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WEAVING FRAMES

TRAVIS BEMROSE, PETER G. CASAZZA, KARLHEINZ GRÖCHENIG,
MARK C. LAMMERS, RICHARD G. LYNCH

(Communicated by D. R. Larson)

Abstract. We study an intriguing question in frame theory we call Weaving Frames that is par-
tially motivated by preprocessing of Gabor frames. Two frames {ϕi}i∈I and {ψi}i∈I for a
Hilbert space H are woven if there are constants 0 < A � B so that for every subset σ ⊂ I , the
family {ϕi}i∈σ ∪{ψi}i∈σc is a frame for H with frame bounds A,B . Fundamental properties
of woven frames are developed and key differences between weaving Riesz bases and weaving
frames are considered. In particular, it is shown that a Riesz basis cannot be woven with a re-
dundant frame. We also introduce an apparently weaker form of weaving but show that it is
equivalent to weaving. Weaving frames has potential applications in wireless sensor networks
that require distributed processing under different frames, as well as preprocessing of signals
using Gabor frames.

1. Introduction

This paper introduces a new problem in frame theory called weaving frames. Two
frames {ϕi}i∈I and {ψi}i∈I for a Hilbert space H are (weakly) woven if for every
subset σ ⊂ I , the family {ϕi}i∈σ ∪{ψi}i∈σ c is a frame for H .

The concept is motivated by the following question in distributed signal process-
ing: given are two sets {ϕi}i∈I and {ψi}i∈I of linear measurements with stable recov-
ery guarantees, in mathematical terminology each set is a frame labeled by a node or
sensor i ∈ I . At each sensor we measure a signal x either with ϕi or with ψi , so that
the collected information is the set of numbers {〈x,ϕi〉}i∈σ ∪ {〈x,ψi〉}i∈σ c for some
subset σ ⊆ I . Can x still be recovered robustly from these measurements, no matter
which kind of measurement has been made at each node? In other words, is the set
{ϕi}i∈σ ∪{ψi}i∈σ c a frame for all subsets σ ⊆ I ? This question led us to the definition
of woven frames.

In this paper, we develop the fundamental properties of woven frames for their
own sake. Naturally we hope that the notion of woven frames will be applicable to
wireless sensor networks which may be subjected to distributed processing under dif-
ferent frames and possibly in the preprocessing of signals using Gabor frames.

Let us briefly describe the main results about woven frames. Let Φ = {ϕi}i∈I and
Ψ = {ψi}i∈I be two frames for a separable Hilbert space H .
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(A) Uniform frame bounds. If the weaving {ϕi}i∈σ ∪{ψi}i∈σ c is a frame for every
subset σ ⊂ I , then there exist uniform frame bounds A,B > 0 that work simultaneously
for all weavings. In other words, the stability of the reconstruction does not depend on
how the measurements are chosen from the two frames Φ and Ψ . This surprising fact
shows that the formal distinction of weakly woven frames and woven frames, which we
make in Sections 3 and 4, is not necessary.

(B) Woven Riesz bases. If Φ and Ψ are two Riesz bases such that every weaving
{ϕi}i∈σ ∪{ψi}i∈σ c is a frame, then, in fact, {ϕi}i∈σ ∪{ψi}i∈σ c must already be a Riesz
basis for every σ ⊂ I . In Section 5 we also give a characterization of woven Riesz bases
with a geometric flavor.

(C) Existence of woven frames and perturbations. The property that every weaving
{ϕi}i∈σ ∪{ψi}i∈σ c is a frame is rather strong, and it seems that Φ and Ψ must resemble
each other in some sense. We will show that if Ψ is a perturbation of Φ , then Φ
and Ψ are indeed woven. For the technical statements we will use several notions
of perturbation, such as the distance of the corresponding synthesis operators, or the
almost diagonalization of cross-Gramian matrix of the two frames, or the perturbation
by an invertible operator. As a consequence, every frame with a reasonable condition
number is woven with its canonical dual frame.

In the literature one finds other concepts which use multiple frames called quilted
frames in [4]. These concepts require an underlying phase space and a notion of lo-
calization. Quilted Gabor frames are then systems constructed from several globally
defined frames by restricting these to certain sufficiently large regions in the time-
frequency or time-scale plane. Such frame constructions were investigated in detail
by Dörfler and Romero in [4, 5, 8]. Except for the use of multiple frames, quilted
frames are seemingly unrelated to weaving frames.

The paper is organized as follows: Section 2 contains the basic definitions about
frames, and Section 3 introduces the new notion of weaving frames. In Section 4 we
give a characterization of weaving frames that does not require universal frame bounds.
In Section 5 we consider the case of weaving Riesz bases and provide an abstract char-
acterization of when two Riesz bases are woven. In Sections 6 and 7 we provide suf-
ficient conditions for weaving frames by means of perturbation theory and diagonal
dominance. Finally we speculate about possible applications.

2. Frame theory preliminaries

A brief introduction to frame theory is given in this section, which contains the
necessary background for this paper. For a thorough approach to the basics of frame
theory, see [1, 2]. Throughout the paper, H will denote either a finite or infinite dimen-
sional Hilbert space while HM will denote an M -dimensional Hilbert space. Also, I
can represent a finite or countably infinite index set unless otherwise noted.

DEFINITION 1. A family of vectors Φ = {ϕi}i∈I in a Hilbert space H is said to
be a Riesz sequence if there are constants 0 < A � B < ∞ so that for all {ci}i∈I ∈ �2(I) ,
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A∑
i∈I

|ci|2 �
∥∥∥∥∑

i∈I

ciϕi

∥∥∥∥
2

� B∑
i∈I

|ci|2

where A and B are the lower Riesz bound and upper Riesz bound, respectively. If, in
addition, Φ is complete in H , then it is a Riesz basis for H .

An important, equivalent formulation for a Riesz basis is that the vectors are the
image of an orthonormal basis under some invertible operator. That is, {ϕi}i∈I is a
Riesz basis for H if and only if there is an orthonormal basis {ei}i∈I for H and an
invertible operator T : H → H satisfying Tei = ϕi for all i ∈ I .

Riesz bases have proved to be useful in those applications in which the assumption
of orthonormality is too extreme, but the uniqueness and stability of the associated
series expansion is still required.

There are times when assuming the sequence is a Riesz basis is even too strong.
In these cases, we work with frames which are redundant family of vectors having
proper subsets that span the space. Redundancy is the fundamental property of frames
which makes them so useful in practice since it can be used to mitigate losses during
transmission of a signal, noise in the signal, and quantization errors, as well as being
able to be adapted to particular signal characteristics.

DEFINITION 2. A family of vectors Φ = {ϕi}i∈I in a Hilbert space H is said to
be a frame if there are constants 0 < A � B < ∞ so that for all x ∈ H ,

A‖x‖2 � ∑
i∈I

|〈x,ϕi〉|2 � B‖x‖2,

where A and B are a choice lower frame bound and upper frame bound, respectively.
If only B is assumed to exist, then Φ is called a Bessel sequence. If A = B = 1, then
Φ is a Parseval frame. The values {〈x,ϕi〉}i∈I are called the frame coefficients of the
vector x ∈ H with respect to the frame Φ .

If Φ = {ϕi}i∈I is a Bessel sequence for H , then the analysis operator of Φ is the
operator T : H → �2(I) given by

Tx = {〈x,ϕi〉}i∈I

and the associated synthesis operator is given by the adjoint operator T ∗ : �2(I) → H

and satisfies
T ∗{ci}i∈I = ∑

i∈I

ciϕi.

The frame operator S : H→H is the positive, self-adjoint operator defined by S = T ∗T
and satisfies

Sx = T ∗Tx = ∑
i∈I
〈x,ϕi〉ϕi

for every x ∈ H . On the other hand, the Gramian operator G : �2(I) → �2(I) is the
operator defined by G = TT ∗ and has the matrix representation

G = (〈ϕi,ϕ j〉)i, j∈I .
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These four operators are well-defined when the sequence Φ is assumed to be at least a
B-Bessel sequence.

When Φ is a frame with bounds A and B , the frame operator satisfies for every
x ∈ H ,

〈Ax,x〉 � 〈Sx,x〉 = ‖Tx‖2 = ∑
i∈I

|〈x,ϕi〉|2 � 〈Bx,x〉,

and hence operator inequality A · Id � S � B · Id holds and S is invertible1. Also,
note that {S−1/2ϕi}i∈I is a Parseval frame, called the canonical Parseval frame of Φ .
Finally, the norm of S is ‖S‖ = ‖T ∗T‖ = ‖T‖2 .

3. Getting started

In this section, the definition of woven frames is introduced. Then some results
and examples are presented in regards to weaving families of vectors. Throughout the
rest of the paper for ease of notation, let

[m] = {1, . . . ,m} and [m]c = N\[m] = {m+1,m+2, · · ·}
for a given natural number m . Also, denote by [m,k] = [m+k]\[m] = {m+1, . . . ,m+k}
for every m,k ∈ N . Here N = {1,2, . . .} .

DEFINITION 3. A family of frames {ϕi j}i∈I for j ∈ [M] for a Hilbert space H

is said to be woven if there are universal constants A and B so that for every partition
{σ j} j∈[M] of I , the family {ϕi j}i∈σ j , j∈[M] is a frame for H with lower and upper frame
bounds A and B , respectively. Each family {ϕi j}i∈σ j , j∈[M] is called a weaving.

The first proposition of this section gives that every weaving automatically has a
universal upper frame bound.

PROPOSITION 3.1. If each Φ j = {ϕi j}i∈I is a Bessel sequence for H with bounds
B j for all j ∈ [M] , then every weaving is a Bessel sequence with ∑M

j=1 Bj as a Bessel
bound.

Proof. For every partition {σ j} j∈[M] of I and every x ∈ H ,

M

∑
j=1

∑
i∈σ j

∣∣〈x,ϕi j〉
∣∣2 �

M

∑
j=1

∑
i∈I

∣∣〈x,ϕi j〉
∣∣2 �

M

∑
j=1

Bj · ‖x‖2 ,

yielding the desired bound. �
To verify that a finite number of frames Φ j with j ∈ [M] , is woven, we therefore

only need to check that there is a universal lower bound for all weavings.
If all Φ j are frames for H , then the bound in Proposition 3.1 cannot be obtained,

that is, the sum ∑ j∈[M] Bj cannot be the smallest upper weaving bound if Bj is optimal
for its respective frame. Since the concept of weakly woven is used to show this, the
proof is deferred until Section 4, Remark 2. However, the sum of the upper bounds can
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be approached arbitrarily, as the next example shows. Example 1 also shows that one
cannot hope to classify woven frames by placing restrictions on the weaving bounds,
even if the frames considered are Parseval.

EXAMPLE 1. There exist two Parseval frames that give weavings with arbitrary
weaving bounds. Let ε > 0, set δ = (1 + ε2)−1/2 , and let {e1,e2} be the standard
orthonormal basis of R2 . Then the two sets

Φ = {ϕi}4
i=1 = {δe1,δεe1,δe2,δεe2}

and
Ψ = {ψi}4

i=1 = {δεe1,δe1,δεe2,δe2}
are Parseval frames, which are woven since any choice of σ gives a spanning set (see
Section 4, Theorem 4.1). Since they are Parseval, the universal upper frame bound for
every weaving can be chosen to be 2 by Proposition 3.1. If σ = {2,4} and x ∈ R2 ,
then

∑
i∈σ

|〈x,ϕi〉|2 + ∑
i∈σ c

|〈x,ψi〉|2 = 2δ 2ε2‖x‖2 =
2ε2

1+ ε2‖x‖2

which can be anywhere between 0 and 2 for arbitrary choice of ε ∈ (0,∞) .

Clearly the property of woven frames is preserved under a bounded invertible op-
erator. This observation sometimes helps to simplify proofs.

COROLLARY 3.2. When considering whether two frames Φ = {ϕi}i∈I and Ψ =
{ψi}i∈I are woven, it may always be assumed that one of them is Parseval by instead
considering {S−1/2ϕi}i∈I and {S−1/2ψi}i∈I where S is the frame operator of Φ .

The next example shows that in general, frames may be woven without their
canonical Parseval frames being woven. This also shows that applying two different
operators to woven frames can give frames that are not woven.

EXAMPLE 2. There exist Riesz bases that are woven in which their canonical
Parseval frames are not woven. Let Φ = {e1,e2} be the standard orthonormal basis for
R2 and let Ψ = {ψ1,ψ2} be defined by

ψ1 =
(

1
1

)
and ψ2 =

(
2
1

)
.

Note that Φ and Ψ are woven. The frame operator of Ψ is

S = ψ1ψ∗
1 + ψ2ψ∗

2 =
(

5 3
3 2

)
.

The canonical Parseval frame of Φ is itself. Note that because Φ is Parseval, any or-
thonormal basis forms a set of eigenvectors for its frame operator, the identity operator,
and hence has the same eigenbasis as S . Finally, computing S−1/2 gives

S−1/2 =
(

1 −1
−1 2

)
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giving that the canonical Parseval frame of Ψ is {S−1/2ψ1,S−1/2ψ2} = {e2,e1} which
is clearly not woven with Φ .

4. Weakly woven frames

In this section, it will be shown that if each weaving is a frame, then necessarily
there exists a universal lower frame bound for all weavings. Consequently it only needs
to be checked that each weaving has a lower frame bound to show that a family of
frames are woven.

DEFINITION 4. A family of frames {ϕi j}i∈N, j∈[M] for a Hilbert space H is said
to be weakly woven if for every partition {σ j} j∈[M] of N , the family {ϕi j}i∈σ j , j∈[M] is
a frame for H .

The main question is whether or not weakly woven is equivalent to woven. The
answer to this question in the finite dimensional case is obvious since there are only
finitely many ways to partition the index set.

THEOREM 4.1. Two frames {ϕi}N
i=1 and {ψi}N

i=1 for a finite-dimensional Hilbert
space HM are woven if and only if for every σ ⊂ [N] , {ϕi}i∈σ ∪{ψi}i∈σ c spans the
space.

Recall that a finite frame for HM is said to be full spark, if every M element subset
of the frame is linearly independent. We obtain the following immediate condition for
weaving finite frames.

COROLLARY 4.2. If {ϕi}N
i=1 is full spark in HM and every subset of {ψi}N

i=1
with N −M elements spans, then these two frames are woven. In particular, if two full
spark frames each have N � 2M− 1 elements in an M dimensional space, then they
are necessarily woven.

Proof. Let σ ⊂ [N] . If |σ | � M , then {ϕi}i∈σ spans and so {ϕi}i∈σ ∪{ψi}i∈σ c

is a frame. If |σ | � M−1, then |σ c| � N−M +1 � M and so {ψi}i∈σ c spans. �

REMARK 1. The corresponding statement fails in infinite dimensions: two frames
with the property that every finite subset is independent may not be woven. To see this,
take an orthonormal basis and a non-trivial permutation of it.

The equivalence of woven and weakly woven frames is significantly more difficult
to show for frames in an infinite dimensional space. As a preparation we need the
following lemma.

LEMMA 4.3. Let {ϕi}∞
i=1 and {ψi}∞

i=1 be frames for a Hilbert space H . As-
sume that for every two disjoint finite sets I,J ⊂ N and every ε > 0 there are subsets
σ ,δ ⊂ N\(I∪J) with δ = N\(I∪J∪σ) so that the lower frame bound of {ϕi}i∈I∪σ ∪
{ψi}i∈J∪δ is less than ε . Then there is a subset A ⊂ N so that {ϕi}i∈A ∪{ψi}i∈A c is
not a frame, i.e., these frames are not woven.
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Proof. Fix ε > 0. By assumption, by letting I0 = J0 = /0 , we can choose σ1 ⊂ N

so that if δ1 = σ c
1 , a lower frame bound of {ϕi}i∈σ1 ∪{ψi}i∈δ1

is less than ε . Hence,
there is a vector h1 ∈ H with ‖h1‖ = 1 so that

∑
i∈σ1

|〈h1,ϕi〉|2 + ∑
i∈δ1

|〈h1,ψi〉|2 < ε.

Since
∞

∑
i=1

|〈h1,ϕi〉|2 +
∞

∑
i=1

|〈h1,ψi〉|2 < ∞,

there is a k1 ∈ N so that

∞

∑
i=k1+1

|〈h1,ϕi〉|2 +
∞

∑
i=k1+1

|〈h1,ψi〉|2 < ε.

Let I1 = σ1∩[k1] and J1 = δ1∩[k1] . Then I1∩J1 = /0 and I1∪J1 = [k1] . By assumption,
there are subsets σ2,δ2 ⊂ [k1]c with δ2 = [k1]c \ σ2 such that a lower frame bound
of {ϕi}i∈I1∪σ2 ∪{ψi}i∈J1∪δ2

is less than ε/2. That is, there is a vector h2 ∈ H with
‖h2‖ = 1 so that

∑
i∈I1∪σ2

|〈h2,ϕi〉|2 + ∑
i∈J1∪δ2

|〈h2,ψi〉|2 <
ε
2

.

Similar to above, there is a k2 > k1 so that

∞

∑
i=k2+1

|〈h2,ϕi〉|2 +
∞

∑
i=k2+1

|〈h2,ψi〉|2 <
ε
2
.

Set I2 = I1∪
(
σ2∩ [k2]

)
and J2 = J1∪

(
δ2∩ [k2]

)
. Note that I2∩J2 = /0 and their union

is I2∪ J2 = [k2] . Continue inductively to obtain

• natural numbers k1 < k2 < · · · < kn < · · · ,
• vectors hn ∈ H with ‖hn‖ = 1,

• σn ⊂ [kn−1]c , δn = [kn−1]c\σn , and

• In = In−1∪
(
σn∩ [kn]

)
, Jn = Jn−1∪

(
δn ∩ [kn]

)
which satisfies both

∑
i∈In−1∪σn

|〈hn,ϕi〉|2 + ∑
i∈Jn−1∪δn

|〈hn,ψi〉|2 <
ε
n

(1)

and

∞

∑
i=kn+1

|〈hn,ϕi〉|2 +
∞

∑
i=kn+1

|〈hn,ψi〉|2 <
ε
n
. (2)
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By construction In∩ Jn = /0 and In∪ Jn = [kn] for all n so that

∞⋃
i=1

Ii �
∞⋃

j=1

Jj = N,

where “�” represents a disjoint union. Now set

A =
∞⋃

i=1

Ii , and note A c =
∞⋃

j=1

Jj.

It follows by construction along with (1) and (2) that

∑
i∈A

|〈hn,ϕi〉|2 + ∑
i∈A c

|〈hn,ψi〉|2

=
(

∑
i∈In

|〈hn,ϕi〉|2 + ∑
j∈Jn

|〈hn,ψi〉|2
)

+
(

∑
i∈A ∩[kn]c

|〈hn,ϕi〉|2 + ∑
i∈A c∩[kn]c

|〈hn,ψi〉|2
)

�
(

∑
i∈In−1∪σn

|〈hn,ϕi〉|2 + ∑
i∈Jn−1∪δn

|〈hn,ψi〉|2
)

+
( ∞

∑
i=kn+1

|〈hn,ϕi〉|2 +
∞

∑
i=kn+1

|〈hn,ψi〉|2
)

<
ε
n

+
ε
n

=
2ε
n

so that a lower frame bound of {ϕi}i∈A ∪{ψi}i∈Ac is zero. Therefore, it is not a frame
and the two original frames are not woven. �

COROLLARY 4.4. If the frames {ϕi}∞
i=1 and {ψi}∞

i=1 in H are weakly woven,
then there are disjoint finite sets I,J ⊂ N and a constant A > 0 so that for all σ ,δ ⊂
N\ (I∪ J) and δ = N\ (I∪ J∪σ) , the family {ϕi}i∈I∪σ ∪{ψi}i∈J∪δ has lower frame
bound A.

Using Corollary 4.4, we can now prove the main result of this section.

THEOREM 4.5. Given two frames {ϕi}∞
i=1 and {ψi}∞

i=1 for H , the following are
equivalent:

(i) The two frames are woven.

(ii) The two frames are weakly woven.

Proof. Only (ii) ⇒ (i) needs to be shown. By Corollary 4.4, there are subsets
I,J ⊂ N with |I|, |J| < ∞ and I∩ J = /0 , and A > 0 satisfying:



WEAVING FRAMES 1101

(†) For every subset σ ⊂N\(I∪J) with δ = N\(I∪J∪σ) the family {ϕi}i∈I∪σ ∪
{ψi}i∈J∪δ has lower frame bound A .

To simplify the notation, we permute both frames so that I = [q] and J = [m]\[q] ,
or one of I or J is empty and the other is all of [m] . Note that permuting does not affect
weaving as long as it is done to both frames simultaneously.

Step 1. If for each partition Iα ,Jα of [m] there is a constant Dα > 0 so that for
every σ ⊂ [m]c and δ = [m]c \σ the family {ϕi}i∈Iα∪σ ∪{ψi}i∈Jα∪δ has lower frame
bound Dα , then the frames are woven with universal lower frame bound A0 = min{Dα :
α} , which is positive since it is a minimum of a finite number of positive numbers.

Assume that the above does not hold. That is, there is a partition I1,J1 of [m] such
that for every ε > 0 there are subsets σ ⊂ [m]c and δ = [m]c\σ so that a lower frame
bound of {ϕi}i∈I1∪σ ∪{ψi}i∈J1∪δ has lower frame bound less than ε . We will show
that this yields a contradiction.

Step 2. It is shown that for all n∈N , there are subsets σn ⊂ [m]c and δn = [m]c\σn

and unit vectors hn ∈ �2 so that

∑
i∈I1∪σn

|〈hn,ϕi〉|2 + ∑
i∈J1∪δn

|〈hn,ψi〉|2 <
1
n
. (3)

Furthermore, the sets σn and δn satisfy the following properties.

(a) For every k = 1,2, . . . , either m+k∈ σn for all n � k or m+k ∈ δn for all n � k .

(b) There is a σ ⊂ [m]c with δ = [m]c \σ so that m+k ∈ σ implies that m+k ∈ σn

for all n � k or if m+ k ∈ δ then m+ k ∈ δn for all n � k .

Proof of Step 2. By assumption, for each n there exist subsets σn,δn ⊂ [m]c with
δn = [m]c \σn such that the lower frame bound of {ϕi}i∈I1∪σn ∪{ψi}i∈J1∪δn is less than
1/n . Hence, there are vectors hn of norm one so that

∑
i∈I1∪σn

|〈hn,ϕi〉|2 + ∑
i∈J1∪δn

|〈hn,ψi〉|2 <
1
n
, for all n ∈ N.

Note that for each n , either m+1∈ σn or m+1∈ δn , so we can choose a subsequence
L1 = {l1 j}∞

j=1 of N such that one of the following must hold:

• For every k ∈ L1 , m+1∈ σk .

• For every k ∈ L1 , m+1∈ δk .

Similarly, there are subsequences {Li}∞
i=1 of N with Li = {li j}∞

j=1 satisfying:

• Li+1 is a subsequence of Li for all i = 1,2, . . . .

• For every i = 1,2, . . . , either m+ i ∈ σk for all k ∈ Li with k � li,i or m+ i ∈ δk

for all k ∈ Li with k � li,i .
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Now set L = {lii}∞
i=1 , so that i � lii for all i and note that this is a subsequence of N

satisfying: {lii}∞
i=k is a subsequence of Lk for every k ∈ N .

Now reindex the sigmas, σlnn �→ σn to obtain for each n ∈ N , a subset σn ⊂ [m]c

satisfying

∑
i∈I1∪σn

|〈hn,ϕi〉|2 + ∑
i∈J1∪δn

|〈hn,ψi〉|2 <
1
lnn

� 1
n
. (4)

Note that (4) is satisfied by construction of σn . To obtain (4), define σ by putting
m+ k ∈ σ if m+ k ∈ σn for all n � k and m+ k ∈ δ if m+ k ∈ δn for all n � k .

Step 3. It will be shown that by switching to a subsequence and reindexing, it can
be assumed that

hn →w h and h �= 0.

Proof of Step 3. Since the sequence {hn}∞
n=1 is bounded, it has a weakly conver-

gent subsequence {hni}∞
i=1 that converges to some h . Reindex, hni �→ hi and σni �→ σi

and notice that the properties proved in Step 2 still hold.
Fix k∈N so that k > 2/A , where A is the constant in (†). Note that since {hn}∞

n=1
converges weakly to h , it converges in norm to h on finite dimensional subspaces. In
particular, there is an Nk ∈ N so that for all n � Nk > k ,

∑
i∈[m+k]

|〈h−hn,ϕi〉|2 + ∑
i∈[m+k]

|〈h−hn,ψi〉|2 <
1
2k

. (5)

Now (†) implies that, for every n ,

∑
i∈I∪σn

|〈hn,ϕi〉|2 + ∑
i∈J∪δn

|〈hn,ψi〉|2 � A. (6)

Therefore, if n � Nk > k , then by definition of σ and δ , σn ∩ [m,k] = σ ∩ [m,k] and
δn∩ [m,k] = δ ∩ [m,k] , and thus inequalities (4), (5), and (6), imply

∑
i∈I∪σ

|〈h,ϕi〉|2 + ∑
i∈J∪δ

|〈h,ψi〉|2

� ∑
i∈I∪(σ∩[m,k])

|〈h,ϕi〉|2 + ∑
i∈J∪(δ∩[m,k])

|〈h,ψi〉|2

= ∑
i∈I∪(σn∩[m,k])

|〈h,ϕi〉|2 + ∑
i∈J∪(δn∩[m,k]

|〈h,ψi〉|2

� 1
2

(
∑

i∈I∪(σn∩[m,k])
|〈hn,ϕi〉|2 + ∑

i∈J∪(δn∩[m,k])
|〈hn,ψi〉|2

)

−
(

∑
i∈I∪(σn∩[m,k])

|〈h−hn,ϕi〉|2 + ∑
i∈J∪(δn∩[m,k])

|〈h−hn,ψi〉|2
)
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� 1
2

(
∑

i∈I∪σn

|〈hn,ϕi〉|2 + ∑
i∈J∪δn

|〈hn,ψi〉|2
)

− 1
2

(
∑

i∈σn∩[m+k]c
|〈hn,ϕi〉|2 + ∑

i∈δn∩[m+k]c
|〈hn,ψi〉|2

)
− 1

2k

� 1
2
·A− 1

2
· 1
n
− 1

2k

� A
2
− 1

k
> 0

showing that h �= 0.

Step 4. It is now shown that

∑
i∈I1∪σ

|〈h,ϕi〉|2 + ∑
i∈J1∪δ

|〈h,ψi〉|2 = 0.

Proof of Step 4. By definition of σ and δ , σNk ∩ [m,k] = σ ∩ [m,k] and δNk ∩
[m,k] = δ ∩ [m,k] , and therefore inequalities (4) and (5) imply that

∑
i∈I1∪σ

|〈h,ϕi〉|2 + ∑
i∈J1∪δ

|〈h,ψi〉|2

= lim
k→∞

(
∑

i∈I1∪(σ∩[m,k])
|〈h,ϕi〉|2 + ∑

i∈J1∪(δ∩[m,k]})
|〈h,ψi〉|2

)

= lim
k→∞

(
∑

i∈I1∪(σNk
∩[m,k])

|〈h,ϕi〉|2 + ∑
i∈J1∪(δNk

∩[m,k]})
|〈h,ψi〉|2

)

� 2 lim
k→∞

(
∑

i∈I1∪σNk

|〈hNk ,ϕi〉|2 + ∑
i∈J1∪δNk

|〈hNk ,ψi〉|2
)

+2 lim
k→∞

(
∑

i∈[m+k]
|〈h−hNk,ϕi〉|2 + ∑

i∈[m+k]
|〈h−hNk ,ψi〉|2

)

� 2 lim
k→∞

1
Nk

+2 lim
k→∞

1
2k

= 0.

Therefore, h is not in the span of {ϕi}i∈I1∪σ ∪{ψi}i∈J1∪δ and hence this weaving is
not frame. It follows that the original frames are not weakly woven, so a contradiction
is met, concluding the proof. �

REMARK 2. This section is concluded by showing that the upper bound in Propo-
sition 3.1 cannot be obtained for woven frames. The case of two frames is given,
but the argument is easily extended to finitely many. Suppose that Φ = {ϕi}i∈I and
Ψ = {ψi}i∈I are frames for a Hilbert space H with optimal upper frame bounds B1

and B2 . Assume by way of contradiction that B1 + B2 is the optimal upper weaving
bound. That is, the smallest upper weaving bound for all possible weavings. Then for



1104 BEMROSE, CASAZZA, GRÖCHENIG, LAMMERS AND LYNCH

a fixed ε > 0, one can choose a σ ⊂ I and ‖x‖ = 1 so that

∑
i∈σ

|〈x,ϕi〉|2 + ∑
i∈σ c

|〈x,ψi〉|2 � B1 +B2− ε.

Since

∑
i∈I

|〈x,ϕi〉|2 +∑
i∈I

|〈x,ψi〉|2 � B1 +B2,

it follows that

∑
i∈σ c

|〈x,ϕi〉|2 + ∑
i∈σ

|〈x,ψi〉|2 � ε. (7)

Now (7) implies that there are weavings for which the lower frame bounds approach
zero. Therefore, Theorem 4.5 gives that Φ and Ψ are not woven, which is a contradic-
tion.

5. Weaving Riesz bases

In this section we classify when Riesz bases and Riesz basic sequences can be
woven and provide a characterization in terms of distances between subspaces.

We need a lemma in the case that σ is finite in order to prove Theorem 5.2, which
is in terms of general partitions.

LEMMA 5.1. Suppose {ϕi}∞
i=1 and {ψi}∞

i=1 are Riesz bases for H for which there
are uniform constants 0 < A � B < ∞ so that for every σ ⊂ N , the family {ϕi}i∈σ ∪
{ψi}i∈σ c is a Riesz sequence with Riesz bounds A and B. Then for every σ ⊂ N with
|σ | < ∞ , the family {ϕi}i∈σ ∪{ψi}i∈σ c is actually a Riesz basis, that is, it spans H .

Proof. We proceed by induction on the cardinality of σ . The case |σ | = 0 being
obvious, we assume the result holds for every σ with |σ | = n .

Now let σ ⊂ N with |σ | = n+ 1 and choose i0 ∈ σ . Let σ1 = σ \ {i0} , then
{ϕi}i∈σ1 ∪{ψi}i∈σ c

1
is a Riesz basis by the induction hypothesis.

We proceed by way of contradiction and assume that {ϕi}i∈σ ∪{ψi}i∈σ c is not a
Riesz basis. However, it is at least a Riesz sequence by assumption. If

ψi0 ∈ span({ϕi}i∈σ ∪{ψi}i∈σ c),

then
span({ϕi}i∈σ ∪{ψi}i∈σ c) ⊃ span

(
{ϕi}i∈σ1 ∪{ψi}i∈σ c

1

)
= H,

i.e., {ϕi}i∈σ ∪{ψi}i∈σ c would be a basis, which is assumed to not be the case. So it
must be that

ψi0 /∈ span({ϕi}i∈σ ∪{ψi}i∈σ c)

from which it follows that

{ϕi}i∈σ ∪{ψi}i∈σ c ∪{ψi0}
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is a Riesz sequence in H . Hence, because σ c
1 = σ c ∪{i0} ,

{ϕi}i∈σ1 ∪{ψi}i∈σ c
1

cannot be a Riesz basis, since we obtained it by deleting the element ϕi0 from a Riesz
sequence, yielding a contradiction. �

Next, the result from the previous lemma is extended to σ of arbitrary cardinality.

THEOREM 5.2. Suppose {ϕi}∞
i=1 and {ψi}∞

i=1 are Riesz bases so that there are
uniform constants 0 < A � B < ∞ so that for every σ ⊂ N , the family {ϕi}i∈σ ∪
{ψi}i∈σ c is a Riesz sequence with Riesz bounds A and B. Then for every σ ⊂ N

the family {ϕi}i∈σ ∪{ψi}i∈σ c is actually a Riesz basis.

Proof. Assume, by way of contradiction, there is a σ ⊂ N with both σ and σ c

infinite, so that
K = span({ϕi}i∈σ ∪{ψi}i∈σ c) �= H.

Choose a nonzero x ∈ K⊥ . Since {ψi}i∈I is Bessel, by taking the tail of the series,
there exists a σ1 ⊂ σ with |σ1| < ∞ and

∑
i∈σ\σ1

|〈x,ψi〉|2 <
A
2
‖x‖2.

By Lemma 5.1, the family {ϕi}i∈σ1 ∪{ψi}i∈σ\σ1
∪{ψi}i∈σ c is a Riesz basis with Riesz

basis bounds A,B and therefore

A‖x‖2 � ∑
i∈σ1

|〈x,ϕi〉|2 + ∑
i∈σ\σ1

|〈x,ψi〉|2 + ∑
i∈σ c

|〈x,ψi〉|2

= ∑
i∈σ\σ1

|〈x,ψi〉|2

� A
2
‖x‖2

giving a contradiction. �

REMARK 3. If every weaving of two Riesz bases is a frame sequence, it does not
follow that every weaving is a Riesz basis, nor even a Riesz sequence. To see this, let
{ϕi}∞

i=1 be a Riesz basis and let π be a non-trivial permutation so that π(i0) �= i0 . Each
weaving is a frame sequence but the weaving given by σ = N\{i0} does not span.

The next theorem says that if two Riesz bases are woven, then every weaving is in
fact a Riesz basis, and not just a frame.

THEOREM 5.3. Suppose Φ = {ϕi}∞
i=1 and Ψ = {ψi}∞

i=1 are Riesz bases and that
there is a uniform constant A > 0 so that for every σ ⊂ N , the family {ϕi}i∈σ ∪
{ψi}i∈σ c is a frame with lower frame bound A. Then for every σ ⊂ N , the family
{ϕi}i∈σ ∪{ψi}i∈σ c is actually a Riesz basis.
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Proof. The proof is carried out in steps.

Step 1. For every |σ | < ∞ , the family {ϕi}i∈σ ∪{ψi}i∈σ c is a Riesz basis.

Proof of Step 1. We do the proof by induction on |σ | with |σ | = 0 clear. Now
assume the result is true for all |σ |= n . Let σ ⊂ I be so that |σ |= n+1 and let i0 ∈ σ .
Then {ϕi}i∈σ\{i0} ∪{ψi}i∈σ c∪{i0} is a Riesz basis and therefore

{ϕi}i∈σ\{i0} ∪{ψi}i∈σ c

is a Riesz sequence spanning a subspace of codimension at least one.
Now by assumption, {ϕi}i∈σ ∪{ψi}i∈σ c is at least a frame. Since the removal of

the single vector ϕi0 yields a set that does not longer span H , {ϕi}i∈σ ∪{ψi}i∈σ c must
actually be a Riesz basis [6]. Furthermore, its lower Riesz bound is A . This concludes
the proof of Step 1.

Step 2. Now consider the case that |σ | = ∞ .
For this step choose σ1 ⊂ σ2 ⊂ ·· · ⊂ σ so that

σ =
∞⋃

j=1

σ j,

and |σ j| < ∞ . Now, for every j = 1,2, . . . the family

{ϕi}i∈σ j ∪{ψi}i∈σ\σ j
∪{ψi}i∈σ c = {ϕi}i∈σ j ∪{ψi}i∈σ c

j
,

is a Riesz basis with lower Riesz basis constant A . If {ai}∞
i=1 ∈ �2 and

∑
i∈σ

aiϕi + ∑
i∈σ c

aiψi = 0,

then

0 =
∥∥∥∥∑

i∈σ
aiϕi + ∑

i∈σ c
aiψi

∥∥∥∥
2

= lim
j→∞

∥∥∥∥ ∑
i∈σ j

aiϕi + ∑
i∈σ c

j

aiψi

∥∥∥∥
2

� lim
j→∞

A

⎛
⎝∑

i∈σ j

|ai|2 + ∑
i∈σ c

j

|ai|2
⎞
⎠

where the last inequality follows from the Riesz basis property of {ϕi}i∈σ j ∪{ψi}i∈σ c
j
.

So ai = 0 for every i = 1,2, . . . , implying that the synthesis operator for the family
{ϕi}i∈σ ∪ {ψi}i∈σ c is bounded, linear, onto, and by the above it is also one-to-one.
Therefore, it is invertible and so the family {ϕi}i∈σ ∪{ψi}i∈σ c is a Riesz basis. �

The next results says that a frame (which is not a Riesz basis) cannot be woven
with a Riesz basis.
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THEOREM 5.4. Let Φ = {ϕi}∞
i=1 be a Riesz basis and let Ψ = {ψi}∞

i=1 be a frame
for H . If Φ and Ψ are woven, then Ψ must actually be a Riesz basis.

Proof. Note that by Corollary 3.2, it may be assumed that {ϕi}∞
i=1 is an orthonor-

mal basis. By way of contradiction, assume that {ψi}∞
i=1 is not a Riesz basis. Without

loss of generality it may be assumed that ψ1 ∈ span{ψi}∞
i=2 . Now, choose n ∈ N so

that
0 � d(ψ1, span{ψi}n

i=2) � ε

and let
Kn = [span{ψi}n

i=2 ]⊥ .

Then Kn has codimension at most n− 1 in H and since {ϕi}∞
i=1 is an orthonormal

basis,
dim span{ϕi}n

i=1 = n.

So there exists x ∈ span{ϕi}n
i=1∩Kn with ‖x‖ = 1. Now, if σ c = [n] then

∑
i∈σ

|〈x,ϕi〉|2 = 0,

while

∑
i∈σ c

|〈x,ψi〉|2 = |〈x,ψ1〉|2 � ε.

So these two families are not woven. �

The next lemma and theorem provide some geometric intuition of what it takes for
Riesz bases to weave. First a notion of distance between subspaces is introduced.

DEFINITION 5. If W1 and W2 are nontrivial subspaces of H , let

dW1(W2) = inf{‖x− y‖ : x ∈W1, y ∈ SW2}

and
dW2(W1) = inf{‖x− y‖ : x ∈ SW1 , y ∈W2}

where SWi = SH ∩Wi and SH is the unit sphere in H . Then the distance between W1

and W2 is defined as

d(W1,W2) = min{dW1(W2),dW2(W1)}.

LEMMA 5.5. Suppose {ϕi}i∈I and {ψ j} j∈J are Riesz sequences in H . The fol-
lowing are equivalent:

(i) {ϕi}i∈I ∪{ψ j} j∈J is a Riesz sequence.

(ii) D = d
(
span{ϕi}i∈I ,span{ψ j} j∈J

)
> 0 .
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Proof. To prove (i) ⇒ (ii), let A and B be lower and upper Riesz bounds of
{ϕi}i∈I ∪{ψ j} j∈J , respectively. Note that each original sequence {ϕi}i∈I and {ψ j} j∈J

also has these bounds. If

x = ∑
i∈I

aiϕi and y = ∑
j∈J

b jψ j

with ‖x‖ = 1 or ‖y‖ = 1, then

‖x− y‖2 =
∥∥∥∥∑

i∈I
aiϕi − ∑

j∈J
b jψ j

∥∥∥∥
2

� A

(
∑
i∈I

|ai|2 + ∑
j∈J

|b j|2
)

� A

(
1
B

∥∥∥∥∑
i∈I

aiϕi

∥∥∥∥
2

+
1
B

∥∥∥∥∑
j∈J

b jψ j

∥∥∥∥
2
)

� A
B

so that D2 � A/B , proving (ii) .
Now to prove (ii) ⇒ (i), let A and B be universal lower and upper Riesz bounds,

respectively, of the two original sequences. Let {ai}i∈I and {b j} j∈J be sequences of
scalars so that

∑
i∈I

|ai|2 + ∑
j∈J

|b j|2 = 1.

First assume that ∑i∈I |ai|2 � 1/2. Then

∥∥∥∥∑
i∈I

aiϕi + ∑
j∈J

b jψ j

∥∥∥∥
2

=
∥∥∥∥∑

i∈I
aiϕi

∥∥∥∥
2

∥∥∥∥∥∥∥∥
∑
i∈I

aiϕi∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥
+

∑
j∈J

b jψ j∥∥∥∥ ∑
i∈I

aiϕi

∥∥∥∥

∥∥∥∥∥∥∥∥

2

� A∑
i∈I

|ai|2D2

� AD2

2
.

If ∑ j∈J |b j|2 � 1/2, then a similar argument works, and thus {ϕi}i∈I ∪ {ψ j} j∈J is a
Riesz sequence with lower and upper bounds AD2/2 and B , respectively. �

One more lemma is needed for the proof of Theorem 5.7.

LEMMA 5.6. Let W1 and W2 be subspaces of H and let {ϕi}i∈I and {ψ j} j∈J be
a Riesz basis for W1 and W2 , respectively. Then for every ε > 0 , there is an x ∈ SW1

and y ∈W2 that are finitely supported on {ϕi}i∈I and {ψ j} j∈J , respectively, so that

‖x− y‖� dW2(W1)+ ε.
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Proof. The proof is a straightforward approximation argument. �
The following theorem gives a geometric characterization of woven Riesz bases.

THEOREM 5.7. If Φ = {ϕi}∞
i=1 and Ψ = {ψi}∞

i=1 are Riesz bases in H , then the
following are equivalent:

(i) Φ and Ψ are woven.

(ii) For every /0 �= σ � N , Dσ = d
(
span{ϕi}i∈σ ,span{ψi}i∈σ c

)
> 0 .

(iii) There is a constant C > 0 so that for every 0 �= σ � N ,

Dσ = d
(
span{ϕi}i∈σ ,span{ψi}i∈σ c

)
� C.

Proof. The implication (i) ⇒ (iii) follows from the proof of Lemma 5.5 since if
A and B are universal weaving bounds and C = A/B , then Dσ � C for all σ ⊂ N .

Conversely, for the implication (iii) ⇒ (i), the proof of Lemma 5.5 can be applied
again, since if A and B are universal Riesz bounds of Φ and Ψ , then ADσ/2 and B ,
are Riesz bounds for {ϕi}i∈σ ∪{ψi}i∈σ c . Because C � Dσ , each weaving has Riesz
bounds AC/2 and B , which are independent of σ . Furthermore, Theorem 5.2 gives
that each weaving is actually a Riesz basis, and thus Φ and Ψ are woven.

Since (iii) ⇒ (ii) is obvious, all that remains is (ii) ⇒ (iii). Assume (ii) and by
way of contradiction assume that for every n ∈ N , there are subsets /0 �= σn � N and
elements xn,yn ∈ H of the form

xn = ∑
i∈σn

ainϕi and yn = ∑
i∈σ c

n

binψi

with either ‖xn‖ = 1 or ‖yn‖ = 1 that satisfy ‖xn − yn‖ � 1/n . Without loss of gen-
erality, it may be assumed that ‖xn‖ = 1 for all n , by passing to a subsequence and
possibly switching the roles of Φ and Ψ . Furthermore, by Lemma 5.6, xn and yn

may be assumed to be finitely supported, and by switching to another subsequence and
reindexing it may be assumed that

xn →w x =
∞

∑
i=1

aiϕi and yn →w y =
∞

∑
i=1

biψi.

The rest of the proof will be done in two steps.

Step 1. x = y = 0.

Proof of Step 1. For every n ∈ N , either 1 ∈ σn or 1 ∈ σ c
n , so by switching

to a subsequence, it may be assumed that 1 ∈ σn for all n or that 1 ∈ σ c
n for all n .

Furthermore, switching to yet another subsequence, it may be assumed that 2 ∈ σn for
all n � 2 or 2 ∈ σ c

n for all n � 2. Continuing, a subsequence can be found (call it σn

again) satisfying:

• for every i � k , either i ∈ σn for all n � k or i ∈ σ c
n for all n � k .
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Now define σ ⊂ N by

σ = {i ∈ N : i ∈ σn for infinitely many n}.

Since xn →w x and Φ is a Riesz bases, ain → ai for any fixed i . Therefore, if i ∈ σ
is fixed, then i �∈ σ c

n and bin = 0 for all sufficiently large n . Likewise, if i ∈ σ c , then
ain = 0 for all large n . Hence, if i ∈ σ , then bi = 0, and if i ∈ σ c , then bi = 0.
Consequently,

x = ∑
i∈σ

aiϕi and y = ∑
i∈σ c

biψi. (8)

Next, since xn− yn converges in norm to zero, it also does so weakly and thus

‖x− y‖� liminf
n→∞

‖xn− yn‖ = 0 (9)

implying that x = y . Finally, the assumption

d
(
span{ϕi}i∈σ ,span{ψi}i∈σ c

)
> 0

gives that x = y = 0 by (8) and (9). Thus, xn →w 0 and yn →w 0.

Step 2. d
(
span{ϕi}i∈σ ,span{ψi}i∈σ c

)
= 0, giving a contradiction.

Proof of Step 2. First some notation is introduced. If η and μ are finite subsets of
N , write η ≺ μ if

max{i : i ∈ η} � min{i : i ∈ μ}.
Since xn and yn are finitely supported, there are finite subsets of N , {ηk}∞

i=1 subsets
of σ , and {μk}∞

k=1 subsets of σ c satisfying for every k ∈ N :

(a) ηk ∩μk = /0 .

(b) ηk,μk ≺ ηk+1,μk+1 .

(c) There is an nk so that∥∥∥∥ ∑
i∈⋃k−1

j=1 η j

ainkϕi

∥∥∥∥<
1
k

and

∥∥∥∥ ∑
i∈⋃k−1

j=1 μ j

binkψi

∥∥∥∥<
1
k
.

With these properties in hand along with the fact that xnk and ynk are finitely supported,
a standard epsilon thirds argument gives that

d
(
span{ϕi}i∈ηk ,span{ψi}i∈μk

)
� Ck

where Ck → 0 as k → ∞ , but

d
(
span{ϕi}i∈σ ,span{ψi}i∈σ c

)
� d
(
span{ϕi}i∈ηk ,span{ψi}i∈μk

)
for all k , giving the desired contradiction. �
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REMARK 4. In the literature one finds several notions for the distance or the an-
gle between two subspaces of a Hilbert space. For instance, the angle between two
subspaces W1,W2 ⊂ H is defined as

α(W1,W2) = inf

{
arccos

( |〈v,w〉|
‖v‖‖w‖

)
: v ∈W1,w ∈W2

}
,

see, e.g., [3]. It is easy to see that α(W1,W2) > 0 if and only if d(W1,W2) > 0.
Consequently, Theorem 5.7 could also be formulated by means of the angle between
subspaces: two Riesz bases Φ and Ψ are woven, if and only if for every σ ⊂ N ,
α
(
span{ϕi}i∈σ ,span{ψi}i∈σ c

)
> 0.

6. Weavings and pertubations

In this section it is shown frames that are small perturbations of each other are
woven. We state the results for two frames, but then give how they can be generalized
to any finite number of them.

THEOREM 6.1. Let Φ = {ϕi}i∈I (respectively, Ψ = {ψi}i∈I ) be frames for a
Hilbert space H with frame bounds A1,B1 (respectively, A2,B2 ). Assume there is a
0 < λ < 1 so that

λ (
√

B1 +
√

B2) � A1

2

and for all sequences of scalars {ai}i∈I we have∥∥∥∥∑
i∈I

ai(ϕi −ψi)
∥∥∥∥� λ‖{ai}i∈I‖. (10)

Then for every σ ⊂ I , the family {ϕi}i∈σ c ∪ {ψi}i∈σ is a frame for H with frame
bounds A1

2 ,B1 +B2 . That is, Φ and Ψ are woven.

Proof. The proof will be carried out in steps, but first some notation is introduced.
Let T (respectively R) be the synthesis operator for the frame {ϕi}i∈I (respectively,
{ψi}i∈I ), and let Pσ denote the orthogonal projection onto span{ei}i∈σ , where {ei}i∈I

is the standard orthonormal basis for �2(I) and σ ⊂ I . For each σ ⊂ I let

Tσ ({ai}i∈I) = TPσ ({ai}i∈I) = ∑
i∈σ

aiϕi,

and
Rσ ({ai}i∈I) = RPσ ({ai}i∈I) = ∑

i∈σ
aiψi.

In this notation, notice that the inequality in (10) becomes

‖T −R‖� λ .
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Observe that ‖Tσ −Rσ‖� ‖T −R‖ , and ‖Tσ‖� ‖T‖ and ‖Rσ‖� ‖R‖ since Tσ = TPσ
and Rσ = RPσ .

Step 1. For every x ∈ H ,∥∥∥∥∑
i∈σ

〈x,ψi〉ψi − ∑
i∈σ

〈x,ϕi〉ϕi

∥∥∥∥= ‖Tσ T ∗
σ x−RσR∗

σ x‖ � A1

2
‖x‖.

Proof of Step 1. Computing gives for every x ∈ H

‖TσT ∗
σ x−RσR∗

σx‖ � ‖(Tσ T ∗
σ −TσR∗

σ )x‖+‖(TσR∗
σ −RσR∗

σ )x‖
� ‖Tσ‖‖T∗

σ −R∗
σ‖‖x‖+‖Tσ −Rσ‖‖R∗

σ‖‖x‖
� ‖T‖‖T −R‖‖x‖+‖T −R‖‖R‖‖x‖
� (‖T‖λ +‖R‖λ )‖x‖
� λ (‖T‖+‖R‖)‖x‖
� λ (

√
B1 +

√
B2)‖x‖

� A1

2
‖x‖.

Step 2. The lower frame bound is A1/2 for every weaving.

Proof of Step 2. For every x ∈ H , it follows by applying Step 1 that∥∥∥∥∑
i∈σ

〈x,ψi〉ψi+ ∑
i∈σ c

〈x,ϕi〉ϕi

∥∥∥∥
=
∥∥∥∥∑

i∈I

〈x,ϕi〉ϕi +

(
∑
i∈σ

〈x,ψi〉ψi − ∑
i∈σ

〈x,ϕi〉ϕi

)∥∥∥∥
�
∥∥∥∥∑

i∈I
〈x,ϕi〉ϕi

∥∥∥∥−
∥∥∥∥∑

i∈σ
〈x,ψi〉ψi − ∑

i∈σ
〈x,ϕi〉ϕi

∥∥∥∥
� A1‖x‖−

∥∥∥∥∑
i∈σ

〈x,ψi〉ψi − ∑
i∈σ

〈x,ϕi〉ϕi

∥∥∥∥
� A1‖x‖− A1

2
‖x‖

=
A1

2
‖x‖.

The upper frame bound of {ψi}i∈σ ∪ {ϕi}i∈σ c is at most B1 + B2 by Proposi-
tion 3.1. Thus Φ and Ψ are woven. �

REMARK 5. Theorem 6.1 can be generalized to a finite number of frames by ei-
ther requiring each of the frames to be very close to one of them or by creating a “chain”
where the first is close to the second, the second to the third, and so on.

In the next proposition the perturbed frames is obtained as the image of a bounded,
invertible operator of a given frame.
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PROPOSITION 6.2. Let {ϕi}i∈I be a frame with bounds A,B and let T be a
bounded operator. If ‖Id−T‖2 < A

B then {ϕi}i∈I and {Tϕi}i∈I are woven.

Proof. Note that T is invertible and thus {Tϕi}i∈I is automatically a frame. For
every σ ⊂ I and for every x ∈ H we have by Minkowski’s inequality and subadditivity
of the square root function

(
∑
i∈σ

|〈x,ϕi〉|2 + ∑
i∈σ c

|〈x,Tϕi〉|2
)1/2

=
(

∑
i∈σ

|〈x,ϕi〉|2 + ∑
i∈σ c

|〈x,ϕi〉− 〈(I−T ∗)x,ϕi〉|2
)1/2

�
(

∑
i∈I

|〈x,ϕi〉|2
)1/2

−
(

∑
i∈σ c

|〈(I−T ∗)x,ϕi〉|2
)1/2

�
√

A‖x‖−
√

B
∥∥(I−T ∗)x

∥∥
�
(√

A−
√

B‖I−T ∗‖
)
‖x‖.

Thus, {ϕi}i∈σ ∪{Tϕi}i∈σ c forms a frame having

(√
A−

√
B‖I−T∗‖

)2
> 0

as its lower frame bound. �

REMARK 6. Proposition 6.2 can be extended to a finite number of invertible oper-
ators by making the assumption that the sum over all j of ‖Id−Tj‖ is less than

√
A/B .

A nearly identical proof gives {ϕi}i∈I , {Tjϕi}i∈I, j∈[n] are woven.

By applying Proposition 6.2 to a power of the frame operator, we obtain many
examples where a frame and its canonical dual frame are woven.

COROLLARY 6.3. Let Φ = {ϕi}i∈I be a frame with frame constants A,B > 0
and frame operator S . If the condition number B/A is sufficiently close to one, e.g.,
B/A < 2 , then Φ and the scaled canonical dual frame Ψ = { 2AB

A+BS−1ϕi}i∈I are woven.

Likewise Φ and and the scaled canonical Parseval frame Ψ̃ = { 2
√

AB√
A+

√
B
S−1/2ϕi}i∈I are

woven.

Proof. We apply Proposition 6.2 to the operators T = 2AB
A+BS−1 for the scaled dual

frame and to T̃ = 2
√

AB√
A+

√
B
S−1/2 for the scaled Parseval frame. Since the spectrum

of S is contained in the interval [A,B] , the spectrum of Id − T is contained in the
interval [A−B

A+B , B−A
A+B ] and thus ‖Id−T‖ � B−A

B+A . This norm is majorized by (A/B)1/2 ,
whenever B/A � 2. The proof for T̃ is similar and, in fact, yields the condition B/A �
(
√

2+1)2 . �
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REMARK 7. Theorem 6.1 and Proposition 6.2 should be compared with the cor-
responding statements for the perturbation of frames (e.g., in [2]). For instance, if
Φ = {ϕi}i∈I is a frame with frame bounds A,B > 0 and T is a bounded operator satis-
fying ‖Id−T‖< 1, then the set Ψ = {Tϕi}i∈I is also a frame (because T is invertible).
Under the stronger condition ‖Id−T‖ < A/B , the frame Φ and Ψ are even woven. A
similar remark applies to Theorem 6.1.

7. Gramians

In this section, the Gramian and its relation to weaving frames is considered. The
first result says that two Riesz bases are woven as long as the cross Gramian is almost
diagonal.

PROPOSITION 7.1. Let {ek}∞
k=1 be an orthonormal basis for H and let {ϕ�}∞

�=1
be a Riesz basis for H . Let

A = (〈ϕ�,ek〉)∞
k,�=1 = D+R,

be the cross Gramian where D is the diagonal of A. If the diagonal entries satisfy
inf1�i�∞ |Dii| � λ and ‖R‖ � λ

2 , then {ek}∞
k=1,{ϕ�}∞

�=1 are woven.

Proof. Given a ∈ �2 and σ ⊂ N we have

∑
�∈σ c

a�ϕ� = ∑
�∈σ c

∞

∑
k=1

a�〈ϕ�,ek〉ek

=
∞

∑
k=1

(
∑

�∈σ c

a�〈ϕ�,ek〉
)

ek

=
∞

∑
k=1

(A(I−Pσ)a)k ek,

where Pσ is the diagonal projection onto span {ek}k∈σ . Now we compute:∥∥∥∥∑
k∈σ

akek + ∑
�∈σ c

a�ϕ�

∥∥∥∥= ‖Pσa+A(I−Pσ)a‖

= ‖Pσa+D(I−Pσ)a+R(I−Pσ)a‖
� ‖Pσa+D(I−Pσ)a‖−‖R(I−Pσ)a‖
�
(‖Pσa‖2 +‖D(I−Pσ)a‖2)1/2−‖R‖‖(I−Pσ)a‖

�
(‖Pσa‖2 + λ 2‖(I−Pσ)a‖2)1/2− λ

2
‖(I−Pσ)a‖

� 1
2

(‖Pσa‖2 + λ 2‖(I−Pσ )a‖2)1/2

� 1
2

min(1,λ )‖a‖ .



WEAVING FRAMES 1115

This proves that {ek}k∈σ ∪ {ϕ�}�∈σ c is a Riesz sequence with lower Riesz bound
min(1,λ 2)/4 independent of σ ⊆ N . Theorem 5.2 now implies that the weavings
are actually Riesz bases with uniform bounds, and so the two sets are woven. �

REMARK 8. Replacing {ek}∞
k=1 with a Riesz basis is possible with an appropriate

change in required bounds. If it is replaced by a Riesz basis {ψk}∞
k=1 , then there is a

bounded invertible operator so that ek = T−1ψk . Therefore, the two sets {ek}∞
k=1 and

{T−1ϕ�}∞
�=1 will be woven if the correct bounds hold according to Proposition 7.1 and

thus applying T gives {ψk}∞
k=1 and {ϕ�}∞

�=1 are woven.

8. Weaving Gabor frames

A potential application is the preprocessing of signals using Gabor frames. First,
recall that a Gabor system for L2(R) is of the form

{MbnTamg : m,n ∈ Z}
where a,b > 0 are fixed parameters, g ∈ L2(R) is a fixed window function, and the
time-frequency shifts MbnTam of g are given by

MbnTamg(t) = e2π ibntg(t−am) .

for a,b ∈ R , m,n ∈ Z . If such a system forms a frame, then it is called a Gabor frame.
See [7] for a thorough approach to time-frequency analysis and Gabor systems. The
problem to consider is as follows.

PROBLEM 1. Given a fixed lattice generated by a,b > 0 with ab < 1 and rotated
Gaussians Ujgα j , where gαi(x) = e−αix2

, are the Gabor frames

{TamMbnUjgα j}m,n∈Z, j∈[M]

woven?

We believe that Problem 1 has a positive answer and that any such family of Gabor
frames is always woven.

REMARK 9. It seems that for two frames to be woven, in some sense they need
to be close to one another. However, the problem is if B1 and B2 are arbitrary Bessel
sequences, then Φ ∪B1 and Ψ ∪B2 are still woven. That is, one would need to
somehow reduce the frames to a “minimal” woven state for them to truly resemble each
other. In this paper we presented two sufficient conditions for weaving: perturbation
theory and diagonal dominance. It is possible that some kind of localization of the
cross Gramian (without diagonal dominance) would be sufficient. This would also
answer Problem 1. This also suggests that perhaps there is a converse to these results.
That is, if two frames are intrinsically localized and woven, then is their cross Gramian
also localized (in the same matrix algebra?).
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