}$ and $S_{2}=L_{1} L_{1}$. Since $\rho_{0}^{K_{1}}(\theta)=\rho_{0}^{L_{1}}(\theta)$ for $-\frac{\pi}{3} \leqslant \theta \leqslant \frac{\pi}{3}$, it follows that $\rho_{0}^{S_{1}}(\theta)=\rho_{0}^{S_{2}}(\theta)$ for $-\frac{2 \pi}{3} \leqslant \theta \leqslant \frac{2 \pi}{3}$.

Note that $x+i y \in S_{2} \Leftrightarrow 4(x+i y) \in\left(2 L_{1}\right)\left(2 L_{1}\right)$. Then, applying Lemma 2.5 (b) to $2 L_{1}=K(1-i \sqrt{3}, 1+i \sqrt{3})$, we have

$$
S_{2}=\left\{x+i y: 1-4 y^{2} \leqslant 4 x \leqslant 1-\sqrt{3}(4 y-\sqrt{3}), 1+\sqrt{3}(4 y+\sqrt{3})\right\}
$$

Figure 2. Plot of $S_{2}=L_{1} L_{1}$
a) Note that $\left\{\rho_{0}^{S_{1}}(\theta): \theta \in[-2 \pi / 3,2 \pi / 3]\right\}=\left\{\rho_{0}^{S_{2}}(\theta): \theta \in[-2 \pi / 3,2 \pi / 3]\right\}=$ $\left\{z^{2}: z \in L_{1}\right\}$. This means that the curve $\left\{z^{2}: z \in L_{1}\right\}$ is a boundary curve of S_{2}. By Proposition 1.2, if s were a star-center of S_{2}, then the segment $K\left(s, z^{2}\right)$ must be in S_{2} for any $z \in L_{1}$.

If $s=x+i y$ is a star center of S_{1}, then we must have

$$
4 x \geqslant 1-\sqrt{3}(4 y-\sqrt{3}), \quad 1+\sqrt{3}(4 y+\sqrt{3}) \Rightarrow x \geqslant 1
$$

Since $|z| \leqslant 1$ for all $z \in S_{1}$, we have $s=1$.
b) Let $L_{2}=K\left(\alpha_{1}, \alpha_{2}\right), L_{3}=K\left(\bar{\alpha}_{1}, \alpha_{2}\right)$. Then the boundary of the simply connected set $S_{1}=K_{1} K_{1}$ is a subset of $\cup_{1 \leqslant i \leqslant j \leqslant 3} L_{i} L_{j}$.

Suppose $0<\theta<\frac{\pi}{2}$ and $\rho_{1}^{S_{1}}(t)=r$. Then $r e^{i \theta} \in L_{2} L_{3} \cup L_{3} L_{3}$. Direct calculation using Lemma 2.5 and Proposition 2.3 shows that $\rho_{1}^{L_{2} L_{3}}(\theta), \rho_{1}^{L_{3} L_{3}}(\theta)<\rho_{1}^{K\left(1, \alpha_{2}^{2}\right)}(\theta)$; see the following figures.

Figure 3.

We conclude that $K_{1} K_{1}$ is not star-shaped.

Next, we modify Example 3.1 to Example 3.2 so that $\bar{K}_{1}=K_{1}\left(\alpha_{1}, \alpha_{2}, \bar{\alpha}_{1}, \bar{\alpha}_{2}\right)$ with $\alpha_{1}=e^{i \frac{\pi}{3}}$ and $\alpha_{2}=0.95 e^{i \frac{\pi}{4}}$. In this case, one can regard $K_{1}=W(A)$ for some real symmetric $A \in M_{4}$. The product set $K_{1} K_{2}$ will be larger than the product set considered in Example 3.1. Never-the-less, we can analyze the product of the sets $L_{i} L_{j}$ for $i, j=1,2,3,4$, where $L_{1}=K\left(\alpha_{1}, \bar{\alpha}_{1}\right), L_{2}=K\left(\alpha_{1}, \alpha_{2}\right), L_{3}=K\left(\alpha_{2}, \bar{\alpha}_{2}\right)$, $L_{4}=K\left(\bar{\alpha}_{2}, \bar{\alpha}_{1}\right)$ so that $\cup_{1 \leqslant i \leqslant j \leqslant 4} L_{i} L_{j}$ contains the boundary of the simply connected set $K_{1} K_{1}$. Again one can show that the part of the boundary $\left\{z^{2}: z \in K\left(\alpha_{1}, \bar{\alpha}_{1}\right)\right\}$ of $L_{1} L_{1}$ is also part of the boundary of $K_{1} K_{1}$ so that $1=\alpha_{1} \bar{\alpha}_{1} \in K_{1} K_{1}$ is the only possible candidate to serve as a star-center for $K_{1} K_{1}$. However, none of the set $L_{i} L_{j}$ contains the set $\left\{t+(1-t) 0.95^{2} i: 0<t<1 / 3\right\}$. Thus, the line segment joining 1 and $\alpha_{2}^{2}=0.95^{2} i$ is not in $K_{1} K_{1}$. Hence, 1 is not the star center of $K_{1} K_{1}$, and $K_{1} K_{1}$ is not star-shaped.

EXAMPLE 3.2. Let $K_{1}=K\left(e^{i \frac{\pi}{3}}, e^{-i \frac{\pi}{3}}, 0.95 e^{i \frac{\pi}{4}}, 0.95 e^{-i \frac{\pi}{4}}\right)$. Then K_{1} is symmetric about the x-axis but $P=K_{1} K_{1}$ is not star-shaped.

Figure 4. The set $P=K_{1} K_{1}$ in Example 3.2 does not contain the segment $K\left(1, \alpha_{2}^{2}\right)$.

3.2. A necessary and sufficient condition

In the following result, we establish a necessary and sufficient condition for the product of two polygons to be a star-shaped set.

THEOREM 3.3. Let $K_{1}=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $K_{2}=K\left(\beta_{1}, \ldots, \beta_{m}\right)$. Then $K_{1} K_{2}$ is star-shaped if and only if there is $p \in K_{1} K_{2}$ such that $K\left(p, \alpha_{i} \beta_{j}\right) \subseteq K_{1} K_{2}$ for all $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$.

Proof. Assume that $K_{1}=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $K_{2}=K\left(\beta_{1}, \ldots, \beta_{m}\right)$. From Proposition 1.1 (a), we only need to prove that given any $1 \leqslant i_{1}, i_{2} \leqslant n$ and $1 \leqslant j_{1}, j_{2} \leqslant m$, $K(p, q) \subseteq K_{1} K_{2}$ for all $q \in K\left(\alpha_{i_{1}}, \alpha_{i_{2}}\right) K\left(\beta_{j_{1}}, \beta_{j_{2}}\right)$. Without loss of generality, we may assume that for $r=1,2, i_{r}=j_{r}=r, \alpha_{r}=1+i a_{r}$ and $\beta_{r}=1+i b_{r}$ satisfy one of the conditions (a), (b) or (c) in Theorem 2.4.

Since $K\left(p, \alpha_{r} \beta_{t}\right) \subseteq K_{1} K_{2}$ for $r, t=1,2$, by the fact that $K_{1} K_{2}$ is simply connected, we see that
$\mathbf{K}=K\left(p, \alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}\right) \cup K\left(p, \alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}\right) \cup K\left(p, \alpha_{1} \beta_{1}, \alpha_{2} \beta_{1}\right) \cup K\left(p, \alpha_{1} \beta_{2}, \alpha_{2} \beta_{2}\right) \subseteq K_{1} K_{2}$.
If $K\left(\alpha_{1}, \alpha_{2}\right) K\left(\beta_{1}, \beta_{2}\right)$ is convex, then $K(p, q) \subseteq \mathbf{K}$ for all $q \in K\left(\alpha_{1}, \alpha_{2}\right) K\left(\beta_{1}, \beta_{2}\right)$.
If $K\left(\alpha_{1}, \alpha_{2}\right) K\left(\beta_{1}, \beta_{2}\right)$ is not convex, then a_{1}, a_{2}, b_{1} and b_{2} satisfy conditions (b) or (c) in Theorem 2.4. Let $\left[a_{1}, a_{2}\right] \cap\left[b_{1}, b_{2}\right]=\left[c_{1}, c_{2}\right], C=K\left(1+c_{1} i, 1+c_{2} i\right), B=$ $K\left(1+b_{1} i, 1+b_{2} i\right) \backslash C$ and $A=K\left(1+a_{1} i, 1+a_{2} i\right) \backslash C$. Since $K_{1} K_{2}=(A C) \cup(A B) \cup$ $(C C) \cup(C B)$, and previous argument shows that $K(p, q) \subseteq K_{1} K_{2}$ for all $q \in(A C) \cup$ $(A B) \cup(C B)$, it remains to show that $K(p, q) \subseteq K_{1} K_{2}$ for all $q \in \partial(C C)$. Let

$$
\mathbf{V}=\left(1+c_{1} i\right) K\left(1+c_{1} i, 1+c_{2} i\right) \cup\left(1+c_{2} i\right) K\left(1+c_{1} i, 1+c_{2} i\right)
$$

and

$$
\mathbf{U}=\left\{(1+s i)^{2}: s \in\left(c_{1}, c_{2}\right)\right\}
$$

Note that $\partial(C C)=\mathbf{V} \cup \mathbf{U}$ and $\mathbf{V} \subseteq K\left(\alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}\right) \cup K\left(\alpha_{2} \beta_{1}, \alpha_{2} \beta_{2}\right) \cup K\left(\alpha_{1} \beta_{1}, \alpha_{2} \beta_{1}\right) \cup$ $K\left(\alpha_{1} \beta_{2}, \alpha_{2} \beta_{2}\right)$. So it remains to show that $K(p, q) \subseteq K_{1} K_{2}$ for all $q \in \mathbf{E}^{o}=\left\{(1+s i)^{2}\right.$: $\left.s \in\left(c_{1}, c_{2}\right)\right\}$.

Suppose $q \in \mathbf{E}^{o}$. Let \mathbf{L} be the tangent line to \mathbf{E}^{o} at q and \mathbf{H} the open half plane determined by \mathbf{L} and contains 0 .

Figure 5.
Consider the following three cases:

Case 1. If $p \in \mathbf{H}$, then there exists $t>1$ such that $s=p+t(q-p) \in \mathbf{V}$. Therefore, $K(p, q) \subseteq K(p, s) \subseteq K_{1} K_{2}$.

Case 2. If $p \in(\mathbf{C} \backslash \mathbf{H}) \cap(C C)$, then $K(p, q) \subseteq(C C) \subseteq K_{1} K_{2}$ because $(\mathbf{C} \backslash \mathbf{H}) \cap$ $(C C)$ is a triangular region containing q.

Case 3. If $p \in \mathbf{C} \backslash(\mathbf{H} \cup(C C))$, then there exists $0<t<1$ such that $s=p+t(q-$ $p) \in \mathbf{V}$. Therefore, $K(p, q)=K(p, s) \cup K(s, q) \subseteq K_{1} K_{2}$.

We have the following consequence of Theorem 3.3.
COROLLARY 3.4. Let K_{1} be a triangular region with $K_{1}=\bar{K}_{1}$. Then $K_{1}=$ $K(r, a, \bar{a})$ for some $r \in \mathbf{R}$ and $a \in \mathbf{C}$. The product set $P=K_{1} K_{1}$ is a star-shaped set with $|a|^{2}$ as a star center.

Proof. By Theorem 3.3, it suffices to show that $K\left(|a|^{2}, q\right) \in P$ for all $q \in\left\{r^{2}, r a\right.$, $\left.r \bar{a}, a^{2}, \bar{a}^{2}\right\}$.

1. For $0 \leqslant t \leqslant 1$, let $f(t)=(t r+(1-t) a)(t r+(1-t) \bar{a}) \subseteq P$. Since $f(0)=|a|^{2}$ and $f(1)=r^{2}$, we have $K\left(|a|^{2}, r^{2}\right) \subseteq P$.
2. $K\left(|a|^{2}, r a\right)=a K(\bar{a}, r) \subseteq P$.
3. $K\left(|a|^{2}, r(\bar{a})=\bar{a} K(a, r) \subseteq P\right.$.
4. $K\left(|a|^{2}, a^{2}\right)=a K(\bar{a}, a) \subseteq P$.
5. $K\left(|a|^{2}, \bar{a}^{2}\right)=\bar{a} K(a, \bar{a}) \subseteq P$.

Suppose $A \in M_{n}$ is a real matrix. Then $W(A)$ is symmetric about the real axis. By Corollary 3.4, if $A \in M_{3}$ is a real normal matrix, then $W(A) W(A)$ is star-shaped. In fact, if A is Hermitian, then $W(A) W(A)$ is convex; otherwise, $|a|^{2}$ is a star center, where a, \bar{a} are the complex eigenvalues of A.

4. A line and a convex set

In this section, we consider the product of a line segment and a convex set. In the context of numerical range, we consider $W(A) W(B)$, where A is a normal matrix with collinear eigenvalues, and B is a general matrix.

THEOREM 4.1. Let $K_{1}=K(\alpha, \beta)$ for some $\alpha, \beta \in \mathbb{C}$ and K_{2} be a compact convex sets in \mathbb{C}. Then $K_{1} K_{2}$ is star-shaped.

We begin with the following easy cases.

Proposition 4.2. Suppose that $K_{1}=K(\alpha, \beta)$ is a line segment and that K_{2} is a (not necessarily compact) convex set.
(1) If $0 \in K_{1} \cup K_{2}$, then $K_{1} K_{2}$ is star-shaped with 0 as a star center.
(2) If there is a nonzero $\xi_{1} \in \mathbf{C}$ such that $\xi_{1} K_{1} \subseteq(0, \infty)$, then $K_{1} K_{2}$ is convex.
(3) If there is a nonzero $\xi_{1} \in \mathbf{C}$ such that $\xi_{1} K_{1} \subseteq K_{2}$, then $K_{1} K_{2}$ is star-shaped with $\xi_{1} \alpha \beta$ as a star center.

Proof. (1) It follows from Proposition 1.1 (b).
(2) We may assume that $\xi_{1}=1$. Then $K_{1} K_{2}=\cup_{\alpha \leqslant t \leqslant \beta} t K_{2}$ is convex.
(3) Assume $\xi_{1}=1$. For every $p \in K_{1}$ and $q \in K_{2}$, we will show that

$$
K(\alpha \beta, p q) \subseteq K(\alpha, \beta) K(\alpha, \beta, q) \subseteq K_{1} K_{2} .
$$

To this end, note that

$$
\begin{array}{ll}
K\left(\alpha \beta, \alpha^{2}\right)=\alpha K(\alpha, \beta), & K\left(\alpha \beta, \beta^{2}\right)=\beta K(\alpha, \beta), \\
K(\alpha \beta, \alpha q)=\alpha K(\beta, q), & K(\alpha \beta, \beta q)=\beta K(\alpha, q) .
\end{array}
$$

So, we have $K(\alpha \beta, v) \in K(\alpha, \beta) K(\alpha, \beta, q)$ for any $v \in\left\{\alpha^{2}, \alpha \beta, \alpha q, \beta^{2}, \beta q\right\}$, which is the set of the product of vertexes of $K(\alpha, \beta)$ and $K(\alpha, \beta, q)$. By Theorem 3.3, $K(\alpha, \beta) K(\alpha, \beta, q)$ is star-shaped with $\alpha \beta$ as a star center. Thus, $K(\alpha \beta, p q) \subseteq$ $K(\alpha, \beta) K(\alpha, \beta, q) \subseteq K_{1} K_{2}$.

If $\xi_{1} \neq 1$, then $\left(\xi_{1} \alpha\right)\left(\xi_{1} \beta\right)$ is a star center of $\left(\xi_{1} K_{1}\right) K_{2}=\xi_{1} K_{1} K_{2}$ by the above argument. Thus, $\xi_{1}(\alpha \beta)$ is a star center of $K_{1} K_{2}$.

From now on, we will focus on convex sets K_{1} and K_{2} that do not satisfy the hypotheses in Proposition 4.2 (1) - (3). In particular, we may find ξ_{1} and ξ_{2} so that $\xi_{1} K_{1}=K(\hat{a}, \hat{b})$ and $\xi_{2} K_{2}$ is a compact convex set containing \hat{c}, \hat{d} and lying in the cone

$$
\mathscr{C}=\left\{t_{1} \hat{c}+t_{2} \hat{d}: t_{1}, t_{2} \geqslant 0\right\},
$$

where $\hat{a}=1+i a, \hat{b}=1+i b, \hat{c}=1+i c, \hat{d}=1+i d$ with $a \leqslant b, c \leqslant d$. There could be five different configurations of the two sets $\xi_{1} K_{1}$ and $\xi_{2} K_{2}$ as illustrated in Figure 6. (Here, we assume that Proposition 4.2 (3) does not hold so that we do not have the case $c \leqslant a<b \leqslant d$.) If K_{1}, K_{2} are put in these "canonical" positions, we can describe the star centers of $K_{1} K_{2}$ in the next theorem.

Figure 6. The above figures illustrate the canonical representations of a line segment $K_{1}=K(a, b)$ and a convex set K_{2} described in Theorem 4.3.

THEOREM 4.3. Let $\hat{a}=1+i a, \hat{b}=1+i b, \hat{c}=1+i c, \hat{d}=1+i d$ with $a \leqslant b, c \leqslant d$. Suppose $K_{1}=K(\hat{a}, \hat{b})$ and K_{2} be a compact convex set containing \hat{c}, \hat{d} and lying in the cone

$$
\mathscr{C}=\left\{t_{1} \hat{c}+t_{2} \hat{d}: t_{1}, t_{2} \geqslant 0\right\}
$$

such that the hypotheses of Proposition 4.2 (1) - (3) do not hold. Then $K_{1} K_{2}$ is starshaped and one of the following holds.
(a) If $a \leqslant b \leqslant c \leqslant d$, then $\hat{b} \hat{c}$ is a star center.
(b) If $a \leqslant c \leqslant b \leqslant d$, then $\hat{b} \hat{c}$ is a star center.
(c) If $a \leqslant c \leqslant d \leqslant b$, then $\hat{c} \hat{d}$ is a star center.
(d) If $c \leqslant a \leqslant d \leqslant b$, then $\hat{a} \hat{d}$ is a star center.
(e) If $c \leqslant d \leqslant a \leqslant b$, then $\hat{a} \hat{d}$ is a star center.

We need some lemmas to prove Theorem 4.3.
LEmmA 4.4. Suppose $C=1+i \tan \theta_{C}, D=1+i \tan \theta_{D}$ and $P=r e^{i \theta_{P}}$ with $r>0$, $-\frac{\pi}{2}<\theta_{C}<\theta_{P}<\theta_{D}<\frac{\pi}{2}$. Let

$$
\frac{-i(P-C)}{|P-C|}=e^{i \theta_{1}} \text { and } \frac{i(P-D)}{|P-D|}=e^{i \theta_{2}} \text { with }-\frac{\pi}{2}<\theta_{1}, \theta_{2}<\frac{\pi}{2}
$$

Then there exists ξ_{1}, ξ_{2} such that $\xi_{1} C=1+i \tan \left(\theta_{C}-\theta_{1}\right)$ and $\xi_{1} P=1+i \tan \left(\theta_{P}-\theta_{1}\right)$, $\xi_{2} D=1+i \tan \left(\theta_{D}-\theta_{2}\right)$ and $\xi_{2} P=1+i \tan \left(\theta_{P}-\theta_{2}\right)$.

Consequently, we have

1. If $\mathfrak{R}(P) \leqslant 1$, then $\theta_{2} \leqslant 0 \leqslant \theta_{1}$ and $\theta_{C}-\theta_{1} \leqslant \theta_{P}-\theta_{1} \leqslant \theta_{P} \leqslant \theta_{P}-\theta_{2} \leqslant \theta_{D} \leqslant$ $\theta_{D}-\theta_{2}$.
2. If $\mathfrak{R}(P) \geqslant 1$, then $\theta_{1} \leqslant 0 \leqslant \theta_{2}$ and $\theta_{C} \leqslant \theta_{C}-\theta_{1} \leqslant \theta_{P}-\theta_{1}$ and $\theta_{P}-\theta_{2} \leqslant$ $\theta_{D}-\theta_{2} \leqslant \theta_{D}$.

Proof. First consider C and P. Then θ_{1} is the angle from $\overrightarrow{C D}$ to $\overrightarrow{C P}$. Then the result follows from simple geometry.

Figure 7.
On one also can calculate directly with $\xi_{1}=\frac{\cos \theta_{C}}{\cos \left(\theta_{C}-\theta_{1}\right)} e^{-i \theta_{1}}$.

For the second statement, apply the above result on \bar{D} and \bar{P}, the complex conjugate of D and P.

LEMMA 4.5. Suppose $a \leqslant c \leqslant d, p=t_{1}(1+i c)+t_{2}(1+i d)$ is nonzero for some $t_{1}, t_{2} \geqslant 0, K_{1}=K(1+i a, 1+i d)$, and $K_{2}=K(1+i c, 1+i d, p)$. Then $K_{1} K_{2}$ is starshaped with $(1+i c)(1+i d)$ as a star center.

Proof. Let $\hat{a}=1+i a, \hat{c}=1+i c, \hat{d}=1+i d$. By Theorem 3.3, it suffices to show that $K(\hat{c} \hat{d}, u v) \subseteq K_{1} K_{2}$ for each pair of elements (u, v) in $\{\hat{a}, \hat{d}\} \times\{\hat{c}, \hat{d}, p\}$. If $u=\hat{d}$, then $K(\hat{c} \hat{d}, \hat{d} v)=\hat{d} K(\hat{c}, v) \subseteq K_{1} K_{2}$. Similarly, if $u=\hat{c}$, then $K(\hat{c} \hat{d}, \hat{c} v)=\hat{c} K(\hat{d}, v) \subseteq$ $K_{1} K_{2}$. Thus, the only nontrivial case is when $(u, v)=(\hat{a}, p)$.

By continuity, we may assume that $t_{1}, t_{2}>0$. We consider two cases.
Case 1. Suppose $\mathfrak{R}(p) \leqslant 1$. Then by Lemma 4.4 and Theorem 2.4, $K(\hat{a}, \hat{c}) K(p, \hat{d})$ is convex. So

$$
K(\hat{c} \hat{d}, \hat{a} p) \subseteq K(\hat{a}, \hat{c}) K(p, \hat{d}) \subseteq K_{1} K_{2}
$$

Case 2. Suppose $\mathfrak{R}(p)>1$. By Lemma 4.4, there exists α_{0} such that $\alpha_{0} \hat{c}=$ $1+c_{1} i$ and $\alpha_{0} p=1+p_{1} i$ such that $c_{1}>c$. By Theorem 2.4, if $p_{1} \geqslant d$, then $\hat{c} \hat{d}$ is a star center of $K(\hat{a}, \hat{d}) K(\hat{c}, p)$. If $p_{1}<d$, then $K(\hat{a} \hat{c}, \hat{d} \hat{c})$ intersects $K(\hat{a} p, \hat{d p})$ and $\hat{c} \hat{d}$ lies inside the triangle with vertices $\hat{a} p, \hat{d} p, \hat{a} \hat{d}$ (see Figure 8). Thus, $K(\hat{c} \hat{d}, \hat{a} p)$ is in the interior of the region enclosed by $K(\hat{d} p, \hat{c} \hat{d}) \cup K(\hat{c} \hat{d}, \hat{a} \hat{d}) \cup K(\hat{a} \hat{d}, \hat{a} p) \cup K(\hat{a} p, \hat{c} \hat{a}) \subseteq$ $K_{1} K_{2}$.

Figure 8.
In both cases, we have $K(\hat{c} \hat{d}, \hat{a} p) \subseteq K_{1} K_{2}$.

Lemma 4.6. Suppose $a<b \leqslant c<d, p=t_{1}(1+i c)+t_{2}(1+i d)$ is nonzero for some $t_{1}, t_{2} \geqslant 0$ and $K_{1}=K(1+i a, 1+i b)$, and $K_{2}=K(1+i c, 1+i d, p)$. Assume also that there is no $\xi \in \mathbf{C}$ such that $K_{1} \subseteq \xi K_{2}$. Then $K_{1} K_{2}$ is star-shaped and $(1+b i)(1+$ ci) is a star center.

Proof. Let $\hat{a}=1+i a, \hat{c}=1+i c, \hat{d}=1+i d$. Similar to the previous lemma, it is enough to show that $K(\hat{b} \hat{c}, \hat{a} p) \subseteq K_{1} K_{2}$ for any $p=t_{1} \hat{c}+t_{2} \hat{d}$ such that $t_{1}, t_{2} \geqslant 0$.

Let $\xi \in \mathbf{C}$ such that $\xi K(\hat{c}, p)$ is a vertical line segment with real part 1. If $\xi K(\hat{c}, p) \nsubseteq K(\hat{a}, \hat{b})$, then by Corollary $2.6, \hat{b} \hat{c}$ is a star-center of $K_{1} K(\hat{c}, p)$ and hence $K(\hat{b} \hat{c}, \hat{a} p) \subseteq K_{1} K_{2}$. Otherwise, we have $\xi K(\hat{c}, p) \subseteq K(\hat{a}, \hat{b})$ and $K_{1} K(\hat{c}, p)$ is as shown
in Figure 9(c) in the figure below. This will only happen if $\mathfrak{R}(p)<1$. Since $\hat{a} p=$ $t_{1}(\hat{c} \hat{a})+t_{2} \hat{d} \hat{a}$ for some $t_{1}, t_{2} \geqslant 0$ such that $t_{1}+t_{2}<1$, then $\hat{a} p \in K(0, \hat{c} \hat{a}, \hat{d} \hat{a})$ and $\hat{b} p \in K(0, \hat{c} \hat{b}, \hat{d} \hat{b})$. Note also that 0 and $p \hat{a}$ are separated by the line segment $K(\hat{c} \hat{b}, \hat{c} \hat{a})$. Hence, $p \hat{a}$ is in the quadrilateral $K_{1} K(\hat{c}, \hat{d})$ and therefore $K(\hat{a} p, \hat{c} \hat{b}) \subseteq K_{1} K_{2}$. This finishes the proof that $\hat{c} \hat{b}$ is a star center for $K_{1} K_{2}$.

Figure 9.

Proof of Theorem 4.3. Note that (d) follows from (b) by considering $\bar{K}_{1} \bar{K}_{2}$. Similarly, (e) follows from (a). Thus, we only need to prove (a)-(c).

To prove that s is a star center of $K_{1} K_{2}$, we show that for any $p \in K_{2}, s$ is a star center of $K_{1} K(\hat{c}, \hat{d}, p)$. To accomplish this, it is enough to show that $K(s, u v) \subseteq K_{1} K_{2}$ for all pairs $(u, v) \in\{\hat{b}, \hat{a}\} \times\{\hat{c}, \hat{d}, p\}$ by Theorem 3.3, where $p=t_{1} \hat{c}+t_{2} \hat{d}$ for some $t_{1}, t_{2} \geqslant 0$.

For (a), the conclusion follows directly from Lemma 4.6.
To prove (c), the only nontrivial cases to consider are when $(u, v)=(\hat{a}, p)$ or $(u, v)=(\hat{b}, p)$. By Lemma 4.5, $K(\hat{c} \hat{d}, \hat{a} p) \subseteq K(\hat{a}, \hat{d}) K(\hat{c}, \hat{d}, p) \subseteq K_{1} K_{2}$. By Lemma 4.5 again, the product $\overline{K(\hat{b}, \hat{c})} \overline{K(\hat{c}, \hat{d}, \hat{p})}$, has $\overline{\hat{c} \hat{d}}$ as a star center. Thus, $\hat{c} \hat{d}$ is a star center of $K(\hat{b}, \hat{c}) K(\hat{c}, \hat{d}, \hat{p})$ and thus $K(\hat{c} \hat{d}, \hat{b} p) \subseteq K(\hat{b}, \hat{c}) K(\hat{c}, \hat{d}, \hat{p}) \subseteq K_{1} K_{2}$.

To prove (b), it is enough to show that $K(\hat{c} \hat{b}, \hat{a} p) \subseteq K_{1} K_{2}$ for all $p \in K_{2}$. We consider two cases,

1. Suppose $p=t_{1} \hat{d}+t_{2} \hat{b}$ for some $t_{1}, t_{2} \geqslant 0$. Then by Lemma 4.6, $\hat{b} \hat{c}$ is a starcenter of $K(\hat{a}, \hat{c}) K(\hat{b}, \hat{d}, p)$. Thus $K(\hat{b} \hat{c}, \hat{a} p) \subseteq K(\hat{a}, \hat{c}) K(\hat{b}, \hat{d}, p) \subseteq K_{1} K_{2}$.
2. Suppose $p=t_{1} \hat{b}+t_{2} \hat{c}$ for some $t_{1}, t_{2} \geqslant 0$. Then by Lemma $4.5, \hat{b} \hat{c}$ is a star-center of $K(\hat{a}, \hat{b}) K(\hat{b}, \hat{c}, p)$. Thus $K(\hat{b} \hat{c}, \hat{a} p) \subseteq K(\hat{a}, \hat{b}) K(\hat{b}, \hat{c}, p) \subseteq K_{1} K_{2}$.

In both cases, $\hat{b} \hat{c}$ is a star-center for $K_{1} K_{2}$.

It is clear that Theorem 4.1 follows from Proposition 4.2 and Theorem 4.3.

5. A circular disk and a closed set

It is known that the product of two circular disks is star-shaped [3, 4, 7, 8]. In this section, we will prove some unexpected results that if K_{1} is a circular disk, then for many closed sets K_{2}, the product set is star-shaped. We will use $D(\mu, R)$ to denote the closed disk with center $\mu \in \mathbf{C}$ and radius $R \geqslant 0$.

Note that if $0 \in K_{1}$, then for every non-empty set $K_{2}, K_{1} K_{2}$ is star-shaped with 0 as star center. Suppose $0 \notin K_{1}$, we can always scale K_{1} so that it is a circular disk centered at 1 with radius $r<1$.

We have the following results showing that the product set of a circular disk and another set would be star-shaped under some very general conditions. We begin with the following observation.

Lemma 5.1. Suppose $r \in(0,1]$ and $b \in D(1, r)$. Then the product $D(1, r)\{b\}$ is a disk containing $1-r^{2}$.

Proof. Let $b \in D(1, r)$. Then $b D(1, r)=D(b,|b| r)$.

$$
\begin{aligned}
\left|b-\left(1-r^{2}\right)\right|^{2} & =\left(b-\left(1-r^{2}\right)\right)\left(\bar{b}-\left(1-r^{2}\right)\right) \\
& =|b|^{2}-(b+\bar{b})\left(1-r^{2}\right)+\left(1-r^{2}\right)^{2} \\
& =|b|^{2} r^{2}-\left(1-r^{2}\right)\left(-|b|^{2}+(b+\bar{b})-\left(1-r^{2}\right)\right) \\
& =|b|^{2} r^{2}-\left(1-r^{2}\right)\left(r^{2}-(b-1)(\bar{b}-1)\right) \\
& \leqslant|b|^{2} r^{2} \quad \quad \text { because }|b-1| \leqslant r \leqslant 1 .
\end{aligned}
$$

From the above simple proposition, we get the following.

THEOREM 5.2. Suppose $K_{1}=D(\mu, R)$ does not contain 0 . For every nonempty subset S of K_{1}, the product set $K_{1} S$ is star shaped with star center $\mu^{2}\left(1-r^{2}\right)$, where $r=\left|\mu^{-1} R\right|$.

In the numerical range context, for every circular disk K_{1}, there is $A \in M_{2}$ such that $A-(\operatorname{tr} A) I / 2$ is nilpotent and $W(A)=K_{1}$. Moreover, $B \in M_{n}$ satisfies $W(B) \subseteq$ $W(A)$ if and only if B admits a dilation of the form $I \otimes A$; see [1, 2]. By Theorem 5.2, if $A \in M_{2}$ such that $(A-\operatorname{tr} A I) / 2$ is nilpotent, then $W(A) W(B)$ is star-shaped for any $B \in M_{n}$ satisfying $W(B) \subseteq W(A)$.

Next, we have the following.

THEOREM 5.3. Suppose $r \in(0,1]$ and $b \in \mathbf{C}$ with $\mathfrak{R}(b) \geqslant 1$. Then the product $K(1, b) D(1, r)$ is star-shaped with 1 as star center.

Proof. Suppose $b=1+R e^{i \theta}$ with $R \geqslant 0$ and $-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}$. Let $c \in K(1, b)$. Then $c=1+s R e^{i \theta}$ for some $0 \leqslant s \leqslant 1 . c K_{1}=D(c,|c| r)$. Therefore, $K(1, b) D(1, r)=$
$\cup\{D(c,|c| r): c \in K(1, b)\}$. Let $z \in K(1, b) D(1, r)$. Then $\left|z-\left(1+s R e^{i \theta}\right)\right| \leqslant\left|1+s R e^{i \theta}\right| r$ for some $0 \leqslant s \leqslant 1$. Let $0 \leqslant t \leqslant 1$. We have

$$
\begin{aligned}
& \left|t z+(1-t)-\left(1+t s R e^{i \theta}\right)\right|^{2} \\
= & \left|t\left(z-\left(1+s R e^{i \theta}\right)\right)\right|^{2} \\
\leqslant & t^{2}\left|1+s R e^{i \theta}\right|^{2} r^{2} \\
= & \left((t+t s R \cos \theta)^{2}+(t s R \sin \theta)^{2}\right) r^{2} \\
= & \left((1+t s R \cos \theta)^{2}+(t s R \sin \theta)^{2}-(1-t)(1+t+2 t s R \cos \theta)\right) r^{2} \\
\leqslant & \left((1+t s R \cos \theta)^{2}+(t s R \sin \theta)^{2}\right) r^{2} \\
= & \left|1+t s R e^{i \theta}\right|^{2} r^{2}
\end{aligned}
$$

Therefore, $t z+(1-t) \in D\left(1+t s \operatorname{Re}^{i \theta},\left|1+t s \operatorname{Re}^{i \theta}\right| r\right) \subseteq K(1, b) D(1, r)$.

THEOREM 5.4. Suppose S is a star-shaped subset of \mathbf{C} with star center s such that $|s| \leqslant|z|$ for every $z \in S$. Then $D(a, r) S$ is star-shaped for every circular disk $D(a, r)$. In particular, if S is convex, then $D(a, r) S$ is star-shaped for every circular disk $D(a, r)$.

Proof. If either S or $D(a, r)$ contains 0 , the result holds. So we may assume that $0 \notin S \cup D(a, r)$.

We may assume that $s=1$ and $D(a, r)=D(1, r)$ with $0 \leqslant r \leqslant 1$. Then for every $z \in S, z=1+R e^{i \theta}$ for some $-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}$. By Theorem 5.3, the product $K(1, z) D(1, r)$ is star shaped with star center 1 . Hence, $S D(1, r)$ is also star shaped with star center 1.

Apart from the nice results above, there are some limitations about the star-shapedness of the product set of a circular disk and another set in \mathbf{C} as shown in the following.

Example 5.5. Let $S=K\left(1,2 e^{i \frac{11 \pi}{12}}\right) \cup K\left(1,2 e^{-i \frac{11 \pi}{12}}\right)$. Then S is star-shaped with 1 as star center. Let $D\left(1, \frac{1}{2}\right)$ be the disk centered at 1 with radius $\frac{1}{2}$. Then the product set $S D\left(1, \frac{1}{2}\right)$ is not simply connected.

Figure 10. The product set $\left(K\left(1,2 e^{i \frac{11 \pi}{12}}\right) \cup K\left(1,2 e^{-i \frac{11 \pi}{12}}\right)\right) \cdot D\left(1, \frac{1}{2}\right)$ is not simply connected.

6. Additional results and further research

We have to assume compactness in most of our results. One may wonder what happen if we relax this assumption. The following example shows that without the end points, the product of two line segments may not be star-shaped.

Example 6.1. Let $K_{1}=K_{2}$ be the line segment joining $1+i$ and $1-i$ without the end points. Then $K_{1} K_{2}$ has no star center.

Verification. Note that the closure of $K_{1} K_{2}$ equals $S=K(1+i, 1-i) K(1+i, 1-i)$ has a unique star-center 2 . The set $K_{1} K_{2}$ is obtained from S by removing the line segments $K(2,2 i)$ and $K(2,-2 i)$. The only point in the closure can reach all the points in $K_{1} K_{2}$ is 2 , but it is not in $K_{1} K_{2}$. So, $K_{1} K_{2}$ is not star-shaped.

Recall that an extreme point of a compact convex set $S \subseteq \mathbf{C}$ is an element in S that cannot be written as the mid-point of two different elements in S. If S is a polygon (with interior) then its vertexes are the extreme points. We can extend Theorem 3.3 to the following.

THEOREM 6.2. Let $K_{1}, K_{2} \subseteq \mathbf{C}$ be compact convex sets. Then $K_{1} K_{2}$ is starshaped if and only if there is $p \in K_{1} K_{2}$ such that $K(p, a b) \subseteq K_{1} K_{2}$ for any extreme points $a \in K_{1}$ and $b \in K_{2}$.

Proof. If $K_{1} K_{2}$ is star-shaped, then a star center $p \in K_{1} K_{2}$ satisfies $K(p, c) \subseteq$ $K_{1} K_{2}$ for any $c \in K_{1} K_{2}$. Now, suppose there is $p \in K_{1} K_{2}$ satisfying $K(p, a b) \subseteq K_{1} K_{2}$ for any extreme points $a \in K_{1}$ and $b \in K_{2}$. Let $\mu=\mu_{1} \mu_{2}$ with $\mu_{1} \in K_{1}, \mu_{2} \in K_{2}$. By the Caretheodory theorem $\mu_{1} \in K\left(a_{1}, a_{2}, a_{3}\right)$ and $\mu_{2} \in K\left(b_{1}, b_{2}, b_{3}\right)$ for some extreme points $a_{1}, a_{2}, a_{3} \in K_{1}$ and $b_{1}, b_{2}, b_{3} \in K_{2}$. (Some of the a_{i} 's may be the same, and also some of the b_{i} 's may be the same.) Suppose $p=p_{1} p_{2}$ with $p_{1} \in K_{1}$ and $p_{2} \in K_{2}$. Then $p_{1} \in K\left(a_{4}, a_{5}, a_{6}\right)$ and $p_{2} \in K\left(b_{4}, b_{5}, b_{6}\right)$ for some extreme points $a_{4}, a_{5}, a_{6} \in K_{1}$ and $b_{4}, b_{5}, b_{6} \in K_{2}$. By Theorem 3.3, $K\left(p, \mu_{1} \mu_{2}\right) \subseteq K\left(a_{1}, \ldots, a_{6}\right) K\left(b_{1}, \ldots, b_{6}\right) \subseteq K_{1} K_{2}$. Thus, p is a star center of $K_{1} K_{2}$

Another observation is the following extension of Proposition 1.1(b). Note that we do not need to impose compactness conditions on K_{1} or K_{2}.

Proposition 6.3. Suppose $K_{1} \subseteq \mathbf{C}$ is star-shaped with 0 as a star center. Then for any non-empty subset $K_{2} \subseteq \mathbf{C}$, the set $K_{1} K_{2}$ is star-shaped with 0 as a star center.

Proof. Let $p=p_{1} p_{2} \in K_{1} K_{2}$ with $p_{1} \in K_{1}, p_{2} \in K_{2}$. Then $K(0, p)=K\left(0, p_{1}\right)\left\{p_{2}\right\}$ $\subseteq K_{1} K_{2}$.

There are other interesting questions deserve further research. We mention a few of them in the following.

P1 Find necessary and sufficient conditions on K_{1} and K_{2} so that $K_{1} K_{2}$ is convex or star-shaped.

In the context of numerical range if $A \in M_{2}$, then $W(A)$ is an elliptical disk. So, it is also of interest to study the following.
$\mathbf{P 2}$ Let K_{1}, K_{2} be two elliptical disks. Determine conditions on K_{1}, K_{2} so that $K_{1} K_{2}$ is star-shaped or convex.

One may also consider the following.
P3 Characterize those elliptical disks K_{1} such that $K_{1} K_{2}$ is star-shaped for all compact convex set K_{2}.

More generally, one may consider the following.
P4 Characterize those compact convex sets K_{1} such that $K_{1} K_{2}$ is convex or starshaped for any compact convex set K_{2}.

In connection to Problem P4, we have shown that if K_{1} is a close line segment or a close circular disk, then $K_{1} K_{2}$ is star-shaped for any compact convex set K_{2}. These results are are also connected to Problem P3 because a line segment and a circular disk can be viewed as elliptical disks.

It is also interesting to study the Minkowski product of s (convex) sets K_{1}, \ldots, K_{s}. The study will be more challenging. As pointed out in [8], the set $K_{1} \cdots K_{s}$ may not be simply connected in general. Nevertheless, our results in Section 5 and Proposition 6.2 imply the following.

Proposition 6.4. Suppose $K_{1}, \ldots, K_{s} \subseteq \mathbf{C}$.

1. If any one of the sets K_{1}, \ldots, K_{s} is star-shaped with 0 as a star center, then $K_{1} \cdots K_{s}$ is star-shaped with 0 as a star center.
2. Suppose there is a nonzero number μ_{1} such that $\mu_{1} K_{1}$ is a circular disk center at 1 with radius $r<1$.
(2.a) If there is $\mu \in \mathbf{C}$ such that $\mu K_{2} \cdots K_{s} \subseteq \mu_{1} K_{1}$ for $i=2, \ldots, s$, then $K_{1} \cdots K_{r}$ is star-shaped with $\left(\mu_{1} \mu\right)^{-1}\left(1-r^{2}\right)$ as a star center.
(2.b) If there is $\mu \in \mathbf{C}$ such that $\mu K_{2} \cdots K_{s} \subseteq\{z \in \mathbf{C}: \mathfrak{R}(z) \geqslant 1\}$ for $i=2, \ldots, s$, then $K_{1} \cdots K_{r}$ is star-shaped with $\left(\mu_{1} \mu\right)^{-1}$ as a star center.

It is also interesting to study the following problem.
P5 Characterize those compact (convex) sets K such that K^{2} is convex or starshaped.

Acknowledgement. Li is an affiliate member of the Institute for Quantum Computing, University of Waterloo; he is an honorary professor of the University of Hong Kong and the Shanghai University. His research was supported by USA NSF grant DMS 1331021 and Simons Foundation Grant 351047. The research of Wang was supported by the Ministry of Science and Technology of the Republic of China under project MOST 104-2918-I-009-001.

REFERENCES

[1] T. Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged) 34 (1973), 11-15.
[2] M. D. Choi and C. K. Li, Numerical ranges and dilations, Linear and Multilinear Algebra 47 (2000), 35-48.
[3] R. T. Farouki, H. P. Moon and B. Ravani, Minkowski, Teometric algebra of complex sets, Geom. Dedicata 85 (2001), no. 1-3, 283-315.
[4] R. T. Farouki, and H. Pottmann, Exact Minkowski products of N complex disks, Reliab. Comput. 8 (2002), no. 1, 43-66.
[5] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[6] C. K. Li, The c-spectral, c-radial and c-convex matrices, Linear and Multilinear Algebra 20 (1986), 5-15.
[7] B. L. McAllister, Products of Sets of Complex Numbers, The Two-Year College Mathematics Journal 14 (1983), No. 5, 390-397.
[8] Z. Puchala, P. Gawron, J. A. Miszczak, L. Skowronek, M. D. Choi, and K. ZyCZKOWSKI, Product numerical range in a space with tensor product structure, Linear Algebra and its Applications 434 (2011) 327-342.

Diane Christine Pelejo Department of Mathematics College of William and Mary Williamsburg, VA 23187, USA e-mail: dppelejo@wm. edu

Yiu-Tung Poon
Department of Mathematics
Iowa State University
Ames, IA 50011, USA
e-mail: ytpoon@iastate.edu
Kuo-Zhong Wang
Department of Applied Mathematics
National Chiao Tung University
Hsinchu 30010, Taiwan
e-mail: kzwang@math.nctu.edu.tw

