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Abstract. Let f (X) = (XC+D)M(XC+D)∗−G be a given nonlinear Hermitian matrix-valued
function with M = M∗ and G = G∗ , and assume that the variable matrix X satisfies the consis-
tent linear matrix equation XA = B . This paper shows how to characterize the semi-definiteness
of f (X) subject to all solutions of XA = B . As applications, a standard method is obtained for
finding analytical solutions X0 of X0A = B such that the matrix inequality f (X) � f (X0) or
f (X) � f (X0) holds for all solutions of XA = B . The whole work provides direct access, as
a standard example, to a very simple algebraic treatment of the constrained Hermitian matrix-
valued function and the corresponding semi-definiteness and optimization problems.

1. Introduction

Throughout this paper, C
m×n stands for the collection of all m×n complex matri-

ces, and Cm
H stands for the set of all m×m complex Hermitian matrices. The symbols

A∗ , r(A) and R(A) stand for the conjugate transpose, the rank and the range (col-
umn space) of a matrix A ∈ Cm×n , respectively. Im denotes the identity matrix of
order m . The Moore–Penrose generalized inverse of A , denoted by A† , is defined to
be the unique solution X satisfying the four matrix equations AGA = A , GAG = G ,
(AG)∗ = AG , and (GA)∗ = GA . Further, let EA and FA stand for EA = Im −AA† and
FA = In −A†A , which satisfy EA = FA∗ and FA = EA∗ . The two symbols i+(A) and
i−(A) for A ∈ C

m
H , called the positive and negative inertias of A , stand for the number

of the positive and negative eigenvalues of A counted with multiplicities, respectively,
both which satisfy r(A) = i+(A)+ i−(A) . For brief, we use i±(A) to denote the both
numbers. Two A, B ∈ Cm

H are said to satisfy the inequalities A � B , A � B , A ≺ B ,
and A � B in the Löwner partial ordering if A−B is positive definite, positive semi-
definite, negative definite, and negative semi-definite respectively. It is well known that
the Löwner partial ordering is a surprisingly strong and useful property on Hermitian
matrices. For more issues about connections between the inertias and the Löwner par-
tial ordering of Hermitian matrices, as well as specific applications of the matrix inertias
and Löwner partial ordering in statistics; see, e.g., [13, 15].

The optimal rank and inertia problems of Hermitian matrix-valued functions are
the problems of finding the largest and smallest ranks and inertias of the Hermitian
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matrix-valued functions over some feasible matrix sets. A matrix-valued function is a
map between the two matrix spaces Cm×n and Cp×q , which can generally be written
as

Y = f (X) for Y ∈ C
m×n and X ∈ C

p×q, (1.1)

or briefly, f : Cp×q → Cm×n . Mappings between matrix spaces can be constructed
arbitrarily from ordinary operations of given matrices and variable matrices, but lin-
ear and nonlinear Hermitian matrix-valued function with a single variable matrix were
widely used and extensively studied from theoretical and applied points of view. One
of the simplest forms of the nonlinear Hermitian matrix-valued function f (X) in (1.1)
is given by

f (X) = (XC+D)M(XC+D)∗ −G

= XCMC∗X∗ +XCMD∗ +DMC∗X∗ +DMD∗ −G, (1.2)

where C ∈ Cp×m, D ∈ Cn×m, G ∈ Cn
H , and M ∈ Cm

H are given, X ∈ Cn×p is a variable
matrix. If n = 1, then (1.2) becomes a scalar function for the row vector X . Further, we
assume that the variable matrix X ∈ Cn×p is the solution of a consistent linear matrix
equation

XA = B, (1.3)

where A ∈ Cp×q and B ∈ Cn×q are given. Eq. (1.2) subject to (1.3) becomes a con-
strained symmetric quadratic matrix-valued function if all matrices in (1.2) and (1.3)
are replaced by real matrices. Nonlinear Hermitian matrix-valued functions with the
form of f (X) in (1.2) occur widely in matrix theory and applications, while many
problems in matrix theory and applications can reduce to certain cases of (1.2) subject
to (1.3) and their optimization problems. For example, the minimization of (1.2) subject
to (1.3) in the Löwner partial ordering for the real matrix case and its applications in
parametric quadratic programming and statistical analysis were approached in [3, 14].
Formulas for calculating the rank and inertia of a special case of f1(X) = XMX∗ −G
subject to (1.3) and their applications were given in [17]. It should be pointed out
that the reduced form f1(X) and (1.2) are not necessarily equivalent, because we can
choose CMC∗ = 0 and CMD∗ �= 0. In this case, (1.2) is linear for both X and X∗ , but
f1(X) with M �= 0 is always nonlinear for both X and X∗ . Some recent work on the
applications of minimization of (1.2) subject to (1.3) for the real matrix case in deriv-
ing best linear unbiased predictors/estimiators of all unknown parameters under linear
random-effects models was given in [21, 22].

In order to establish a unified optimization theory of (1.2) subject to (1.3), this
paper aims at solving the following three fundamental problems:

(I) Derive analytical formulas for calculating the maximum and minimum ranks and
inertias of f (X) in (1.2) when X runs over Cn×p .

(II) Establish necessary and sufficient conditions for

f (X) � 0 or f (X) � 0 subject to XA = B (1.4)

to hold in the Löwner partial ordering, respectively;
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(III) Give analytical solution X0 of XA = B such that

f (X) � f (X0) or f (X) � f (X0) subject to XA = B (1.5)

to hold in the Löwner partial ordering, respectively.

To appreciate the importance of this research, it is helpful to consider a covari-
ance problem in statistic inference. Let y be a random vector with expectation and
covariance matrix as follows

E(y) = μ , Cov(y) = Σ,

and let S be certain set consisting of linear estimators generated from y as follows

S = {Ly+b}

where b is a given random or non-random vector, L is an arbitrary matrix satisfying
certain restriction, say, E(Ly + b) = 0. A fundamental optimization problem on the
given set S is to find L0y+b ∈ S that minimizes the objective covariance matrix of
Ly+b∈ S in the Löwner partial ordering, i.e., to find L0y+b ∈ S such that

Cov(L0y+b) � Cov(Ly+b) holds for all Ly+b∈ S .

The Cov(Ly+ b) is equivalent to a symmetric quadratic matrix-valued function for L
of the form in (1.2). Analytical solutions to optimization problems in the Löwner sense
have been the most desirable objects of study in both mathematics and applications. In
particular, once analytical solution to (1.5) is obtained, we can use the solution as an
effective tool in the derivation of exact algebraic expressions of the well-known best
linear unbiased predictors/estimators of unknown parameters under linear regression
models.

It should be pointed out that the best-known Lagrangian method is not available
for solving (1.2) and (1.5), because the optimality criteria in (1.5) are defined from the
Löwner partial ordering instead of scalar functions of matrices like traces or norms of
matrices. In this instance, we can use matrix rank and inertia formulas instead of the
Lagrangian method, and establish a standard algebraic process to solve (1.2) and (1.5).

We next present some known results on the solution of linear matrix equation, and
matrix rank/inertia formulas.

LEMMA 1.1. ([12]) The linear matrix equation AX = B is consistent if and only
if r[A, B ] = r(A), or equivalently , AA†B = B. In this case , the general solution of
AX = B can be written in the following parametric form X = A†B+( I−A†A)U, where
U is an arbitrary matrix.

LEMMA 1.2. Let A, B ∈ Cm×n, or A, B ∈ Cm
H. Then , the following assertions

hold.

(a) A = B if and only if r(A−B) = 0.
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(b) A � B (A ≺ B) if and only if i+(A−B) = m (i−(A−B) = m).

(c) A � B (A � B) if and only if i−(A−B) = 0 (i+(A−B) = 0).

(d) For two given Hermitian matrix sets S and T , A � B (A � B) holds for all A∈
S and B ∈ T if and only if maxA∈S ,B∈T i−(A−B) = 0 (maxA∈S ,B∈T i+(A−
B) = 0).

The assertions in Lemma 1.2 directly follow from the definitions of rank/inertia,
definiteness, and semi-definiteness of (Hermitian) matrices. These assertions show that
if certain expansion formulas for calculating ranks/inertias of differences of (Hermitian)
matrices are established, we can use them to characterize the corresponding matrix
equalities and inequalities. This fact reflects without doubt the most exciting values
of ranks/inertias in matrix analysis and applications, and thus it is really necessary to
produce numerous matrix rank/inertia formulas from the theoretical and applied points
of view.

LEMMA 1.3. ([11]) Let A ∈ Cm×n, B ∈ Cm×k, and C ∈ Cl×n. Then ,

r[A, B ] = r(A)+ r(EAB) = r(B)+ r(EBA), (1.6)

r

[
A
C

]
= r(A)+ r(CFA) = r(C)+ r(AFC), (1.7)

r

[
A B
C 0

]
= r(B)+ r(C)+ r(EBAFC). (1.8)

LEMMA 1.4. ([15]) Let A∈Cm
H, B∈Cn

H, Q∈Cm×n, and assume that P∈Cm×m

is nonsingular. Then ,

i±(PAP∗) = i±(A) (Sylvester’s law of inertia), (1.9)

i±(A†) = i±(A), i±(−A) = i∓(A), (1.10)

i±
[
A 0
0 B

]
= i±(A)+ i±(B), (1.11)

i+

[
0 Q
Q∗ 0

]
= i−

[
0 Q
Q∗ 0

]
= r(Q). (1.12)

LEMMA 1.5. ([15]) Let A ∈ Cm
H and B ∈ Cm×n, and C ∈ Cn

H. Then ,

i±
[

A B
B∗ 0

]
= r(B)+ i±(EBAEB), (1.13)

i±
[

A B
B∗ C

]
= i±(A)+ i±

[
0 EAB

B∗EA C−B∗A†B

]
. (1.14)

In particular ,

A � 0 ⇒ i+

[
A B
B∗ 0

]
= r[A, B ] and i−

[
A B
B∗ 0

]
= r(B), (1.15)
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and [
A B
B∗ C

]
� 0 ⇔ R(B) ⊆ R(A), A � 0, and C−B∗A†B � 0. (1.16)

LEMMA 1.6. ([18]) Let A ∈ Cm
H, B ∈ Cm×n, and C ∈ Cn

H be given , and X ∈
Cn×m be a variable matrix. Then , the maximum partial inertias of XAX∗ + XB +
B∗X∗ +C are given by

max
X∈Cn×m

i± (XAX∗+XB+B∗X∗+C) = min

{
n, i±

[
A B
B∗ C

]}
. (1.17)

Hence ,

XAX∗+XB+B∗X∗ +C � 0 for all X ∈ C
n×m ⇔

[
A B
B∗ C

]
� 0,

XAX∗+XB+B∗X∗ +C � 0 for all X ∈ C
n×m ⇔

[
A B
B∗ C

]
� 0.

There do exist matrices X ∈ Cn×m satisfying the two formulas in (1.17), while the
constructions of the matrices were described or formulated in [18].

2. Semi-definiteness of Hermitian matrix-valued functions

We first establish two formulas for calculating the maximum partial inertias of
f (X) in (1.2).

LEMMA 2.1. Let f (X) be as given in (1.2) , and let J =
[
DMD∗ −G DMC∗

CMD∗ CMC∗

]
.

Then ,

max
X∈Cn×p

i± [ f (X)] = min{n, i±(J)} . (2.1)

Hence , the following results hold.

(a) f (X) � 0 holds for all X ∈ Cn×p if and only if J � 0.

(b) f (X) � 0 holds for all X ∈ Cn×p if and only if J � 0.

(c) f (X) = 0 holds for all X ∈ Cn×p if and only if J = 0.

Proof. Expanding the f (X) in (1.2) gives

f (X) = (XC+D)M(XC+D)∗ −G

= XCMC∗X∗ +XCMD∗+DMC∗X∗ +DMD∗ −G. (2.2)

Applying (1.17) to (2.2) yields (2.1). Note from Lemma 1.2(d) that f (X) � 0 for all
X ∈ C

n×p is equivalent to maxX∈Cn×p i− [ f (X)] = i−(J) = 0, i.e., J � 0 by Lemma
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1.2(c), thus proving (a). Result (b) can be shown similarly. Combining (a) and (b) leads
to (c). �

From Lemma 2.1, we further obtain the following results on the maximum partial
inertias and semi-definiteness of f (X) in (1.2) subject to (1.3).

THEOREM 2.2. Let f (X) be as given in (1.2) , and assume that XA = B is con-
sistent. Also , let

J =

⎡
⎣DMD∗ −G DMC∗ B

CMD∗ CMC∗ −A
B∗ −A∗ 0

⎤
⎦.

Then ,

max
XA=B

i±[ f (X)] = min{n, i±(J)− r(A)} . (2.3)

Hence , the following results hold.

(a) f (X) � 0 holds for all solutions of XA = B if and only if i−(J) = r(A).

(b) f (X) � 0 holds for all solutions of XA = B if and only if i+(J) = r(A).

(c) f (X) = 0 holds for all solutions of XA = B if and only if r(J) = 2r(A).

Proof. From Lemma 1.1, XA = B is consistent if and only if BA†A = B . In this
case, the general solution is X = BA†+UEA , where U ∈Cn×p is arbitrary. Substituting
it into f (X) in (1.2) gives

f (X) =
(
UEAC+BA†C+D

)
M

(
UEAC+BA†C+D

)∗ −G,

which is a new Hermitian matrix-valued function with respect to U . Thus, we obtain
from (1.17) that

max
XA=B

i±[ f (X)] = max
U∈Cn×p

i±
[
(UEAC+H)M(UEAC+H)∗ −G

]

= min

{
n, i±

[
HMH∗ −G HMC∗EA

EACMH∗ EACMC∗EA

]}
, (2.4)
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where H = BA†C + D . Applying (1.13) and simplifying by Lemma 1.4 to the block
matrix in (2.4), we further obtain

i±
[
HMH∗ −G HMC∗EA

EACMH∗ EACMC∗EA

]

= i±
[
(BA†C+D)M(BA†C+D)∗−G (BA†C+D)MC∗EA

EACM(BA†C+D)∗ EACMC∗EA

]

= i±

⎡
⎣(BA†C+D)M(BA†C+D)∗ −G BA†CMC∗ +DMC∗ 0

CMC∗(BA†)∗ +CMD∗ CMC∗ A
0 A∗ 0

⎤
⎦− r(A)

= i±

⎡
⎣DMD∗ −G DMC∗ −B

CMD∗ CMC∗ A
−B∗ A∗ 0

⎤
⎦− r(A)

= i±

⎡
⎣DMD∗ −G DMC∗ B

CMD∗ CMC∗ −A
B∗ −A∗ 0

⎤
⎦− r(A) = i±(J)− r(A). (2.5)

Substituting (2.5) into (2.4) gives (2.3). Setting the right-hand side of (2.3) equal to
zero, we obtain the results in (a) and (b) by Lemma 1.2(d). Combining (a) and (b) and
applying i±(J) � r(A) , we obtain (c). �

The previous results can also be applied to compare two Hermitian matrix-valued
functions of the same size in the Löwner sense.

COROLLARY 2.3. Let

f1(X) = (XC1 +D1 )M1(XC1 +D1)
∗ −G1,

f2(X) = (XC2 +D2)M2(XC2 +D2)
∗ −G2,

where C1 ∈ Cp×m1 , C2 ∈ Cp×m2 , D1 ∈ Cn×m1 , D2 ∈ Cn×m2 , G1, G2 ∈ Cn
H, M1 ∈ C

m1
H

and M2 ∈ C
m2
H are given. Also , let

J =
[
D1M1D∗

1−D2M2D∗
2−G1 +G2 D1M1C∗

1 −D2M2C∗
2

C1M1D∗
1−C2M2D∗

2 C1M1C∗
1 −C2M2C∗

2

]
.

Then , the following results hold.

(a) f1(X) � f2(X) holds for all X ∈ Cn×p if and only if J � 0.

(b) f1(X) � f2(X) holds for all X ∈ Cn×p if and only if J � 0.

(c) f1(X) = f2(X) holds for all X ∈ Cn×p if and only if J = 0.
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Proof. It is easy to see that the difference

f1(X)− f2(X)
= (XC1 +D1)M1(XC1 +D1)

∗ − (XC2 +D2)M2(XC2 +D2)
∗ − (G1−G2)

= [XC1 +D1, XC2 +D2]
[
M1 0
0 −M2

][
(XC1 +D1)∗
(XC2 +D2)∗

]
− (G1−G2)

= (X [C1, C2 ]+ [D1, D2 ])
[
M1 0
0 −M2

]
(X [C1, C2 ]+ [D1, D2 ])∗ − (G1−G2)

is a special form of f (X) in (1.2) again. So that (a) and (b) follow from Lemma 2.1.
Combining (a) and (b) leads to (c). �

COROLLARY 2.4. Let

f1(X1) = (X1C1 +D1)M1(X1C1 +D1)
∗ −G1,

f2(X2) = (X2C2 +D2)M2(X2C2 +D2)
∗ −G2,

where C1 ∈ Cp1×m1 , C2 ∈ Cp2×m2 , D1 ∈ Cn×m1 , D2 ∈ Cn×m2 , G1, G2 ∈ Cn
H, M1 ∈

C
m1
H , and M2 ∈C

m2
H are given , and X1 ∈Cn×p1 and X2 ∈Cn×p2 are variable matrices.

Also let

J =

⎡
⎣D1M1D∗

1−D2M2D∗
2−G1 +G2 D1M1C∗

1 −D2M2C∗
2

C1M1D∗
1 C1M1C∗

1 0
−C2M2D∗

2 0 −C2M2C∗
2

⎤
⎦.

Then , the following results hold.

(a) f1(X1) � f2(X2) holds for all X1 ∈ Cn×p1 and X2 ∈ Cn×p2 if and only if J � 0.

(b) f1(X1) � f2(X2) holds for all X1 ∈ Cn×p1 and X2 ∈ Cn×p2 if and only if J � 0.

(c) f1(X1) = f2(X2) holds for all X1 ∈ C
n×p1 and X2 ∈ C

n×p2 if and only if J = 0.

Proof. Note that

f1(X1)− f2(X2)
= X1C1M1C

∗
1X

∗
1 +X1C1M1D

∗
1 +D1M1C

∗
1X∗

1 +D1M1D
∗
1−G1

− X2C2M2C
∗
2X∗

2 −X2C2M2D
∗
2 −D2M2C

∗
2X∗

2 −D2M2D
∗
2 +G2

= [X1, X2 ]
[
C1M1C∗

1 0
0 −C2M2C∗

2

][
X∗

1
X∗

2

]
+[X1, X2 ]

[
C1M1D∗

1
−C2M2D∗

2

]

+ [D1M1C
∗
1 , −D2M2C

∗
2 ]

[
X∗

1
X∗

2

]
+D1M1D

∗
1−D2M2D

∗
2−G1 +G2.

Applying Lemma 2.1 to this matrix-valued function yields (a) and (b). Combining (a)
and (b) leads to (c). �
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COROLLARY 2.5. Let f1(X) and f2(X) be as given in Corollary 2.3 , and assume
that XA = B is consistent , where A ∈ Cp×q and B ∈ Cn×q are given. Also , let

J =

⎡
⎣D1M1D∗

1−D2M2D∗
2−G1 +G2 D1M1C∗

1 −D2M2C∗
2 B

C1M1D∗
1−C2M2D∗

2 C1M1C∗
1 −C2M2C∗

2 −A
B∗ −A∗ 0

⎤
⎦.

Then , the following results hold.

(a) f1(X) � f2(X) holds for all solutions of XA = B if and only if i−(J) = r(A).

(b) f1(X) � f2(X) holds for all solutions of XA = B if and only if i+(J) = r(A).

(c) f1(X) = f2(X) holds for all solutions of XA = B if and only if r(J) = 2r(A).

COROLLARY 2.6. Let

f1(X1) = (X1C1 +D1 )M1(X1C1 +D1)
∗ −G1 s.t. X1A1 = B1,

f2(X2) = (X2C2 +D2 )M2(X2C2 +D2)
∗ −G2 s.t. X2A2 = B2,

and assume that both X1A1 = B1 and X2A2 = B2 are consistent , respectively , where
A1 ∈ Cp1×q1 , A2 ∈ Cp2×q2 , B1 ∈ Cn×q1 , B2 ∈ Cn×q2 , C1 ∈ Cp1×m1 , C2 ∈ Cp2×m2 ,
D1 ∈ Cn×m1 , D2 ∈ Cn×m2 , G1, G2 ∈ Cn

H, M1 ∈ C
m1
H , and M2 ∈ C

m2
H are given , and

X1 ∈ Cn×p1 and X2 ∈ Cn×p2 are variable matrices. Also , let

J =

⎡
⎢⎢⎢⎢⎣

D1M1D∗
1−D2M2D∗

2−G1 +G2 D1M1C∗
1 −D2M2C∗

2 B1 B2

C1M1D∗
1 C1M1C∗

1 0 −A1 0
−C2M2D∗

2 0 −C2M2C∗
2 0 −A2

B∗
1 −A∗

1 0 0 0
B∗

2 0 −A∗
2 0 0

⎤
⎥⎥⎥⎥⎦.

Then , the following results hold.

(a) f1(X1) � f2(X2) holds for all solutions of X1A1 = B1 and X2A2 = B2 if and only
if i−(J) = r(A1)+ r(A2).

(b) f1(X1) � f2(X2) holds for all all solutions of X1A1 = B1 and X2A2 = B2 if and
only if i+(J) = r(A1)+ r(A2).

(c) f1(X1) = f2(X2) holds for all all solutions of X1A1 = B1 and X2A2 = B2 if and
only if r(J) = 2r(A1)+2r(A2).

The previous results can be applied to the perturbation analysis of f (X) in (1.2).
For instance, let

f1(X) = (XC+D)M(XC+D)∗ −G,

f2(X) = [X(C+ δC)+ (D+ δD)](M + δM)[X(C+ δC)+ (D+ δD)]∗

− (G+ δG),
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or

f1(X) = (XC1 +D1)M1(XC1 +D1)
∗ −G1,

f2(X) = (X [C1, C2 ]+ [D1, D2 ])
[
M1 N
N∗ M2

]
(X [C1, C2 ]+ [D1, D2 ])∗ −G2.

Then, equalities and inequalities between f1(X) and f2(X) can be established from
Corollary 2.3(a)–(c).

3. Solutions of some optimization problems

In light of the results in Section 2, we are able to derive exact algebraic solutions
to (1.5).

THEOREM 3.1. Let f (X) be as given in (1.2). Then , the following results hold.

(a) There exists an X0 ∈ Cn×p such that

f (X) � f (X0) (3.1)

holds for all X ∈ Cn×p if and only if

CMC∗ � 0 and R(CMD∗) ⊆ R(CMC∗). (3.2)

In this case , f (X) can be decomposed as

f (X) = (XCMC∗ +DMC∗)(CMC∗)†(XCMC∗ +DMC∗)∗

+ DMD∗ −DMC∗(CMC∗)†CMD∗ −G. (3.3)

The matrix X0 satisfying (3.1) is determined by the following consistent matrix
equation

X0CMC∗ +DMC∗ = 0, (3.4)

and the general expression of X0 and the corresponding minimum f (X0) are
given by

X0 = argmin
X∈Cn×p

f (X) = −DMC∗(CMC∗)† +V [Ip− (CMC∗)(CMC∗)†], (3.5)

f (X0) = min
X∈Cn×p

f (X) = DMD∗ −DMC∗(CMC∗)†CMD∗ −G, (3.6)

where V ∈ Cn×p is arbitrary. In particular, X0 satisfying (3.1) is unique if and
only if r(CMC∗) = p. In this case ,

f (X) = (XCMC∗ +DMC∗)(CMC∗)−1(XCMC∗ +DMC∗)∗

+ DMD∗ −DMC∗(CMC∗)−1CMD∗ −G, (3.7)

and

argmin
X∈Cn×p

f (X) = −DMC∗(CMC∗)−1, (3.8)

min
X∈Cn×p

f (X) = DMD∗ −DMC∗(CMC∗)−1CMD∗ −G. (3.9)



SOLUTIONS OF A CONSTRAINED HERMITIAN MATRIX-VALUED FUNCTION 977

(b) There exists an X0 ∈ Cn×p such that

f (X) � f (X0) (3.10)

holds for all X ∈ Cn×p if and only if

CMC∗ � 0 and R(CMD∗) ⊆ R(CMC∗). (3.11)

In this case , f (X) can be decomposed as

f (X) = (XCMC∗ +DMC∗)(CMC∗)†(XCMC∗ +DMC∗)∗

+ DMD∗ −DMC∗(CMC∗)†CMD∗ −G. (3.12)

The matrix X0 satisfying (3.10) is determined by the following consistent matrix
equation

X0CMC∗ +DMC∗ = 0, (3.13)

and the general expression of X0 and the corresponding f (X0) are given by

X0 = argmax
X∈Cn×p

f (X) = −DMC∗(CMC∗)† +V
[
Ip− (CMC∗)(CMC∗)†] , (3.14)

f (X0) = max
X∈Cn×p

f (X) = DMD∗ −DMC∗(CMC∗)†CMD∗ −G, (3.15)

where V ∈ Cn×p is arbitrary. In particular , X0 satisfying (3.10) is unique if and
only if r(CMC∗) = p. In this case ,

f (X) = (XCMC∗ +DMC∗)(CMC∗)−1(XCMC∗ +DMC∗)∗

+ DMD∗ −DMC∗(CMC∗)−1CMD∗ −G, (3.16)

and

argmax
X∈Cn×p

f (X) = −DMC∗(CMC∗)−1, (3.17)

max
X∈Cn×p

f (X) = DMD∗ −DMC∗(CMC∗)−1CMD∗ −G. (3.18)

Proof. For any X , X0 ∈ Cn×p , the difference f (X)− f (X0) is

f (X)− f (X0) = (XC+D)M(XC+D)∗ − (X0C+D)M(X0C+D)∗ . (3.19)

Applying (2.1) to (3.19) yields

max
X∈Cn×p

i− [ f (X)− f (X0)]

= min

{
n, i−

[
DMD∗ − (X0C+D)M(X0C+D)∗ DMC∗

CMD∗ CMC∗

]}
. (3.20)
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Setting the right-hand side of (3.20) equal to zero, we see from Lemma 1.2(d) that (3.1)
holds if and only if

i−
[
DMD∗ − (X0C+D)M(X0C+D)∗ DMC∗

CMD∗ CMC∗

]
= 0,

that is, [
DMD∗ − (X0C+D)M(X0C+D)∗ DMC∗

CMD∗ CMC∗

]
� 0,

which, by (1.16), is equivalent to

CMC∗ � 0, R(CMD∗) ⊆ R(CMC∗), (3.21)

DMD∗ − (X0C+D)M(X0C+D)∗ −DMC∗(CMC∗)†CMD∗ � 0. (3.22)

We obtain from (3.21) that (CMC∗)† � 0, (CMC∗)(CMC∗)†CMD∗ = CMD∗ , and
DMC∗(CMC∗)†(CMC∗) = DMC∗ . So that it is easy to verify

(XCMC∗ +DMC∗)(CMC∗)†(XCMC∗ +DMC∗)∗

= XCMC∗X∗ +XCMD∗ +DMC∗X∗ +DMC∗(CMC∗)†CMD∗

= (XC+D)M(XC+D)∗ −DMD∗ +DMC∗(CMC∗)†CMD∗.

Substituting this formula into (1.2) leads to (3.3). Since

(XCMC∗ +DMC∗)(CMC∗)†(XCMC∗ +DMC∗)∗ � 0

under (3.2), we see from (3.3) that

f (X) � DMD∗ −DMC∗(CMC∗)†CMD∗ −G (3.23)

for all X ∈ Cn×p . Setting the first term in (3.3) equal to null yields

(X0CMC∗ +DMC∗)(CMC∗)†(X0CMC∗ +DMC∗)∗ = 0. (3.24)

Applying a trivial fact PQQ∗P∗ = 0 ⇔ PQQ∗ = 0 ⇔ PQ = 0 and (CMC∗)† � 0 to
(3.24) yields (X0CMC∗ + DMC∗)(CMC∗)† = 0. Further, post-multiplying CMC∗ to
both sides of the equality and simplifying by the second condition in (3.21) leads to
(3.4). Eq.(3.5) follows from Lemma 1.1, while (3.6) follows from (3.23). Result (b)
can be shown by a similar approach. �

THEOREM 3.2. Let f (X) be as given in (1.2) , and assume that XA = B is con-

sistent. Also , let K =
[
CMC∗ A

A∗ 0

]
and H = BA†C + D. Then , the following results

hold.

(a) There exists a solution X0 of XA = B such that

f (X) � f (X0) (3.25)
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holds for all solutions of XA = B if and only if

EACMC∗EA � 0 and R(EACMH∗) ⊆ R(EACMC∗EA), (3.26)

or equivalently ,

i−(K) = r(A) and R

[
CMD∗
−B∗

]
⊆ R(K). (3.27)

In this instance, f (X) can be decomposed as

f (X) = (XCMC∗EA +DMC∗EA) (EACMC∗EA)† (XCMC∗EA +DMC∗EA)∗

+HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G. (3.28)

The matrix X0 satisfying (3.25) is determined by the following consistent matrix
equation

X0[A, CMC∗EA ] = [B, −DMC∗EA ]. (3.29)

In this case ,

argmin
XA=B

f (X) = [B, −DMC∗EA ][A, CMC∗EA ]†

+ V [ Ip− [A,CMC∗EA ][A, CMC∗EA ]† ], (3.30)

min
XA=B

f (X) = HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G, (3.31)

where V ∈ C
n×p is arbitrary.

(b) There exists a solution X0 of XA = B such that

f (X) � f (X0) (3.32)

holds for all solutions of XA = B if and only if

EACMC∗EA � 0 and R(EACMH∗) ⊆ R(EACMC∗EA), (3.33)

or equivalently ,

i+(K) = r(A) and R

[
CMD∗
−B∗

]
⊆ R(K). (3.34)

In this case, f (X) can be decomposed as

f (X) = (XCMC∗EA +DMC∗EA)(EACMC∗EA)†(XCMC∗EA +DMC∗EA)∗

+HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G. (3.35)

The matrix X0 satisfying (3.32) is determined by the following consistent matrix
equation

X0[A, CMC∗EA ] = [B, −DMC∗EA ]. (3.36)
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In this case ,

argmax
XA=B

f (X) = [B, −DMC∗EA ][A, CMC∗EA ]†

+ V
[
Ip− [A, CMC∗EA ][A, CMC∗EA]†

]
, (3.37)

max
XA=B

f (X) = HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G, (3.38)

where V ∈ Cn×p is arbitrary.

Proof. Substituting the solution X = BA† +UEA of XA = B into f (X) in (1.2),
we obtain

f (X) = (UEAC+H)M(UEAC+H)∗ −G. (3.39)

From Theorem 3.1, there exists a U0 ∈ Cn×p such that f (X) � f (X0) holds for all
U ∈ Cn×p in (3.39) if and only if (3.26) holds. Note from (1.13) that

i±(EACMC∗EA) = i±
[
CMC∗ A

A∗ 0

]
− r(A) = i±(K)− r(A).

Hence, the first inequality in (3.26) is equivalent to the first inertia equality in (3.27).
Applying (1.6)–(1.8) and simplifying, we obtain

r[EACMH∗, EACMC∗EA ] = r

[
CM(BA†C+D)∗ CMC∗ A

0 A∗ 0

]
−2r(A)

= r

[
CMD∗ CMC∗ A
−B∗ A∗ 0

]
−2r(A),

r(EACMC∗EA) = r

[
CMC∗ A

A∗ 0

]
−2r(A) = r(K)−2r(A).

Hence, the second range inclusion in (3.26) is equivalent to

r

[
CMD∗ CMC∗ A
−B∗ A∗ 0

]
= r

[
CMC∗ A

A∗ 0

]
,

that is, R

[
CMD∗
−B∗

]
⊆ R(K) , establishing the second range inclusion in (3.27). Under

(3.26), (3.39) can be decomposed as

f (X) = (UEACMC∗EA +HMC∗EA) (EACMC∗EA)† (UEACMC∗EA +HMC∗EA)∗

+HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G.

Substituting UEA = X −BA† into the above function and simplifying yield (3.28). Set-
ting the first term in (3.28) equal to zero leads to the linear matrix equation XCMC∗EA+
DMC∗EA = 0. Combining this matrix equation with XA = B yields (3.29). Result (b)
can be shown similarly. �

One of the useful consequences of Theorem 3.2 is given below.
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COROLLARY 3.3. Let f (X) be as given in (1.2) with M � 0, and assume that
XA = B is consistent. Then ,

X0A = B and f (X0) = min ⇔ X0[A, CMC∗EA ] = [B, −DMC∗EA ],

where the matrix equation on the right-hand side is consistent as well. In this case , the
general expression of X0 and the corresponding f (X0) are given by

X0 = argmin
XA=B

f (X)

= [B, −DMC∗EA ][A, CMC∗EA ]† +V
(
Ip− [A,CMC∗ ][A, CMC∗ ]†

)
,

f (X0) = min
XA=B

f (X)

=
(
BA†C+D

)[
M−MC∗(EACMC∗EA)†CM

](
BA†C+D

)∗ −G,

where V ∈ C
n×p is arbitrary.

4. Conclusions

We studied a group of fundamental problems on ranks/inertias, equalities/inequ-
alities, and maximization/miminization in the Löwner partial ordering of a Hermitian
matrix-valued function subject to linear matrix equation by using pure algebraic oper-
ations of the given matrices in the function and restriction. These problems are clearly
formulated in common matrix operations, and their solutions are presented in exact
algebraic expressions, so that the results in the previous sections can be utilized as stan-
dard tools in solving many problems on Hermitian matrix-valued functions subject to
linear matrix equation restrictions where the Lagrangian method is not available. It
should be pointed out that all the conclusions in the previous sections are valid when
replacing complex matrices with real matrices.

Linear and nonlinear complex Hermitian matrix-valued functions with single or
more variable matrices can be formulated arbitrarily, and each of them is worth to in-
vestigate from theoretical and applied points of view. For instance, two extended forms
of (1.2) with a single variable matrix X are given by

f (X) = (AXB+C)M(AXB+C)∗ +D,

f (X) = DXAX∗D∗ +DXB+B∗X∗D∗ +C.

It is easy to figure out that any linear and nonlinear Hermitian matrix-valued functions
have maximum/minimum possible ranks/inertias due to the finite nonnegative integer
property of rank/inertia. Formulas for calculating the maximum/minimum ranks/inertias
of the above two Hermitian matrix-valued functions and their applications in solving
the semi-definiteness and optimization problems of the two matrix-valued functions can
be established without much effort; see, e.g., [18, 23], while the corresponding results
also have essential applications in statistical data analysis and inference, as well as other
disciplines.
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Rank/inertia of complex Hermitian (real symmetric) matrix are conceptual foun-
dation in elementary linear algebra, and are the most significant finite nonnegative inte-
gers in reflecting intrinsic properties of matrices. There were many classic approaches
on rank/inertia theory of complex Hermitian (real symmetric) matrices and their appli-
cations in the mathematical literature; see, e.g., [1, 2, 4, 5, 6, 7, 8, 9]. Motivated by
many requirements of establishing matrix equalities and inequalities, the present author
reconsidered matrix rank/inertia and established in [10, 15, 16, 17, 18, 19, 20, 23, 24]
a variety of fundamental formulas for calculating maximum/minimum ranks/inertias of
linear and nonlinear Hermitian matrix-valued functions. These formulas can be used
to characterize various features and performances of Hermitian matrix-valued func-
tions from many new aspects. Particularly, they can be used to derive exact algebraic
solutions to the corresponding Hermitian matrix-valued function optimization prob-
lems in the Löwner partial ordering. In addition, the present author’s work on ma-
trix rank/inertia formulas also attracted much attention in the field of matrix analysis,
and many results on combinations and extensions of the previous work on minmaxity
of ranks/inertias of matrix-valued functions by other authors can be found in the lit-
erature. Generally speaking, we are now able to use matrix rank/inertia formulas to
reveal many deep and fundamental properties of matrices and their operations, such
as, establishing and simplifying various complicated matrix expressions, deriving ma-
trix equalities/inequalities that involve generalized inverses of matrices, characteriz-
ing definiteness/semi-definiteness of Hermitian matrix-valued functions, and solving
matrix-valued function optimization problems.
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