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INVERSE PROBLEMS FOR SELF–ADJOINT DIRAC SYSTEMS:

EXPLICIT SOLUTIONS AND STABILITY OF THE PROCEDURE

ALEXANDER SAKHNOVICH

To the memory of Leiba Rodman,
a wonderful mathematician and an admirable person

(Communicated by F. Gesztesy)

Abstract. A procedure to recover explicitly self-adjoint matrix Dirac systems on the semi-axis
(with both discrete and continuous components of spectrum) from rational Weyl functions is
considered. Its stability is proved. GBDT version of Bäcklund-Darboux transformation and
various important results on Riccati equations are used for this purpose.

1. Introduction

Self-adjoint Dirac system has the form

d
dx

y(x,z) = i(z j + jV (x))y(x,z), x � 0, (1.1)

where

j =
[

Im1 0
0 −Im2

]
, V =

[
0 v
v∗ 0

]
, m1 +m2 =: m, (1.2)

Imk is the mk ×mk identity matrix and v(x) is an m1×m2 matrix function. We assume
that the potential v is locally summable (i.e., summable on all the finite intervals [0, l]).

The inverse spectral problem for a general-type self-adjoint Dirac system, and
closely related problem to recover a Dirac system from its Weyl–Titchmarsh (Weyl)
function, has been actively studied since 1950’s [28, 32], and many interesting results
were published in recent years (see, e.g., [2, 3, 6, 7, 10, 24, 35, 43] and various refer-
ences therein). When speaking about inverse spectral problems, we mean (in particular)
the recovery of systems from their Weyl functions. Inverse spectral problems (in the
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mentioned above sense) are also solved [12, 14, 37, 39, 43] for general-type skew-self-
adjoint and discrete Dirac systems.

Procedures to solve these inverse problems are nonlinear and usually unstable.
However, stability plays an essential role in theory and applications, and special cases
where such stability can be proved are important. In particular, we could mention the
paper [34] on the evolution Schrödinger equation and the paper [24], where stability
was proved for a class of scalar (m1 = m2 = 1) Dirac systems (on an interval) with dis-
crete and d -separated spectral data. We consider the case of explicit solutions of inverse
problems (i.e., the case of rational Weyl functions), where one can apply procedures,
which are different from the procedures for the general-type case.

Thus, we prove stability in solving inverse problems for matrix Dirac systems
on the semi-axis with both discrete and continuous components of spectrum. Riccati
equations play an essential role in the explicit solving of inverse problems, and so the
classical works on Riccati equations by Leiba Rodman and coauthors are actively used
in this paper.

Explicit solutions of inverse spectral problems can be obtained either by applying
procedures for general-type systems to some specific spectral data (e.g., to rational Weyl
or scattering functions) or by using several procedures tailored to specific solutions.
The first (general-type) approach was used, for instance, in [1, 17, 42] and [2, Sect. 6].
The second approach includes the Crum-Krein method [8, 29], commutation methods
[9, 18, 19, 27, 46] and some versions of Bäcklund-Darboux transformation. Here we
use our GBDT version of the Bäcklund-Darboux transformation (see [38, 40, 43] and
references therein), see also [4, 5, 33, 47] and references therein on various versions of
Bäcklund-Darboux transformations.

In the next section, Preliminaries, we present some basic notions from system
theory and formulate several results on Weyl functions. We also present the GBDT
procedure to solve the inverse problem for systems (1.1) (more precisely, to recover
self-adjoint Dirac systems from Weyl functions). Section 3 is dedicated to the proof of
stability of this procedure.

As usual, R stands for the real axis, C stands for the complex plane, C+ is the
open upper half-plane {z : ℑ(z) > 0} , C− is the open lower half-plane {z : ℑ(z) < 0} ,
and the notation diag{d1, ...} stands for the diagonal (or block diagonal) matrix with the
entries d1, ... on the main diagonal. By ‖A‖ and by σ(A) , we denote the l2 -induced
norm and the spectrum, respectively, of some matrix A . We say that the matrix X is
positive (positive definite) and write X > 0 if X is Hermitian (i.e., X = X∗ ) and all the
eigenvalues of X are positive.

2. Preliminaries

2.1. Rational functions

Recall that a rational matrix function is called strictly proper if it tends to zero
at infinity. It is well-known [26, 30] that such an m2 ×m1 matrix function ϕ can be
represented in the form

ϕ(z) = C (zIn−A )−1B, (2.1)
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where A is a square matrix of some order n , and the matrices B and C are of sizes
n×m1 and m2 × n , respectively. The representation (2.1) is called a realization of
ϕ , and the realization (2.1) is said to be minimal if n is minimal among all possible
realizations of ϕ . This minimal n is called the McMillan degree of ϕ . The realization
(2.1) of ϕ is minimal if and only if

span
n−1⋃
k=0

Im A kB = C
n, span

n−1⋃
k=0

Im (A ∗)kC ∗ = C
n, n = ord(A ), (2.2)

where Im stands for image and ord(A ) stands for the order of A . If for a pair of
matrices {A , B} the first equality in (2.2) holds, then the pair {A , B} is called con-
trollable. If the second equality in (2.2) is fulfilled, then the pair {C , A } is said to be
observable.

Now, let matrix functions ϕ be contractive, that is, let ϕ∗ϕ � Im1 (or, equivalently,
ϕϕ∗ � Im2 ) hold. From [30, Theorems 21.1.3, 21.2.1] (see also [13, p. 191]), the next
proposition easily follows.

PROPOSITION 2.1. Assume that ϕ is a strictly proper rational matrix function,
which is contractive on R and has no poles in C+ , and let the realization (2.1) be its
minimal realization. Then, there is a positive solution X > 0 of the Riccati equation

XBB∗X + i(A ∗X −XA )+C ∗C = 0. (2.3)

Clearly, under conditions of Proposition 2.1, ϕ(z) is contractive on C+ ∪R .
In the case of the discrete and continuous skew-self-adjoint Dirac systems, we

obtain [21, 25, 11] the Riccati equation with minus before BB∗ :

XC ∗C X + i(A X −XA ∗)−BB∗ = 0. (2.4)

This case is dealt with in a different way (based on some stability results from [31]) in
our next paper [15].

2.2. System (1.1): Weyl function and inverse problem

Recall that Y (x,z) is the normalized by Y (0,z) = Im fundamental solution of Dirac
system (1.1), where j and V have the forms (1.2).

DEFINITION 2.2. An m2×m1 matrix function ϕ(z) (z ∈ C+) such that

∫ ∞

0

[
Im1 ϕ(z)∗

]
Y (x,z)∗Y (x,z)

[
Im1

ϕ(z)

]
dx < ∞ (2.5)

is called a Weyl function of the Dirac system (1.1) on [0, ∞) .

REMARK 2.3. According to [13, Sect. 2] and [43, Sect. 2.2], the Weyl func-
tion ϕ(z) of the Dirac system (1.1) always exists and is unique. Moreover, ϕ(z) is
holomorphic and contractive in C+ .
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If ϕ is rational, it can be extended (from C+ ) on R and C− in a natural way.
Each potential v corresponding to a strictly proper rational Weyl function is generated
by a fixed value n ∈ N and by a quadruple of matrices, namely, by two n×n matrices
α and S0 > 0 and by n×mk matrices ϑk (k = 1,2) such that the matrix identity

αS0−S0α∗ = i(ϑ1ϑ ∗
1 −ϑ2ϑ ∗

2 ) (2.6)

holds. Such potentials v have the form

v(x) = −2iϑ ∗
1 eixα∗

S(x)−1eixα ϑ2, (2.7)

S(x) = S0 +
∫ x

0
Λ(t)Λ(t)∗dt, Λ(x) =

[
e−ixα ϑ1 eixα ϑ2

]
. (2.8)

DEFINITION 2.4. [20, 13] The potentials v generated by the quadruples
{α,S0,ϑ1,ϑ2} (where S0 > 0 and (2.6) holds) via equalities (2.7) and (2.8), are called
pseudo-exponential potentials.

THEOREM 2.5. [13] Let Dirac system with a pseudo-exponential potential v be
given on [0, ∞) and let v be generated by the quadruple {α,S0,ϑ1,ϑ2} . Then the Weyl
function ϕ of this system has the form

ϕ(z) = −iϑ ∗
2 S−1

0 (zIn−θ )−1ϑ1, θ = α − iϑ1ϑ ∗
1 S−1

0 . (2.9)

The following theorem (i.e., [13, Theorem 3.4]) presents a procedure for explicit
solution of the inverse problem, which is basic for this paper. (See also [23, Theo-
rem 5.2] for the m1 = m2 case.)

THEOREM 2.6. Let ϕ(z) be a strictly proper rational matrix function, which is
contractive on R and has no poles in C+ . Assume that (2.1) is its minimal realization
and that X > 0 is a solution of (2.3).

Then ϕ(z) is the Weyl function of the Dirac system (1.1), the potential v of which
has the form (2.7), (2.8), where the quadruple {α,S0,ϑ1,ϑ2} is given ( in terms of A ,
B , C and X) by the relations

α = A + iBB∗X , S0 = X−1, ϑ1 = B, ϑ2 = −iX−1C ∗. (2.10)

In particular, the identity (2.6) easily follows from (2.3) and (2.10). The unique-
ness of our explicit solution of the inverse problem is immediate from a much more
general uniqueness result.

PROPOSITION 2.7. [41] The solution of the inverse problem to recover system
(1.1) from its Weyl function is unique in the class of Dirac systems with the locally
square summable potentials.

REMARK 2.8. We note that there are many quadruples generating the same
pseudo-exponential potential. The quadruples, which are recovered using (2.10), have
an important additional property: controllability of the pair {α,ϑ1} . This property is
immediate from the controllability of the pair {A ,B} .
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Furthermore, the matrices A , B and C in the minimal realizations (2.1) of ϕ
are unique up to basis (similarity) transformations:

Â = T −1AT , Ĉ = C T , B̂ = T −1B, (2.11)

where T are invertible m×m matrices. Choosing the realization of ϕ with Â , B̂

and Ĉ instead of A , B and C , and adding the symbol “̂” in the notations of the
corresponding matrices α , ϑi and X , we derive

α̂ = T −1αT , ϑ̂i = T −1ϑi (i = 1,2), X̂ = T ∗XT . (2.12)

Setting T = X−1/2U∗ , where U is unitary, we have X̂ = Im . Hence, (2.6) takes the
form α̂ − α̂∗ = i(ϑ̂1ϑ̂ ∗

1 − ϑ̂2ϑ̂ ∗
2 ) . Moreover, for the case m1 = m2 = p , it was shown

in [22] that U may be chosen in such a way that we have the block representations:

β̂ := α̂ − iϑ̂1(ϑ̂1 + ϑ̂2)∗ =
[

β̃ 0
0 ζ

]
, ϑ̂1 =

[
ϑ̃1

ω

]
, ϑ̂2 =

[
ϑ̃2

−ω

]
, (2.13)

where

ζ = ζ ∗ = diag{t1In1 ,t2In2 , . . . ,tkInk}, σ(β̃ ) ∈ C−, (2.14)

and ω is some ñ× p matrix, ñ := ∑k
i=1 nk .

Now, introduce the Dirac operator H associated with the differential expression

(
H f

)
(x) =

(
−i j

d
dx

−V (x)
)

f (x), (2.15)

the domain of which consists of all absolutely continuous functions f from L2
m(0,∞) ,

such that H f ∈ L2
m(0,∞) and the initial condition

[
Ip −Ip

]
f (0) = 0

holds. Using (2.13), it is shown in [22] (see also [23, Sect. 2]) that the real eigenvalues
of H are concentrated at the points tk and have multiplicities nk , whereas the continu-
ous spectrum of H is described by β̃ , ϑ̃1 and ϑ̃2 . Namely, the spectral density ρ of
H has the form

ρ(t) = g(t)∗g(t), g(t) := Ip− i(ϑ̃1 + ϑ̃2)∗(tIn−ñ− β̃)−1ϑ̃1. (2.16)

In view of the mentioned above connections between the quadruple {α,S0,ϑ1,ϑ2}
and the corresponding Weyl and spectral functions, we can consider this quadruple as
the spectral data.
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3. Stability of explicit solutions

We see that the procedure (given in Theorem 2.6) of solving inverse problem con-
sists of two steps. Namely, the first step is the solving of the Riccati equation (2.3) and
the second step is the recovery of the potential v generated by the quadruple introduced
in (2.10). Let us start with the stability in solving the Riccati equation.

1. The following lemma is a stronger statement than Proposition 2.1. (Theorem
7.4.2 from [30] is used for its proof in addition to the Theorems 21.1.3 and 21.2.1 from
[30], which yield Proposition 2.1.)

LEMMA 3.1. [16] Assume that a strictly proper rational m2×m1 matrix function
ϕ(z) is contractive on R , and that (2.1) is its minimal realization.

Then there is a unique Hermitian solution X of the Riccati equation (2.3) such
that the relation

σ(A + iBB∗X) ⊂ (C− ∪R) (3.1)

holds. This solution X is always invertible. It is also positive if and only if ϕ(z) is
contractive in C+ .

Further, in our procedure to recover the potential v from the Weyl function ϕ ,
we shall look for this particular solution X of (2.3). More precisely, we start with
the strictly proper rational m2 ×m1 matrix function ϕ(z) , which is contractive on R

and has no poles in C+ . Hence, ϕ(z) is contractive in C+ , and so, according to
Lemma 3.1, we have X > 0. By Gn we denote the class of triples {Ã ,B̃, C̃ } which
determine minimal realizations ϕ̃(z) = C̃ (zIn − Ã )−1B̃ of m2 ×m1 matrix functions
ϕ̃(z) contractive on R∪C+ . First, we consider the stability in recovery of X from
{A ,B,C } ∈ Gn .

DEFINITION 3.2. The recovery of X > 0, satisfying (3.1), from the minimal re-
alization (2.1) (where {A ,B,C } ∈ Gn) of ϕ(z) is called stable if for any ε > 0 there
is δ > 0 such that for each {Ã ,B̃, C̃ } satisfying conditions

{Ã ,B̃, C̃ } ∈ Gn, ‖A − Ã ‖+‖B− B̃‖+‖C − C̃ ‖ < δ (3.2)

there is a solution X̃ = X̃∗ of the equation X̃B̃B̃∗X̃ + i(Ã ∗X̃ − X̃Ã )+ C̃ ∗C̃ = 0 in
the neighborhood ‖X − X̃‖ < ε of X .

The stability of solutions X of an important class of Riccati equations was shown
in [36, Theorem 4.4] for a somewhat wider class of perturbations than described in our
definition and we shall use this theorem in order to prove our first stability statement.

THEOREM 3.3. The recovery of X > 0 , satisfying (3.1), from the minimal real-
ization (2.1) of ϕ(z) (with {A ,B,C } ∈ Gn) is stable.



STABILITY IN SOLVING AN INVERSE PROBLEM 1003

Proof. Assuming that a minimal realization (2.1) of ϕ(z) is given (that is, matrices
A , B and C are given), we consider equation (2.3). Putting

A0 = −i(A + cIn) (c ∈ R), C0 = −C ∗C , D0 = BB∗, (3.3)

we see that the equation (2.3) coincides with the Riccati equation

XD0X +XA0 +A∗
0X −C0 = 0

considered in [36, Subsection 4.2].
Now, we deal with the conditions (i)–(iv) (on the coefficients A0, C0, D0 ) from

[36, Subsection 4.2]. (Only perturbations satisfying these conditions are allowed in
[36, Subsection 4.2] and we will show that the conditions (i)–(iv) are satisfied in the case
{A ,B,C } ∈ Gn .) Equalities (3.3) and the fact that the pair {A ,B} is controllable
imply that conditions (i) and (ii) in [36, Subsection 4.2] are fulfilled. In a similar
way we derive that conditions (i) and (ii) are fulfilled for the Riccati equations
X̃D̃0X̃ + X̃ Ã0 + Ã∗

0X̃ − C̃0 = 0 corresponding to all the triples {Ã ,B̃, C̃ } ∈ Gn . For
sufficiently large values of |c| , the requirement (iii) that the matrix

H =
[−C0 A∗

0
A0 D0

]
(3.4)

satisfies the condition detH �= 0 and that signature of H equals zero is also fulfilled.
Clearly, c may be chosen so that (iii) is valid if we substitute the triple {A ,B,C }
with any triple {Ã ,B̃, C̃ } ∈ Gn in some small neighborhood of {A ,B,C } .
Finally, according to Lemma 3.1, there are hermitian solutions of equations
X̃D̃0X̃ + X̃Ã0 + Ã∗

0X̃ − C̃0 = 0, that is, condition (iv) holds. Since conditions (i)–(iv)
from [36, Subsection 4.2] are fulfilled, the stability with respect to perturbations in the
class Gn will follow from the stability in the sense of [36, Theorem 4.4].

Again, using Lemma 3.1, we choose the solution X > 0 of (2.3) satisfying (3.1).
It is immediate that one of the equivalent statements from [36, Theorem 4.4] is valid
for our X . That is, according to (3.1) and (3.3), the equality ℑ(λ ) = 0 holds for each
λ from the set

σ
(
i(A0 +D0X)

)∩σ
(− i(A∗

0 +XD0)
)

= σ
(
A + iBB∗X + cIn

)∩σ
(
(A + iBB∗X + cIn)∗

)
, (3.5)

and so the statement (d) from [36, Theorem 4.4] holds. Therefore, by virtue of [36,
Theorem 4.4], X is a stable and isolated solution of (2.3). �

2. Now, we will show that small perturbations of the quadruple {α,S0,ϑ1,ϑ2}
result in small perturbations of the corresponding potential v . We note that we consider
only perturbations which do not change m1,m2 and n .

DEFINITION 3.4. The quadruple {α,S0,ϑ1,ϑ2} is called admissible if S0 > 0
and (2.6) holds, and it is called spectral if it is admissible, the pair {α,ϑ1} is control-
lable and

σ(α) ⊂ (R∪C−). (3.6)
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REMARK 3.5. Theorem 2.5 and Remark 2.3 show that the Weyl function corre-
sponding to any pseudo-exponential potential is rational and contractive. Then, Theo-
rem 2.6, Proposition 2.7 and Lemma 3.1 imply that this potential (uniquely recovered
from the Weyl function) is generated, in particular, by a spectral quadruple. In other
words, each pseudo-exponential potential is generated by some spectral quadruple.

THEOREM 3.6. Let a spectral quadruple {α,S0,ϑ1,ϑ2} be given. Then, for any
ε > 0 there is δ > 0 such that each pseudo-exponential potential ṽ generated by an
admissible quadruple {α̃, S̃0, ϑ̃1, ϑ̃2} satisfying condition

‖α − α̃‖+‖S0− S̃0‖+‖ϑ1− ϑ̃1‖+‖ϑ2− ϑ̃2‖ < δ

belongs to the ε -neighborhood of v generated by {α,S0,ϑ1,ϑ2} , that is,

sup
x∈[0,∞)

‖v(x)− ṽ(x)‖ < ε. (3.7)

In order to prove the theorem above, we generalize (for the case when m1 does
not necessarily equal m2 and S0 does not necessarily equal In ) some results from [23]
on asymptotics of

Q(x) := S0 +2
∫ x

0
e2itα ϑ2ϑ ∗

2 e−2itα∗
dt. (3.8)

LEMMA 3.7. The following relations are valid for a spectral quadruple
{α,S0,ϑ1,ϑ2} :

lim
x→∞

Q(x)−1 = 0, lim
x→∞

‖Q(x)−1e2ixα ϑ2‖ = 0. (3.9)

Proof. The proof uses some steps from the proof of [23, Proposition 3.3]. Since
Q(x) is increasing and is bounded below by S0 > 0, there is a limit

κQ := lim
x→∞

Q(x)−1.

Next, we prove that κQ = 0. From the definition (3.8) and identity (2.6) we derive

αQ(x)−Q(x)α∗ = αS0−S0α∗ − i
(
e2ixα ϑ2ϑ ∗

2 e−2ixα∗ −ϑ2ϑ ∗
2

)
= iϑ1ϑ ∗

1 − ie2ixα ϑ2ϑ ∗
2 e−2ixα∗

. (3.10)

Multiplying (from both sides) the left-hand side and right-hand side of (3.10) by
Q(x)−1 , we obtain

Q(x)−1α −α∗Q(x)−1 − iQ(x)−1ϑ1ϑ ∗
1 Q(x)−1 = −iQ(x)−1e2ixα ϑ2ϑ ∗

2 e−2ixα∗
Q(x)−1.

(3.11)

Passing in (3.11) to the limit, we see that

lim
x→∞

Q(x)−1e2ixα ϑ2ϑ ∗
2 e−2ixα∗

Q(x)−1 = i(κQα −α∗κQ− iκQϑ1ϑ ∗
1 κQ). (3.12)
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On the other hand, formula (3.8) yields

d
dx

Q(x)−1 = −2Q(x)−1e2ixα ϑ2ϑ ∗
2 e−2ixα∗

Q(x)−1,

and so we have∫ ∞

0
Q(t)−1e2itα ϑ2ϑ ∗

2 e−2itα∗
Q(t)−1dt =

1
2
(S−1

0 −κQ) < ∞. (3.13)

Taking into account (3.13) and the fact that there exists a limit of the expression inte-
grated in (3.13) (see (3.12)), we derive that this limit equals zero. That is, we rewrite
(3.12) in the form

κQα −α∗κQ − iκQϑ1ϑ ∗
1 κQ = 0. (3.14)

Moreover, since the left-hand side in (3.12) tends to zero, the second equality in (3.9)
is already proved.

Recall that the first equality in (3.9) is equivalent to κQ = 0. Now, we prove κQ = 0
by negation. For this, we rewrite (3.14) in the form α∗κQ = κQ(α − iϑ1ϑ ∗

1 κQ) , which
implies that the range of κQ is an invariant subspace of α∗ . Thus, assuming κQ �= 0, we
obtain that there is an eigenvector κQg of α∗ : α∗κQg = cκQg, κQg �= 0, g ∈ C

n.
Finally, consider the expression ig∗(κQα − α∗κQ)g . In view of (3.6), for the

eigenvalue c of α∗ we have ℑ(c) � 0, and so

ig∗(κQα −α∗κQ)g = i(c− c)g∗κQg � 0.

On the other hand, we have ϑ ∗
1 κQg �= 0 because the pair {α,ϑ1} is controllable.

Hence, the inequality ig∗(κQα −α∗κQ)g = −g∗κQϑ1ϑ ∗
1 κQg < 0 follows from (3.14).

We arrive at a contradiction, that is, κQ = 0. �
In the case of admissible quadruples {α,S0,ϑ1,ϑ2} , the matrix identity

αS(x)−S(x)α∗ = iΛ(x) jΛ(x)∗ (3.15)

(see [13, formula (3.6)]) coincides with (2.6) at x = 0 and easily follows from (2.6) and
(2.8) for x > 0. In other words, α , S(x) and Λ(x) form an S -node (and, moreover, the
so called Darboux matrix function corresponding to v(x) coincides with the transfer
matrix function [44, 45, 43] in Lev Sakhnovich sense). Using (2.8), (3.8) and (3.15),
we derive

Q′(x) =
(
eixαS(x)e−ixα∗)′

, Q(0) = S(0)
(

Q′ :=
d
dx

Q

)
,

and so the following equality is valid:

Q(x) = eixαS(x)e−ixα∗
. (3.16)

Proof of Theorem 3.6. Now, we consider a pseudo-exponential potential v gen-
erated by the spectral quadruple {α,S0,ϑ1,ϑ2} and pseudo-exponential potentials ṽ
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generated by admissible quadruples {α̃, S̃0, ϑ̃1, ϑ̃2} belonging to a neighborhood of
{α,S0,ϑ1,ϑ2} . The matrix function Q corresponding to {α̃, S̃0, ϑ̃1, ϑ̃2} is denoted by
Q̃ . In view of (2.7) and (3.16), we have:

v(x) = −2iϑ ∗
1 Q(x)−1e2ixα ϑ2, ṽ(x) = −2iϑ̃ ∗

1 Q̃(x)−1e2ixα̃ ϑ̃2. (3.17)

It is immediate from the proof of Lemma 3.7 that (3.11) holds for admissible quadruples
as well. That is, we may rewrite (3.11) for {α̃, S̃0, ϑ̃1, ϑ̃2} :

Q̃(x)−1α̃ − α̃∗Q̃(x)−1 − iQ̃(x)−1ϑ̃1ϑ̃ ∗
1 Q̃(x)−1

= −iQ̃(x)−1e2ixα̃ ϑ̃2ϑ̃ ∗
2 e−2ixα̃∗

Q̃(x)−1. (3.18)

Since Q and Q̃ are monotonic and the first relation in (3.9) is valid, we may choose
x0 > 0 and some neighborhood of {α,S0,ϑ1,ϑ2} so that Q(x) and Q̃(x) are large
enough for x � x0 , and so the left-hand sides of (3.11) and (3.18) are small enough.
Hence, the right-hand sides of (3.11) and (3.18) are also small enough. Therefore,
taking into account (3.17), we see that for any ε > 0 there are x0 > 0 and δ1 > 0 such
that the inequality

sup
x∈[x0,∞)

‖v(x)− ṽ(x)‖ < ε (3.19)

holds for each admissible quadruple {α̃, S̃0, ϑ̃1, ϑ̃2} in the δ1 -neighborhood (i.e., the
neighborhood ‖α − α̃‖+‖S0− S̃0‖+‖ϑ1− ϑ̃1‖+‖ϑ2− ϑ̃2‖< δ1 ) of {α,S0,ϑ1,ϑ2} .

It easily follows from the definition of Q and Q̃ and from (3.17) that there is some
δ2 -neighborhood of {α,S0,ϑ1,ϑ2} , where we have

sup
x∈[0,x0)

‖v(x)− ṽ(x)‖ < ε. (3.20)

Clearly, inequalities (3.19) and (3.20) yield (3.7) (for δ = min(δ1,δ2)). �

REMARK 3.8. It is immediate from the second relation in (3.9), the first relation
in (3.17) and Remark 3.5 that all pseudo-exponential potentials tend to zero at infinity.

3. We already discussed at the beginning of this section that the procedure of
solving inverse problem in Theorem 2.6 consists of solving Riccati equation (2.3) and
the following recovery of the potential v generated by the quadruple {α,S0,ϑ1,ϑ2}
introduced in (2.10). In view of Lemma 3.1 we may choose the solution X > 0 of (2.3)
which satisfies (3.1). According to Theorem 3.3 the recovery of this solution is stable.
Theorem 3.6 shows that the recovery of v from the quadruple introduced in (2.10) is
stable as well. Thus, we obtain the next statement on the stability of the procedure of
solving inverse problem.

THEOREM 3.9. The procedure (given in Theorem 2.6) to uniquely recover the
pseudo-exponential potential v of Dirac system (1.1) from a minimal realization of the
Weyl function ( i.e., of some strictly proper rational m2 ×m1 matrix function, which is
contractive in C+) is stable once we agree to choose such a positive solution X of the
Riccati equation (2.3) that (3.1) holds.
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