## WEAKLY CLOSED LIE MODULES OF NEST ALGEBRAS

LINA OLIVEIRA AND MIGUEL SANTOS

(Communicated by N.-C. Wong)

Abstract. Let  $\mathscr{T}(\mathscr{N})$  be a nest algebra of operators on Hilbert space and let  $\mathscr{L}$  be a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module. We construct explicitly the largest possible weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule  $\mathscr{J}(\mathscr{L})$  and a weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule  $\mathscr{K}(\mathscr{L})$  such that

 $\mathcal{J}(\mathcal{L}) \subseteq \mathcal{L} \subseteq \mathcal{K}(\mathcal{L}) + \mathcal{D}_{\mathcal{K}(\mathcal{L})},$ 

 $[\mathscr{K}(\mathscr{L}),\mathscr{T}(\mathscr{N})]\subseteq\mathscr{L}$  and  $\mathscr{D}_{\mathscr{K}(\mathscr{L})}$  is a von Neumann subalgebra of the diagonal  $\mathscr{T}(\mathscr{N})\cap\mathscr{T}(\mathscr{N})^*$ .

## 1. Introduction

It has been established in [5] that any weakly closed Lie ideal  $\mathscr{L}$  of a nest algebra  $\mathscr{T}(\mathscr{N})$  of operators on Hilbert space contains a weakly closed associative ideal of  $\mathscr{T}(\mathscr{N})$  and is contained in a sum of this ideal with a von Neumann subalgebra of the diagonal  $\mathscr{D}(\mathscr{N})$  of the nest algebra. That is to say that there exist a weakly closed associative ideal  $\mathscr{K}(\mathscr{L})$  and a von Neumann subalgebra  $\mathscr{D}_{\mathscr{K}(\mathscr{L})}$  of  $\mathscr{D}(\mathscr{N})$  such that

$$\mathscr{K}(\mathscr{L}) \subseteq \mathscr{L} \subseteq \mathscr{K}(\mathscr{L}) + \mathscr{D}_{\mathscr{K}(\mathscr{L})}.$$
 (1)

The purpose of the present work is to show that a similar result holds when we pass from ideals to modules. More precisely, the main result Theorem 1 asserts that, if  $\mathscr{L}$  is a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module, then

$$\mathcal{J}(\mathcal{L}) \subseteq \mathcal{L} \subseteq \mathcal{K}(\mathcal{L}) + \mathcal{D}_{\mathcal{K}(\mathcal{L})},\tag{2}$$

where  $\mathscr{D}_{\mathscr{K}(\mathscr{L})}$  is a von Neumman subalgebra of the diagonal  $\mathscr{D}(\mathscr{N})$ ,  $\mathscr{J}(\mathscr{L})$  is explicitly constructed as the largest weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule contained in  $\mathscr{L}$  and  $\mathscr{K}(\mathscr{L})$  is a weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule such that  $[\mathscr{K}(\mathscr{L}), \mathscr{T}(\mathscr{N})] \subseteq \mathscr{L}$ , a result reminiscent of [4], Theorem 2.

Mathematics subject classification (2010): 47L35, 46K50, 17B60.

Keywords and phrases: Bimodule, Lie ideal, Lie module, nest algebra.

The first author was partially funded by FCT/Portugal through UID/MAT/04459/2013 and EXCL/MAT-GEO/0222/2012. The second author was partially supported by a fellowship of the program "Novos Talentos em Matemática" of the Gulbenkian Foundation.



Neither is it necessarily the case that  $\mathscr{J}(\mathscr{L})$  be a subset of  $\mathscr{K}(\mathscr{L})$  nor that  $\mathscr{L}$  be contained in  $\mathscr{K}(\mathscr{L})$ , as Example 1 shows. However, when  $\mathscr{L}$  is in fact a weakly closed Lie ideal, a refinement of both (1) and (2) can be obtained, as is outlined in Remark 2. In this situation, (1) and (2) coalesce yielding

$$\mathscr{K}(\mathscr{L}) \subseteq \mathscr{J}(\mathscr{L}) \subseteq \mathscr{L} \subseteq \mathscr{K}(\mathscr{L}) + \mathscr{D}_{\mathscr{K}(\mathscr{L})}, \tag{3}$$

and  $\mathscr{K}(\mathscr{L})$  might even be a proper subset of  $\mathscr{J}(\mathscr{L})$ .

The notation is set in this final part of Section 1 and some facts needed in the sequel are also recalled. Theorem 1 is proved in Section 2.

Let  $\mathscr{H}$  be a complex Hilbert space, let  $\mathscr{B}(\mathscr{H})$  be the complex Banach space of bounded linear operators on  $\mathscr{H}$  and let  $\mathscr{F}_1(\mathscr{H})$  be the set of rank one operators in  $\mathscr{B}(\mathscr{H})$ . A totally ordered family  $\mathscr{N}$  of projections in  $\mathscr{B}(\mathscr{H})$  containing 0 and the identity *I* is said to be a *nest*. If, furthermore,  $\mathscr{N}$  is a complete sublattice of the lattice of projections in  $\mathscr{B}(\mathscr{H})$ , then  $\mathscr{N}$  is called a *complete nest*. The *nest algebra*  $\mathscr{T}(\mathscr{N})$ associated with a nest  $\mathscr{N}$  is the subalgebra of all operators *T* in  $\mathscr{B}(\mathscr{H})$  such that, for all projections *P* in  $\mathscr{N}$ ,  $T(P(\mathscr{H})) \subseteq P(\mathscr{H})$ , or, equivalently, an operator *T* in  $\mathscr{B}(\mathscr{H})$ lies in  $\mathscr{T}(\mathscr{N})$  if and only if, for all projections *P* in the nest  $\mathscr{N}$ ,  $P^{\perp}TP = 0$ , where  $P^{\perp} = I - P$ . Each nest is contained in a complete nest which generates the same nest algebra (cf. [2, 7]). Henceforth only complete nests will be considered.

The algebra  $\mathscr{T}(\mathscr{N})$  is a weakly closed subalgebra of  $B(\mathscr{H})$ , the *diagonal*  $\mathscr{D}(\mathscr{N})$  of which is the von Neumann algebra defined by  $\mathscr{D}(\mathscr{N}) = \mathscr{T}(\mathscr{N}) \cap \mathscr{T}(\mathscr{N})^*$ .

A nest algebra  $\mathscr{T}(\mathscr{N})$  together with the product defined, for all operators T and S in  $\mathscr{T}(\mathscr{N})$ , by [T,S] = TS - ST is a Lie algebra. A complex subspace  $\mathscr{M}$  of  $\mathscr{B}(\mathscr{H})$  is said to be a  $\mathscr{T}(\mathscr{N})$ -bimodule if  $\mathscr{M}\mathscr{T}(\mathscr{N}), \mathscr{T}(\mathscr{N})\mathscr{M} \subseteq \mathscr{M}$  and is called a Lie  $\mathscr{T}(\mathscr{N})$ -module if  $[\mathscr{M}, \mathscr{T}(\mathscr{N})] \subseteq \mathscr{M}$ . Lie  $\mathscr{T}(\mathscr{N})$ -modules and  $\mathscr{T}(\mathscr{N})$ -bimodules contained in the nest algebra  $\mathscr{T}(\mathscr{N})$  are called, respectively, Lie ideals and ideals of  $\mathscr{T}(\mathscr{N})$ . In the sequel, Lie  $\mathscr{T}(\mathscr{N})$ -modules may be referred to as Lie modules for simplicity. For the same reason,  $\mathscr{T}(\mathscr{N})$ -bimodules may be called simply bimodules.

Let *x* and *y* be elements of the Hilbert space  $\mathscr{H}$  and let  $x \otimes y$  be the rank one operator defined, for all *z* in  $\mathscr{H}$ , by  $z \mapsto \langle z, x \rangle y$ , where  $\langle \cdot, \cdot \rangle$  denotes the inner product of  $\mathscr{H}$ . Let *P* be a projection in the nest  $\mathscr{N}$  and let *P*<sub>-</sub> (respectively, *P*<sub>+</sub>) be the projection in  $\mathscr{N}$  defined by *P*<sub>-</sub> =  $\lor \{Q \in \mathscr{N} : Q < P\}$  (respectively, *P*<sub>+</sub> =  $\land \{Q \in \mathscr{N} : P < Q\}$ ). A rank one operator  $x \otimes y$  lies in  $\mathscr{T}(\mathscr{N})$  if, and only if, there exists a projection *P* such that *P*<sub>-</sub>*x* = 0 and *Py* = *y*; moreover, *P* can be chosen to be equal to  $\land \{Q \in \mathscr{N} : Qy = y\}$  (cf. [7]). For the general theory of nest algebras, the reader is referred to [2, 7].

In what follows, the closure in the weak operator topology of a subset  $\mathscr{X}$  of  $\mathscr{B}(\mathscr{H})$  will be denoted by  $\overline{\mathscr{X}}^w$ , and the closure in the same topology of the span of  $\mathscr{X}$  will be denoted by  $\overline{\mathrm{span}}^w(\mathscr{X})$ . All subspaces either of  $\mathscr{H}$  or of  $\mathscr{B}(\mathscr{H})$  are assumed to be complex subspaces.

## **2.** Lie $\mathscr{T}(\mathscr{N})$ -modules

This section is devoted to the proof of the main result Theorem 1. To this purpose, some lemmas are firstly obtained concerning the  $\mathscr{T}(\mathscr{N})$ -bimodules  $\mathscr{K}(\mathscr{L})$  and  $J(\mathscr{L})$  in (2).

LEMMA 1. Let  $\mathscr{L}$  be a Lie  $\mathscr{T}(\mathscr{N})$ -module and let  $P,Q \in \mathscr{T}(\mathscr{N})$  be mutually orthogonal projections. Then, for all  $T \in \mathscr{L}$ , the operators PTQ,QTP lie in  $\mathscr{L}$ .

*Proof.* Since PQ = 0, it is easily seen that

$$QTP = \frac{1}{2}([[[T,P],Q],Q] - [[T,P],Q]),$$

from which follows that  $QTP \in \mathscr{L}$ . The remaining assertion can be similarly proved.

LEMMA 2. Let  $\mathscr{L}$  be a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module and let P be a projection in  $\mathscr{N}$ . If  $P^{\perp}\mathscr{L}P \neq \{0\}$ , then  $P\mathscr{L}P^{\perp} = P\mathscr{B}(\mathscr{H})P^{\perp}$ .

*Proof.* Let  $P \in \mathcal{N}$  and  $T \in \mathcal{L}$  be such that  $P^{\perp}TP \neq 0$ . Notice that Lemma 1 guarantees that  $P^{\perp}TP \in \mathcal{L}$ . To prove the assertion, it suffices to show that, for all  $x, y \in \mathcal{H}$ , the operator  $P(x \otimes y)P^{\perp}$  lies in  $\mathcal{L}$ . This trivially holds when  $P(x \otimes y)P^{\perp} = 0$ . Assume now that  $P(x \otimes y)P^{\perp}$  is a rank one operator. Then

$$[[P(x \otimes y)P^{\perp}, P^{\perp}TP], P(x \otimes y)P^{\perp}] = 2P(x \otimes y)P^{\perp}TP(x \otimes y)P^{\perp}$$
(4)

and, therefore,

$$[[P(x \otimes y)P^{\perp}, P^{\perp}TP], P(x \otimes y)P^{\perp}] = 2\langle P^{\perp}TPy, x \rangle P(x \otimes y)P^{\perp}$$
(5)

lies in  $\mathscr{L}$ . It follows that  $P(x \otimes y)P^{\perp} \in \mathscr{L}$ , whenever  $\langle P^{\perp}TPy, x \rangle \neq 0$ .

On the other hand, if  $x \perp P^{\perp}TPy$ , then suppose firstly that  $P^{\perp}TPy \neq 0$ . In this case, replacing  $x \otimes y$  by  $P^{\perp}TPy \otimes Py$  in the above computations yields that the operator  $P^{\perp}TPy \otimes Py$  lies in  $\mathscr{L}$ . Notice that the condition under which it can be deduced from (5) that  $P^{\perp}TPy \otimes Py \in \mathscr{L}$  is, in this case, that

$$\langle P^{\perp}TPy, P^{\perp}TPy \rangle \neq 0,$$

which clearly holds. Moreover, since  $\langle P^{\perp}TPy - x, P^{\perp}TPy \rangle \neq 0$ , it also follows from (5) that  $(P^{\perp}TPy - P^{\perp}x) \otimes Py$  lies in  $\mathscr{L}$ . Hence,

$$P(x \otimes y)P^{\perp} = P^{\perp}TPy \otimes Py - (P^{\perp}TPy - P^{\perp}x) \otimes Py$$

lies in  $\mathcal{L}$ .

Assume now that  $P^{\perp}TPy = 0$ . Since  $P^{\perp}TP \neq 0$ , there exists  $z \in \mathscr{H}$  such that  $P^{\perp}TPz \neq 0$ , from which follows that  $P^{\perp}TP(z-y) \neq 0$ . Applying a reasoning similar

to that of the preceding paragraph, it follows that both  $P(x \otimes z)P^{\perp}$  and  $P(x \otimes (z-y))P^{\perp}$  lie in  $\mathscr{L}$ . Hence,

$$P(x \otimes y)P^{\perp} = P(x \otimes z)P^{\perp} - P(x \otimes (z - y))P^{\perp}$$

lies in  $\mathscr{L}$ , which concludes the proof.  $\Box$ 

Let  $\mathscr{L}$  be a Lie  $\mathscr{T}(\mathscr{N})$ -module and let  $\mathscr{K}(\mathscr{L})$  be the subspace of  $\mathscr{B}(\mathscr{H})$  defined by

$$\mathscr{K}(\mathscr{L}) = \mathscr{K}_{V}(\mathscr{L}) + \mathscr{K}_{L}(\mathscr{L}) + \mathscr{K}_{D}(\mathscr{L}) + \mathscr{K}_{\Delta}(\mathscr{L}), \tag{6}$$

where

$$\mathscr{K}_{V}(\mathscr{L}) = \overline{\operatorname{span}}^{w} \{ PTP^{\perp} \colon P \in \mathscr{N}, T \in \mathscr{L} \},$$
(7)

$$\mathscr{K}_{L}(\mathscr{L}) = \overline{\operatorname{span}}^{w} \{ P^{\perp} T P \colon P \in \mathscr{N}, T \in \mathscr{L} \},$$
(8)

$$\mathscr{K}_{D}(\mathscr{L}) = \overline{\operatorname{span}}^{w} \{ PSP^{\perp}TP \colon P \in \mathscr{N}, T \in \mathscr{L}, S \in \mathscr{T}(\mathscr{N}) \},$$
(9)

$$\mathscr{K}_{\Delta}(\mathscr{L}) = \overline{\operatorname{span}}^{w} \{ P^{\perp} T P S P^{\perp} \colon P \in \mathscr{N}, T \in \mathscr{L}, S \in \mathscr{T}(\mathscr{N}) \}.$$
(10)

LEMMA 3. Let  $\mathscr{L}$  be a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module and let  $\mathscr{K}(\mathscr{L})$  and  $\mathscr{K}_{V}(\mathscr{L})$  be as in (6) and (7), respectively. Then,  $\mathscr{K}(\mathscr{L})$  is a weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule and  $\mathscr{K}_{V}(\mathscr{L})$  is a weakly closed ideal of  $\mathscr{T}(\mathscr{N})$ .

REMARK 1. Notice that  $\mathscr{K}_{V}(\mathscr{L})$  is a subspace of  $\mathscr{T}(\mathscr{N})$  and that, by Lemma 1, the spaces  $\mathscr{K}_{V}(\mathscr{L})$  and  $\mathscr{K}_{L}(\mathscr{L})$  are contained in  $\mathscr{L}$ .

*Proof.* It is clear that  $\mathscr{K}(\mathscr{L})$  and  $\mathscr{K}_{V}(\mathscr{L})$  are weakly closed subspaces of  $\mathscr{B}(\mathscr{H})$  and, as observed in Remark 1,  $\mathscr{K}_{V}(\mathscr{L}) \subseteq \mathscr{T}(\mathscr{N})$ .

To see that  $\mathscr{K}_V(\mathscr{L})$  is an ideal of  $\mathscr{T}(\mathscr{N})$ , it suffices to show that, for all  $T \in \mathscr{L}, P \in \mathscr{N}, S \in \mathscr{T}(\mathscr{N})$  one has that both  $PTP^{\perp}S$  and  $SPTP^{\perp}$  lie in  $\mathscr{K}_V(\mathscr{L})$ . Since  $P^{\perp}SP^{\perp} \in \mathscr{T}(\mathscr{N})$  and since, by Lemma 1,  $PTP^{\perp}$  lies in  $\mathscr{L}$ , it follows that

$$PTP^{\perp}S = PTP^{\perp}P^{\perp}SP^{\perp} = [PTP^{\perp}, P^{\perp}SP^{\perp}]$$

lies in  $\mathscr{L}$ . But  $PTP^{\perp}S = P(PTP^{\perp}S)P^{\perp}$ , which shows that  $PTP^{\perp}S$  lies in  $\mathscr{K}_{V}(\mathscr{L})$ . Similarly,

$$SPTP^{\perp} = PSPPTP^{\perp} = [PSP, PTP^{\perp}]$$

lies in  $\mathscr{L}$  and, therefore,

$$SPTP^{\perp} = P(SPTP^{\perp})P^{\perp}$$

lies in  $\mathscr{K}_V(\mathscr{L})$ .

It will be shown next that  $\mathscr{H}_{L}(\mathscr{L})\mathscr{T}(\mathscr{N}), \mathscr{T}(\mathscr{N})\mathscr{H}_{L}(\mathscr{L}) \subseteq \mathscr{H}(\mathscr{L})$ . It suffices to show that, for all  $T \in \mathscr{L}, P \in \mathscr{N}$  and  $S \in \mathscr{T}(\mathscr{N})$ , the operators  $P^{\perp}TPS$ ,  $SP^{\perp}TP$  lie in  $\mathscr{H}(\mathscr{L})$ . Observe also that, if T is an operator in the Lie module  $\mathscr{L}$ , then, by Lemma 1, the operator  $P^{\perp}TP$  lies in  $\mathscr{L}$ . Hence, it suffices to assume that  $T \in \mathscr{L}$  is such that  $T = P^{\perp}TP$ , for some  $P \in \mathscr{N}$ , and then prove that  $TS, ST \in \mathscr{H}(\mathscr{L})$ , for all  $S \in \mathscr{T}(\mathscr{N})$ .

Let *T* be an operator in  $\mathscr{L}$  such that  $T = P^{\perp}TP$ , and let *S* be an operator in the nest algebra. It follows that

$$TS = P^{\perp}TPSP + P^{\perp}TPSP^{\perp}.$$

It is clear that  $P^{\perp}TPSP^{\perp} \in \mathscr{K}_{\Delta}(\mathscr{L})$ . On the other hand,

$$P^{\perp}TPSP = [P^{\perp}TP, PSP]$$
$$= P^{\perp}[T, PSP]P.$$

Since  $[T, PSP] \in \mathscr{L}$ , it follows that  $P^{\perp}TPSP \in \mathscr{K}_{L}(\mathscr{L})$ . Hence, *TS* lies in  $\mathscr{K}(\mathscr{L})$ , as required.

Similarly,

$$ST = P^{\perp}ST + PST = [P^{\perp}SP^{\perp}, T] + PSP^{\perp}TP$$

lies in  $\mathscr{K}(\mathscr{L})$ , since  $PSP^{\perp}TP \in \mathscr{K}_D(\mathscr{L})$  and

$$[P^{\perp}SP^{\perp},T] = P^{\perp}[P^{\perp}SP^{\perp},T]P$$

lies in  $\mathscr{K}_L(\mathscr{L})$ .

To show that  $\mathscr{K}_D(\mathscr{L})\mathscr{T}(\mathscr{N}), \mathscr{T}(\mathscr{N})\mathscr{K}_D(\mathscr{L}) \subseteq \mathscr{K}(\mathscr{L})$ , it suffices to prove that, for all  $T \in \mathscr{L}$ ,  $S, R \in \mathscr{T}(\mathscr{N})$  and  $P \in \mathscr{N}$ , the operators  $PSP^{\perp}TPR$  and  $RPSP^{\perp}TP$  lie in  $\mathscr{K}(\mathscr{L})$ .

As to the operator  $RPSP^{\perp}TP$ , observe that

$$RPSP^{\perp}TP = P(RPS)P^{\perp}TP$$

and, since  $RPS \in \mathscr{T}(\mathscr{N})$ , it immediately follows that  $RPSP^{\perp}TP \in \mathscr{K}_D(\mathscr{L})$ . Hence,  $\mathscr{T}(\mathscr{N})\mathscr{K}_D(\mathscr{L}) \subseteq \mathscr{K}(\mathscr{L})$ .

It only remains to show that  $PSP^{\perp}TPR \in \mathscr{K}(\mathscr{L})$ . Observe that, by Lemma 2, either  $P\mathscr{L}P^{\perp} = P\mathscr{B}(\mathscr{H})P^{\perp}$  or  $P^{\perp}\mathscr{L}P = \{0\}$ . In the latter case, it is obvious that the assertion to be proved trivially holds. In the former case, notice that, by Lemma 1,  $P\mathscr{B}(\mathscr{H})P^{\perp} \subseteq \mathscr{L}$ .

Let T, S, R be as above and let  $P \in \mathcal{N}$  be such that  $P\mathscr{B}(\mathscr{H})P^{\perp} \subseteq \mathscr{L}$ . Then,

$$PSP^{\perp}TPR = PSP^{\perp}TPRP + PSP^{\perp}TPRP^{\perp}$$
$$= PSP^{\perp}[P^{\perp}TP, PRP]P + PSP^{\perp}TPRP^{\perp}$$

As seen above,  $P\mathscr{B}(\mathscr{H})P^{\perp} \subseteq \mathscr{L}$  yielding that the operator  $PSP^{\perp}TPRP^{\perp}$  lies in  $\mathscr{L}$ . Consequently,

$$PSP^{\perp}TPRP^{\perp} = P(PSP^{\perp}TPRP^{\perp})P^{\perp}$$

lies in  $\mathscr{K}_{V}(\mathscr{L})$ . Moreover, by Lemma 1,  $P^{\perp}TP \in \mathscr{L}$ , from which follows that  $[P^{\perp}TP, PRP] \in \mathscr{L}$ .  $\mathscr{L}$ . Hence,  $PSP^{\perp}[P^{\perp}TP, PRP]P \in \mathscr{K}_{D}(\mathscr{L})$ . It follows that  $\mathscr{K}_{D}(\mathscr{L})\mathscr{T}(\mathscr{N}) \subseteq \mathscr{K}(\mathscr{L})$ .

Finally, it will be shown that  $\mathscr{K}_{\Delta}(\mathscr{L})\mathscr{T}(\mathscr{N}), \mathscr{T}(\mathscr{N})\mathscr{K}_{\Delta}(\mathscr{L}) \subseteq \mathscr{K}(\mathscr{L})$ . That is to say that, it must be proved that, for all  $T \in \mathscr{L}, S, R \in \mathscr{T}(\mathscr{N})$  and  $P \in \mathscr{N}$ , the operators  $P^{\perp}TPSP^{\perp}R$  and  $RP^{\perp}TPSP^{\perp}$  lie in  $\mathscr{K}(\mathscr{L})$ .

Suppose again that  $P\mathscr{L}P^{\perp} = P\mathscr{B}(\mathscr{H})P^{\perp}$ . Recall that, by Lemma 2, the only other possibility is  $P^{\perp}\mathscr{L}P = \{0\}$ , in which case the assertions to be proved trivially hold.

Since  $SP^{\perp}R \in \mathscr{T}(\mathscr{N})$ , it follows that

$$P^{\perp}TPSP^{\perp}R = P^{\perp}TP(SP^{\perp}R)P^{\perp}$$

lies in  $\mathscr{K}_{\Delta}(\mathscr{L})$ . Furthermore,

$$\begin{split} RP^{\perp}TPSP^{\perp} &= PRP^{\perp}TPSP^{\perp} + P^{\perp}RP^{\perp}TPSP^{\perp} \\ &= PRP^{\perp}TPSP^{\perp} + P^{\perp}[P^{\perp}RP^{\perp},P^{\perp}TP]PSP^{\perp} \end{split}$$

Observe that  $PRP^{\perp}TPSP^{\perp} \in P\mathscr{B}(\mathscr{H})P^{\perp} \subseteq \mathscr{H}_{V}(\mathscr{L})$ , since it is assumed that  $P\mathscr{L}P^{\perp} = P\mathscr{B}(\mathscr{H})P^{\perp}$ . Moreover,  $P^{\perp}[P^{\perp}RP^{\perp},P^{\perp}TP]PSP^{\perp}$  lies in  $\mathscr{H}_{\Delta}(\mathscr{L})$ , since  $[P^{\perp}RP^{\perp},P^{\perp}TP] \in \mathscr{L}$ .  $\Box$ 

LEMMA 4. Let  $\mathscr{L}$  be a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module and let  $\mathscr{K}(\mathscr{L})$  be the weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule associated with  $\mathscr{L}$  in (6). Then  $[\mathscr{K}(\mathscr{L}), \mathscr{T}(\mathscr{N})] \subseteq \mathscr{L}$ .

*Proof.* Since  $\mathscr{K}_V(\mathscr{L}), \mathscr{K}_L(\mathscr{L}) \subseteq \mathscr{L}$ , it is enough to prove that

$$[\mathscr{K}_D(\mathscr{L}), \mathscr{T}(\mathscr{N})], [\mathscr{K}_\Delta(\mathscr{L}), \mathscr{T}(\mathscr{N})] \subseteq \mathscr{L}.$$

That is to say that it suffices to show that for all  $T \in \mathcal{L}, P \in \mathcal{N}$  and  $R, S \in \mathcal{T}(\mathcal{N})$ , the operators  $[PSP^{\perp}TP, R]$  and  $[P^{\perp}TPSP^{\perp}, R]$  lie in  $\mathcal{L}$ .

Recall once again that, given  $P \in \mathcal{N}$ , by Lemma 2, either  $P \mathscr{L} P^{\perp} = P \mathscr{B}(\mathscr{H}) P^{\perp}$ or  $P^{\perp} \mathscr{L} P = \{0\}$ . In the latter case, for all  $T \in \mathscr{L}$ ,  $P^{\perp} T P = 0$ , from which follows that the assertions to be proved are trivially true.

Suppose now that  $P\mathscr{L}P^{\perp} = P\mathscr{B}(\mathscr{H})P^{\perp}$  and that  $T \in \mathscr{L}$  is such that  $P^{\perp}TP \neq 0$ , in which case, by Lemma 1,  $P^{\perp}TP \in \mathscr{L}$ . Then, for all  $R, S \in \mathscr{N}$ ,

$$\begin{split} [PSP^{\perp}TP,R] &= [PSP^{\perp}TP,RP] + [PSP^{\perp}TP,PRP^{\perp}] + [PSP^{\perp}TP,P^{\perp}RP^{\perp}] \\ &= [PSP^{\perp}TP - P^{\perp}TPSP^{\perp},RP] + PSP^{\perp}TPRP^{\perp} \\ &= [[PSP^{\perp},P^{\perp}TP],RP] + PSP^{\perp}TPRP^{\perp} \end{split}$$

lies in  $\mathscr{L}$ . Similarly,

$$\begin{split} [P^{\perp}TPSP^{\perp},R] &= [P^{\perp}TPSP^{\perp},RP] + [P^{\perp}TPSP^{\perp},PRP^{\perp}] + [P^{\perp}TPSP^{\perp},P^{\perp}RP^{\perp}] \\ &= -PRP^{\perp}TPSP^{\perp} + [P^{\perp}TPSP^{\perp} - PSP^{\perp}TP,P^{\perp}RP^{\perp}] \\ &= -PRP^{\perp}TPSP^{\perp} + [[P^{\perp}TP,PSP^{\perp}],P^{\perp}RP^{\perp}] \end{split}$$

is an operator in  $\mathscr{L}$ , which concludes the proof.  $\Box$ 

Recall that it is possible to associate with each weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule  $\mathscr{K}$  a (not necessarily unique) left order continuous homomorphism  $\phi : \mathscr{N} \to \mathscr{N}$  such that

$$\mathcal{K} = \{ T \in \mathcal{B}(\mathcal{H}) \colon \phi(P)^{\perp} TP = 0 \}$$

(see [3]).

LEMMA 5. Let  $\mathscr{L}$  be a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module, let  $\mathscr{K}(\mathscr{L})$  be the weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule defined in (6)–(10), and let  $\phi : \mathscr{N} \to \mathscr{N}$  be a left order continuous homomorphism associated with  $\mathscr{K}(\mathscr{L})$ . If  $P \in \mathscr{N}$  is such that  $\phi(P) < P$ , then, for all  $T \in \mathscr{L}$  and all  $Q \in \mathscr{N}$  with  $\phi(P) < Q < P$ ,

$$(Q - \phi(P))T(P - Q) = 0.$$

*Proof.* Let *T* be an operator in  $\mathscr{L}$  and let that  $P, Q \in \mathscr{N}$ . Since, by the definition (6)–(10) of  $\mathscr{K}(\mathscr{L})$ ,  $QTQ^{\perp} \in \mathscr{K}(\mathscr{L})$ , it follows that

$$\phi(P)^{\perp}(QTQ^{\perp})P=0.$$

Hence, if  $\phi(P) < Q < P$ , then

$$(Q - \phi(P))T(P - Q) = 0,$$

as required.  $\Box$ 

DEFINITION 1. Given a weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule  $\mathscr{K}$ , define  $\mathscr{D}_{\mathscr{K}}$  as the algebra consisting of all operators  $T \in \mathscr{D}(\mathscr{N})$  such that, for every  $P \in \mathscr{N}$  for which  $\phi(P) < P_{-}$ , there exists  $\lambda_{P}$  in  $\mathbb{C}$  satisfying the equality

$$T(P-\phi(P)) = \lambda_P(P-\phi(P)).$$

The algebra  $\mathscr{D}_{\mathscr{K}}$  is a von Neumann subalgebra of  $\mathscr{D}(\mathscr{N})$  and, when  $\mathscr{K}$  is a weakly closed Lie ideal of  $\mathscr{T}(\mathscr{N})$ , the algebra  $\mathscr{D}_{\mathscr{K}}$  is that defined in [5].

The next lemma is inspired by results of [5].

LEMMA 6. Let  $\mathscr{L}$  be a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module. Then  $\mathscr{L} \subseteq \mathscr{K}(\mathscr{L}) + \mathscr{D}_{\mathscr{K}(\mathscr{L})}$ .

*Proof.* Let  $\pi$  be an expectation of  $\mathscr{T}(\mathscr{N})$  on  $\mathscr{D}(\mathscr{N})$  (see [2], Corollary 8.5). Given  $T \in \mathscr{L}$ , let

$$T = T_{\pi} + \pi(T),$$

where

$$T_{\pi}=T-\pi(T).$$

Firstly, it will be shown that  $T_{\pi} \in \mathscr{K}(\mathscr{L})$ ; that is to say that, for all  $P \in \mathscr{N}$ ,

$$\phi(P)^{\perp}T_{\pi}P=0,$$

where  $\phi: \mathcal{N} \to \mathcal{N}$  is a left order continuous homomorphism on  $\mathcal{N}$  associated with the bimodule  $\mathcal{K}(\mathcal{L})$ .

Let Q be a projection in  $\mathcal{N}$ . Notice that

$$\phi(P)^{\perp}Q^{\perp}TQP = 0,$$

since  $Q^{\perp}TQ \in \mathscr{K}(\mathscr{L})$  (see (6)–(10)). Then,

$$Q^{\perp}(\phi(P)^{\perp}T_{\pi}P)Q = \phi(P)^{\perp}(Q^{\perp}T_{\pi}Q)P$$
  
=  $\phi(P)^{\perp}Q^{\perp}TQP - \phi(P)^{\perp}Q^{\perp}\pi(T)QP$   
=  $-\phi(P)^{\perp}Q^{\perp}\pi(T)QP$ .

But, since by [2], Theorem 8.1,  $\phi(P)^{\perp}Q^{\perp}\pi(T)QP = \pi(\phi(P)^{\perp}Q^{\perp}TQP)$ , it follows that, for all  $Q \in \mathcal{N}$ ,  $Q^{\perp}(\phi(P)^{\perp}TP)Q = 0$ . Similarly,

$$egin{aligned} Q\phi(P)^{\perp}T_{\pi}PQ^{\perp} &= \phi(P)^{\perp}(QTQ^{\perp})P - \phi(P)^{\perp}Q\pi(T)Q^{\perp}P \ &= -\piig(\phi(P)^{\perp}QTQ^{\perp}Pig) = 0. \end{aligned}$$

Hence, for all  $P, Q \in \mathcal{N}$ ,

$$\phi(P)^{\perp}T_{\pi}P = Q\phi(P)^{\perp}T_{\pi}PQ + Q^{\perp}\phi(P)^{\perp}T_{\pi}PQ^{\perp}, \qquad (11)$$

from which follows that  $\phi(P)^{\perp}T_{\pi}P \in \mathscr{D}(\mathscr{N})$ . Hence, by [2], Theorem 8.1,

$$\phi(P)^{\perp}T_{\pi}P = \pi(\phi(P)^{\perp}T_{\pi}P)$$
$$= \phi(P)^{\perp}\pi(T_{\pi})P$$
$$= \phi(P)^{\perp}\pi(T-\pi(T))P.$$

Since  $\pi(T - \pi(T)) = 0$ , it follows that, for all  $P \in \mathcal{N}$ ,  $\phi(P)^{\perp}T_{\pi}P = 0$  or, in other words,  $T_{\pi}$  lies in  $\mathcal{K}(\mathcal{L})$ .

It remains to show that  $\pi(T)$  lies in  $\mathscr{D}_{\mathscr{K}(\mathscr{L})}$ . Let  $P \in \mathscr{N}$  be such that  $\phi(P) < P_{-}$ . Then, there exists a projection  $Q \in \mathscr{N}$  such that  $\phi(P) < Q < P$ .

Since  $QTQ^{\perp} \in \mathscr{K}(\mathscr{L})$  (see (6)–(10)), it follows that, for all  $P \in \mathscr{N}$ ,

$$\phi(P)^{\perp}(QTQ^{\perp})P=0.$$

Observe also that, since  $T_{\pi} \in \mathscr{K}(\mathscr{L})$ , by Lemma 4,  $[\pi(T), \mathscr{T}(\mathscr{N})] \subseteq \mathscr{L}$ . Hence, for all  $x, y \in \mathscr{H}$ , the operator

$$[\pi(T), (Q - \phi(P))(x \otimes y)(P - Q)]$$

lies in  $\mathscr{L}$ . It follows, by Lemma 5, that

$$(Q-\phi(P))[\pi(T),(Q-\phi(P))(x\otimes y)(P-Q)](P-Q)=0$$

and, consequently,

$$((P-Q)x \otimes (Q-\phi(P))\pi(T)(Q-\phi(P))y) = ((P-Q)\pi(T)^*(P-Q)x \otimes (Q-\phi(P))y)$$

Choosing  $x, y \in \mathscr{H}$  such that x = (P - Q)x and  $y = (Q - \phi(P))y$ , it is easy to see that there must exist  $\lambda_P \in \mathbb{C}$  such that

$$\pi(T)(P-Q) = \lambda_P(P-Q)$$

and

$$\pi(T)(Q-\phi(P)) = \lambda_P(Q-\phi(P)).$$

It follows that

$$\pi(T)(P-\phi(P)) = \lambda_P(P-\phi(P)),$$

yielding that  $\pi(T)$  lies in  $\mathscr{D}_{\mathscr{K}(\mathscr{L})}$ , as required.  $\Box$ 

The characterisation of the largest weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule contained in a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module  $\mathscr{L}$  will be obtained in Lemma 8 below.

Let z be an element of the Hilbert space  $\mathscr{H}$  and let  $P_z$  and  $\hat{P}_z$  be the projections defined by

$$P_z = \wedge \{ Q \in \mathcal{N} : Qz = z \}, \qquad \hat{P}_z = \vee \{ Q \in \mathcal{N} : Qz = 0 \}.$$

The projections  $P_z$  and  $\hat{P}_z$  lie in the nest  $\mathcal{N}$  and  $P_z z = z$ ,  $\hat{P}_z z = 0$ . Following [6], each rank one operator  $x \otimes y$  will be associated with the projections  $\hat{P}_x$  and  $P_y$ .

LEMMA 7. Let  $\mathscr{U}$  be a norm closed  $T(\mathscr{N})$ -bimodule and let  $x \otimes y$  be a rank one operator in  $\mathscr{B}(\mathscr{H})$ . Then  $x \otimes y$  lies in  $\mathscr{U}$  if and only if  $P_y \mathscr{B}(\mathscr{H}) \hat{P}_x^{\perp}$  is contained in  $\overline{\mathscr{U}}^w$ .

*Proof.* Since  $\overline{\mathcal{U}}^{w}$  is a weakly closed bimodule, by [3], Theorem 1.5, there exists a left order continuous homomorphism  $P \mapsto \tilde{P}$  on  $\mathcal{N}$  such that an operator  $T \in \mathcal{B}(\mathcal{H})$  lies in  $\overline{\mathcal{U}}^{w}$  if and only if, for all  $P \in \mathcal{N}$ ,  $\tilde{P}^{\perp}TP = 0$ .

Let  $x \otimes y$  be a rank one operator in  $\mathscr{U}$ , let T lie in  $P_y B(\mathscr{H}) \hat{P}_x^{\perp}$  and suppose that  $P \in \mathscr{N}$  is a projection such that  $P \leq \hat{P}_x$ . Then,

$$\tilde{P}^{\perp}TP = \tilde{P}^{\perp}P_{\nu}T\hat{P}_{\nu}^{\perp}P = 0.$$
<sup>(12)</sup>

Suppose now that  $P \in \mathcal{N}$  is a projection such that  $\hat{P}_x < P$ . Since  $x \otimes y \in \mathcal{U}$ , by the definition of  $\tilde{P}$ ,  $P_y \leq \tilde{P}$  (see [3], p. 221). Hence

$$\tilde{P}^{\perp}TP = \tilde{P}^{\perp}P_{\nu}T\hat{P}_{\nu}^{\perp}P = 0.$$
<sup>(13)</sup>

Combining (12)-(13) yields that  $P_y B(\mathscr{H}) \hat{P}_x^{\perp} \subseteq \overline{\mathscr{U}}^w$ .

Conversely, if  $x \otimes y$  is a rank one operator such that  $P_y B(\mathscr{H}) \hat{P}_x^{\perp} \subseteq \overline{\mathscr{U}}^w$ , then it is clear that  $x \otimes y \in \overline{\mathscr{U}}^w$ . By [3], Lemma 1.3,  $x \otimes y \in \mathscr{U}$ .  $\Box$ 

Let  $\mathscr{L}$  be a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module and let  $\mathscr{C}(\mathscr{L})$  be the subset of  $\mathscr{B}(\mathscr{H})$  defined by

$$\mathscr{C}(\mathscr{L}) = \{ x \otimes y \in \mathscr{B}(\mathscr{H}) \colon P_y \mathscr{B}(\mathscr{H}) \hat{P}_x^{\perp} \subseteq \mathscr{L} \}.$$
(14)

Observe that the set  $\mathscr{C}(\mathscr{L})$  can be properly contained in  $\mathscr{L} \cap \mathscr{F}_1(\mathscr{H})$ . For example, let  $\mathscr{T}(\mathscr{N})$  be the nest algebra of the  $8 \times 8$  upper triangular complex matrices and let  $\mathscr{L}$  be the subspace of the  $8 \times 8$  complex matrices consisting of those having null trace. It is clear that  $\mathscr{L}$  is a Lie  $\mathscr{T}(\mathscr{N})$ -module and that the matrix unit  $E_{65}$  lies in  $\mathscr{L}$  but not in  $\mathscr{C}(\mathscr{L})$ .

LEMMA 8. Let  $\mathscr{L}$  be a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module and let  $\mathscr{C}(\mathscr{L})$  be as in (14). Then the largest weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule contained in  $\mathscr{L}$  is

$$\mathscr{J}(\mathscr{L}) = \{ T \in \mathscr{B}(\mathscr{H}) \colon \phi(P)^{\perp} T P = 0 \},$$
(15)

where  $\phi: \mathcal{N} \to \mathcal{N}$  is the left order continuous homomorphism defined by

$$\phi(P) = \lor \{ P_y \colon \exists x \in \mathscr{H} \; x \otimes y \in \mathscr{C}(\mathscr{L}) \land \hat{P}_x < P \}.$$
(16)

*Proof.* It is easy to see that a set defined as in (15) by any, not even necessarily order-preserving, map  $\phi : \mathcal{N} \to \mathcal{N}$  is a weakly closed  $\mathcal{T}(\mathcal{N})$ -bimodule. It will be shown next that  $\mathcal{C}(\mathcal{L})$  coincides with the subset of rank one operators contained in  $\mathcal{J}(\mathcal{L})$ .

Let  $x \otimes y$  be a rank one operator in  $\mathscr{C}(\mathscr{L})$ , let *P* be a projection in  $\mathscr{N}$  and suppose initially that  $\hat{P}_x < P$ . It follows from the definition of  $\phi$  that  $P_y \leq \phi(P)$  and, consequently,

$$\phi(P)^{\perp}(x \otimes y)P = \phi(P)^{\perp}P_y(x \otimes y)\hat{P}_x^{\perp}P = 0.$$

It can be similarly shown that  $\phi(P)^{\perp}(x \otimes y)P = 0$ , when  $P \leq \hat{P}_x$ . Hence  $\mathscr{C}(\mathscr{L}) \subseteq \mathscr{J}(\mathscr{L})$ .

Conversely, let  $x \otimes y$  be an operator lying in the weakly closed bimodule  $\mathscr{J}(\mathscr{L})$ . Hence, by Lemma 7, for all  $T \in P_y \mathscr{B}(\mathscr{H}) \hat{P}_x^{\perp}$  and all  $P \in \mathscr{N}$ ,  $\phi(P)^{\perp} TP = 0$ . It follows that  $P_y \leq \phi(P)$ , whenever  $P \in \mathscr{N}$  is such that  $\hat{P}_x < P$ .

*Case* 1.  $P \in \mathcal{N}$  is such that  $\hat{P}_x < P$  and  $P_y < \phi(P)$ .

In this case, by (16), there exists a rank one operator  $z_P \otimes w_P \in \mathscr{C}(\mathscr{L})$  such that  $\hat{P}_{z_P} < P$  and  $P_y < P_{w_P}$ . Hence  $P_{w_P}\mathscr{B}(\mathscr{H})\hat{P}_{z_P}^{\perp} \subseteq \mathscr{L}$  and, consequently,  $P_{w_P}(x \otimes y)\hat{P}_{z_P}^{\perp} = \hat{P}_{z_P}^{\perp} x \otimes y$  lies in  $\mathscr{C}(\mathscr{L})$ .

Since  $P_{w_P}\mathscr{B}(\mathscr{H})P^{\perp} \subseteq P_{w_P}\mathscr{B}(\mathscr{H})\hat{P}_{z_P}^{\perp}$ , it follows that  $P^{\perp}x \otimes y$  lies also in  $\mathscr{C}(\mathscr{L})$ . *Case* 2.  $P \in \mathscr{N}$  is such that  $\hat{P}_x < P$  and  $P_y = \phi(P)$ .

By (16), there exists a set  $\{z_j \otimes w_j : j \in \Lambda\}$  contained in  $\mathscr{C}(\mathscr{L})$  such that  $(P_{w_j})$ is an increasing net converging to  $P_y$  in the strong operator topology and, for all j,  $\hat{P}_{z_j} < P$ . Consequently, for all j, the operator  $\hat{P}_{z_j}^{\perp} x \otimes P_{w_j} y$  lies in  $\mathscr{C}(\mathscr{L})$ . Observing that  $P_{w_j}\mathscr{B}(\mathscr{H})P^{\perp} \subseteq P_{w_j}\mathscr{B}(\mathscr{H})\hat{P}_{z_j}^{\perp} \subseteq \mathscr{L}$ , it follows that  $P^{\perp} x \otimes P_{w_j} y$  also lies in  $\mathscr{C}(\mathscr{L})$ .

Since  $\mathscr{L}$  is weakly closed, it is also the case that  $P^{\perp}x \otimes y \in \mathscr{C}(\mathscr{L})$ .

If  $\hat{P}_x < \hat{P}_x^+$ , then set  $P = \hat{P}_x^+$ . If Case 1 applies, then there exists a rank one operator  $z_P \otimes w_P \in \mathscr{C}(\mathscr{L})$  such that  $\hat{P}_{z_P} < \hat{P}_x^+$  and  $P_y < P_{w_P}$ . Consequently,

$$\hat{P}_{z_P}^{\perp} x \otimes y = \hat{P}_x^{\perp} x \otimes y = x \otimes y$$

lies in  $\mathscr{C}(\mathscr{L})$ . On the other hand, if Case 2 holds, then, for all j,  $\hat{P}_{z_j} \leq \hat{P}_x$ . Hence, for all j,

$$\hat{P}_{z_j}^{\perp} x \otimes P_{w_j} y = \hat{P}_x^{\perp} x \otimes P_{w_j} y$$
$$= x \otimes P_{w_j} y,$$

from which follows that  $x \otimes P_{w_j} y$  lies in  $\mathscr{C}(\mathscr{L})$ . A limit argument similar to that above finally yields that  $x \otimes y \in \mathscr{C}(\mathscr{L})$ .

If  $\hat{P}_x = \hat{P}_x^+$ , then there exists a decreasing net  $(P_j)$  in  $\mathcal{N}$  converging to  $\hat{P}_x$  in the strong operator topology and such that, for all j,  $\hat{P}_x < P_j$ . Since, either by Case 1 or Case 2, for all j, the operator  $P_j^{\perp} x \otimes y$  lies in  $\mathscr{C}(\mathscr{L})$ , taking limits it follows that  $P_y \mathscr{B}(\mathscr{H}) \hat{P}_x^{\perp} \subseteq \mathscr{L}$ . Hence,  $\hat{P}_x^{\perp} x \otimes y = x \otimes y \in \mathscr{C}(\mathscr{L})$ , as required.

It has been shown that a rank one operator lies in the weakly closed bimodule  $\mathscr{J}(\mathscr{L})$  if and only if it lies in  $\mathscr{C}(\mathscr{L})$ . Hence, by [3], Lemma 1.2 and Theorem 1.5,  $\mathscr{J}(\mathscr{L}) = \overline{\operatorname{span}}^w(\mathscr{C}(\mathscr{L}))$  and, consequently,  $\mathscr{J}(\mathscr{L}) \subseteq \mathscr{L}$ . Notice that it is implicit in the proof of [3], Theorem 1.5 that a weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodule coincides with the closure in the weak operator topology of its subset of finite rank operators.

Suppose that there exists a weakly closed bimodule  $\mathscr{U}$  contained in  $\mathscr{L}$  which properly contains  $\mathscr{J}(\mathscr{L})$ . By Lemma 7 and [3], Lemma 1.2 and Theorem 1.5, there exists a rank one operator  $x \otimes y \in \mathscr{U} \setminus \mathscr{J}(\mathscr{L})$  such that  $P_y \mathscr{B}(\mathscr{H}) \hat{P}_x^{\perp} \subseteq \mathscr{U}$  and, therefore,

$$P_{\mathcal{Y}}\mathscr{B}(\mathscr{H})\hat{P}_{\mathcal{X}}^{\perp} \subseteq \mathscr{L}.$$
(17)

But this is impossible since, as shown above,  $\mathscr{J}(\mathscr{L})$  contains all operators  $x \otimes y$  satisfying (17). Hence  $\mathscr{J}(\mathscr{L})$  is the largest weak operator closed bimodule contained in  $\mathscr{L}$ .

To end the proof, it will be shown next that the map  $\phi$  is a left order continuous homomorphism on  $\mathcal{N}$ .

If  $P_1 \leq P_2$ , then  $\{P_y : \exists x \in \mathcal{H} \ x \otimes y \in \mathcal{C}(\mathcal{L}) \land \hat{P}_x < P_1\}$  is a subset of  $\{P_y : \exists x \in \mathcal{H} \ x \otimes y \in \mathcal{C}(\mathcal{L}) \land \hat{P}_x < P_2\}$ , from which immediately follows that  $\phi(P_1) \leq \phi(P_2)$ . Hence  $\phi$  is an order homomorphism on  $\mathcal{N}$ .

It only remains to show that the map  $\phi$  is left order continuous; that is to say that, for every subset  $\mathscr{X}$  of  $\mathscr{N}$ ,  $\phi(\vee \mathscr{X}) = \vee \phi(\mathscr{X})$ . This trivially holds for the empty set. Suppose then that in what follows  $\mathscr{X} \neq \emptyset$ .

If  $\forall \mathscr{X} \in \mathscr{X}$ , then the equality  $\phi(\forall \mathscr{X}) = \forall \phi(\mathscr{X})$  is obvious, since  $\phi$  is an order-preserving map. If, on the other hand,  $\forall \mathscr{X} \notin \mathscr{X}$  then  $(\forall \mathscr{X})_{-} = \forall \mathscr{X}$ .

Hence, suppose now that  $P \in \mathcal{N}$  is such that  $P_{-} = P$ . In this case,

$$P = \vee \{ R \in \mathscr{N} : R < P \}$$

and, since  $\phi$  is an order homomorphism, it is clear that

$$\vee \{ \phi(R) \in \mathscr{N} : R < P \} \leq \phi(P)$$

If  $\forall \{\phi(R) \in \mathcal{N} : R < P\} < \phi(P)$ , then by (16) there would exist a rank one operator  $x \otimes y \in \mathcal{L}$  such that  $\hat{P}_x < P$ ,  $P_y \mathscr{B}(\mathscr{H}) \hat{P}_x^{\perp} \subseteq \mathcal{L}$  and

$$\vee \{ \phi(R) \in \mathscr{N} : R < P \} < P_{\mathcal{Y}}.$$

But this cannot happen since, by the definition of supremum,

$$P_{\mathcal{V}} \leqslant \forall \{ \phi(R) \in \mathcal{N} : R < P \}.$$

Hence

$$\vee \{ \phi(R) \in \mathscr{N} : R < P \} = \phi(P),$$

as required. Letting  $P = \lor \mathscr{X}$ , we finally have  $\phi(\lor \mathscr{X}) = \lor \phi(\mathscr{X})$ , which concludes the proof.  $\Box$ 

Given a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module  $\mathscr{L}$ , let  $\mathscr{K}(\mathscr{L})$  and  $\mathscr{D}_{\mathscr{K}(\mathscr{L})}$  be defined, respectively, by (6)–(10) and Definition 1. The next theorem summarises the results of Section 2.

THEOREM 1. Let  $\mathscr{L}$  be a weakly closed Lie  $\mathscr{T}(\mathscr{N})$ -module and let  $\mathscr{C}(\mathscr{L})$  be as in (14). Then, there exist weakly closed  $\mathscr{T}(\mathscr{N})$ -bimodules  $\mathscr{J}(\mathscr{L})$  and  $\mathscr{K}(\mathscr{L})$ and a von Neumman subalgebra  $\mathscr{D}_{\mathscr{K}(\mathscr{L})}$  of the diagonal  $\mathscr{D}(\mathscr{N})$  such that

 $\mathcal{J}(\mathcal{L}) \subseteq \mathcal{L} \subseteq \mathcal{K}(\mathcal{L}) + \mathcal{D}_{\mathcal{K}(\mathcal{L})},$ 

where  $\mathcal{J}(\mathcal{L}) = \{T \in \mathcal{B}(\mathcal{H}) : \phi(P)^{\perp}TP = 0\}$  and  $\phi : \mathcal{N} \to \mathcal{N}$  is the left order continuous homomorphism defined by

$$\phi(P) = \lor \{ P_y \colon \exists x \in \mathscr{H} \; x \otimes y \in \mathscr{C}(\mathscr{L}) \land \hat{P}_x < P \}.$$

Moreover,  $\mathcal{J}(\mathcal{L})$  is the largest weakly closed  $\mathcal{T}(\mathcal{N})$ -bimodule contained in  $\mathcal{L}$  and  $\mathcal{K}(\mathcal{L})$  is such that  $[\mathcal{K}(\mathcal{L}), \mathcal{T}(\mathcal{N})] \subseteq \mathcal{L}$ .

EXAMPLE 1. Notice that neither is it necessarily the case that  $\mathscr{J}(\mathscr{L}) \subseteq \mathscr{K}(\mathscr{L})$ nor that  $\mathscr{L} \subseteq \mathscr{K}(\mathscr{L})$ . A simple counter-example can be given in the nest algebra of the 5×5 upper triangular complex matrices. Consider the Lie module  $\mathscr{L} = \operatorname{span}\{I\} + \mathscr{J}(\mathscr{L})$ , where  $\mathscr{J}(\mathscr{L})$  is the bimodule consisting of the 5×5 complex matrices such that  $a_{i1} = 0$ , if  $1 \leq i \leq 5$ , and  $a_{i2} = 0$ , if  $3 \leq i \leq 5$ . In this case,  $\mathscr{K}(\mathscr{L})$  consists of the matrices in  $\mathscr{J}(\mathscr{L})$  such that  $a_{22} = 0$ .

REMARK 2. When  $\mathscr{L}$  is a weakly closed Lie ideal,  $\mathscr{K}_L(\mathscr{L})$ ,  $\mathscr{K}_D(\mathscr{L})$ ,  $\mathscr{K}_\Delta(\mathscr{L}) = \{0\}$ . In this situation, it has been shown in [1] that

$$\mathscr{K}(\mathscr{L})\subseteq\mathscr{J}(\mathscr{L})\subseteq\mathscr{L}\subseteq\mathscr{K}(\mathscr{L})+\mathscr{D}_{\mathscr{K}(\mathscr{L})}=\mathscr{J}(\mathscr{L})\oplus\check{\mathscr{D}}(\mathscr{L}),$$

where  $\check{\mathscr{D}}(\mathscr{L})$  is an appropriate unital weakly closed \*-subalgebra of  $\mathscr{D}_{\mathscr{K}(\mathscr{L})}$ .

## REFERENCES

- J. ALMEIDA AND L. OLIVEIRA, A decomposition theorem for Lie ideals in nest algebras, Arch. Math. 97 (2011), 549–558.
- [2] K. R. DAVIDSON, Nest Algebras, Longman, 1988.

34

- [3] J. A. ERDOS AND S. C. POWER, Weakly closed ideals of nest algebras, J. Operator Theory (2) 7 (1982), 219–235.
- [4] C. K. FONG, C. R. MIERS AND A. R. SOUROUR, Lie and Jordan ideals of operators on Hilbert space, Proc. Amer. Math. Soc. (4) 84 (1982), 516–520.
- [5] T. D. HUDSON, L. W. MARCOUX AND A. R. SOUROUR, *Lie ideals in triangular operator algebras*, Trans. Amer. Math. Soc. (8) **350** (1998), 3321–3339.
- [6] L. OLIVEIRA, Finite rank operators in Lie ideals of nest algebras, Houston J. Math. 37 (2) (2011), 519–536.
- [7] J. R. RINGROSE, On some algebras of operators, Proc. London Math. Soc 15 (1965), 61-83.

(Received February 12, 2016)

Lina Oliveira Center for Mathematical Analysis Geometry and Dynamical Systems and Department of Mathematics Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa Portugal e-mail: linaoliv@math.tecnico.ulisboa.pt Miguel Santos Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa Portugal

e-mail: miguel.m.santos@ist.utl.pt

Operators and Matrices www.ele-math.com oam@ele-math.com