GENERALIZED γ-GENERATING MATRICES AND NEHARI-TAKAGI PROBLEM

Volodymyr Derkach and Olena Sukhorukova

To the Memory of Leiba Rodman
(Communicated by J. Ball)

Abstract

Let $\Gamma(f)$ be the block Hankel matrix of negative Fourier coefficients of a matrix valued function (mvf) $f \in L_{\infty}^{p \times q}(\mathbb{T})$ defined on the unit circle \mathbb{T}. In the present paper a matrix Nehari-Takagi problem is considered: Given a Hankel matrix Γ and $\kappa \in \mathbb{N} \cup\{0\}$ find a mvf $f \in L_{\infty}^{p \times q}(\mathbb{T})$, such that $\|f\|_{\infty} \leqslant 1$ and $\operatorname{rank}(\Gamma(f)-\Gamma) \leqslant \kappa$. Under certain mild assumption, we establish a one-to-one correspondence between solutions of the Nehari-Takagi problem and solutions of some Takagi-Sarason interpolation problem. The resolvent matrix of the NehariTakagi problem is shown to belong to the class of so-called generalized γ-generating matrices, which is introduced and studied in the paper.

1. Introduction

For a summable function f defined on $\mathbb{T}=\{z:|z|=1\}$ let us set

$$
\begin{equation*}
\gamma_{k}(f)=\frac{1}{2 \pi} \int_{\mathbb{T}} e^{i k \theta} f\left(e^{i \theta}\right) d \theta \quad(k=1,2, \ldots) \tag{1.1}
\end{equation*}
$$

The Nehari problem consists of the following: given a sequence of complex numbers $\gamma_{k}(k \in \mathbb{N})$ find a function $f \in L_{\infty}(\mathbb{T})$ such that $\|f\|_{\infty} \leqslant 1$ and

$$
\begin{equation*}
\gamma_{k}(f)=\gamma_{k}, \quad(k=1,2, \ldots) \tag{1.2}
\end{equation*}
$$

By Nehari theorem [22] this problem is solvable if and only if the Hankel matrix $\Gamma=$ $\left(\gamma_{i+j-1}\right)_{i, j=1}^{\infty}$ determines a bounded operator in $l_{2}(\mathbb{N})$ with $\|\Gamma\| \leqslant 1$. The problem (1.2) is called indeterminate if it has infinitely many solutions. A criterion for the Nehari problem to be indeterminate and a full description of the set of its solutions was given in [1], [2].

In [2] Adamyan, Arov and Krĕ̆n considered the following indefinite version of the Nehari problem, so called Nehari-Takagi problem $\mathbf{N T P}_{\kappa}(\Gamma)$: Given $\kappa \in \mathbb{N}$ and a

[^0]sequence $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ of complex numbers, find a function $f \in L_{\infty}(\mathbb{T})$, such that $\|f\|_{\infty} \leqslant 1$ and
$$
\operatorname{rank}(\Gamma(f)-\Gamma) \leqslant \kappa
$$

Here $\Gamma(f)$ is the Hankel matrix $\Gamma(f):=\left(\gamma_{i+j-1}(f)\right)_{i, j=1}^{\infty}$. As was shown in [2], the problem $\mathbf{N T P}_{\kappa}(\Gamma)$ is solvable if and only if the total multiplicity $v_{-}\left(I-\Gamma^{*} \Gamma\right)$ of the negative spectrum of the operator $I-\Gamma^{*} \Gamma$ does not exceed κ. In the case when the operator $I-\Gamma^{*} \Gamma$ is invertible and $v_{-}\left(I-\Gamma^{*} \Gamma\right)=\kappa$, the set of solutions of this problem was parameterized by the formula

$$
\begin{equation*}
f(\mu)=\left(a_{11}(\mu) \varepsilon(\mu)+a_{12}(\mu)\right)\left(a_{21}(\mu) \varepsilon(\mu)+a_{22}(\mu)\right)^{-1} \tag{1.3}
\end{equation*}
$$

where $\mathfrak{A}(\mu)=\left(a_{i j}(\mu)\right)_{i, j=1}^{2}$ is the so-called γ-generating matrix and the parameter ε ranges over the Schur class of functions holomorphic on $\mathbb{D}=\{z:\|z\|<1\}$ and bounded by one. In [2] applications of the Nehari-Takagi problem to various approximation and interpolation problems were presented. Matrix and operator versions of Nehari problem were considered in [25] and [3]. In the rational case matrix Nehari and Nehari-Takagi problems were studied in [10]. A complete exposition of these results can be found also in [24] and [8].

In the present paper we consider the general matrix Nehari-Takagi problem and show that under some assumptions this problem can be reduced to Takagi-Sarason interpolation problem studied earlier in [14]. Using the results from [14], [15] we obtain in Theorem 5.3 a description of the set of solutions of the matrix Nehari-Takagi problem in the form (1.3).

The resolvent matrix $\mathfrak{A}(\mu)=\left(a_{i, j}(\mu)\right)_{i, j=1}^{2}$ in (1.3) is shown to belong to the class of generalized γ-generating matrices, introduced in Definition 4.1. Connections between the class of generalized γ-generating matrices and the class of generalized j inner matrix valued functions (mvf's) introduced in [13] is established in Theorem 4.3. Using this connection we present another proof of the formula for the resolvent matrix $\mathfrak{A}(\mu)$ from [10] in the case when the Hankel matrix Γ corresponds to a rational mvf. All the results, except the last section, are presented in unified notations both for the unit circle \mathbb{T} and the real line \mathbb{R}.

2. Preliminaries

2.1. Notations

Let Ω_{+}be either $\mathbb{D}=\{\lambda \in \mathbb{C}:|\lambda|<1\}$ or $\mathbb{C}_{+}=\{\lambda \in \mathbb{C}: \operatorname{Im} \lambda \mid>0\}$. Let us set for arbitrary $\lambda, \omega \in \mathbb{C}$

$$
\rho_{\omega}(\lambda)=\left\{\begin{array}{c}
1-\lambda \bar{\omega}, \quad \Omega_{+}=\mathbb{D}, \\
-i(\lambda-\bar{\omega}), \Omega_{+}=\mathbb{C}_{+},
\end{array} \quad \lambda^{\circ}=\left\{\begin{array}{c}
1 / \bar{\lambda}, \Omega_{+}=\mathbb{D} \\
\bar{\lambda}, \\
\Omega_{+}=\mathbb{C}_{+}
\end{array}\right.\right.
$$

Thus, $\Omega_{+}=\left\{\omega \in \mathbb{C}: \rho_{\omega}(\omega)>0\right\}$ and let

$$
\Omega_{0}=\left\{\omega \in \mathbb{C}: \rho_{\omega}(\omega)=0\right\}, \quad \Omega_{-}=\left\{\omega \in \mathbb{C}: \rho_{\omega}(\omega)<0\right\}
$$

The following basic classes of mvf's will be used in this paper: $H_{2}^{p \times q}$ (resp., $H_{\infty}^{p \times q}$) is the class of $p \times q$ mvf's with entries in the Hardy space H_{2} (resp., H_{∞}); $H_{2}^{p}:=H_{2}^{p \times 1}$, and $\left(H_{2}^{p}\right)^{\perp}=L_{2}^{p} \ominus H_{2}^{p}, \mathscr{S}^{p \times q}$ is the Schur class of $p \times q$ mvf's holomorphic and contractive on $\Omega_{+}, \mathscr{S}_{\text {in }}^{p \times q}$ (resp., $\mathscr{S}_{\text {out }}^{p \times q}$) is the class of inner (resp., outer) mvf's in $\mathscr{S}^{p \times q}$:

$$
\begin{aligned}
& \mathscr{S}_{\text {in }}^{p \times q}=\left\{s \in \mathscr{S}^{p \times q}: s(\mu)^{*} s(\mu)=I_{p} \text { a.e. on } \Omega_{0}\right\} ; \\
& \mathscr{S}_{\text {out }}^{p \times q}=\left\{s \in \mathscr{S}^{p \times q}: \overline{s H_{2}^{q}}=H_{2}^{p}\right\},
\end{aligned}
$$

The Nevanlinna class $\mathscr{N}^{p \times q}$ and the Smirnov class $\mathscr{N}_{+}^{p \times q}$ are defined by

$$
\begin{align*}
\mathscr{N}^{p \times q} & =\left\{f=h^{-1} g: g \in H_{\infty}^{p \times q}, h \in \mathscr{S}:=\mathscr{S}^{1 \times 1}\right\}, \\
\mathscr{N}_{+}^{p \times q} & =\left\{f=h^{-1} g: g \in H_{\infty}^{p \times q}, h \in \mathscr{S}_{\text {out }}:=\mathscr{S}_{\text {out }}^{1 \times 1}\right\} . \tag{2.1}
\end{align*}
$$

For a mvf $f(\lambda)$ let us set $f^{\#}(\lambda)=f\left(\lambda^{\circ}\right)^{*}$. Denote by \mathfrak{h}_{f} the domain of holomorphy of the mvf f and let $\mathfrak{h}_{f}^{ \pm}=\mathfrak{h}_{f} \cap \Omega_{ \pm}$.

A $p \times q \operatorname{mvf} f_{-}$in Ω_{-}is said to be a pseudocontinuation of a mvf $f \in \mathscr{N}^{p \times q}$, if
(1) $f_{-}^{\#} \in \mathscr{N}^{p \times q}$;
(2) $\lim _{v \downarrow 0} f_{-}(\mu-i v)=\lim _{v \downarrow 0} f_{+}(\mu+i v)(=f(\mu))$ a.e. on Ω_{0}.

The subclass of all mvf's $f \in \mathscr{N}^{p \times q}$ that admit pseudocontinuations f_{-}into Ω_{-}will be denoted $\Pi^{p \times q}$.

Let $\varphi(\lambda)$ be a $p \times q$ mvf that is meromorphic on Ω_{+}with a Laurent expansion

$$
\varphi(\lambda)=\left(\lambda-\lambda_{0}\right)^{-k} \varphi_{-k}+\cdots+\left(\lambda-\lambda_{0}\right)^{-1} \varphi_{-1}+\varphi_{0}+\cdots
$$

in a neighborhood of its pole $\lambda_{0} \in \Omega_{+}$. The pole multiplicity $\mathscr{M}_{\pi}\left(\varphi, \lambda_{0}\right)$ is defined by (see [20])

$$
\mathscr{M}_{\pi}\left(\varphi, \lambda_{0}\right)=\operatorname{rank} L\left(\varphi, \lambda_{0}\right), \quad T\left(\varphi, \lambda_{0}\right)=\left[\begin{array}{ccc}
\varphi_{-k} & & \mathbf{0} \\
\vdots & \ddots & \\
\varphi_{-1} & \ldots & \varphi_{-k}
\end{array}\right]
$$

The pole multiplicity of φ over Ω_{+}is given by

$$
\mathscr{M}_{\pi}\left(\varphi, \Omega_{+}\right)=\sum_{\lambda \in \Omega_{+}} \mathscr{M}_{\pi}(\varphi, \lambda)
$$

This definition of pole multiplicity coincides with that based on the Smith-McMillan representation of φ (see [10]).

Let $b_{\omega}(\lambda)$ be a Blaschke factor $\left(b_{\omega}(\lambda)=\frac{\lambda-\omega}{1-\lambda \bar{\omega}}\right.$, if $\Omega_{+}=\mathbb{D}$, and $b_{\omega}(\lambda)=\frac{\lambda-\omega}{\lambda-\bar{\omega}}$, if $\Omega_{+}=\mathbb{C}_{+}$), and let P be an orthogonal projection in \mathbb{C}^{p}. Then the mvf

$$
B_{\alpha}(\lambda)=I_{p}-P+b_{\alpha}(\lambda) P, \quad \omega \in \Omega_{+}
$$

belongs to the Schur class $\mathscr{S}^{p \times p}$ and is called the elementary Blaschke-Potapov (BP) factor and $B(\lambda)$ is called primary if rank $P=1$. The product

$$
B(\lambda)=\prod_{j=1}^{\kappa} B_{\alpha_{j}}(\lambda)
$$

where $B_{\alpha_{j}}(\lambda)$ are primary Blaschke-Potapov factors, is called a Blaschke-Potapov product of degree κ.

REMARK 2.1. For a Blaschke-Potapov product b the following statements are equivalent:
(1) the degree of b is equal κ;
(2) $\mathscr{M}_{\pi}\left(b^{-1}, \Omega_{+}\right)=\kappa$.

2.2. The generalized Schur class

Let $\kappa \in \mathbb{Z}_{+}:=\mathbb{N} \cup\{0\}$. Recall, that a Hermitian kernel $\mathrm{K}_{\omega}(\lambda): \Omega \times \Omega \rightarrow \mathbb{C}^{m \times m}$ is said to have κ negative squares, if for every positive integer n and every choice of $\omega_{j} \in \Omega$ and $u_{j} \in \mathbb{C}^{m}(j=1, \ldots, n)$ the matrix

$$
\left(\left\langle\mathrm{K}_{\omega_{j}}\left(\omega_{k}\right) u_{j}, u_{k}\right\rangle\right)_{j, k=1}^{n}
$$

has at most κ negative eigenvalues, and for some choice of $\omega_{1}, \ldots, \omega_{n} \in \Omega$ and u_{1}, \ldots, u_{n} $\in \mathbb{C}^{m}$ exactly κ negative eigenvalues (see [20]).

Let $\mathscr{S}_{K}^{q \times p}$ denote the generalized Schur class of $q \times p$ mvf's s that are meromorphic in Ω_{+}and for which the kernel

$$
\begin{equation*}
\Lambda_{\omega}^{s}(\lambda)=\frac{I_{p}-s(\lambda) s(\omega)^{*}}{\rho_{\omega}(\lambda)} \tag{2.2}
\end{equation*}
$$

has κ negative squares on $\mathfrak{h}_{s}^{+} \times \mathfrak{h}_{s}^{+}$. In the case where $\kappa=0$, the class $\mathscr{S}_{0}^{q \times p}$ coincides with the Schur class $\mathscr{S}^{q \times p}$ of contractive mvf's holomorphic in Ω_{+}. As was shown in [20] every mvf $s \in \mathscr{S}_{\kappa}^{q \times p}$ admits factorizations of the form

$$
\begin{equation*}
s(\lambda)=b_{\ell}(\lambda)^{-1} s_{\ell}(\lambda)=s_{r}(\lambda) b_{r}(\lambda)^{-1}, \quad \lambda \in \mathfrak{h}_{s}^{+} \tag{2.3}
\end{equation*}
$$

where $b_{\ell} \in \mathscr{S}^{q \times q}, b_{r} \in \mathscr{S}^{p \times p}$ are Blaschke-Potapov products of degree $\kappa, s_{\ell}, s_{r} \in$ $\mathscr{S}^{q \times p}$ and the factorizations (2.3) are left coprime and right coprime, respectively, i.e.

$$
\begin{equation*}
\operatorname{rank}\left[b_{\ell}(\lambda) s_{\ell}(\lambda)\right]=q \quad\left(\lambda \in \Omega_{+}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{rank}\left[b_{r}(\lambda)^{*} s_{r}(\lambda)^{*}\right]=p \quad\left(\lambda \in \Omega_{+}\right) \tag{2.5}
\end{equation*}
$$

The following matrix identity was established in the rational case in [16], in general case see [13].

THEOREM 2.2. Let $s \in \mathscr{S}_{\kappa}^{q \times p}$ have Kreı̆n-Langer factorizations

$$
\begin{equation*}
s=b_{\ell}^{-1} s_{\ell}=s_{r} b_{r}^{-1} \tag{2.6}
\end{equation*}
$$

Then there exists a set of mvf's $c_{\ell} \in H_{\infty}^{q \times q}, d_{\ell} \in H_{\infty}^{p \times q}, c_{r} \in H_{\infty}^{p \times p}$ and $d_{r} \in H_{\infty}^{p \times q}$, such that

$$
\left[\begin{array}{cc}
c_{r} & d_{r} \tag{2.7}\\
-s_{\ell} & b_{\ell}
\end{array}\right]\left[\begin{array}{cc}
b_{r} & -d_{\ell} \\
s_{r} & c_{\ell}
\end{array}\right]=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & I_{q}
\end{array}\right]
$$

2.3. The generalized Smirnov class

Let $\mathscr{R}^{p \times q}$ denote the class of rational $p \times q$ mvf's and let $\kappa \in \mathbb{N}$. A $p \times q \operatorname{mvf}$ $\varphi(z)$ is said to belong to the generalized Smirnov class $\mathscr{N}_{+, K}^{p \times q}$, if it admits the representation

$$
\varphi(z)=\varphi_{0}(z)+r(z), \quad \text { where } \quad \varphi_{0} \in \mathscr{N}_{+}^{p \times q}, r \in \mathscr{R}^{p \times q} \quad \text { and } \quad M_{\pi}\left(r, \Omega_{+}\right) \leqslant \kappa .
$$

If $\kappa=0$, then the class $\mathscr{N}_{+, 0}^{p \times q}$ coincides with the Smirnov class $\mathscr{N}_{+}^{p \times q}$, defined in (2.1). The generalized Smirnov class $\mathscr{N}_{+, \kappa}^{p \times q}$ was introduced in [23]. In [15], mvf's φ from $\mathscr{N}_{+, \kappa}^{p \times q}$ were characterized by the following left coprime factorization

$$
\varphi(\lambda)=b_{\ell}(\lambda)^{-1} \varphi_{\ell}(\lambda)
$$

where $b_{\ell} \in S_{i n}^{p \times p}$ is a Blaschke-Potapov product of degree $\kappa, \varphi_{\ell} \in \mathscr{N}_{+}^{p \times q}$ and

$$
\operatorname{rank}\left[b_{\ell}(\lambda) \varphi_{\ell}(\lambda)\right]=p \quad \text { for } \lambda \in \Omega_{+}
$$

Clearly, for $\varphi \in \mathscr{N}_{+, \kappa}^{p \times q}$ there exists a right coprime factorization with similar properties. This implies, in particular, that the class $\mathscr{S}_{\kappa}^{p \times q}$ is contained in $\mathscr{N}_{+, \kappa}^{p \times q}$.

2.4. Generalized $j_{p q}$-inner mvf's

Let $j_{p q}$ be an $m \times m$ signature matrix

$$
j_{p q}=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right], \quad \text { where } p+q=m
$$

DEFINITION 2.3. [4] An $m \times m \operatorname{mvf} W(\lambda)=\left[w_{i j}(\lambda)\right]_{i, j=1}^{2}$ that is meromorphic in Ω_{+}is said to belong to the class $\mathscr{U}_{\kappa}\left(j_{p q}\right)$ of generalized $j_{p q}$-inner mvf's, if:
(i) the kernel

$$
\mathrm{K}_{\omega}^{W}(\lambda)=\frac{j_{p q}-W(\lambda) j_{p q} W(\omega)^{*}}{\rho_{\omega}(\lambda)}
$$

has κ negative squares in $\mathfrak{h}_{W}^{+} \times \mathfrak{h}_{W}^{+}$;
(ii) $j_{p q}-W(\mu) j_{p q} W(\mu)^{*}=0$ a.e. on Ω_{0}.

As is known [4, Theorem 6.8] for every $W \in \mathscr{U}_{\kappa}\left(j_{p q}\right)$ the block $w_{22}(\lambda)$ is invertible for all $\lambda \in \mathfrak{h}_{W}^{+}$except for at most κ points in Ω_{+}. Thus the Potapov-Ginzburg transform of W

$$
S(\lambda)=P G(W):=\left[\begin{array}{cc}
w_{11}(\lambda) & w_{12}(\lambda) \tag{2.8}\\
0 & I_{q}
\end{array}\right]\left[\begin{array}{cc}
I_{p} & 0 \\
w_{21}(\lambda) & w_{22}(\lambda)
\end{array}\right]^{-1}
$$

is well defined for those $\lambda \in \mathfrak{h}_{W}^{+}$, for which $w_{22}(\lambda)$ is invertible. It is well known that $S(\lambda)$ belongs to the class $\mathscr{S}_{\kappa}^{m \times m}$ and $S(\mu)$ is unitary for a.e. $\mu \in \Omega_{0}$ (see [4], [13]).

DEFInition 2.4. [13] A mvf $W \in \mathscr{U}_{\kappa}\left(j_{p q}\right)$ is said to be in the class $\mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$, if

$$
\begin{equation*}
s_{21}:=-w_{22}^{-1} w_{21} \in \mathscr{S}_{\kappa}^{q \times p} \tag{2.9}
\end{equation*}
$$

Let $W \in \mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$ and let the Krě̆n-Langer factorization of s_{21} be written as

$$
s_{21}(\boldsymbol{\lambda})=b_{\ell}(\boldsymbol{\lambda})^{-1} s_{\ell}(\boldsymbol{\lambda})=s_{r}(\boldsymbol{\lambda}) b_{r}(\boldsymbol{\lambda})^{-1} \quad\left(\boldsymbol{\lambda} \in \mathfrak{h}_{s_{21}}^{+}\right)
$$

where $b_{\ell} \in \mathscr{S}_{i n}^{q \times q}, b_{r} \in \mathscr{S}_{i n}^{p \times p}, s_{\ell}, s_{r} \in \mathscr{S}^{q \times p}$. Then, as was shown in [13], the mvf's $b_{\ell} s_{22}$ and $s_{11} b_{r}$ are holomorphic in Ω_{+}, and

$$
b_{\ell} s_{22} \in \mathscr{S}^{q \times q} \quad \text { and } \quad s_{11} b_{r} \in \mathscr{S}^{p \times p}
$$

Definition 2.5. [13] Consider inner-outer factorization of $s_{11} b_{r}$ and outerinner factorization of $b_{\ell} s_{22}$

$$
\begin{equation*}
s_{11} b_{r}=b_{1} a_{1}, \quad b_{\ell} s_{22}=a_{2} b_{2} \tag{2.10}
\end{equation*}
$$

where $b_{1} \in \mathscr{S}_{\text {in }}^{p \times p}, b_{2} \in \mathscr{S}_{\text {in }}^{q \times q}, a_{1} \in \mathscr{S}_{\text {out }}^{p \times p}, a_{2} \in \mathscr{S}_{\text {out }}^{q \times q}$. The pair $\left\{b_{1}, b_{2}\right\}$ of inner factors in the factorizations (2.10) is called the associated pair of the mvf $W \in$ $\mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$.
From now onwards this pair $\left\{b_{1}, b_{2}\right\}$ will be called also a right associated pair since it is related to the right linear fractional transformation

$$
\begin{equation*}
T_{W}[\varepsilon]:=\left(w_{11} \varepsilon+w_{12}\right)\left(w_{21} \varepsilon+w_{22}\right)^{-1} \tag{2.11}
\end{equation*}
$$

see [5], [7], [8]. Such transformations play important role in description of solutions of different interpolation problems, see [2], [5], [10], [9], [12], [14]. In the case $\kappa=0$ the definition of the associated pair was given in [5].

For every $W \in \mathscr{U}_{K}^{r}\left(j_{p q}\right)$ and $\varepsilon \in \mathscr{S}^{p \times q}$ the mvf $T_{W}[\varepsilon]$ admits the dual representation

$$
T_{W}[\varepsilon]=\left(w_{11}^{\#}+\varepsilon w_{12}^{\#}\right)^{-1}\left(w_{21}^{\#}+\varepsilon w_{22}^{\#}\right)
$$

As was shown in [13], for $W \in \mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$ and c_{r}, d_{r}, c_{ℓ} and d_{ℓ} as in (2.7) the mvf

$$
\begin{equation*}
K^{\circ}:=\left(-w_{11} d_{\ell}+w_{12} c_{\ell}\right)\left(-w_{21} d_{\ell}+w_{22} c_{\ell}\right)^{-1} \tag{2.12}
\end{equation*}
$$

belongs to $H_{\infty}^{p \times q}$. It is clear that $\left(K^{\circ}\right)^{\#} \in H_{\infty}^{q \times p}\left(\Omega_{-}\right)$.
In the future we will need the following factorization formula for the mvf $W \in$ $\mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$, obtained in [13, Theorem 4.12]:

$$
\begin{equation*}
W=\Theta^{\circ} \Phi^{\circ} \quad \text { in } \Omega_{+}, \tag{2.13}
\end{equation*}
$$

where

$$
\Theta^{\circ}=\left[\begin{array}{cc}
b_{1} & K^{\circ} b_{2}^{-1} \\
0 & b_{2}^{-1}
\end{array}\right], \quad \Phi^{\circ},\left(\Phi^{\circ}\right)^{-1} \in \mathscr{N}_{+} .
$$

3. The Takagi-Sarason interpolation problem

Problem TSP ${ }_{\kappa}\left(b_{1}, b_{2}, K\right)$ Let $b_{1} \in \mathscr{S}_{\text {in }}^{p \times p}, b_{2} \in \mathscr{S}_{i n}^{q \times q}$ be inner mvf's, let $K \in$ $H_{\infty}^{p \times q}$ and let $\kappa \in \mathbb{Z}_{+}$. A $p \times q$ mvf s is called a solution of the Takagi-Sarason problem $\mathbf{T S P}_{\kappa}\left(b_{1}, b_{2}, K\right)$, if s belongs to $\mathscr{S}_{\kappa^{\prime}}^{p \times q}$ for some $\kappa^{\prime} \leqslant \kappa$ and satisfies

$$
\begin{equation*}
b_{1}^{-1}(s-K) b_{2}^{-1} \in \mathscr{N}_{+, \kappa}^{p \times q} . \tag{3.1}
\end{equation*}
$$

The set of solutions of the Takagi-Sarason problem will be denoted by

$$
\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2}, K\right)=\bigcup_{\kappa^{\prime} \leqslant \kappa}\left\{s \in \mathscr{S}_{\kappa^{\prime}}^{p \times q}: b_{1}^{-1}(s-K) b_{2}^{-1} \in \mathscr{N}_{+, \kappa}^{p \times q}\right\} .
$$

The problem $\mathbf{T S P}_{\kappa}\left(b_{1}, b_{2}, K\right)$ has been studied in [11], in the rational case ($K \in \mathscr{R}^{p \times q}$) the set $\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2}, K\right) \cap \mathscr{R}^{p \times q}$ was described in [10]. In the completely indeterminate case explicit formulas for the resolvent matrix can be found in [14], [15]. In the general positive semidefinite case the problem was solved in [17], [18].

We now recall the construction of the resolvent matrix from [15]. Let

$$
\begin{gathered}
\mathscr{H}\left(b_{1}\right)=H_{2}^{p} \ominus b_{1} H_{2}^{p}, \quad \mathscr{H}_{*}\left(b_{2}\right):=\left(H_{2}^{q}\right)^{\perp} \ominus b_{2}^{*}\left(H_{2}^{q}\right)^{\perp} \\
\mathscr{H}\left(b_{1}, b_{2}\right):=\mathscr{H}\left(b_{1}\right) \oplus \mathscr{H}_{*}\left(b_{2}\right) .
\end{gathered}
$$

and let the operators $K_{11}: H_{2}^{q} \rightarrow \mathscr{H}\left(b_{1}\right), K_{12}: \mathscr{H}_{*}\left(b_{2}\right) \rightarrow \mathscr{H}\left(b_{1}\right), K_{22}: \mathscr{H}_{*}\left(b_{2}\right) \rightarrow$ $\left(H_{2}^{p}\right)^{\perp}$ and $P: \mathscr{H}\left(b_{1}, b_{2}\right) \rightarrow \mathscr{H}\left(b_{1}, b_{2}\right)$ be defined by the formulas

$$
\begin{align*}
& K_{11} h_{+}=\Pi_{\mathscr{H}\left(b_{1}\right)} K h_{+}, \\
& K_{12} h_{2}=h_{+} \in H_{2}^{q}, \tag{3.2}\\
&\left.K_{22} h_{2}\right)=\Pi_{-} K h_{2}, \\
& h_{2} \in \mathscr{H}_{*}\left(b_{2}\right), \tag{3.3}\\
& P=\left[\begin{array}{cc}
I-h_{21} \in \mathscr{H}_{*}\left(b_{2}\right), \\
-K_{12}^{*} & I-K_{12} \\
K_{22}^{*} K_{22}
\end{array}\right] .
\end{align*}
$$

The data set b_{1}, b_{2}, K considered in [15] is subject to the following constraints:

$$
\begin{equation*}
b_{1} \in \mathscr{S}_{i n}^{p \times p}, b_{2} \in \mathscr{S}_{i n}^{q \times q}, K \in H_{\infty}^{p \times q} . \tag{H1}
\end{equation*}
$$

(H2) $\kappa_{1}=v_{-}(P)<\infty$.
(H3) $0 \in \rho(P)$.
(H4) $\mathfrak{h}_{b_{1}} \cap \mathfrak{h}_{b_{2}^{\#}} \cap \Omega_{0} \neq \emptyset$.
Define also the operator

$$
F=\left[\begin{array}{cc}
I & K_{22} \tag{3.4}\\
K_{11}^{*} & I
\end{array}\right]: \underset{\mathscr{H}_{*}\left(b_{2}\right)}{\oplus} \quad \begin{gathered}
\mathscr{H}\left(b_{1}\right) \\
b_{2}^{*}\left(H_{2}^{q}\right)
\end{gathered} \stackrel{b_{1}\left(H_{2}^{p}\right)^{\perp}}{\stackrel{\text { def }}{=}} \mathscr{K} .
$$

As was shown in [15] for every $h_{1} \in \mathscr{H}\left(b_{1}\right)$ and $h_{2} \in \mathscr{H}_{*}\left(b_{2}\right)$ the vvf's $\left(K_{11}^{*} h_{1}\right)(\boldsymbol{\lambda})$ and $\left(K_{22} h_{2}\right)(\lambda)$ admit pseudocontinuations of bounded type which are holomorphic on $\mathfrak{h}_{b_{1}}$ and $\mathfrak{h}_{b_{2}^{\#}}$, respectively. This allows to define the operator

$$
F(\lambda)=E(\lambda) F: \mathscr{H}\left(b_{1}, b_{2}\right) \rightarrow \mathscr{K} \quad \text { for } \lambda \in \mathfrak{h}_{b_{1}} \cap \mathfrak{h}_{b_{2}^{\#}}
$$

as the composition of the operator $F: \mathscr{H}\left(b_{1}, b_{2}\right) \rightarrow \mathbb{C}^{m}$ and the evaluation operator

$$
E(\lambda): f \in \mathscr{K} \rightarrow f(\lambda) \in \mathbb{C}^{m}
$$

Let $\mu \in \mathfrak{h}_{b_{1}} \cap \mathfrak{h}_{b_{2}^{\#}} \cap \Omega_{0}$. Then the mvf $W(\boldsymbol{\lambda})$ defined by

$$
\begin{equation*}
W(\lambda)=I-\rho_{\mu}(\lambda) F(\lambda) P^{-1} F(\mu)^{*} j_{p q} \quad \text { for } \lambda \in \mathfrak{h}_{b_{1}} \cap \mathfrak{h}_{b_{2}^{\#}} \tag{3.5}
\end{equation*}
$$

belongs to the class $\mathscr{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$ of generalized $j_{p q}$-inner mvf's and takes values in $L_{2}^{m \times m}$. The following theorem presents a description of the set $\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2}, K\right)$.

THEOREM 3.1. Let (H1)-(H4) be in force and let $W(\lambda)$ be the mvf, defined by (3.5). Then $W \in \mathscr{U}_{\kappa_{1}}^{r}\left(j_{p q}\right) \cap L_{2}^{m \times m}$ and
(1) $\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2} ; K\right) \neq \emptyset \Longleftrightarrow v_{-}(P) \leqslant \kappa$.
(2) If $\kappa_{1}=v_{-}(P) \leqslant \kappa$, then

$$
\begin{equation*}
\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2} ; K\right)=T_{W}\left[\mathscr{S}_{\kappa-\kappa_{1}}^{p \times q}\right]:=\left\{T_{W}[\varepsilon]: \varepsilon \in \mathscr{S}_{\kappa-\kappa_{1}}^{p \times q}\right\}, \tag{3.6}
\end{equation*}
$$

where $T_{W}[\varepsilon]$ is the linear fractional transformation given by (2.11).

Proof. The proof of this statement can be derived from the proof of Theorem 5.7 in [15]. However, we would like to present here a shorter proof based on the description of the set $\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2} ; K\right)$, given in [14, Theorem 5.17].

As was shown in [15, see Theorem 4.2 and Corollary 4.4] the mvf $W(z)$ belongs to the class $\mathscr{U}_{\kappa_{1}}^{r}\left(j_{p q}\right)$ of generalized $j_{p q}$-inner mvf's with the property (2.9) and $\left\{b_{1}, b_{2}\right\}$ is the associated pair of W. Moreover, by construction $W(z)$ takes values in $L_{2}^{m \times m}$.

Let c_{ℓ} and d_{ℓ} be mvf's defined in Theorem 2.2 and let K° be given by (2.12). Then W admits the factorization (2.13) (see [13, Theorem 4.12]). This proves that all the assumptions of Theorem 5.17 from [14] with K replaced by K° are satisfied and by that theorem

$$
\begin{equation*}
\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2} ; K^{\circ}\right)=T_{W}\left[\mathscr{S}_{\kappa-\kappa_{1}}^{p \times q}\right] . \tag{3.7}
\end{equation*}
$$

On the other hand it follows from [15, Theorem 4.2] that the mvf W admits the factorization

$$
W=\Theta \Phi=\left[\begin{array}{cc}
b_{1} & K b_{2}^{-1} \tag{3.8}\\
0 & b_{2}^{-1}
\end{array}\right]\left[\begin{array}{ll}
\varphi_{11} & \varphi_{12} \\
\varphi_{21} & \varphi_{22}
\end{array}\right]
$$

with $\Phi, \Phi^{-1} \in \mathscr{N}_{+}^{m \times m}$. Comparing (3.8) with (2.13) one obtains

$$
\left[\begin{array}{cc}
I & b_{1}^{-1}\left(K-K^{\circ}\right) b_{2}^{-1} \\
0 & I
\end{array}\right]=\Phi^{\circ} \Phi^{-1} \in \mathscr{N}_{+}^{m \times m}
$$

and hence

$$
b_{1}^{-1}\left(K-K^{\circ}\right) b_{2}^{-1} \in \mathscr{N}_{+}^{p \times q} .
$$

This implies the equality $\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2} ; K\right)=\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2} ; K^{\circ}\right)$, that in combination with (3.6) completes the proof.

4. Generalized γ-generating mvf's

DEFINITION 4.1. Let $\mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ denote the class of $m \times m$ mvf's $\mathfrak{A}(\mu)$ on Ω_{0} of the form

$$
\mathfrak{A}(\mu)=\left[\begin{array}{ll}
a_{11}(\mu) & a_{12}(\mu) \\
a_{21}(\mu) & a_{22}(\mu)
\end{array}\right]
$$

with blocks a_{11} and a_{22} of size $p \times p$ and $q \times q$, respectively, such that:
(1) $\mathfrak{A}(\mu)$ is a measurable mvf on Ω_{0} and $j_{p q}$-unitary a.e. on Ω_{0};
(2) the mvf's $a_{22}(\mu)$ and $a_{11}(\mu)^{*}$ are invertible for a.e. $\mu \in \Omega_{0}$ and the mvf

$$
\begin{equation*}
s_{21}(\mu)=-a_{22}(\mu)^{-1} a_{21}(\mu)=-a_{12}(\mu)^{*}\left(a_{11}(\mu)^{*}\right)^{-1} \tag{4.1}
\end{equation*}
$$

is the boundary value of a mvf $s_{21}(\lambda)$ that belongs to the class $\mathscr{S}_{K}^{q \times p}$;
(3) $a_{11}(\mu)^{*}$ and $a_{22}(\mu)$, are the boundary values of mvf's $a_{11}^{\#}(\lambda)$ and $a_{22}(\lambda)$ that are meromorphic in \mathbb{C}_{+}and, in addition,

$$
\begin{equation*}
a_{1}:=\left(a_{11}^{\#}\right)^{-1} b_{r} \in \mathscr{S}_{\text {out }}^{p \times p}, \quad a_{2}:=b_{\ell} a_{22}^{-1} \in \mathscr{S}_{\text {out }}^{q \times q}, \tag{4.2}
\end{equation*}
$$

where b_{ℓ}, b_{r} are Blaschke-Potapov products of degree κ, determined by KreĭnLanger factorizations of s_{21}.

Mvf's in the class $\mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$ are called generalized right γ-generating mvf's. The class $\mathfrak{M}^{r}\left(j_{p q}\right):=\mathfrak{M}_{0}^{r}\left(j_{p q}\right)$ was introduced in [6], in this case conditions (2) and (3) in Definition 4.1 are simplified to:
$\left(2^{\prime}\right) s_{21} \in \mathscr{S}^{q \times p} ;$
(3') $a_{1}:=\left(a_{11}^{\#}\right)^{-1} \in \mathscr{S}_{\text {out }}^{p \times p}, a_{2}:=a_{22}^{-1} \in \mathscr{S}_{\text {out }}^{q \times q}$.
Mvf's from the class $\mathfrak{M}^{r}\left(j_{p q}\right)$ play an important role in the description of solutions of the Nehari problem and are called right γ-generating mvf's, $[6,8]$.

DEFINITION 4.2. [8] An ordered pair $\left\{b_{1}, b_{2}\right\}$ of inner mvf's $b_{1} \in \mathscr{S}^{p \times p}, b_{2} \in$ $\mathscr{S}^{q \times q}$ is called a denominator of the mvf $f \in \mathscr{N}^{p \times q}$, if

$$
b_{1} f b_{2} \in \mathscr{N}_{+}^{p \times q} .
$$

The set of denominators of the mvf $f \in \mathscr{N}^{p \times q}$ is denoted by den (f).
THEOREM 4.3. Let $\mathfrak{A} \in \Pi^{m \times m} \cap \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$, and let c_{r}, d_{r}, c_{ℓ} and d_{ℓ} be as in Theorem 2.2,

$$
\begin{equation*}
f_{0}=\left(-a_{11} d_{\ell}+a_{12} c_{\ell}\right) a_{2} \tag{4.3}
\end{equation*}
$$

Then the mvf f_{0} admits the dual representation

$$
\begin{equation*}
f_{0}=a_{1}\left(c_{r} a_{21}^{\#}-d_{r} a_{22}^{\#}\right) \tag{4.4}
\end{equation*}
$$

If, in addition, $\left\{b_{1}, b_{2}\right\} \in \operatorname{den}\left(f_{0}\right)$ and

$$
W(z)=\left[\begin{array}{cc}
b_{1} & 0 \tag{4.5}\\
0 & b_{2}^{-1}
\end{array}\right] \mathfrak{A}(z)
$$

then $W \in \mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$ and $\left\{b_{1}, b_{2}\right\}$ is the associated pair of W.
Conversely, if $W \in \mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$ and $\left\{b_{1}, b_{2}\right\}$ is the associated pair of W, then

$$
\mathfrak{A}(z)=\left[\begin{array}{cc}
b_{1}^{-1} & 0 \\
0 & b_{2}
\end{array}\right] W(z) \in \Pi^{m \times m} \cap \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right) \quad \text { and } \quad\left\{b_{1}, b_{2}\right\} \in \operatorname{den}\left(f_{0}\right) .
$$

Proof. Let $\mathfrak{A} \in \Pi^{m \times m} \cap \mathfrak{M}_{\kappa}^{r}\left(j_{p q}\right)$. It follows from (4.1), (4.2) and (2.3) that

$$
\begin{aligned}
-a_{21} d_{\ell}+a_{22} c_{\ell} & =\left[\begin{array}{ll}
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{c}
-d_{\ell} \\
c_{\ell}
\end{array}\right]=\left[\begin{array}{ll}
-a_{22} s_{21} & a_{22}
\end{array}\right]\left[\begin{array}{c}
-d_{\ell} \\
c_{\ell}
\end{array}\right] \\
& =a_{22} b_{\ell}^{-1}\left[\begin{array}{ll}
-s_{\ell} & b_{\ell}
\end{array}\right]\left[\begin{array}{c}
-d_{\ell} \\
c_{\ell}
\end{array}\right]=a_{2}^{-1}\left(s_{\ell} d_{\ell}+b_{\ell} c_{\ell}\right)=a_{2}^{-1}
\end{aligned}
$$

Let f_{0} be defined by the equation (4.3). Then

$$
f_{0}=\left(-a_{11} d_{\ell}+a_{12} c_{\ell}\right)\left(-a_{21} d_{\ell}+a_{22} c_{\ell}\right)^{-1}
$$

The identity

$$
\left[c_{r}-d_{r}\right] \mathfrak{A}^{\#} j_{p q} \mathfrak{A}\left[\begin{array}{c}
-d_{\ell} \\
c_{\ell}
\end{array}\right]=\left[c_{r}-d_{r}\right] j_{p q}\left[\begin{array}{c}
-d_{\ell} \\
c_{\ell}
\end{array}\right]=0
$$

implies that

$$
\left(c_{r} a_{11}^{\#}-d_{r} a_{12}^{\#}\right)\left(-a_{11} d_{\ell}+a_{12} c_{\ell}\right)=\left(c_{r} a_{21}^{\#}-d_{r} a_{22}^{\#}\right)\left(-a_{21} d_{\ell}+a_{22} c_{\ell}\right)
$$

and hence that f_{0} admits the dual representation

$$
f_{0}=\left(c_{r} a_{11}^{\#}-d_{r} a_{12}^{\#}\right)^{-1}\left(c_{r} a_{21}^{\#}-d_{r} a_{22}^{\#}\right)
$$

Using the identity

$$
\left[c_{r}-d_{r}\right]\left[\begin{array}{l}
a_{11}^{\#} \\
a_{12}^{\#}
\end{array}\right]=\left[c_{r}-d_{r}\right]\left[\begin{array}{c}
a_{11}^{\#} \\
-s_{21} a_{11}^{\#}
\end{array}\right]=\left[c_{r}-d_{r}\right]\left[\begin{array}{c}
I_{p} \\
-s_{r} b_{r}^{-1}
\end{array}\right] b_{r} a_{1}^{-1}=a_{1}^{-1}
$$

one obtains the equality (4.4).
Let $\left\{b_{1}, b_{2}\right\} \in \operatorname{den}\left(f_{0}\right)$, i.e. $b_{1} f_{0} b_{2} \in \mathscr{N}_{+}^{p \times q}$. Since $b_{1} f_{0} b_{2} \in L_{\infty}^{p \times q}$ then by Smirnov theorem

$$
b_{1} f_{0} b_{2} \in H_{\infty}^{p \times q} .
$$

Let us find the Potapov-Ginzburg transform $S=P G(W)$ of W, see (2.8). The formula (4.5) implies that

$$
\begin{align*}
s_{21} & =-w_{22}^{-1} w_{21}=-a_{22}^{-1} a_{21}=-b_{\ell}^{-1} s_{\ell} \tag{4.6}\\
s_{22} & =w_{22}^{-1}=a_{22}^{-1} b_{2}=b_{\ell}^{-1} a_{2} b_{2} \tag{4.7}\\
s_{11} & =w_{11}^{-*}=b_{1} a_{1} a_{1}^{-1} b_{1}^{-1} w_{11}^{-*} \tag{4.8}\\
& =b_{1} a_{1}\left(c_{r} a_{11}^{*}-d_{r} a_{12}^{*}\right) b_{1}^{-1} w_{11}^{-*} \\
& =b_{1} a_{1}\left(c_{r} w_{11}^{*}-d_{r} w_{12}^{*}\right) w_{11}^{-*} \\
& =b_{1} a_{1}\left(c_{r}+d_{r} s_{21}\right) \\
s_{12} & =-w_{11}^{-*} w_{21}^{*}=b_{1} a_{1}\left(c_{r} w_{11}^{*}-d_{r} w_{12}^{*}\right) w_{11}^{-*} w_{21}^{*} \tag{4.9}\\
& =b_{1} a_{1}\left(c_{r} w_{11}^{*}-d_{r} w_{22}^{*}+d_{r} s_{22}\right) \\
& =b_{1} f_{0} b_{2}+b_{1} a_{1} d_{r} s_{22} .
\end{align*}
$$

The equalities (4.6)-(4.9) lead to the formula

$$
\begin{align*}
S(z) & =\left[\begin{array}{cc}
b_{1} a_{1} c_{r}+b_{1} a_{1} d_{r} s_{21} & b_{1} f_{0} b_{2}+b_{1} a_{1} d_{r} s_{22} \\
s_{21} & s_{22}
\end{array}\right] \\
& =\left[\begin{array}{cc}
b_{1} a_{1} c_{r} & b_{1} f_{0} b_{2} \\
0 & 0
\end{array}\right]+\left[\begin{array}{c}
b_{1} a_{1} d_{r} \\
I
\end{array}\right]\left[\begin{array}{ll}
s_{21} & s_{22}
\end{array}\right] \tag{4.10}\\
& =T(z)+\left[\begin{array}{c}
b_{1} a_{1} d_{r} \\
I
\end{array}\right] b_{\ell}^{-1}\left[\begin{array}{ll}
-s_{\ell} & a_{2} b_{2}
\end{array}\right]
\end{align*}
$$

where $T(z) \in H_{\infty}^{m \times m}$. It follows from (4.10) that $M_{\pi}\left(S, \Omega_{+}\right) \leqslant \kappa$. On the other hand

$$
M_{\pi}\left(s_{21}, \Omega_{+}\right)=M_{\pi}\left(-b_{\ell}^{-1} s_{\ell}, \Omega_{+}\right)=\kappa
$$

and, consequently,

$$
M_{\pi}\left(S, \Omega_{+}\right)=\kappa
$$

Thus, $S \in \mathscr{S}_{\kappa}^{m \times m}$ and, hence, $W \in \mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$.

5. A Nehari-Takagi problem

Let $f \in L_{\infty}^{p \times q}$ and let $\Gamma(f)$ be the Hankel operator associated with f_{0} :

$$
\begin{equation*}
\Gamma(f):=\left.\Pi_{-} M_{f}\right|_{H_{2}^{q}}, \tag{5.1}
\end{equation*}
$$

where M_{f} denotes the operator of multiplication by f, acting from L_{2}^{q} into L_{2}^{p} and let Π_{-}denote the orthogonal projection of L_{2}^{p} onto $\left(H_{2}^{p}\right)^{\perp}$. The operator $\Gamma(f)$ is bounded as an operator from H_{2}^{q} to $\left(H_{2}^{p}\right)^{\perp}$, moreover,

$$
\|\Gamma(f)\| \leqslant\|f\|_{\infty}
$$

Consider the following Nehari-Takagi problem
Problem NTP ${ }_{\kappa}\left(f_{0}\right)$: Given a mvf $f_{0} \in L_{\infty}^{p \times q}$. Find $f \in L_{\infty}^{p \times q}$, such that

$$
\begin{equation*}
\operatorname{rank}\left(\Gamma(f)-\Gamma\left(f_{0}\right)\right) \leqslant \kappa \quad \text { and } \quad\|f\|_{\infty} \leqslant 1 \tag{5.2}
\end{equation*}
$$

In the scalar case, the problem $\mathbf{N T P}_{\kappa}\left(f_{0}\right)$ has been solved by V.M. Adamyan, D.Z. Arov and M.G. Kreĭn in [1] for the case $\kappa=0$ and in [2] for arbitrary $\kappa \in \mathbb{N}$. In the matrix case a description of solutions of the problem $\mathbf{N T P} P_{0}\left(f_{0}\right)$ was obtained in the completely indeterminate case by V.M. Adamyan, [3], and in the general positive-semidefinite case by A. Kheifets, [19]. The indefinite case $(\kappa \in \mathbb{N})$ was treated in [11] (see also [10], where an explicit formula for the resolvent matrix was obtained in the rational case).

In what follows we confine ourselves to the case when $\operatorname{den}\left(f_{0}\right) \neq \emptyset$ and give a description of all solutions of the problem $\mathbf{N T P}_{\kappa}\left(f_{0}\right)$. Let us set for $f_{0} \in L_{\infty}^{p \times q}$

$$
\mathscr{N}_{\kappa}\left(f_{0}\right)=\left\{f \in L_{\infty}^{p \times q}: f-f_{0} \in \mathscr{N}_{+, \kappa}^{p \times q},\|f\|_{\infty} \leqslant 1\right\}
$$

and let us denote the set of solutions of the problem $\mathbf{N T P}_{\kappa}\left(f_{0}\right)$ by

$$
\mathscr{N} \mathscr{T}_{\kappa}\left(f_{0}\right)=\left\{f \in L_{\infty}^{p \times q}: \operatorname{rank}\left(\Gamma(f)-\Gamma\left(f_{0}\right)\right) \leqslant \kappa \text { and }\|f\|_{\infty} \leqslant 1\right\} .
$$

By Kronecker Theorem ([21]), the condition $f-f_{0} \in \mathscr{N}_{+, \kappa}^{p \times q}$ is equivalent to

$$
\operatorname{rank}\left(\Gamma(f)-\Gamma\left(f_{0}\right)\right)=\kappa
$$

Therefore, the set $\mathscr{N} \mathscr{T}_{\kappa}\left(f_{0}\right)$ is represented as

$$
\begin{equation*}
\mathscr{N} \mathscr{T}_{\kappa}\left(f_{0}\right)=\bigcup_{\kappa^{\prime} \leqslant \kappa} \mathscr{N}_{\kappa^{\prime}}\left(f_{0}\right) . \tag{5.3}
\end{equation*}
$$

In the following theorem relations between the set of solutions of the Nehari-Takagi problem and the set of solutions of a Takagi-Sarason problem is established in the case when den $\left(f_{0}\right) \neq \emptyset$.

THEOREM 5.1. Let $f_{0} \in L_{\infty}^{p \times q}, \Gamma=\Gamma\left(f_{0}\right), \kappa \in \mathbb{Z}_{+},\left\{b_{1}, b_{2}\right\} \in \operatorname{den}\left(f_{0}\right)$ and $K=$ $b_{1} f_{0} b_{2}$. Then

$$
f \in \mathscr{N}_{\kappa}\left(f_{0}\right) \Leftrightarrow s=b_{1} f b_{2} \in \mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2}, K\right) .
$$

Proof. Let $f \in \mathscr{N}_{\kappa}\left(f_{0}\right)$. Then the mvf's $\varphi(\mu):=f(\mu)-f_{0}(\mu), f_{0}(\mu)$ and $f(\mu)$ admit meromorphic continuations $\varphi(z), f_{0}(z)$ and $f(z)$ on Ω_{+}, such that

$$
\begin{equation*}
M_{\pi}\left(f-f_{0}, \Omega_{+}\right)=\kappa . \tag{5.4}
\end{equation*}
$$

Let $s=b_{1} f b_{2}$ and $K=b_{1} f_{0} b_{2}$. Then the equality (5.4) yields $M_{\pi}\left(s-K, \Omega_{+}\right) \leqslant \kappa$. Since $K \in H_{\infty}^{p \times q}$, then

$$
\kappa^{\prime}:=M_{\pi}\left(s, \Omega_{+}\right)=M_{\pi}\left(s-K, \Omega_{+}\right) \leqslant \kappa .
$$

Taking into account that $\|s\|_{\infty}=\|f\|_{\infty} \leqslant 1$, one obtains $s \in \mathscr{S}_{\kappa^{\prime}}$. Moreover, the condition (5.4) is equivalent to the condition (3.1), i.e. $s \in \mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2}, K\right)$.

Conversely, if $s \in \mathscr{S}_{\kappa^{\prime}}^{p \times q}$ with $\kappa^{\prime} \leqslant \kappa$ and the condition (3.1) is in force, then for $f=b_{1}^{-1} s b_{2}^{-1}, f_{0}=b_{1}^{-1} K b_{2}^{-1}$ one obtains that (5.4) holds and $\|f\|_{\infty} \leqslant 1$. Therefore, $f \in \mathscr{N}_{\kappa}\left(f_{0}\right)$.

LEMMA 5.2. Let $f_{0} \in L_{\infty}^{p \times q}, \Gamma=\Gamma\left(f_{0}\right),\left\{b_{1}, b_{2}\right\} \in \operatorname{den}\left(f_{0}\right), K=b_{1} f_{0} b_{2}$ and let \mathbf{P} be the operator in $\mathscr{H}\left(b_{1}\right) \oplus \mathscr{H}_{*}\left(b_{2}\right)$, defined by formulas (3.2) and (3.3). Then

$$
v_{-}(\mathbf{P})=v_{-}\left(I-\Gamma^{*} \Gamma\right)
$$

Moreover, if $v_{-}\left(I-\Gamma^{*} \Gamma\right)<\infty$, then

$$
0 \in \rho(\mathbf{P}) \Longleftrightarrow 0 \in \rho\left(I-\Gamma^{*} \Gamma\right) .
$$

Proof. Let us decompose the spaces H_{2}^{q} and $\left(H_{2}^{p}\right)^{\perp}$:

$$
H_{2}^{q}=b_{2}\left(H_{2}^{q}\right) \oplus \mathscr{H}\left(b_{2}\right), \quad\left(H_{2}^{p}\right)^{\perp}=\mathscr{H}_{*}\left(b_{1}\right) \oplus b_{1}\left(H_{2}^{p}\right)^{\perp}
$$

and let us decompose the operator $\Gamma: H_{2}^{q} \rightarrow\left(H_{2}^{p}\right)^{\perp}$, accordingly

$$
\Gamma \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\Gamma_{11} & \Gamma_{12} \tag{5.5}\\
0 & \Gamma_{22}
\end{array}\right): \stackrel{b_{2}\left(H_{2}^{q}\right)}{\underset{\mathscr{H}\left(b_{2}\right)}{\oplus} \rightarrow \stackrel{\mathscr{H}_{*}\left(b_{1}\right)}{\oplus}} \begin{gathered}
b_{1}^{*}\left(H_{2}^{p}\right)^{\perp}
\end{gathered},
$$

where the operators

$$
\Gamma_{11}: b_{2}\left(H_{2}^{q}\right) \rightarrow \mathscr{H}_{*}\left(b_{1}\right), \quad \Gamma_{12}: \mathscr{H}\left(b_{2}\right) \rightarrow \mathscr{H}_{*}\left(b_{1}\right), \quad \Gamma_{22}: \mathscr{H}\left(b_{2}\right) \rightarrow b_{1}^{*}\left(H_{2}^{p}\right)^{\perp}
$$

are defined by the formulas

$$
\begin{align*}
\Gamma_{11} h_{+} & =\Pi_{\mathscr{H}_{*}\left(b_{1}\right)} K h_{+}, & & h_{+} \in b_{2}\left(H_{2}^{q}\right), \\
\Gamma_{12} h_{2} & =\Pi_{\mathscr{H}_{*}\left(b_{1}\right)} K h_{2}, & & h_{2} \in \mathscr{H}\left(b_{2}\right), \tag{5.6}\\
\Gamma_{22} h_{2} & =\left(b_{1}^{*} \Pi_{-} b_{1}\right) K h_{2}, & & h_{2} \in \mathscr{H}\left(b_{2}\right) .
\end{align*}
$$

It follows from (5.5), (5.6) and (3.2) that the operator $\Gamma: H_{2}^{q} \rightarrow\left(H_{2}^{p}\right)^{\perp}$ and the operator

$$
\mathbf{K} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
K_{11} & K_{12} \\
0 & K_{22}
\end{array}\right): \stackrel{H_{2}^{q}}{\underset{H_{*}\left(b_{2}\right)}{\oplus}} \rightarrow \stackrel{\mathscr{H}\left(b_{1}\right)}{\oplus} \stackrel{\oplus}{\left(H_{2}^{p}\right)^{\perp}}
$$

are connected by

$$
\Gamma=\left(\left.\mathscr{M}_{b_{1}^{*}}\right|_{b_{1}\left(H_{2}^{p}\right)^{\perp}}\right) \mathbf{K}\left(\left.\mathscr{M}_{b_{2}}\right|_{H_{2}^{q}}\right)
$$

and, hence, the operators Γ and \mathbf{K} are unitary equivalent. Now the statements are implied by [15, Lemma 5.10].

THEOREM 5.3. Let $f_{0} \in L_{\infty}^{p \times q}, \Gamma=\Gamma\left(f_{0}\right), \kappa \in \mathbb{Z}_{+}, \kappa_{1}:=v_{-}\left(I-\Gamma^{*} \Gamma\right),\left\{b_{1}, b_{2}\right\} \in$ $\operatorname{den}\left(f_{0}\right), K=b_{1} f_{0} b_{2}$, let \mathbf{P} be defined by formulas (3.3), let (H1)-(H4) be in force, let the mvf $W(z)$ be defined by (3.5) and let

$$
\mathfrak{A}(\mu)=\left[\begin{array}{cc}
b_{1}(\mu)^{-1} & 0 \tag{5.7}\\
0 & b_{2}(\mu)
\end{array}\right] W(\mu), \quad \mu \in \mathfrak{h}_{b_{1}} \cap \mathfrak{h}_{b_{2}^{\#}} \cap \Omega_{0} .
$$

Then:
(1) $\mathfrak{A} \in \mathfrak{M}_{\kappa_{1}}^{r}\left(j_{p q}\right)$;
(2) $\mathscr{N}_{\kappa}\left(f_{0}\right) \neq \emptyset$ if and only if $\kappa \geqslant \kappa_{1}$;
(3) $\mathscr{N}_{\kappa}\left(f_{0}\right)=T_{\mathfrak{A}}\left[\mathscr{S}_{\kappa-\kappa_{1}}^{p \times q}\right]$,
(4) $\mathscr{N} \mathscr{T}_{\kappa}\left(f_{0}\right)=\cup_{k=\kappa_{1}}^{\kappa} T_{\mathfrak{A}}\left[\mathscr{S}_{k-\kappa_{1}}^{p \times q}\right]$.

Proof. (1) By [15, Theorem 4.2] the rows of $W(z)$ admit factorizations

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ll}
w_{11} & w_{12}
\end{array}\right]} & =b_{1}\left[\begin{array}{ll}
a_{11} & a_{12}
\end{array}\right] \\
{\left[w_{21}\right.} & w_{22}
\end{array}\right]=b_{2}^{-1}\left[\begin{array}{ll}
a_{21} & a_{22}
\end{array}\right], ~ \$
$$

where $a_{11} \in\left(H_{2}^{p \times p}\right)^{\perp}, a_{12} \in\left(H_{2}^{p \times q}\right)^{\perp}, a_{21} \in H_{2}^{q \times p}, a_{22} \in H_{2}^{q \times q}$ and

$$
s_{21}=-w_{22}^{-1} w_{21}=-a_{22}^{-1} a_{21} \in \mathscr{S}_{\kappa_{1}}^{p \times q} .
$$

If the mvf's $b_{\ell}^{-1}, s_{\ell}, b_{r}, s_{r}$ are determined by Kreĭn-Langer factorizations of s_{21}

$$
s_{21}=b_{\ell}^{-1} s_{\ell}=s_{r} b_{r}^{-1}
$$

then in accordance with [15, Theorem 4.3] (see (4.26), (4.27))

$$
a_{2}:=b_{\ell} a_{22}^{-1} \in \mathscr{S}_{\text {out }}^{q \times q}, \quad a_{1}:=\left(a_{11}^{\#}\right)^{-1} b_{r} \in \mathscr{S}_{\text {out }}^{p \times p} .
$$

Thus

$$
\mathfrak{A}(z)=\left[\begin{array}{cc}
b_{1}^{-1} & 0 \\
0 & b_{2}
\end{array}\right]\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right]
$$

belongs to the class $\mathfrak{M}_{\kappa_{1}}^{r}\left(j_{p q}\right)$.
(2) By Theorem $5.1 \mathscr{N}_{\kappa}\left(f_{0}\right)$ is nonempty if and only if $\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2}, K\right)$ is nonempty. Therefore (2) is implied by Theorem 3.1 and Lemma 5.2.
(3) The statement (3) follows from the formula (3.6) proved in Theorem 3.1 and from the equivalence

$$
f \in \mathscr{N}_{\kappa}\left(f_{0}\right) \Longleftrightarrow b_{1} f b_{2} \in \mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2}, K\right)=T_{W}\left[\mathscr{S}_{\kappa-\kappa_{1}}\right]
$$

(Theorem 5.1). This means that for every $f \in \mathscr{N}_{\kappa}\left(f_{0}\right)$ the mvf $s=b_{1} f b_{2}$ belongs to $\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2}, K\right)$ and hence it admits the representation

$$
s=\left(w_{11} \varepsilon+w_{12}\right)\left(w_{21} \varepsilon+w_{22}\right)^{-1}=T_{W}[\varepsilon]
$$

for some $\varepsilon \in \mathscr{S}_{\kappa-\kappa_{1}}$. Therefore, the mvf $f=b_{1}^{-1} s b_{2}^{-1}$ can be represented as

$$
f=b_{1}^{-1}\left(w_{11} \varepsilon+w_{12}\right)\left(b_{2} w_{21} \varepsilon+b_{2} w_{22}\right)^{-1}=T_{\mathfrak{A}}[\varepsilon] .
$$

(4) As follows from (2) $\mathscr{N}_{\kappa^{\prime}}\left(f_{0}\right)=\emptyset$ for $\kappa^{\prime}<\kappa_{1}$. Therefore, (4) is implied by (5.3) and by the statement (3).

6. Resolvent matrix in the case of a rational mvf f_{0}

Assume now that $\Omega_{+}=\mathbb{D}$ and f_{0} is a rational mvf with a minimal realization

$$
\begin{equation*}
f_{0}(z)=C\left(z I_{n}-A\right)^{-1} B \tag{6.1}
\end{equation*}
$$

where $n \in \mathbb{N}, A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$,

$$
\begin{equation*}
\sigma(A) \subset \mathbb{D} \tag{6.2}
\end{equation*}
$$

Then the corresponding Hankel operator $\Gamma=\Gamma\left(f_{0}\right): H_{2}^{q} \rightarrow\left(H_{2}^{p}\right)^{\perp}$ in (5.1) admits in the standard basis the following block matrix representation

$$
\left(\gamma_{j+k-1}\right)_{j, k=1}^{\infty}=\left(C A^{j+k-2} B\right)_{j, k=1}^{\infty}=\Omega \Xi
$$

where γ_{j} are given by (1.1) and

$$
\Xi=\left[B A B \ldots A^{n-1} B\right] \quad \text { and } \quad \Omega=\left[\begin{array}{c}
C A^{0} \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

Representation (6.1) is called minimal, if the dimension of the matrix A in (6.1) is minimal. As is known see [10, Thm 4.1.4] the representation (6.1) is minimal if and only if the pair (A, B) is controllable and the pair (C, A) is observable, i.e.

$$
\begin{equation*}
\operatorname{ran} \Xi=\mathbb{C}^{n} \quad \text { and } \quad \operatorname{ker} \Omega=\{0\} \tag{6.3}
\end{equation*}
$$

The controllability gramian P and the observability gramian Q, defined by

$$
P=\sum_{k=0}^{\infty} A^{k} B B^{*}\left(A^{*}\right)^{k}=\Xi \Xi^{*}, \quad Q=\sum_{k=0}^{\infty}\left(A^{*}\right)^{k} C C^{*}(A)^{k}=\Omega^{*} \Omega
$$

are solutions to the following Lyapunov-Stein equations

$$
\begin{equation*}
P-A P A^{*}=B B^{*}, \quad Q-A^{*} Q A=C^{*} C . \tag{6.4}
\end{equation*}
$$

As was shown in [14, Remark 4.2], a denominator of the mvf $f_{0}(z)$ may be selected as $\left(I_{p}, b_{2}\right)$, where

$$
\begin{equation*}
b_{2}(z)=I_{q}-(1-z) B^{*}\left(I_{n}-z A^{*}\right)^{-1} P^{-1}\left(I_{n}-A\right)^{-1} B \tag{6.5}
\end{equation*}
$$

Straightforward calculations show that

$$
\begin{equation*}
\left(z I_{n}-A\right)^{-1} B b_{2}(z)=P\left(I_{n}-A^{*}\right)\left(I_{n}-z A^{*}\right)^{-1} P^{-1}\left(I_{n}-A\right)^{-1} B \tag{6.6}
\end{equation*}
$$

Since the mvf $b_{2}(z)$ is inner, then $b_{2}(z)^{-1}=b_{2}\left(\frac{1}{\bar{z}}\right)^{*}$, and hence

$$
\begin{equation*}
b_{2}(z)^{-1}=I_{q}+(1-z) B^{*}\left(I_{n}-A^{*}\right)^{-1} P^{-1}\left(z I_{n}-A\right)^{-1} B . \tag{6.7}
\end{equation*}
$$

Proposition 6.1. Let $f_{0}(z)$ be a mvf of the form (6.1), where $A \in \mathbb{C}^{n \times n}, B \in$ $\mathbb{C}^{n \times q}, C \in \mathbb{C}^{p \times n}$ satisfy (6.2) and (6.3), and let

$$
\begin{gather*}
M=\left[\begin{array}{cc}
-A & 0 \\
0 & I_{n}
\end{array}\right], \quad N=\left[\begin{array}{cc}
-I_{n} & 0 \\
0 & A^{*}
\end{array}\right], \quad \Lambda=\left[\begin{array}{cc}
-Q & I_{n} \\
I_{n} & -P
\end{array}\right], \tag{6.8}\\
G(z)=\left[\begin{array}{cc}
C & 0 \\
0 & B^{*}
\end{array}\right](M-z N)^{-1} . \tag{6.9}
\end{gather*}
$$

Assume that $1 \notin \sigma(P Q)$. Then:
(1) $\mathscr{N}_{\kappa}\left(f_{0}\right) \neq \emptyset$ if and only if $\kappa_{1}:=v_{-}(I-P Q) \leqslant \kappa$;
(2) If (1) holds then the matrix Λ is invertible and $\mathscr{N}_{\kappa}\left(f_{0}\right)=T_{\mathfrak{A}}\left[\mathscr{S}_{\kappa-\kappa_{1}}\right]$, where

$$
\begin{equation*}
\mathfrak{A}(\mu)=I_{m}-(1-\mu) G(\mu) \Lambda^{-1} G(1)^{*} j_{p q} \tag{6.10}
\end{equation*}
$$

(3) The mvf $\mathfrak{A}(\mu)$ is a generalized right γ-generating mvf of the class $\mathfrak{M}_{\kappa_{1}}^{r}\left(j_{p q}\right)$.

The statements (1), (2) of Proposition 6.1 and the formula (6.10) for the resolvent matrix $\mathfrak{A}(\mu)$ are well known from [10, Theorem 20.5.1]. We will show here that (6.10) can be derived from the general formula (3.5) for the resolvent matrix of the problem $\mathbf{T S P}_{\kappa}\left(I_{p}, b_{2}, K\right)$ with

$$
\begin{equation*}
K(z)=f_{0}(z) b_{2}(z)=C\left(z I_{n}-A\right)^{-1} B b_{2}(z) \tag{6.11}
\end{equation*}
$$

Proof. (1) By Theorem $5.1 f \in \mathscr{N}_{\kappa}\left(f_{0}\right)$ if and only if $s=f b_{2} \in \mathscr{T} \mathscr{S}_{\kappa}\left(I_{p}, b_{2}, K\right)$. Alongside with $\mathbf{T S P}_{\kappa}\left(I_{p}, b_{2}, K\right)$ consider also the problem $\boldsymbol{G S T P}_{\kappa}\left(I_{p}, b_{2}, K\right)$: find a $p \times q \operatorname{mvf} s$, such that:

$$
\begin{equation*}
s \in \mathscr{S}_{K}^{p \times q} \quad \text { and } \quad b_{1}^{-1}(s-K) b_{2}^{-1} \in \mathscr{N}_{+, K}^{p \times q} . \tag{6.12}
\end{equation*}
$$

As is known [14, Theorem 5.17], these problems have the same resolvent matrix. Assume that s satisfies (6.12). Then

$$
\mathscr{M}_{\pi}\left((s-K) b_{2}^{-1}, \Omega_{+}\right)=\mathscr{M}_{\pi}\left(s, \Omega_{+}\right)=\kappa .
$$

By the noncancellation lemma [15, Lemma 2.3]

$$
\begin{equation*}
\mathscr{M}_{\pi}\left(b_{\ell}(s-K) b_{2}^{-1}, \Omega_{+}\right)=\mathscr{M}_{\pi}\left(b_{\ell} s, \Omega_{+}\right)=\mathscr{M}_{\pi}\left(s_{\ell}, \Omega_{+}\right)=0 \tag{6.13}
\end{equation*}
$$

By (6.7) and (6.11) the expression $b_{\ell}(s-K) b_{2}^{-1}=\left(s_{\ell}-b_{\ell} K\right) b_{2}^{-1}$ takes the form

$$
s_{\ell}\left(I_{q}+(1-z) B^{*}\left(I_{n}-A^{*}\right)^{-1} P^{-1}\left(z I_{n}-A\right)^{-1} B\right)-b_{\ell} C\left(z I_{n}-A\right)^{-1} B
$$

and hence, the condition (6.13) can be rewritten as

$$
\begin{equation*}
\left\{s_{\ell} B^{*}\left(I_{n}-A^{*}\right)^{-1} P^{-1}\left(I_{n}-A\right)-b_{\ell} C\right\}\left(z_{n}-A\right)^{-1} B \in \mathscr{N}_{+} . \tag{6.14}
\end{equation*}
$$

Since the pair (A, B) is controllable, then (6.14) can be rewritten as

$$
\begin{equation*}
\left[b_{\ell}-s_{\ell}\right] F \in \mathscr{N}_{+}, \tag{6.15}
\end{equation*}
$$

where

$$
F(z)=\widetilde{C}\left(A-z I_{n}\right)^{-1}, \quad \widetilde{C}=\left[\begin{array}{c}
C \tag{6.16}\\
B^{*}\left(I_{n}-A^{*}\right)^{-1} P^{-1}\left(I_{n}-A\right)
\end{array}\right] .
$$

Thus, the problem $\operatorname{GSTP}_{\kappa}\left(I_{p}, b_{2}, K\right)$ is equivalent to the interpolation problem (6.15) considered in [14]. As was shown in [14, (1.14)], the Pick matrix \widetilde{P}, corresponding to the problem (6.15), is the unique solution of the Lyapunov-Stein equation

$$
\begin{equation*}
A^{*} \widetilde{P} A-\widetilde{P}=\widetilde{C}^{*} j_{p q} \widetilde{C} \tag{6.17}
\end{equation*}
$$

and the problem (6.15) is solvable if and only if $\kappa_{1}:=v_{-}(\widetilde{P}) \leqslant \kappa$. Since by (6.4)

$$
\widetilde{C}^{*} j_{p q} \widetilde{C}=\left(Q-P^{-1}\right)-A^{*}\left(Q-P^{-1}\right) A,
$$

one gets

$$
\begin{equation*}
\widetilde{P}=P^{-1}-Q=P^{-1 / 2}\left(I-P^{1 / 2} Q P^{1 / 2}\right) P^{-1 / 2} . \tag{6.18}
\end{equation*}
$$

It follows from (6.18) and Theorem 3.1 that $\mathscr{T} \mathscr{S}_{\kappa}\left(I_{p}, b_{2}, K\right) \neq \emptyset$ if and only if

$$
\kappa_{1}:=v_{-}\left(I-P^{1 / 2} Q P^{1 / 2}\right) \leqslant \kappa .
$$

Now it remains to note that $\sigma\left(I-P^{1 / 2} Q P^{1 / 2}\right)=\sigma(I-P Q)$. In view of Theorem 5.1 this proves (1).
(2) By $[14$, Theorem 3.1 and Theorem 5.17] the resolvent matrix $\widetilde{W}(z)$, which describes the set $\mathscr{T} \mathscr{S}_{\kappa}\left(I_{p}, b_{2}, K\right)$ via the formula (3.6), takes the form

$$
\widetilde{W}(z)=I_{m}-(1-z) F(z) \widetilde{P}^{-1} F(1)^{*} j_{p q},
$$

where \widetilde{P} is given by (6.17). By [14, Lemma 4.8] $\widetilde{W} \in \mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$. Let us set

$$
\widetilde{\mathfrak{A}}(\mu):=\left[\begin{array}{cc}
I_{p} & 0 \tag{6.19}\\
0 & b_{2}(\mu)
\end{array}\right] W(\mu)
$$

and show that the mvf

$$
\widetilde{\mathfrak{A}}(\mu):=\left[\begin{array}{cc}
I_{p} & 0 \tag{6.20}\\
0 & b_{2}(\mu)
\end{array}\right]+(\mu-1)\left[\begin{array}{cc}
I_{p} & 0 \\
0 & b_{2}(\mu)
\end{array}\right] F(\mu) \widetilde{P}^{-1} F(1)^{*} j_{p q}
$$

coincides with the mvf $\mathfrak{A}(\mu)$ from (6.10). It follows from (6.6) that

$$
b_{2}(\mu) B^{*}\left(I_{n}-A^{*}\right)^{-1} P^{-1}\left(\mu I_{n}-A\right)^{-1}\left(I_{n}-A\right)=B^{*}\left(I_{n}-\mu A^{*}\right)^{-1} P^{-1}
$$

In view of (6.5), (6.16), (6.8) and (6.9) this implies

$$
\left[\begin{array}{cc}
I_{p} & 0 \tag{6.21}\\
0 & b_{2}(\mu)
\end{array}\right] F(\mu)=\left[\begin{array}{c}
C\left(\mu I_{n}-A\right)^{-1} \\
B^{*}\left(I_{n}-\mu A^{*}\right)^{-1} P^{-1}
\end{array}\right]=G(\mu)\left[\begin{array}{c}
I_{p} \\
P^{-1}
\end{array}\right] .
$$

Next, in view of (6.16) and (6.5)

$$
\begin{gather*}
F(1)^{*}=\left[\left(I_{n}-A^{*}\right)^{-1} C^{*} P^{-1}\left(I_{n}-A\right)^{-1} B\right]=\left[I_{n} P^{-1}\right] G(1)^{*}, \tag{6.22}\\
{\left[\begin{array}{cc}
I_{p} & 0 \\
0 & b_{2}(\mu)
\end{array}\right]=I_{m}-(1-\mu) G(\mu)\left[\begin{array}{cc}
0 & 0 \\
0 & -P^{-1}
\end{array}\right] G(1)^{*} j_{p q} .} \tag{6.23}
\end{gather*}
$$

Substituting (6.21), (6.22) and (6.23) into (6.20) one obtains (6.10).
By [14, Theorem 3.1 and Theorem 5.17] and Theorem 3.1 the set $\mathscr{T} \mathscr{S}_{\kappa}\left(I_{p}, b_{2}, K\right)$ is described by the formula

$$
\mathscr{T} \mathscr{S}_{\kappa}\left(b_{1}, b_{2} ; K\right)=T_{W}\left[\mathscr{S}_{\kappa-\kappa_{1}}^{p \times q}\right]=\left\{T_{W}[\varepsilon]: \varepsilon \in \mathscr{S}_{\kappa-\kappa_{1}}^{p \times q}\right\} .
$$

Therefore, the statement (2) is implied by Theorem 5.3 (3).
(3) Since $\widetilde{W} \in \mathscr{U}_{\kappa}^{r}\left(j_{p q}\right)$ it follows from (6.19) and Theorem 5.3 that $\widetilde{\mathfrak{A}} \in \mathfrak{M}_{\kappa_{1}}^{r}\left(j_{p q}\right)$.

REFERENCES

[1] V. M. Adamyan, D. Z. Arov, M. G. KreĬn, Infinite Hankel matrices and generalized problems of Caratheodory-Fejer and F. Riesz. (Russian), Funktsional. Anal. i Prilozhen., 2 (1968), 1-18.
[2] V. M. Adamyan, D. Z. Arov, M. G. Kreĭn, Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem, Matem. Sb. 86 (1971), 34-75.
[3] V. M. AdAmJan, Nondegenerate unitary couplings of semiunitary operators, (Russian), Funktsional. Anal. i Prilozhen. 7 (1973), no. 4, 1-16.
[4] D. Alpay, H. Dym, On applications of reproducing kernel spaces to the Schur algorithm and rational J unitary factorization. I. Schur methods in operator theory and signal processing, 89-159, Oper. Theory Adv. Appl., 18, Birkhäuser, Basel, 1986.
[5] D. Z. Arov, Regular and singular J-inner matrix functions and corresponding extrapolation problems, (Russian), Funktsional. Anal. i Prilozhen. 22 (1988), no. 1, 57-59; translation in Funct. Anal. Appl. 22 (1988), no. 1, 46-48.
[6] D. Z. AROV, γ-generating matrices, j-inner matrix-functions and related extrapolation problems, Teor. Funktsii Funktsional. Anal. i Prilozhen, I, 51 (1989), 61-67; II, 52 (1989), 103-109; translation in J. Soviet Math. I, 52 (1990), 3487-3491; III, 52 (1990), 3421-3425.
[7] D. Z. AROV AND H. DYM, J-inner matrix function, interpolation and inverse problems for canonical system, I: foundation, Integral Equations Operator Theory, 28 (1997), 1-16.
[8] D. Z. Arov and H. Dym, J-Contractive Matrix Valued Functions and Related Topics, Cambridge University Press, Cambridge, 2008.
[9] T. Ya. Azizov and I. S. Iokhvidov, Foundations of the theory of linear operators in spaces with an indefinite metric, Nauka, Moscow, 1986 (English translation: Wiley, New York, 1989).
[10] J. A. Ball, I. Gohberg and L. Rodman, Interpolation of rational matrix functions, Operator Theory: Advances and Applications, 45, Birkhäuser Verlag, Basel, 1990, xiii+605 pp.
[11] J. A. Ball and J. W. Helton, A Beurling-Lax theorem for the Lie group U(m,n) which contains most classical interpolation theory, J. Operator Theory, 9 (1983), no. 1, 107-142.
[12] V. Derkach, On Schur-Nevanlinna-Pick indefinite interpolation problem, Ukrainian Math. Zh., $\mathbf{5 5}$ (2003), no. 10, 1567-1587.
[13] V. Derkach, H. Dym, On linear fractional transformations associated with generalized J-inner matrix functions, Integ. Eq. Oper. Th., 65 (2009), 1-50.
[14] V. Derkach and H. Dym, Bitangential interpolation in generalized Schur classes, Complex Analysis and Operator Theory, 4 (2010) 4, 701-765.
[15] V. Derkach, H. Dym, A Generalized Schur-Takagi Interpolation Problem, Integ. Eq. Oper. Th., 80 (2014), 165-227.
[16] B. Francis, A Course in H_{∞} Control Theory, Lecture Notes in Control and Information Sciences, 88. Springer-Verlag, Berlin, 1987.
[17] V. E. Katsnelson, A. Ya. Kheifets and P. M. Yuditskir, The abstract interpolation problem and extension theory of isometric operators, in: Operators in Spaces of Functions and Problems in Function Theory, Kiev, Naukova Dumka, 1987, 83-96 (Russian).
[18] A. YA. Kheifets, Generalized bitangential Schur-Nevanlinna-Pick problem and the related Parseval equality, in: Teorija Funktsii Funktsional Anal i Prilozhen, (Russian) 54 (1990), 89-96.
[19] A. YA. Kheifets, Parametrization of solutions of the Nehari problem and nonorthogonal dynamics, Operator theory and interpolation (Bloomington, IN, 1996), 213-233, Oper. Theory Adv. Appl., 115, Birkhäuser, Basel, 2000.
[20] M. G. KREĬn and H. Langer, Über die verallgemeinerten Resolventen und die characteristische Function eines isometrischen Operators im Raume Π_{κ}, Hilbert space Operators and Operator Algebras (Proc.Intern.Conf.,Tihany, 1970); Colloq. Math. Soc. Janos Bolyai, 5, North-Holland, Amsterdam, 353-399, 1972.
[21] F. R. Gantmacher, The theory of matrices, AMS Chelsea Publishing, Providence, RI, 1998.
[22] Z. Nehari, On bounded bilinear forms, Ann. Math, 65 (1957), no. 1, 153-162. no. 2, 153-162.
[23] E. V. Neiman, An analogue of Rouche's theorem in the generalized Smirnov class, (Russian) Proceedings of the Institute of Applied Mathematics and Mechanics, 17 (2008) 148-153.
[24] V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics. SpringerVerlag, New York, 2003.
[25] L. A. Page, Bounded and compact vectorial Hankel operators, Trans. Amer. Math. Soc. 150 (1970), 529-539.

[^0]: Mathematics subject classification (2010): Primary 47A56; Secondary 30E05, 47A57.
 Keywords and phrases: Nehari-Takagi problem, γ-generating matrix, Hankel operator, generalized Schur class, Krě̆n-Langer factorization, linear fractional transformation.

