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ON NON COMMUTATIVE TAYLOR INVERTIBILITY

ROBIN E. HARTE

In memory also of Joe Taylor

(Communicated by Raúl Curto)

Abstract. The act of proof for the left, and similarly the right, spectral mapping theorem in sev-
eral variables is carried out on a stage known as a “residual quotient”. With some modification,
this also works for the Taylor spectrum. Here we set this out, considering also Taylor spec-
trum for general non commuting systems of Banach algebra elements, for “quasi-commuting”
systems, and also the generalization from Banach to “Waelbroeck algebras”.

0. Introduction

In a general semigroup A , with an associative binary operation

(x,y) �→ xy = x · y : A×A → A ,

we can multiply not only single elements, but also subsets, setting

KH = K ·H = {x · y : (x,y) ∈ K×H} . (0.1)

This generates [14], [17] a kind of “fraction”, known as a residual quotient; there are
both “left” and “right” quotients:

K−1H = {x ∈ A : Kx ⊆ H} (0.2)

and
HK−1 = {x ∈ H : xK ⊆ H} . (0.3)

Evidently general statements about left imply corresponding statements about right
residuals, and vice versa; we shall choose to focus here on left quotients. Trivial
observations are that (0.2), and dually (0.3), are monotonically increasing in H , and
monotonically decreasing in K :

(H ′ ⊆ H & K ⊆ K′) =⇒ K
′−1H ′ ⊆ K−1H . (0.4)
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When there is an identity 1 ∈ A , there ([14] Theorem 3) is implication

H ⊆ K =⇒ (K−1H)(K−1H) ⊆ K−1H ; (0.5)

K ⊆ H =⇒ 1 ∈ K−1H ; (0.6)

1 ∈ K =⇒ K−1H ⊆ H . (0.7)

The extension of spectral theory from single elements to finite or infinite systems is
mostly confined to commuting systems, although usually the definitions survive without
this restriction. In a linear algebra, or more generally a “linear category” A , a spectrum
ω(a) ⊆ CX is derived from some collection H ⊆ A of “invertible” or more generally
non-singular, systems of elements a ∈ AX :

ω(a) = {λ ∈ CX : a−λ �∈ H} . (0.8)

For such a “joint spectrum” we look for the spectral mapping theorem

pω(a) = ω p(a) ⊆ CX , (0.9)

for element a∈ AX and systems p∈ PolyY
X of “non commutative polynomials”. Equal-

ity (0.9) divides into a forward spectral mapping theorem,

pω(a) ⊆ ω p(a) , (0.10)

and a backward spectral mapping theorem,

ω p(a) ⊆ pω(a) . (0.11)

Typically the forward theorem (0.10) is easier, and survives for other than commuta-
tive systems of elements, combining the remainder theorem for non commutative poly-
nomials with some kind of reverse semi-group property of the non singulars H ; the
harder backward theorem (0.11) needs the “fundamental theorem of algebra”, or more
generally Liouville’s theorem from complex analysis. In this note however we start
by observing that, for general non commuting systems, the forward spectral mapping
theorem (0.10) is liable to fail for the Taylor spectrum.

1. Taylor invertibility

Suppose a ∈ A and b ∈ A , for a complex linear algebra A with identity 1; then
we shall say that the pair (a,b) ∈ A2 is Taylor invertible if it is at once left, right and
middle invertible: here

(a,b) ∈ A−2
left ⇐⇒ 1 ∈ (

A A
)(

a
b

)
; (1.1)

(a,b) ∈ A−2
right ⇐⇒ 1 ∈ (

b −a
)(

A
A

)
; (1.2)
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(a,b) ∈ A−2
middle ⇐⇒

(
1 0
0 1

)
∈

(
a
b

)(
A A

)
+

(
A
A

)(
b −a

)
. (1.3)

Necessary for left invertibility is the implication, for arbitrary x ∈ A ,

ax = bx = 0 =⇒ x = 0 , (1.4)

and for right invertibility the implication, for arbitrary y ∈ A ,

ya = yb = 0 =⇒ y = 0 . (1.5)

If the elements a,b commute, in the sense ab = ba , and A is a Banach algebra, then
(1.1)-(1.3) add up to the condition that (0,0) is not in the “Taylor split spectrum” of the
pair (a,b) : the point here is that we are withholding commutivity. Without commutivity
there is a “one way spectral mapping theorem” for left and for right invertibility, and
it would be nice to be able to say the same for “Taylor invertibility”. The sequence of
matrices (

0,
(
b −a

)
,

(
a
b

)
,0

)
(1.6)

may [21], [16], [7], [12] be referred to as the Koszul complex of the pair (a,b) ∈ A2 ;
of course it will not truly be a “complex” unless

(
b −a

)(
a
b

)
≡ ba−ab = 0 , (1.7)

which says that a and b commute.

2. Special Lie algebra

If A = C2×2 and ([7] (11.2..4), [12] (5.1.9))

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, (2.1)

then for arbitrary (λ ,μ) ∈ C2 the conditions (1.1) and (1.2) are satisfied by (a,b) =
(e−λ , f −μ) : in words both the left and the right spectrum of the pair (e, f ) are empty.
It is also true that the condition (1.3) is satisfied unless (λ ,μ) = (0,0) : however(

1 0
0 1

)
�∈

(
e
f

)(
A A

)
+

(
A
A

)(
f −e

)
=

(
eA+A f eA+Ae
fA+A f f A+Ae

)
, (2.2)

and hence the right hand side of (1.3) implies inclusion

1 ∈ (eA+A f )∩ (Ae+ f A) , (2.3)

which says that each of the pairs ( f ,e) and (e, f ) are “splitting exact”. However each
of the pairs ( f ,e) and (e, f ) are [13] “skew exact”, so that if they were also exact then
e and f would have to be left or right invertible. Alternatively notice

(
f −e

)(
f
e

)
= 0 ;

(
f
e

)
�∈

(
e
f

)
A . (2.4)
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Indeed (
f −e

)(
f
e

)
= f 2 − e2 = 0−0 , (2.5)

while (
f
e

)
=

(
e
f

)
g =⇒ g = ( f e+ e f )g = f 2 + e2 = 0 ;=⇒ f = e = 0 . (2.6)

Thus the middle spectrum, and hence the Taylor spectrum, of this pair does contain
a point, and is given by the singleton {(0,0)} . From one point of view this might seem
to be a good thing: the Taylor spectrum of this unruly pair of matrices is nonempty.
There are however consequences: without commutivity, the “one way” spectral map-
ping theorem (0.10) fails for the Taylor spectrum.

3. Spectral mapping theorems

Suppose p ≡ p(z1,z2) ∈ Poly2 is a “polynomial” in two free variables, with in
particular p(0,0) = 0: then in general, with no assumption of commutivity, there is
implication

1 ∈ Ap(a,b) =⇒ 1 ∈ (
A A

)(
a
b

)
(3.1)

and

1 ∈ p(a,b)A =⇒ 1 ∈ (
b −a

)(
A
A

)
; (3.2)

thus if in particular p(a,b) ∈ A−1 is invertible then (a,b) ∈ A2 is both left and right
invertible. In general however this may not be enough to ensure middle invertibility.
Indeed, with (e, f ) as in (2.1),

p = z2z1 + z1z2 , (a,b) = (e, f ) =⇒ p(a,b) = 1 �∈ (aA+Ab)∪ (Aa+bA) , (3.3)

which implies that the right hand side of (1.3) cannot hold. With

σ left(a,b) = {(λ ,μ) ∈ C2 : (a−λ ,b− μ) �∈ A−2
left} , (3.4)

σ right(a,b) = {(λ ,μ) ∈ C2 : (a−λ ,b− μ) �∈ A−2
right} (3.5)

and
σmiddle(a,b) = {(λ ,μ) ∈ C2 : (a−λ ,b− μ) �∈ A−2

middle} , (3.6)

(3.1) and (3.2) give inclusions

pσ left(a,b) ⊆ σ leftp(a,b) (3.7)

and
pσ right(a,b) ⊆ σ rightp(a,b) . (3.8)

However, with (a,b) = (e, f ) and p = z2z1 + z1z2 we have

pσmiddle(a,b) = {p(0,0)} = {0} �⊆ {1} = σ p(a,b) . (3.9)
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4. Shifts

In search of further examples of such misbehaviour we recall the backward and
forward shifts. If for example ba ∈ A−1 , (a,b) ∈ A2 is both left and right invertible:
with

cba = 1 = bac , (4.1)

it is clear that (
cb 0

)(
a
b

)
= 1 =

(
b −a

)(
ac
0

)
. (4.2)

If also ba = ab invertible then (a,b) ∈ A2 will also be middle invertible; generally
however there is equality

(
b′′
a′′

)(
b −a

)
+

(
a
b

)(
a′ b′

) ≡
(

aa′ +b′′b ab′ −b′′a
ba′ +a′′b bb′ −a′′a

)
, (4.3)

and then equivalence
(

aa′ +b′′b ab′ −b′′a
ba′ +a′′b bb′ −a′′a

)
=

(
1 0
0 1

)
⇐⇒ aa′ +b′′b = 1 ; ab′ −b′′a = 0 ;

ba′ +a′′b = 0 ; bb′ −a′′a = 1 .
(4.4)

If for example
ba = 1 �= ab (4.5)

then the top left hand condition on the right hand side of (4.4) can easily fail; the condi-
tion (4.1) holds with c = 1, while there are (x,y) ∈ A2 violating an obvious necessary
condition for (1.3):

x = y = 1−ab =⇒ bx = ya = 0 �= yx , (4.6)

and hence 1 �∈ aA+Ab .
(4.5) holds when

(a,b) = (u,v) ∈ A2 = B(X)2

are the forward and backward shifts ([7] (2.8.2.2), (2.8.2.3); (7.2.6.12), (7.6.3.13)) on
X = �2 or more generally; we recall

σ left(u) = σ right(v) = S = ∂D ⊆ D = σ right(u) = σ left(v) , (4.7)

where D is the closed unit disc and S its boundary the circle:

|λ | < 1 =⇒ (v−λ ,u−λ ) = (v(1−λu),(1−λv)u)∈ (vA−1)× (A−1u) . (4.8)

For the shifts the algebra A = B(X) = B(�2) has a hermitian involution a �→ a∗ :

a = a∗ =⇒ ω(a) ∈ R ; (4.9)

we have (cf [7] (5.1.12); [12])

ω(a,a∗) = {(α + iβ ,α − iβ ) : (α,β ) ∈ ω((a+a∗)/2,(a−a∗)/2i)} ,
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giving
a ∈ An =⇒ ω(a,a∗) ⊆ {(λ ,λ ∗) : λ ∈ ω(a)} . (4.10)

Now with
D(∗) = {(λ ,λ ∗) : λ ∈ D} , S(∗) = D(∗)∩ (S×S) , (4.11)

we also have
σ left(u,v)∪σ right(u,v) ⊆ S(∗) . (4.12)

We go on to claim that

(0,0) ∈ σmiddle(u,v) ⊆ σTaylor(u,v) : (4.13)

observe (
x
y

)
=

(
1

1+u2

)
(1−uv) =⇒ (

v −u
)(

y
x

)
= 0 ,

while

y �∈ uA ; =⇒
(

y
x

)
�∈

(
u
v

)
A .

Now
p = z2z1 + z1z2 =⇒ p(u,v) = 1+ vu =⇒ σ p(u,v) = {1,2}

and hence
0 ∈ pσTaylor(u,v)\σ p(u,v) . (4.14)

5. Exactness

More general than either left or right invertibility is self exactness. We shall say
that the pair (b,a) ∈ A2 is splitting exact, and write

(b,a) ∈ A−(1,1)
left,right , (5.1)

provided
1 ∈ Ab+aA . (5.2)

More generally (cf [10]) we might write

A−(m,n)
left,right = {(b,a) ∈ Am ×An : 1 ∈ Am ·b+a ·An ≡

m

∑
k=1

Abk +
n

∑
j=1

a jA} . (5.3)

Now a ∈ A is to be self exact provided (a,a) is exact:

A−1
left,right = {a ∈ A : (a,a) ∈ A−(1,1)

left,right} , (5.4)

and more generally

A−n
left,right = {a ∈ An : 1 ∈ An ·a+a ·An} . (5.5)
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Exactness (5.1) makes sense in a ring; in a more general additive category it is necessary
that

∃ ba ∈ A , (5.6)

the product is defined. We do not however include the requirement that the chain con-
dition

ba = 0 ∈ A (5.7)

is satisfied; for some readers therefore (5.2) might be referred to as “non commutative
exactness”. Self exactness in a linear algebra would seem to generate another kind of
spectrum, writing, for a ∈ An ,

σ left,right(a) = {λ ∈ Cn : 1 �∈ An · (a−λ )+ (a−λ ) ·An} . (5.8)

We can now enquire whether (0.10) or (0.11) hold with ω = σ left,right . For the forward
version (0.10) observe that if p ∈ Polym

n with p(0) = 0, there is inclusion

Am · p(a)+ p(a) ·Am ⊆ An ·a+a ·An . (5.9)

Notice however that, with e and f as in (2.1),

σ left,right(e) = σ left,right( f ) = /0 ; (5.10)

in the notation of (0.2), Ae+eA= (Ae)−1Ae is the set of upper triangles, and A f + f A =
(A f )−1A f the lower triangles.

Of course, in (5.2), N = Ab+aA is neither a left nor a right ideal, and we have to
replace the residual quotient N−1N by something more complicated. We find what we
are looking for in some approximation theory [15], [18], [19]. Generally, if N ⊆ A is a
subring, closed under multiplication, we define

N : N = {c ∈ A : Nc+ cN ⊆ N} ; (5.11)

now N ⊆ N : N is again a two-sided ideal and we can form the quotient (N : N)/N .
Provided 1 �∈ N then the ideal N ⊆ N : N will be proper; if further A is a Banach
algebra and N = cl(N) is closed then B = (N : N)/N is a non trivial Banach algebra in
its own right. Now if c ∈ comm(N) ⊆ N : N then

λ ∈ ∂σB[c]N =⇒ 1 �∈ N +A(c−λ )+ (c−λ )A ; (5.12)

if λn → λ with [c−λn]N ∈ B−1 and the right hand side of (5.12) fails then λ �∈ σB[c]N :
if 1 ∈ c′(c−λ )+ (c−λ )c′′+N then there is inequality

‖[c−λn]−1
N ‖ � (‖c′‖+‖c′′‖)‖[c−λ ]N[c−λn]−1

N ‖ � (‖c′‖+‖c′′‖)(1+ |λn−λ |) .
(5.13)



1124 ROBIN E. HARTE

6. Koszul matrices

The problem for the “left,right invertibility” of (5.8) is that it is not clear, for
a∈An , that N = An ·a+a ·An ⊆A is a subring, closed under multiplication. In a Banach
algebra A it is also not clear that it is norm closed; we would like, for N = An ·a+a ·An ,
implication

1 ∈ cl(N) =⇒ 1 ∈ N . (6.1)

For “Taylor invertibility” the self exactness is applied not directly to the primary ele-
ment a∈ A or system a ∈ An , but rather to its Koszul matrix. It is possible [16], [20] to
pile up the Koszul complex of an n tuple a∈ An of linear algebra elements into a single
matrix Λa in a larger algebra D , which is now potentially self exact; the definition is
inductive. For a single element a ∈ A , whose Koszul complex is just the triple (0,a,0)
we set

Λa =
(

0 0
a 0

)
; (6.2)

we could alternatively make an “upper triangular” version. For example if a = 1 ∈ C
then Λa = f as in (2.1); more generally if a ∈ A then

σ left,right(Λa) ⊆ {0} ; a ∈ A−1 ⇐⇒ σ left,right(Λa) = /0 . (6.3)

Inductively define, with b ∈ Ak and c ∈ A ,

Λ(b,c) =
(

Λb O
�c −Λb

)
∈ D2×2 , (6.4)

where
Λb ∈ D , �c ∈ D (6.5)

are respectively what has already been defined, and the block diagonal generated by the
single element c ∈ A . Generally if a ∈ An and p ∈ Polym

n we define

Λp(Λa) = Λp(a) . (6.6)

Inductively we claim, for a ∈ An , that

a commutative⇐⇒ Λ2
a = O : (6.7)

note that if c ∈ comm(b) ⊆ A then �c ∈ comm(Λb) ⊆ D and

Λ2
b = O ∈ D =⇒ Λ2

(b,c) = O ∈ D2×2 .

We now claim that

(a,a′) ∈ A2n commutative , a′ ·a = 1 ∈ A =⇒ I ∈ DΛa + ΛaD ⊆ D , (6.8)

so that Λa is splitting self exact. We again argue by induction: if (6.8) holds with
a = b ∈ Ak then it continues to hold with a = (b,c) ∈ Ak × A . In turn if a ∈ An is
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commutative and p ∈ Polyn with p(0) = 0 then there is q∈ Polyn
n with p(a) = q(a) ·a

and hence
p(a) ∈ A−1 =⇒ I ∈ DΛa + ΛaD , (6.9)

and the extension to p ∈ Polym
n is induction on m . Next ([9] Theorem 1; [14] (3.12))

I ∈ DΛb + ΛbD ⊆ D ⇐⇒
(

I O
O I

)
∈

(
Λb O
�c −Λb

)
D2×2 +D2×2

(
Λb O
�c −Λb

)
, (6.10)

and we look for λ ∈ C for which

I �∈ DΛb + ΛbD ⊆ D =⇒
(

I O
O I

)
�∈

(
Λb O

�c−λ −Λb

)
D2×2 +D2×2

(
Λb O

�c−λ −Λb

)
.

(6.11)
Implication (6.1), and the multiplicative property N ·N ⊆ N are clear when N = Aa+
aA ⊆ A is replaced by N = DΛa +ΛaD ⊆ D and extend from Λb ∈ D to Λ(b,c) ∈ D2×2

whenever c ∈ comm(b) ⊆ A .

7. Quasicommutivity

One of the reasons for at least trying to state problems for non commutative sys-
tems is the feeling that the commutative theory ought to extend to quasicommutative
systems [6], [7], [12]: associated with (a,b,c) ∈ A3 for which

[b,a] ≡ ba−ab = c ; [a,c] = 0 = [b,c] , (7.1)

Enrico Boasso has noticed that we have a true complex

0,
(
b −a c

)
,

⎛
⎝ a −c 0

b 0 −c
−1 b −a

⎞
⎠ ,

⎛
⎝c

a
b

⎞
⎠ ,0 , (7.2)

which can also be written

0,
(
T∼ c

)
,

(
T −�c

−1 T∼

)
,

(
c
T

)
,0 (7.3)

where

T =
(

a
b

)
,T∼ =

(
b −a

)
,c = T∼T,�c =

(
c 0
0 c

)
(7.4)

and the quasicommutivity says

Tc = �cT, T∼�c = cT∼ . (7.5)

Provided c �= 0 then the Lie algebra generated by (a,b) ∈ A2 is a Heisenberg algebra.
If we were able to argue that, since we have a true complex here, the spectral mapping
theorem holds for the Taylor (split) spectrum (in particular for one polynomial in three
variables), then two things would follow: the Taylor split spectral mapping theorem for
the quasicommuting pair (a,b) , and hence of course also again quasinilpotency for the
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commutator ab− ba . A new challenge would be to relax the quasicommutativity of
(a,b) to commutivity ac = ca and still have a “spectral” proof that σ(ab−ba) = {0} .
If we extend the definition of “quasicommutative” from n tuples a ∈ An to arbitrary
systems a ∈ AX , in particular [7], [12] to A itself, then A is “quasicommutative” iff

[A, [A,A]] = {0} ; (7.6)

explicitly, for arbitrary (a,b,c) ∈ A3 ,

(ab−ba)c = c(ab−ba) . (7.7)

Evidently [6], [7], [12] Gelfand’s theorem holds for quasicommutative Banach alge-
bras. More generally, according to Feinstein, the spectral mapping theorem holds for
Banach algebras which are nilpotent Lie [4], [3]. The idea of Boasso seems to be gen-
erally to consider

σ(a,b,ab−ba) . (7.8)

If instead (a,b) = (e, f ) ∈ A2 as in (2.1), with A = C2×2 , then the Lie algebra
generated by {a,b} is the special Lie algebra sl2 .

For example if a = (b,c) ∈ A2 is arbitrary then

Λ2
a = Λ2

(b,c) =
(

Λ2
b O

Λcb−bc Λ2
b

)
=

(
O O

Λcb−bc O

)
; (7.9)

still with no restriction on (b,c) we get

Λ3
a =

(
O O
O O

)
, (7.10)

and we can look [11] for a Jordan decomposition

Λa ∼ T1⊕T0 with T ′
1T1 +T 2

1 T ′′
1 = I and T 2

0 = O . (7.11)

8. Waelbroeck algebras

Instead of relaxing the commutivity of a ∈ An , Wawrzyńczyk [22], [23] has ex-
tended the projection property of the left spectrum to locally convex Waelbroeck al-
gebras A , for which the invertible group A−1 ⊆ A is topologically open and the in-
version map z−1 continuous; it is tempting to try and do the same thing for the Tay-
lor split spectrum. Now [2] the argument of (5.12) is no longer available. Thus if
1 �∈ N ·N ⊆ N = cl(N) ⊆ A and c ∈ comm(N) ⊆ N : N and if, for a contradiction, we
have

1 ∈
⋂

λ∈C

N +A(c−λ )+ (c−λ )A (8.1)

put M = N : N and B = comm2[c]N ⊆ M/N and argue there will be (c′λ ) and (c′′λ ) in
A for which, for arbitrary λ ∈ C ,

c′λ (c−λ )+ (c−λ )c′′λ ∈ 1+N , (8.2)
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and then, mimicking the argument of [22], observe, with γ(z) ≡ 1− (z−λ )(c′λ + c′′λ ) ,

c′λ (c− z)+ (c− z)c′′λ ≡ c′λ (c−λ )+ (c−λ )c′′λ − (z−λ )(c′λ + c′′λ ) ∈ γ(z)+N , (8.3)

so that on sufficiently small Uλ ∈ Nbd(λ ) ,

α = γ−1c′λ ,β = c′′λ γ−1 =⇒ α(z)(c− z)+ (c− z)β (z) ∈ 1+N . (8.4)

Now, on the whole of C , look for

α(z)(c− z)+ (c− z)β (z) ∈ 1+N . (8.5)

If we take D(c) to be the set of λ ∈ C for which (8.5) works holomorphically near
z = λ we look for ∂D(c) = /0 and hence D(c) = C .

Remember of course the example (5.10); the spectral mapping theorem is liable
to fail for the “left,right spectrum”, and we should therefore be applying this argument
to Koszul matrices. Notice also that the link between the projection property and the
backward inclusion (0.11) goes through the forward inclusion (0.10), which in general
fails. Taking c′′λ = 0 in (8.2) reproduces the argument of Theorem 7 of [14], and indeed
corrects a small but significant misprint there.

An affirmative solution to (8.5), in either Banach or Waelbroeck algebras A , would
be the tip of the iceberg of an extension of Allan’s theorem [1]: if a = a(z) : G→ A and
b = b(z) : G → A are holomorphic on an open connected set G ⊆ C , and if

λ ∈ G =⇒ 1 ∈ Ab(λ )+a(λ )A⊆ A , (8.6)

does the holomorphic pair of functions (a,b) have a holomorphic left,right inverse,
(b∧,a∧) : G → A2 for which

b∧(z)b(z)+a(z)a∧(z) ≡ 1 : G → A ? (8.7)

Taking b = a and then substituting Λa ∈ D for a ∈ An , one might hope [7] for
some kind of Cauchy integral formula for a “functional calculus” f �→ f (a) .

9. Weak and strong exactness

At the opposite extreme from the “splitting exactness” (5.1) for (b,a)∈A2 is weak
exactness, the implication (cf (4.6)), for arbitrary (u,v) ∈ A2 ,

bu = 0 = va =⇒ vu = 0 . (9.1)

For a general additive category A , implication (9.1) is subject to the compatibility con-
ditions on (u,v) that the products bu and va , and hence also vu , exist. More generally
it is possible to extend (9.1) to tuples (b,a) ∈ Am×An , and of course also specialise to
the case b = a , giving “weak self-exactness” of a ∈ A . If in particular A is a normed
ring, or the analagous specialization of an additive category, then strong exactness for
(b,a) ∈ A2 says that there are k > 0 and h > 0 participating in inequality, for arbitrary
(u,v) ∈ A2 ,

‖vu‖ � k‖v‖ ‖bu‖+h‖va‖ ‖u‖ . (9.2)
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Generally
splitting =⇒ strong =⇒ weak exactness ;

if however a ∈ aAa and b ∈ bAb are relatively regular then weak exactness for (b,a)
implies splitting exactness for (b,a) .

If in particular A is the category of all bounded linear operators between Banach
spaces then ([7] Theorem 10.4.1) for a : X → Y and b : Y → Z it is necessary and
sufficient (at least when ba = 0), for (b,a) to be strongly exact, that

b−1(0) ⊆ a(X) = cl a(X) and b(Y ) = cl b(Y ) . (9.3)

Necessary and sufficient for the weak exactness of (b,a) is ([7] Theorem 10.4.2) the
inclusion

b−1(0) ⊆ cl a(X) . (9.4)

These exactness conditions convert to Taylor conditions when applied to Koszul matri-
ces: we declare a ∈ An to be weakly Taylor non singular provided Λa is weakly self
exact in the sense derived from (9.1), and strongly Taylor non singular provided Λa is
strongly self exact in the sense (9.2).

For example if a ∈ A is a single element then necessary and sufficient for Λa

to be weakly self exact is, analagous to (6.3), that a ∈ A is both monomorphic and
epimorphic, neither a left nor a right zero divisor. Similarly necessary and sufficient for
Λa to be strongly self exact is that a ∈ A is neither a topological left nor a topological
right zero divisor. In a Banach algebra A these “strong monomorphisms” and “strong
epimorphisms” form open sets; and the set of a ∈ A generating strongly self-exact
matrices Λa ∈ D also form an open subset of A .

Strong exactness, with Λa ∈ D in place of a ∈ An , potentially gives the true ex-
tension, to A ⊆ B(E) , from Taylor non singularity for systems of bounded operators
on Banach spaces E , to systems of Banach algebra elements a ∈ An . Notice that as
A ⊆ B(E) decreases, “Taylor invertibility” for a ∈ An gets more difficult, so that the
Taylor split spectrum σTaylor

A (a) gets bigger, and a functional calculus works for po-
tentially less holomorphic functions. At the same time “Taylor non singularity” for
a ∈ An gets easier, so that the Taylor spectrum τTaylor

A (a) gets smaller, and if there was
a functional calculus it would work for potentially more holomorphic functions.

We have however not been able to settle either the weak or the strong analogue
of (6.10), and the failure of the index-of-product theorem for “weakly Fredholm” op-
erators [5] suggests that they fail. Also Vladimir Müller keeps constructing Banach
algebras A and commuting tuples a ∈ An for this Taylor non singularity appears to
misbehave.

10. Determinant and adjugate

Comparing the Koszul complex of a commuting system a ∈ Ak with that of its
polynomial image offers [8] a curious way to reach determinants and adjugates of oper-
ator matrices. Careful discussion of the case k = 2 is what is involved in the inductive
step from k to k+1.
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For example if (a,b) ∈ A2 is a pair of single elements then their Koszul complex
(1.6) is given by (0,T∼,T,0) where

T =
(

a
b

)
, T∼ =

(
b −a

)
; (10.1)

if we now attack (a,b) with a pair (p,q) in Poly2 of two-variable polynomials without
constant term, then we will replace T and T∼ with S and S∼ , where

S = UT ; S∼U = |U |T ; S∼ = T∼U∼ ; U∼S = T |U | . (10.2)

With
R∼S = 1 = S∼R , (10.3)

and

RS∼+SR∼ =
(

1 0
0 1

)
, (10.4)

we get left and right invertibility for (a,b) ;

(R∼U)T = 1 = T∼(U∼R) ; (10.5)

and then also

RT∼U∼ +UTR∼ =
(

1 0
0 1

)
. (10.6)

We claim that (10.6) can be replaced by

U∼RT∼ +TR∼U =
(

1 0
0 1

)
, (10.7)

making (T∼,T ) exact and hence (a,b) also middle invertible. Specifically, if

(
w1 w2

)(
a
b

)
= 1 =

(
b −a

)(
w2

−w1

)

with {a,b} ⊆ comm{w1,w2} , then also
(

a
b

)(
w1 w2

)
+

(
w2

−w1

)(
b −a

)
=

(
1 0
0 1

)
.

If in (10.2) we have

U =
(

u11 u12

u21 u22

)
(10.8)

then [8], fixing U as in (10.8), with mutually commuting (ui j) and varying a,b in
comm{ui j} , (10.2) is uniquely satisfied by

|U |= u11u22−u21u12 , U∼ =
(

u22 −u12

−u21 u11

)
. (10.9)
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For the Koszul matrix Λa = Λ(b,c) of (6.4) we get

Λa =

⎛
⎝0 0 0

T 0 0
0 T∼ 0

⎞
⎠ =

⎛
⎜⎜⎝

0 0 0 0
b 0 0 0
c 0 0 0
0 c −b 0

⎞
⎟⎟⎠ . (10.10)

The factorization (10.2) and the derivation of (10.9) depend heavily on the com-
mutivity of (a,b) ∈ A2 , and does not even seem to extend to the quasi-commuting pair
of (7.1). For example if

U =
(

b 0
0 a

)
, S =

(
ba
ab

)
(10.11)

then
S∼U = |U |T∼

with |U | ∈ A would require
(
ab2 −ba2

)
=

(|U |b −|U |a) ,

and hence
(ab−|U |)b = 0 = (ba−|U |)a ;

now if also {a,b} ⊆ A−1
right are each right invertible then

ba = |U | = ab . (10.12)
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