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THE JORDAN ALGEBRAIC STRUCTURE OF THE CIRCULAR CONE
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Abstract. In this paper, we study and analyze the algebraic structure of the circular cone. We
establish a new efficient spectral decomposition, set up the Jordan algebra associated with the
circular cone, and prove that this algebra forms a Euclidean Jordan algebra with a certain inner
product. We then show that the cone of squares of this Euclidean Jordan algebra is indeed the
circular cone itself. The circular cones form a much more general class than the second-order
cones, so we generalize some important algebraic properties in the Euclidean Jordan algebra of
the second-order cones to the Euclidean Jordan algebra of the circular cones.

1. Introduction

The most well-known examples of symmetric cones are the nonnegative orthant
cone in the space of real numbers R , the second-order cone in the real vector space R

n ,
and the cone of positive semidefinite matrices in the space of real symmetric matrices.
The symmetric optimization problems associated with these three symmetric cones are
respectively linear programming, second-order cone programming [1], and semidefi-
nite programming [2]. In this paper, we study and analyze the algebraic structure of
the circular cone as a symmetric cone perceived to be associated with the so called
circular programming [3]. The applications of the circular cones lie in various real-
world engineering problems, for example the optimal grasping manipulation problems
for multi-fingered robots [4].

Let θ ∈ (
0, π

2

)
and ‖ · ‖ denote the standard Euclidean norm. The circular cone

[5, 6] of dimension n is defined as

L n
θ :=

{[
x0

xxx

]
∈ R×R

n−1 : x0 tanθ � ‖xxx‖
}

. (1)

It is popularly known (see for example [5, 6]) that the dual of the circular cone (1),
denoted by L n�

θ , is the circular cone

L n
π
2 −θ =

{[
x0

xxx

]
∈ R×R

n−1 : x0 cotθ � ‖xxx‖
}

. (2)
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An important special case is that in which θ = π
4 . In this case, the circular cones

(1) and (2) reduce to the well-known second-order cone Qn given by

Qn :=
{[

x0

xxx

]
∈ R×R

n−1 : x0 � ‖xxx‖
}

= L n
π
4
.

All recent papers on the circular cone (see for example [5,6,3,7]) have treated this
cone as a non-symmetric cone. In this paper, we study and analyze the circular cone
(1) as a symmetric cone in the real vector space R

n . We also establish a new spectral
decomposition associated with the circular cone. We will see that this new spectral
decomposition is much more efficient than the spectral decomposition established by
Zhou and Chen in [5]. We use this new spectral decomposition to form the Euclidean
Jordan algebra associated with the circular cone under a certain inner product. We also
show that the cone of squares of this Euclidean Jordan algebra is indeed the circular
cone itself. Some important algebraic properties of the Euclidean Jordan algebra as-
sociated with the second-order cone are generalized to the Euclidean Jordan algebra
associated with the circular cone.

This paper is organized as follows: In Section 2, we review the definition of sym-
metric cones and give the necessary foundation from the theory of Euclidean Jordan
algebra that is needed for our subsequent development. Section 3 views the circular
cone (1) is a symmetric cone. In Section 4, we establish a new spectral decomposition
associated with the circular cone that successfully (unlike the spectral decomposition
established in [5]) allows us to set up its Jordan algebra. In Section 5, we show that
the Jordan algebra established in Section 4 forms a Euclidean Jordan algebra, we then
show that the cone of squares of this Euclidean Jordan algebra is the circular cone. In
Section 6, we generalize important properties of the theory of Euclidean Jordan algebra
associated with the second-order cones to the theory of Euclidean Jordan algebra asso-
ciated with the circular cones. Section 7 contains some concluding remarks and future
work.

2. Background and fundamentals

As we mentioned earlier, we review in this section the definition of a symmetric
cone and some notions from the theory of the Jordan algebras. The text of Faraut and
Korányi [8] covers the foundations of this theory.

2.1. Symmetric cones

A cone is said to be closed iff it is closed under the taking of sequential limits, con-
vex iff it is closed under taking convex combinations, pointed iff it does not contain two
opposite nonzero vectors (so the origin is an extreme point), solid iff it has a nonempty
interior, and regular iff it is a closed, convex, pointed, solid cone. Clearly, the circular
cone is regular.

Let V be a finite-dimensional Euclidean vector space over R with inner product
“•”. A regular K ⊂ V is said to be self-dual if it coincides with its dual cone K ∗ ,
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i.e.,
K = K ∗ := {sss ∈ V : xxx• sss � 0, ∀xxx ∈ K }.

By GL(n,R) we mean the general linear group of degree n over R (i.e., the set of
n× n invertible matrices with entries from R , together with the operation of ordinary
matrix multiplication). For a regular cone K ⊂ V , we denote by Int(K ) the interior
of K , by Bd(K ) the boundary of K and by Aut(K ) the automorphism group of
K , i.e., Aut(K ) := {ϕ ∈ GL(n,R) : ϕ(K ) = K } .

DEFINITION 1. Let V be a finite-dimensional real Euclidean space. A regular
K ⊂ V is said to be homogeneous if for each uuu,vvv ∈ Int(K ) , there exists an invertible
linear map F : V −→ V such that

1. F(K ) = K , i.e., F is an automorphism of K , and

2. F(uuu) = vvv .

In other words, Aut(K ) acts transitively on the interior of K .

A regular K is said to be symmetric if it is both self-dual and homogeneous.
We end this part by introducing some notations that will be used in the sequel. We

use R to denote the field of real numbers. For each vector xxx ∈ R
n whose first entry

is indexed with 0, we write xxx for the subvector consisting of entries 1 through n− 1
(therefore xxx = (x0;xxx) ∈ R×R

n−1 ), and we let x̂xx = xxx
‖xxx‖ if x̂xx �= 000 and x̂xx be any vector

www∈R
n−1 satisfying ‖www‖= 1 if xxx = 000. We let E n denote the n dimensional real vector

space R×R
n−1 whose elements xxx are indexed with 0.

We define the circular identity matrix and the circular reflection matrix as follows:

Jθ :=
[

1 000T

000 cot2 θ In−1

]
and Rθ :=

[
1 000T

000 −cot2 θ In−1

]
. (3)

Throughout this paper, we will use the circular identity matrix Jθ as a generalization
of the identity matrix In (where In = Jπ

4
), and the circular reflection matrix Rθ as a

generalization of the reflection matrix:

R :=
[

1 000T

000 −In−1

]
= R π

4
. (4)

The circular inner product of the two vectors xxx,yyy ∈ E n is defined as follows (see
also [7]):

xxx• yyy = 〈xxx,yyy〉θ := x0y0 + cot2 θ xxxTyyy = xxxTJθ yyy (5)

Clearly, the circular inner product 〈···, ···〉θ is a generalization of the standard inner prod-
uct 〈···, ···〉 defined as

xxx• yyy = 〈xxx,yyy〉 := xxxTyyy = x0y0 + xxxTyyy = xxxTInyyy. (6)
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2.2. Euclidean Jordan algebras

Our presentation in this section follows that of [9, Section 2].

DEFINITION 2. A finite-dimensional vector space J over R is called an algebra
over R if a bilinear map ◦ : J ×J −→ J exists.

Let xxx be an element in an algebra J , then we define xxx(n) recursively by xxx(n) :=
xxx◦ xxx(n−1) for n � 2.

DEFINITION 3. Let J be a finite-dimensional R algebra with a bilinear product
◦ : J ×J −→ J . Then (J ,◦) is called a Jordan algebra if for all xxx,yyy ∈ J

1. xxx◦ yyy = yyy◦ xxx (commutativity);

2. xxx◦ (xxx(2) ◦ yyy) = xxx(2) ◦ (xxx◦ yyy) (Jordan’s axiom).

The product xxx ◦ yyy between two elements xxx and yyy of a Jordan algebra (J ,◦)
is called the Jordan multiplication between xxx and yyy . A Jordan algebra (J ,◦) has
an identity element if there exists a (necessarily unique) element eee ∈ J such that
xxx◦eee = eee◦xxx = xxx for all xxx ∈J . A Jordan algebra (J ,◦) is not necessarily associative,
that is, xxx◦(yyy◦zzz) = (xxx◦yyy)◦zzz may not hold in general. However, it is power associative,
i.e., xxx(p) ◦ xxx(q) = xxx(p+q) for all integers p,q � 1.

EXAMPLE 1. It can be verified that the space E n with the Jordan multiplication

xxx◦ yyy =
[

xxxTyyy
x0y+ y0x

]
(7)

forms a Jordan algebra with the identity vector

eee :=
[

1
000

]
. (8)

DEFINITION 4. A Jordan algebra J is called Euclidean if there exists an inner
product 〈···, ···〉 on (J ,◦) such that for all xxx,yyy,zzz ∈ J

1. 〈xxx,xxx〉 > 0 ∀ xxx �= 000 (positive definiteness);

2. 〈xxx,yyy〉 = 〈yyy,xxx〉 (symmetry);

3. 〈xxx,yyy◦ zzz〉 = 〈xxx◦ yyy,zzz〉 (associativity).

That is, J admits a positive definite, symmetric, quadratic form which is also asso-
ciative.

EXAMPLE 2. It is easy to verify that the space E n , with the Jordan multiplication
“◦” defined in (7), is a Euclidean Jordan algebra with the standard inner product 〈···, ···〉
defined in (6).
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DEFINITION 5. Let J be a Jordan algebra. Then

1. for xxx ∈J , deg(xxx) := min
{

r > 0 : {eee,xxx,xxx(2), . . . ,xxx(r)} is linearly dependent
}

is

called the degree of xxx ;

2. rank(J ) := maxxxx∈J deg(xxx) is called the rank of J .

A spectral decomposition is a decomposition of xxx into idempotents together with
the eigenvalues. Recall that two elements ccc1,ccc2 ∈ J are said to be orthogonal if
ccc1 ◦ ccc2 = 000. A set of elements of J is orthogonal if all its elements are mutually
orthogonal to each other. An element ccc ∈ J is said to be an idempotent if ccc2 = ccc .
An idempotent is primitive if it is non-zero and cannot be written as a sum of two
(necessarily orthogonal) non-zero idempotents.

DEFINITION 6. Let J be a Jordan algebra. Then a subset {ccc1,ccc2, . . . ,cccr} of J
is called:

1. a complete system of orthogonal idempotents if it is an orthogonal set of idem-
potents where ccc1 + ccc2 + · · ·+ cccr = eee ;

2. a Jordan frame if it is a complete system of orthogonal primitive idempotents.

EXAMPLE 3. Let xxx be a vector in the algebra of the second-order cone Qn , the
space E n , and define

ccc1(xxx) =
1
2

[
1
x̂xx

]
and ccc2(xxx) =

1
2

[
1
−x̂xx

]
.

It is easy to see that the set {ccc1(xxx),ccc2(xxx)} is a Jordan frame in E n .

THEOREM 1. (Spectral decomposition, [8, Theorem 7]) Let J be a Jordan
algebra with rank r . Then for xxx ∈ J there exist real numbers λ1(xxx),λ2(xxx), . . . ,λr(xxx)
(called the eigenvalues of xxx), and a Jordan frame ccc1(xxx),ccc2(xxx), . . . ,cccr(xxx) such that

xxx = λ1(xxx)ccc1(xxx)+ λ2(xxx)ccc2(xxx)+ · · ·+ λr(xxx)cccr(xxx). (9)

SPECTRAL DECOMPOSITION 1. Let xxx be a vector in the algebra of the second-
order cone Qn , the space E n . The spectral decomposition of xxx associated with Qn is
obtained as follows:

xxx = (x0 +‖xxx‖)︸ ︷︷ ︸
λ1(xxx)

(
1
2

)[
1
x̂xx

]
︸ ︷︷ ︸

ccc1(xxx)

+(x0−‖xxx‖)︸ ︷︷ ︸
λ2(xxx)

(
1
2

)[
1
−x̂xx

]
︸ ︷︷ ︸

ccc2(xxx)

. (10)

DEFINITION 7. Let xxx be an element in a rank-r Jordan algebra J with the spec-
tral decomposition given in (9). Then

1. trace(xxx) := λ1(xxx)+ λ2(xxx)+ · · ·+ λr(xxx) is the trace of xxx in J ;
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2. det(xxx) := λ1(xxx)λ2(xxx) · · ·λr(xxx) is the determinant of xxx in J .

EXAMPLE 4. Let xxx be an element in E n with the spectral decomposition given
in (10). Then the eigenvalues of xxx are λ1,2(xxx) = x0±‖xxx‖ . We also have that

trace(xxx) = 2x0, and det(xxx) = x2
0 −‖xxx‖2. (11)

Observe also that λ1(xxx) = λ2(xxx) if and only if xxx = 000, and therefore xxx is a multiple
of the identity. Thus, every xxx ∈ E n −{αeee : α ∈ R} has degree 2. This implies that
rank(E n) = 2, which is independent of the dimension of the underlying vector space.

Now, for xxx ∈ J having the spectral decomposition given in (10), we can define
xxx2 as

xxx2 := (λ1(xxx))2ccc1(xxx)+ (λ2(xxx))2ccc2(xxx)+ · · ·+(λr(xxx))2cccr(xxx).

One can easily see that xxx2 = xxx(2) = xxx ◦ xxx . More generally, xxxp = xxx(p) for any integer
p � 1. We also have the following definition.

DEFINITION 8. Let xxx be an element of a Jordan algebra J with a spectral de-
composition given in (9). If det(xxx) �= 0 (i.e., all λi(xxx) �= 0), then we say that xxx is
invertible. In this case, the inverse of xxx is defined by

xxx−1 :=
1

λ1(xxx)
ccc1(xxx)+

1
λ2(xxx)

ccc2(xxx)+ · · ·+ 1
λr(xxx)

cccr(xxx).

More generally, if f is any real valued continuous function, then it is also possible
to extend the above definition to define f (xxx) as

f (xxx) := f (λ1(xxx))ccc1(xxx)+ f (λ2(xxx))ccc2(xxx)+ · · ·+ f (λr(xxx))cccr(xxx).

EXAMPLE 5. Let xxx be an invertible vector in the algebra E n . One can see that

xxx−1 =
1

det(xxx)

[
x0

−x

]
=

R
det(xxx)

xxx, (12)

where R is the reflection matrix defined in (4).

We now define the cone of squares of a Euclidean Jordan algebra.

DEFINITION 9. If J is a Euclidean Jordan algebra then its cone of squares is the
set

KJ := {xxx2 : xxx ∈ J }.
The following fundamental result gives a one-to-one correspondence between Eu-

clidean Jordan algebras and symmetric cones.

THEOREM 2. (Jordan algebraic characterization of symmetric cones, [8]) A regu-
lar cone K is symmetric iff K = KJ for some Euclidean Jordan algebra J .
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EXAMPLE 6. The cone of squares of (E n,◦) , with “◦” defined in (7), is the
second-order cone Qn .

We now define three well-known maps: two linear maps from J into itself,
namely L(xxx) and Qxxx , and one quadratic map from J ×J into J , namely Qxxx,yyy .
These important maps play a crucial role in the development of the interior point meth-
ods for conic programming.

DEFINITION 10. Let xxx and zzz be elements in a rank-r Jordan algebra J . Then

1. The linear map L(xxx) : J −→ J is defined by

L(xxx)yyy := xxx◦ yyy,

for all yyy ∈ J .

2. The quadratic operator Qxxx,zzz : J ×J −→ J is defined by

Qxxx,zzz := L(xxx)L(zzz)+L(zzz)L(xxx)−L(xxx◦ zzz).

3. The quadratic representation of xxx , Qxxx : J −→ J , is defined by

Qxxx := 2L(xxx)2 −L(xxx2) = Qxxx,xxx.

Note that L(xxx)eee = xxx and L(xxx)xxx = xxx2 . Note also that L(eee) = Qeee = I, trace(eee) =
r, det(eee) = 1 (since all the eigenvalues of eee are equal to one).

EXAMPLE 7. From (7), the explicit formula of the L(···) operator for the algebra
of the second-order cone, the space E n , can be immediately given by

L(xxx) = Arw(xxx) =
[

x0 xT

x x0I

]
. (13)

Here Arw(xxx) is the arrow-shaped matrix associated with the vector xxx ∈ E n . Hence,
quadratic operator for the algebra of the second-order cone is given by

Qxxx,zzz = Arw(xxx)Arw(zzz)+Arw(zzz)Arw(xxx)−Arw(xxx◦ zzz)

=
[

xxxTzzz (x0zT + z0xT)
x0z+ z0x (xzT + zxT)(x0z0 − xTz)In−1

]
.

We can also easily verify that the quadratic representation for the algebra of the second-
order cone is given by

Qxxx = 2Arw2(xxx)−Arw(xxx2) =
[‖xxx‖2 2x0xT

2x0x det(xxx)I +2xxT

]
= 2xxxxxxT−det(xxx)R. (14)
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3. Symmetrization of the circular cone

The circular cone given in (1) can be rewritten as

L n
θ = {xxx ∈ E n : x0 � cotθ‖xxx‖},

and the circular cone given in (2) can be rewritten as

L n
π
2 −θ = {xxx ∈ E n : x0 � tanθ‖xxx‖}.

It can be shown that, under the standard inner product 〈···, ···〉 defined in (6), the
dual of the circular cone L n

θ is the circular cone L n
π
2 −θ . In fact, in our subsequent

development, we will see that the inner product that should be considered in dealing
with the algebraic and analytic operations associated with the circular cones is indeed
the circular inner product 〈···, ···〉θ defined in (5) and not the standard inner product 〈···, ···〉 .
In this part, we prove that the circular cone, with the circular inner product 〈···, ···〉θ , is
self-dual and homogeneous, and hence symmetric.

LEMMA 1. (See also [7, Section 1]) The circular cone L n
θ is self-dual.

Proof. First, we show that L n
θ ⊆ L n�

θ . Let xxx = (x0;xxx) ∈ L n
θ , we show that

xxx ∈ L n�
θ by verifying that 〈xxx,yyy〉θ � 0 for any yyy ∈ L n

θ . So let yyy = (y0;yyy) ∈ L n
θ . Then

〈xxx,yyy〉θ = x0 y0 + cot2 θxxxTyyy � cot2 θ (‖xxx‖‖yyy‖+ xxxTyyy) � cot2 θ (|xxxTyyy|+ xxxTyyy) � 0,

where the first inequality follows from the fact that xxx,yyy ∈ L n
θ , and the second follows

from Hölder’s inequality. Thus, L n
θ ⊆ L n�

θ .
Now, we prove that L n�

θ ⊆ L n
θ . Let yyy = (y0;yyy) ∈ L n�

θ , and consider xxx :=
(cotθ‖yyy‖;−yyy) ∈ L n

θ . Then we obtain

0 � 〈xxx,yyy〉θ = cotθ y0‖yyy‖− cot2 θ yyyTyyy = cotθ y0‖yyy‖− cot2 θ ‖yyy‖2

= ‖yyy‖cotθ (y0− cotθ ‖yyy‖).

This implies that y0 � cotθ‖yyy‖ . Hence, yyy ∈ L n
θ . This demonstrates that L n

θ is self
dual. The proof is complete. �

LEMMA 2. The circular cone L n
θ is homogeneous.

Proof. Note that the circular cone L n
θ can be rewritten as

L n
θ = {xxx ∈ E n : xxxTRθ xxx � 0},

where Rθ is the circular reflection matrix defined in (3). Define

Gθ := {M ∈ R
n×n : MTRθ M = Rθ}.
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It is not hard to prove that Gθ is a group. Observe that each element of the group
Gθ maps L n

θ onto itself (because, for every M ∈ Gθ , we have that (Mxxx)TRθ (Mxxx) =
xxxTRθ xxx), and so does the direct product Hθ := [0,1]×Gθ . It now remains to show that
the group Hθ acts transitively on the interior of L n

θ . To do so, it is enough to show
that, for any xxx ∈ Int(L n

θ ) , there exists an element in Hθ that maps eee to xxx .

Since xxxTRθ xxx > 0, we may write xxx as xxx = λ cot2 θyyy with λ =
√

xxxTRθ xxx and yyy ∈
E n . Moreover, by [10, Theorem 3.20], there exists a reflector matrix P (accordingly,
P2 = In−1 ) such that

P

[
000
r

]
= cotθyyy,

with |r| = cotθ‖yyy‖ . We then have

y2
0 − r2 = y2

0− cot2 θ‖yyy‖2 = yyyTJθ yyy =
1

λ 2 xxxTJθ xxx = 1.

Therefore, there exists t � 0 such that y0 = cosht and r = sinh t. Now, we define

P̂ :=
[

1 000T

000 P

]
and Ht(θ ) :=

⎡
⎣ cot2 θ cosh t 000T cotθ sinht

000 In−2 000
cotθ sinht 000T cosh t

⎤
⎦ .

Since P̂,Ht(θ ) ∈ Gθ , we have that P̂Ht(θ ) ∈ Gθ , and therefore λ P̂Ht(θ ) ∈ Hθ . The
result follows by observing that

λ P̂Ht(θ )eee = λ cot2 θ yyy = xxx.

Thus, the circular cone L n
θ is homogeneous. The proof is complete. �

COROLLARY 1. The circular cone L n
θ is a symmetric cone.

Corollary 1 means that, in view of Theorem 2, the circular cone L n
θ is the cone

of squares of some Euclidean Jordan algebra. In the next section, we study the Jordan
algebraic structure of the circular cone in order to be able to form such a Euclidean
Jordan algebra. We show Corollary 1 by proving the following two lemmas.

4. A new spectral decomposition associated with the circular cone

In this section, we at first use the spectral decomposition established by Zhou and
Chen in [5] to study the algebraic structure of the circular cones (1) in order to be able
to possibly establish a Jordan multiplication “◦” associated with the algebra E n that
generalizes the Jordan multiplication given in (7). When we succeed, we will use this
Jordan multiplication to establish the Jordan algebra associated with the circular cone.

The following spectral decomposition is previously established by Zhou and Chen
[5]. It can be viewed as a generalization of Spectral Decomposition 1 associated with
Qn given in (10).
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SPECTRAL DECOMPOSITION 2. Let xxx be a vector in the algebra of the circular
cone L n

θ , the space E n . A spectral decomposition of xxx can be obtained as follows:

xxx = (x0 + tanθ‖xxx‖)︸ ︷︷ ︸
λ1(xxx)

[
cos2 θ

(sinθ cosθ )x̂xx

]
︸ ︷︷ ︸

ccc1(xxx)

+(x0 − cotθ‖xxx‖)︸ ︷︷ ︸
λ2(xxx)

[
sin2 θ

−(sinθ cosθ )x̂xx

]
︸ ︷︷ ︸

ccc2(xxx)

.

Under Spectral Decomposition 2, we can generalize the notions and concepts given in
the examples of Section 2. For instance

trace(xxx) = 2x0 +(tanθ − cotθ )‖xxx‖,
det(xxx) = x2

0 +(tanθ − cotθ )x0‖xxx‖−‖xxx‖2.
(15)

Clearly the definitions of trace(xxx) and det(xxx) in (15) generalize the definitions of
trace(xxx) and det(xxx) given in (11). We have ccc1 + ccc2 = eee (the identity vector defined
in (8)), trace(eee) = 2 and det(eee) = 1. We also have

〈ccc1,ccc2〉 = 0 (orthogonality with respect to the standard inner product),
ccc1 ∈ Bd(L n

θ ), while ccc2 ∈ L n
θ ⇐⇒ θ ∈ [π

4 , π
2 ),

λ1(ccc1) = 1, λ2(ccc1) = 0, while λ1(ccc2) = 2sin2 θ , and λ2(ccc2) = sin2 θ − cos2 θ ,

ccc1 = Sθ ccc2, and ccc2 = S−1
θ ccc1,

where Sθ is the matrix defined by

Sθ :=
[

cot2 θ 000T

000 −In−1

]
.

Observe that

xxx−1 =
1

λ1(xxx)
ccc1(xxx)+

1
λ2(xxx)

ccc2(xxx)

=
1

x0 +‖xxx‖ tanθ

[
cos2 θ

(sinθ cosθ )x̂xx

]
+

1
x0 −‖xxx‖cotθ

[
sin2 θ

−(sinθ cosθ )x̂xx

]

=

⎡
⎢⎢⎣

cos2 θ
x0 +‖xxx‖ tanθ

+
sin2 θ

x0−‖xxx‖cotθ
(sinθ cosθ )x̂xx
x0 +‖xxx‖ tanθ

+
−(sinθ cosθ )x̂xx
x0−‖xxx‖cotθ

⎤
⎥⎥⎦

=
1

(x0 +‖xxx‖ tanθ )(x0 −‖xxx‖cotθ )

[
x0 +‖xxx‖(tanθ − cotθ )

−xxx

]

=
1

λ1(xxx)λ2(xxx)

[
λ1(xxx)+ λ2(xxx)− x0

−xxx

]
.

Thus, the definition of the inverse of xxx is given by

xxx−1 =
1

det(xxx)

[
trace(xxx)− x0

−xxx

]
,
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which generalizes the definition of xxx−1 given in (12).
The arrow-shaped matrix Arw(xxx) associated with xxx in the algebra of L n

θ , which
is obtained by applying

Arw(xxx)xxx = xxx2 = (λ1(xxx))2ccc1(xxx)+ (λ2(xxx))2ccc2(xxx)

=
[

xxxTxxx
2x0xxx+(tanθ − cotθ )‖xxx‖xxx

]
=

[
x2
0 + xxxTxxx

trace(xxx)xxx

]
,

is the matrix

Arw(xxx) =
[

x0 xxxT

xxx (trace(xxx)− x0)In−1

]
, (16)

Clearly, the definition of the arrow-shaped matrix (16) associated with L n
θ generalizes

the definition of the arrow-shaped matrix (13) associated with Qn .
Now, we give our own definition of an important notion associated with the algebra

of the circular cones, namely the binary operation “ ◦ ” which generalizes the binary
operation associated with the algebra of the second-order cone Qn defined in (7).

DEFINITION 11. The Jordan multiplication xxx◦yyy between two vectors xxx and yyy in
the algebra of the circular cone, the space E n , is defined by

xxx◦ yyy :=
1
2
(Arw(xxx)yyy+Arw(yyy)xxx).

Using Definition 11 and the arrow-shaped matrix defined in (16) we conclude that,
under Spectral Decomposition 2, the binary operation “◦” between two vectors xxx and
yyy is given by

xxx◦ yyy =
1
2

[
2xxxTyyy

trace(xxx)yyy+ trace(yyy)xxx

]
, (17)

which generalizes the Jordan multiplication (7) associated with Qn .
The identity vector is eee = ccc1(xxx)+ccc2(xxx) , which is the same identity vector defined

in (8). Observe that trace(eee) = 2,det(eee) = 1 (since all the eigenvalues of eee are equal
to one), Arw(eee) = In , Arw(xxx)eee = xxx , and Arw(xxx)xxx = xxx2 . One can easily see that

xxx◦ yyy = yyy◦ xxx (commutativity),
xxx◦ eee = xxx,
xxx2 = xxx(2) = xxx◦ xxx,
xxx◦ xxx−1 = eee.

The Spectral Decomposition 2 has some unfavorable features making it difficult
to use. For instance, the property that xxx(2) = xxx2 (that is, xxx ◦ xxx = (λ1(xxx))2ccc1(xxx) +
(λ2(xxx))2ccc2(xxx)) cannot be generalized. So, xxxp = xxx(p) is not true for integer p > 2.
For instance, simple but long and straightforward computations show that

xxx3 = (λ1(xxx))3ccc1(xxx)+ (λ2(xxx))3ccc2(xxx)

=
[

x3
0 +3x0‖xxx‖2 +(tanθ − cotθ )‖xxx‖3

3x2
0xxx+3(tanθ − cotθ )x0‖xxx‖xxx+(tan3 θ + cot3 θ )cosθ sinθ‖xxx‖2xxx

]
,
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while

xxx(3) = xxx◦ xxx2

=
[

x3
0 +3x0‖xxx‖2 +(tanθ − cotθ )‖xxx‖3

3x2
0xxx+3(tanθ − cotθ )x0‖xxx‖xxx+ tan2 θ‖xxx‖2xxx

]
.

The equality xxxp = xxx(p) holds only when θ = π
4 . In fact xxx(p) ◦xxx(q) �= xxx(p+q) for integers

p,q > 1, and hence the algebra (E n,◦) is not power associative when Spectral Decom-
position 2 and the operation “◦” defined in (17) are used. Furthermore, Jordan’s axiom
xxx◦ (xxx(2) ◦ yyy) = xxx(2) ◦ (xxx◦ yyy) is not satisfied when the definition of “◦” in (17) is used.
So, we conclude the following corollary.

COROLLARY 2. Under Spectral Decomposition 2, the algebra (E n,◦) is not a
Jordan algebra.

Corollaries 2 motivates us to develop and find out another spectral decomposition
in E n that makes (E n,◦) a Jordan algebra. Observe that, under Spectral Decomposition
2, we have

ccc2
1 = ccc1, but ccc2

2 �= ccc2, and ccc1 ◦ ccc2 �= 000.

This means that ccc2 is not idempotent and the vectors ccc1 and ccc2 are not orthogonal.
Therefore, the set {ccc1,ccc2} is not a Jordan frame. So, we are looking for a spectral
decomposition in which the set {ccc1,ccc2} is a Jordan frame, that is

ccc2
1 = ccc1,ccc

2
2 = ccc2,ccc1 ◦ ccc2 = 000, and ccc1 + ccc2 = eee,

and the distributive law holds as well. Under such a spectral decomposition, we can use
the induction to prove that xxx(p) = xxxp for any nonnegative integer p as follows [1]: The
assertion is clearly true for p = 0 (xxx(0) = eee = ccc1 + ccc2 = xxx0 ). Now, we assume that the
assertion is true for k (i.e., xxx(k) = xxxk ), then we have

xxx(k+1)

= xxx◦ xxx(k)

= xxx◦ xxxk

= (λ1(xxx)ccc1(xxx)+ λ2(xxx)ccc2(xxx))◦
(
λ k

1 (xxx)ccc1(xxx)+ λ k
2 (xxx)ccc2(xxx)

)
= λ k+1

1 (xxx)ccc2
1(xxx)+λ k+1

2 (xxx)ccc2
2(xxx)+λ1(xxx)λ k

2 (xxx)ccc1(xxx)◦ ccc2(xxx)+λ k
1 (xxx)λ2(xxx)ccc2(xxx)◦ ccc1(xxx)

= λ k+1
1 (xxx)ccc2

1(xxx)+ λ k+1
2 (xxx)ccc2

2(xxx)
= xxxk+1.

Similarly, we can prove that xxx(p) ◦ xxx(q) = xxx(p+q) for nonnegative integers, which means
that the algebra (E n,◦) would be power associative.

We are ready to introduce a new efficient spectral decompositions in E n associated
with the circular cone, which can also be viewed as another generalization of Spectral
Decomposition 1 associated with Qn given in (10). This new spectral decomposition is
previously unseen and is non-redundant and different, in terms of its characteristics and
efficiency, from Spectral Decomposition 2. Under this spectral decomposition, we will
see that the set {ccc1,ccc2} is a Jordan frame and (E n,◦) is not only a Jordan algebra (in
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which the distributive law and the power associativity law hold), but also a Euclidean
Jordan algebra. Therefore, this new spectral decomposition in E n is expected to be
the successful for underlying the analysis of the interior point methods for circular
programming that extends the analysis of the interior point methods for second-order
cone programming.

SPECTRAL DECOMPOSITION 3. Let xxx be a vector in the algebra of the circu-
lar cone L n

θ , the space E n . The circular spectral decomposition of xxx is obtained as
follows:

xxx = (x0 + cotθ‖xxx‖)︸ ︷︷ ︸
λ1(xxx)

(
1
2

)[
1

tanθ x̂xx

]
︸ ︷︷ ︸

ccc1(xxx)

+(x0− cotθ‖xxx‖)︸ ︷︷ ︸
λ2(xxx)

(
1
2

)[
1

− tanθ x̂xx

]
︸ ︷︷ ︸

ccc2(xxx)

.

Under Spectral Decomposition 3, we have

trace(xxx) = 2x0, and det(xxx) = x2
0 − cot2 θ‖xxx‖2. (18)

Note that the definition of trace(xxx) in (18) is exactly the definition of trace(xxx) given
in (11), and the definition of det(xxx) in (18) generalizes the definition of det(xxx) given
in (11). We have ccc1 + ccc2 = eee (the identity vector defined in (8)), trace(eee) = 2 and
det(eee) = 1. We also have

〈ccc1,ccc2〉θ = 0 (orthogonality with respect to the circular inner product),
ccc1,ccc2 ∈ Bd(L n

θ ),
λ1(ccc1) = λ1(ccc2) = 1, and λ2(ccc1) = λ2(ccc2) = 0,
ccc1 = Rccc2, and ccc2 = Rccc1,

where R is the reflection matrix defined in (4).
With a little calculation, we obtain

xxx−1 =
1

λ1(xxx)
ccc1(xxx)+

1
λ2(xxx)

ccc2(xxx) =
1

det(xxx)

[
x0

−xxx

]
=

R
det(xxx)

xxx, (19)

which is exactly the definition of xxx−1 given in (12) associated with Qn .
The arrow-shaped matrix Arw(xxx) associated with xxx in the algebra of L n

θ , which
is obtained by applying Arw(xxx)xxx = xxx2 = (λ1(xxx))2ccc1(xxx)+ (λ2(xxx))2ccc2(xxx) , is the matrix

Arw(xxx) =
[

x0 cot2 θ xxxT

xxx x0In−1

]
, (20)

Note that the definition of the arrow-shapedmatrix (20) associated with L n
θ generalizes

the definition of the arrow-shaped matrix (14) associated with Qn . Note also that
xxx ∈ L n

θ if and only if the matrix Arw(xxx) is positive semidefinite. Therefore, circular
programming is a special case of semidefinite programming [2] and it includes second-
order cone programming as a special case.
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Using Definition 11 and the arrow-shaped matrix defined in (20) we conclude that,
under Spectral Decomposition 3, the Jordan multiplication between two vectors xxx and
yyy is given by

xxx◦ yyy =
[

x0y0 + cot2 θ xxxTyyy
x0yyy+ y0xxx

]
=

[
xxxTJθ yyy

x0yyy+ y0xxx

]
, (21)

where Jθ is the circular identity matrix defined in (3). This generalizes the Jordan
multiplication (7) associated with Qn .

Observe that ccc2
1 = ccc1,ccc2

2 = ccc2,ccc1◦ccc2 = 000,Arw(eee)= In,Arw(xxx)eee= xxx , and Arw(xxx)xxx =
xxx2 . One can easily see that

xxx◦ eee = xxx,
xxx◦ xxx−1 = eee,
xxxp = xxx(p) for any nonnegative integer p,

xxx(p) ◦ xxx(q) = xxx(p+q) for any nonnegative integer p,q � 1.

So, under Spectral Decomposition 3, the algebra (E n,◦) is power associative. In fact,
we can also see that

xxx◦ yyy = yyy◦ xxx (commutativity),
xxx◦ (xxx2 ◦ yyy) = xxx2 ◦ (xxx◦ yyy) (Jordan’s axiom).

Therefore, we conclude the following corollary.

COROLLARY 3. Under Spectral Decomposition 3, the algebra (E n,◦) is a Jordan
algebra.

We end this section with some inequalities associated with the circular cones and
second-order cone. Under Spectral Decomposition 1 in E n (that is, in the framework
of second-order cone), Chen [11] established the following inequalities and equalities:
For xxx,yyy ∈ Qn , we have

(1) det(eee+ xxx)1/2 � 1+det(xxx) ;

(2) det(xxx+ yyy) � det(xxx)+det(yyy) ;

(3) det(αxxx+(1−α)yyy) � α2 det(xxx)+ (1−α)2det(yyy),∀α ∈ [0,1] ;

(4) det(eee+ xxx+ yyy) � det(eee+ xxx)det(eee+ yyy) ;

(5) If xxx− yyy ∈ Qn , then det(xxx) � det(yyy) , trace(xxx) � trace(yyy) , and λi(xxx) � λi(yyy) for
i = 1,2;

(6) trace(xxx+ yyy) = trace(xxx)+ trace(yyy) and det(γxxx) = γ2 det(xxx) for all γ ∈ R .

For xxx,yyy ∈ L n
θ having Spectral Decomposition 2 in E n , the authors in [6, Section

3] proved that the only inequality holds (independent of the angle θ ) is inequality (1).
They also showed inequalities (2)-(5) hold dependent on the angle θ , and inequality
(6) fails no matter what value of the angle is chosen.
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For xxx,yyy ∈ L n
θ having Spectral Decomposition 3 in E n , we can prove that all

the inequalities (1)-(6) hold (independent of the angle θ ). We omit the proof of these
results since it is a simple extension from that in the framework of second-order cone
in [11].

5. Forming a Euclidean Jordan algebra of the circular cone

In Section 4, we have seen that Spectral Decomposition 3 is the successful spectral
decomposition in E n used to establish a Jordan algebra from its corresponding Jordan
multiplication, and therefore it is expected to be the most powerful spectral decompo-
sition used to carry out the analysis on circular cones. From now on, we work under
Spectral Decomposition 3 and its corresponding Jordan multiplication “◦” defined in
(21).

Note that the inner product considered with the algebraic and analytic operations
associated to the second-order cone Qn is the standard inner product 〈···, ···〉 , for which
using (7) we have

xxx• yyy =
1
2

trace(xxx◦ yyy) = xxxTyyy = 〈xxx,yyy〉.
Likewise, it is more convenient to define the inner product that should be considered
with the algebraic and analytic operations associated to the circular cone L n

θ by the
circular inner product 〈···, ···〉θ , as using (21) we have

xxx• yyy =
1
2

trace(xxx◦ yyy) = xxxTJθ yyy = 〈xxx,yyy〉θ .

We have the following theorem.

THEOREM 3. The Jordan algebra (E n,◦) is a Euclidean Jordan algebra with the
circular inner product 〈···, ···〉θ defined in (5).

Proof. Consider the circular inner product 〈xxx,yyy〉θ = xxxTJθ yyy = x0y0 + cot2 θ xxxTyyy .
It is straightforward to show that 〈xxx,xxx〉θ > 0 for all xxx �= 000, 〈xxx,yyy〉θ = 〈yyy,xxx〉θ for all
xxx,yyy ∈ E n , and that 〈xxx,yyy◦ zzz〉θ = 〈xxx◦ yyy,zzz〉θ for all xxx,yyy,zzz ∈ E n . Therefore, the circular
inner product 〈···, ···〉θ is positive definite, symmetric and associative. Thus, according to
Definition 4, the Jordan algebra (E n,◦) is Euclidean. The proof is complete. �

Being Euclidean, Theorem 2 tells us that another way to prove Corollary 1 is
proving the following important theorem which characterizes the circular cone.

THEOREM 4. The cone of squares of the Euclidean Jordan algebra (E n,◦) is the
circular cone L n

θ .

Proof. We need to show that L n
θ = K n

θ where K n
θ is the cone of squares:

K n
θ := {xxx2 : xxx ∈ E n} =

{[
x2
0 + cot2 θ ‖xxx‖2

2x0xxx

]
: xxx ∈ E n

}
.
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Let xxx ∈ K n
θ , then there exists yyy ∈ E n such that

xxx =
[

y2
0 + cot2 θ ‖yyy‖2

2y0yyy

]
.

It follows that

x0 = y2
0 + cot2 θ ‖yyy‖2 � 2cotθ y0‖yyy‖ = cotθ ‖xxx‖,

where the inequality follows by observing that (y0 − cotθ‖yyy‖)2 � 0. This means that
xxx ∈ L n

θ and hence K n
θ ⊆ L n

θ .
Now, we prove that L n

θ ⊆ K n
θ . Let xxx ∈ L n

θ . We need xxx = yyy2 for some yyy ∈ E n .
Equivalently, we need to show that the system of n equations

x0 = y2
0 + cot2 θ ‖yyy‖2,

xi = 2y0yi; i = 1,2, . . . ,n−1,
(22)

has at least one real solution.
Assuming at first that y0 �= 0, then we have yi =

xi

2y0
. Substituting yi in the 0th

equation of (22) we get the following quartic equation

4y4
0−4x0y

2
0 + cot2 θ‖xxx‖2 = 0.

This equation has up to four solutions, namely

y0 = ±

√√√√x0±
√

x2
0− cot2 θ‖xxx‖2

2
.

Since x0 � cotθ‖xxx‖ , all these four solutions are real. Note that elements xxx ∈ Bd(L n
θ )

(where x0 = cotθ‖xxx‖ ) have only two square roots, one of which is in Bd(L n
θ ) . Ele-

ments xxx ∈ Int(L n
θ ) have four square roots, except for multiples of the identity (wher-

ever xxx = 000). In such a case if y0 = 0, then yi can be arbitrarily chosen, as long as
‖yyy‖ = tanθ which gives xxx = eee . The identity has infinitely many square roots (assum-
ing n > 2) for which two of them are ±eee , and all others are of the form (0;qqq) with
‖qqq‖ = tanθ . Thus, every xxx ∈ L n

θ has a unique square root in L n
θ . This completes the

proof. �
The following definition extends the definitions in Example 7.

DEFINITION 12. Consider the Euclidean Jordan algebra (E n,◦) , we have the fol-
lowing:

1. The linear map L : E n −→ E n associated with the circular cone L n
θ is given by

L(xxx) = Arw(xxx) =
[

x0 cot2 θ xxxT

xxx x0In−1

]
.
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2. The quadratic map Qxxx,zzz : E n ×E n −→ E n associated with the circular cone L n
θ

is given by

Qxxx,zzz = Arw(xxx)Arw(zzz)+Arw(zzz)Arw(xxx)−Arw(xxx◦ zzz)

=
[

x0z0 + cot2 θxxxTzzz cot2 θ (x0zT + z0xT)
x0z+ z0x x0z0In−1 + cot2 θ (xzT + zxT − xTzIn−1)

]
.

(23)

3. The linear map Qxxx : E n −→ E n associated with the circular cone L n
θ is given by

Qxxx = 2Arw2(xxx)−Arw(xxx2)

=
[

x2
0 + cot2 θ‖xxx‖2 2cot2 θx0xT

2x0x det(xxx)In−1 +2cot2 θxxT

]
.

(24)

Note that Arw(xxx)eee = xxx,Arw(xxx)xxx = xxx2,Qxxxeee = xxx2,Qxxxxxx−1 = xxx , and Arw(eee) = Qeee =
In .

The new spectral decomposition established in this paper allows us to generalize
many crucial theorems of the theory of Euclidean Jordan algebra of the second-order
cone to the theory of Euclidean Jordan algebra of the circular cones. It also allows
to compute explicit formulas for the derivatives of important expressions such as the
gradient ∇xxx(lndet(xxx)) and the Hessian ∇2

xxxxxx(lndet(xxx)) . This is the substance of the
next section.

6. Some algebraic properties of the circular cone

In this section, we generalize some results associated with the algebra of the
second-order cone to the algebra of the circular cone. These results are important
for developing interior point algorithms for circular programming. We start with the
following lemma where its second item generalizes item 8 of [1, Theorem 8].

LEMMA 3. Let xxx,yyy ∈ E n . Then

1. Qxxx = 2xxxxxxTJθ −det(xxx)R.

2. det(Qxxxyyy) = det2(xxx)det(yyy) .

Proof. It is not hard to prove item 1. To prove item 2, let zzz = Qxxxyyy,α = xxxTJθ yyy and
γ = det(xxx) . From item 1, we have zzz = 2αxxx− γRyyy. Accordingly, we get

z2
0 = (2αx0− γy0)2 = 4α2x2

0 −4αγx0y0 + γ2y2
0,

and

‖zzz‖2 = ‖2αxxx+ γyyy‖2 = 4α2‖xxx‖2 +4αγxxxTyyy+ γ2‖yyy‖2.
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It follows that

det(Qxxxyyy) = det(zzz)

= z2
0 − cot2 θ‖zzz‖2

= 4α2x2
0−4αγx0y0 + γ2y2

0− cot2 θ (4α2‖xxx‖2 +4αγxxxTyyy+ γ2‖yyy‖2)

= 4α2(x2
0− cot2 θ‖xxx‖2)−4αγ(x0y0 + cot2 θxxxTyyy)+ γ2(y2

0− cot2 θ‖yyy‖2)

= 4α2γ −4α2γ + γ2 det(yyy)

= det2(xxx)det(yyy). �

The following theorem will play an important role in the development of the
primal-dual interior point methods for the circular programming (see for example [9,
Section 3]). This theorem generalizes [1, Theorem 9].

THEOREM 5. Let ppp ∈ E n be invertible. Then Qppp(L n
θ ) = L n

θ .

Proof. We first prove that Qppp(L n
θ )⊆L n

θ . Let xxx∈L n
θ and yyy = Qpppxxx . By Lemma

3, we have det(yyy) � 0. Therefore, either yyy∈L n
θ or yyy∈−L n

θ . That is, either λ1,2(yyy) �
0 or λ1,2(yyy) � 0. Note that 2y0 = trace(yyy) = λ1(yyy)+ λ2(yyy) . So, to show that yyy ∈ L n

θ
(equivalently, λ1,2(yyy) � 0), it suffices to show that y0 � 0. By using the fact that
x0 � cotθ‖xxx‖ , and then applying the Cauchy-Schwarz inequality to |pppTxxx| we get

y0 = 2(p0x0 + cot2 θ pppTxxx)p0 − (p2
0− cot2 θ‖ppp‖2)x0

= p2
0x0 + cot2 θ‖ppp‖2x0 + cot2 θ p0(pppTxxx)

= x0(p2
0 + cot2 θ‖ppp‖2)+ cot2 θ p0(pppTxxx)

� cotθ‖xxx‖(p2
0 + cot2 θ‖ppp‖2)+ cotθ 2p0(pppTxxx)

� cotθ‖xxx‖(p2
0 + cot2 θ‖ppp‖2)− cot2 θ |p0|‖ppp‖‖xxx‖

= cotθ‖xxx‖(p0 + cotθ‖ppp‖)2

� 0.

Thus Qppp(L n
θ )⊆L n

θ . Also ppp−1 is invertible, therefore Qppp−1xxx∈L n
θ for each xxx∈L n

θ .
It follows that for every xxx ∈ L n

θ , since xxx = QpppQppp−1xxx , xxx is the image of Qppp−1xxx ; that is
L n

θ ⊆ Qppp(L n
θ ) . The result is established. �

We end this section with the following results which are key ingredients in de-
signing barrier and penalty algorithms for circular programming. The first two items
in following theorem generalize item 6 of [1, Theorem 8], and the last item generalizes
the same result in [8, Chapter 10] but our setting is much more general.

THEOREM 6. Let xxx,uuu ∈ E n . Then

1. The gradient ∇xxx lndetxxx = 2Jθ xxx−1 , provided that det(xxx) is positive (so xxx is in-
vertible).
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2. The Hessian ∇2
xxxxxx lndetxxx = −2JθQxxx−1 . Hence the gradient ∇xxxxxx−1 = −Qxxx−1 ,

provided that xxx is invertible.

3. The gradient ∇xxxQxxx[uuu] = 2 Qxxx,uuu .

Proof. To prove item 1, we let

f (xxx) = lndet(xxx) = ln(λ1(xxx)λ2(xxx)) = ln
(
x2
0 − cot2 θ‖xxx‖2) .

Since det(xxx) is positive, we have

∇xxx f (xxx) =
1

det(xxx)

[
2x0

−2cot2 θ xxx

]

=
2

det(xxx)

⎡
⎣ 1 000T

000 cot2 θ In−1

⎤
⎦[

x0

−xxx

]

= 2Jθ xxx−1,

where the last equality follows from (19). The result in item 1 is established. To prove
item 2, we let

ggg(xxx) = xxx−1 =
1

det(xxx)

[
x0

−xxx

]
=

⎡
⎢⎣

x0

x2
0− cot2 θ |xxx‖2

−1

x2
0− cot2 θ |xxx‖2

xxx

⎤
⎥⎦ .

Then, we have

∇xxxggg(xxx) =
1

(det(xxx))2

[−x2
0− cot2 θ cot2 θ x0xxx
2x0xxx −(

det(xxx)In−1 + cot2 θ xxxxxxT
) ]

= −Qxxx−1 ,

where the last equality follows from the definition of Q··· in (24) applied on xxx−1 . The
result in item 2 is established. To prove item 3, we let

hhh(xxx,uuu) = Qxxx[uuu]

=
[

x2
0 + cot2 θ ‖xxx‖2 2cot2 θ x0xT

2x0x det(xxx)In−1 +2cot2 θ xxT

][
u0

u

]

=
[

x2
0u0 + cot2 θ ‖xxx‖2u0 +2cot2 θ x0xTu
2x0u0x+det(xxx)u+2cot2 θ xxTu

]
.

Then,

∇xxxhhh(xxx,uuu) =
[

x0u0 + cot2 θxxxTuuu cot2 θ (x0uT +u0xT)
x0u+u0x x0u0In−1 + cot2 θ (xuT +uxT− xTuIn−1)

]
= 2 Qxxx,uuu,

where the last equality follows from the definition of Q···,··· in (23). This establishes the
result in item 3. The proof is complete. �
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7. Conclusions

In this paper, we have considered the circular inner product for the circular case,
have established its new efficient spectral decomposition (Spectral Decomposition 3)
associated with the circular cone, have set up the corresponding Jordan algebra, and
have formed the Euclidean Jordan algebra associated with this cone. We have also
generalized many important properties of the Euclidean Jordan algebra associated with
the second-order cone to the Euclidean Jordan algebra associated with circular cone.

By looking at all known symmetric cones and their corresponding inner products,
we see that each symmetric cone must be associated with a certain inner product that
forms its Euclidean Jordan algebra and re-builds this symmetric cone as the cone of
squares of resulting Euclidean Jordan algebra. For instance: For the nonnegative orthant
cone in the algebra (R,◦) , the scalar inner product x • y = xy is considered between
real numbers x and y . For the second-order cone in the algebra (E n,◦) , the standard
inner product xxx• yyy = xxxTyyy is considered between two vectors xxx and yyy . For the cone of
positive semidefinite matrices in the algebra of real symmetric matrices, the Frobenius
inner product X •Y = trace(XTY ) is considered between real symmetric matrices X
and Y . Similarly, the circular cone in the algebra (E n,◦,θ ) , the circular inner product
xxx • yyy = xxxTJθ yyy must be considered between two vectors xxx and yyy . Note that all these
inner product are unified as (see [9]) xxx • yyy = 1

2 trace(xxx ◦ yyy) , where xxx and yyy are two
elements in the corresponding Jordan algebra (J ,◦) .

In [7, Section 1], the authors treated the circular cone as a non-symmetric cone by
adopting the standard inner product in their work in order to be able to exploit many
results of the Euclidean Jordan algebra of the second-order cones, which are previously
developed in the literature. This paper views the circular cone as a new paradigm of
symmetric cones by adopting the circular inner product. As a consequence, the partic-
ular Euclidean Jordan algebra associated with the circular cone has been independently
developed in this work.

We believe that the results of this paper are crucial in designing and analyzing
interior-point algorithms for all circular programming problems. Our current research
is using the new spectral decomposition and the machinery of Euclidean Jordan algebra
associated with the circular cone (1) established in this paper to develop primal-dual
path following interior point algorithms for the circular programming problems.
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