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WEAKLY CLOSED LIE MODULES OF NEST ALGEBRAS

LINA OLIVEIRA AND MIGUEL SANTOS

(Communicated by N.-C. Wong)

Abstract. Let T (N ) be a nest algebra of operators on Hilbert space and let L be a weakly
closed Lie T (N ) -module. We construct explicitly the largest possible weakly closed T (N ) -
bimodule J (L ) and a weakly closed T (N ) -bimodule K (L ) such that

J (L ) ⊆ L ⊆ K (L )+DK (L ),

[K (L ),T (N )] ⊆ L and DK (L ) is a von Neumann subalgebra of the diagonal T (N )∩
T (N )∗ .

1. Introduction

It has been established in [5] that any weakly closed Lie ideal L of a nest algebra
T (N ) of operators on Hilbert space contains a weakly closed associative ideal of
T (N ) and is contained in a sum of this ideal with a von Neumann subalgebra of the
diagonal D(N ) of the nest algebra. That is to say that there exist a weakly closed
associative ideal K (L ) and a von Neumann subalgebra DK (L ) of D(N ) such that

K (L ) ⊆ L ⊆ K (L )+DK (L ). (1)

The purpose of the present work is to show that a similar result holds when we
pass from ideals to modules. More precisely, the main result Theorem 1 asserts that, if
L is a weakly closed Lie T (N )-module, then

J (L ) ⊆ L ⊆ K (L )+DK (L ), (2)

where DK (L ) is a von Neumman subalgebra of the diagonal D(N ) , J (L ) is ex-
plicitly constructed as the largest weakly closed T (N )-bimodule contained in L
and K (L ) is a weakly closed T (N )-bimodule such that [K (L ),T (N )] ⊆ L , a
result reminiscent of [4], Theorem 2.
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Neither is it necessarily the case that J (L ) be a subset of K (L ) nor that L
be contained in K (L ) , as Example 1 shows. However, when L is in fact a weakly
closed Lie ideal, a refinement of both (1) and (2) can be obtained, as is outlined in
Remark 2. In this situation, (1) and (2) coalesce yielding

K (L ) ⊆ J (L ) ⊆ L ⊆ K (L )+DK (L ), (3)

and K (L ) might even be a proper subset of J (L ) .

The notation is set in this final part of Section 1 and some facts needed in the
sequel are also recalled. Theorem 1 is proved in Section 2.

Let H be a complex Hilbert space, let B(H ) be the complex Banach space of
bounded linear operators on H and let F1(H ) be the set of rank one operators in
B(H ) . A totally ordered family N of projections in B(H ) containing 0 and the
identity I is said to be a nest. If, furthermore, N is a complete sublattice of the lattice
of projections in B(H ) , then N is called a complete nest. The nest algebra T (N )
associated with a nest N is the subalgebra of all operators T in B(H ) such that, for
all projections P in N , T (P(H ))⊆ P(H ), or, equivalently, an operator T in B(H )
lies in T (N ) if and only if, for all projections P in the nest N , P⊥TP = 0, where
P⊥ = I −P . Each nest is contained in a complete nest which generates the same nest
algebra (cf. [2, 7]). Henceforth only complete nests will be considered.

The algebra T (N ) is a weakly closed subalgebra of B(H ) , the diagonal D(N )
of which is the von Neumann algebra defined by D(N )=T (N )∩T (N )∗ .

A nest algebra T (N ) together with the product defined, for all operators T and
S in T (N ) , by [T,S] = TS−ST is a Lie algebra. A complex subspace M of B(H )
is said to be a T (N )-bimodule if MT (N ),T (N )M ⊆ M and is called a Lie
T (N )-module if [M ,T (N )] ⊆ M . Lie T (N )-modules and T (N )-bimodules
contained in the nest algebra T (N ) are called, respectively, Lie ideals and ideals of
T (N ) . In the sequel, Lie T (N )-modules may be referred to as Lie modules for
simplicity. For the same reason, T (N )-bimodules may be called simply bimodules.

Let x and y be elements of the Hilbert space H and let x⊗ y be the rank one
operator defined, for all z in H , by z �→ 〈z,x〉y , where 〈·, ·〉 denotes the inner product
of H . Let P be a projection in the nest N and let P− (respectively, P+ ) be the
projection in N defined by P− = ∨{Q ∈ N : Q < P} (respectively, P+ = ∧{Q ∈
N : P < Q} ). A rank one operator x⊗ y lies in T (N ) if, and only if, there exists a
projection P such that P−x = 0 and Py = y ; moreover, P can be chosen to be equal
to

∧{Q ∈ N : Qy = y} (cf. [7]). For the general theory of nest algebras, the reader is
referred to [2, 7].

In what follows, the closure in the weak operator topology of a subset X of
B(H ) will be denoted by X

w
, and the closure in the same topology of the span

of X will be denoted by spanw(X ) . All subspaces either of H or of B(H ) are
assumed to be complex subspaces.
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2. Lie T (N )-modules

This section is devoted to the proof of the main result Theorem 1. To this pur-
pose, some lemmas are firstly obtained concerning the T (N )-bimodules K (L ) and
J(L ) in (2).

LEMMA 1. Let L be a Lie T (N )-module and let P,Q ∈ T (N ) be mutually
orthogonal projections. Then, for all T ∈ L , the operators PTQ,QTP lie in L .

Proof. Since PQ = 0, it is easily seen that

QTP =
1
2
([[[T,P],Q],Q]− [[T,P],Q]),

from which follows that QTP ∈ L . The remaining assertion can be similarly proved.
�

LEMMA 2. Let L be a weakly closed Lie T (N )-module and let P be a projec-
tion in N . If P⊥L P �= {0} , then PL P⊥ = PB(H )P⊥ .

Proof. Let P ∈ N and T ∈ L be such that P⊥TP �= 0. Notice that Lemma 1
guarantees that P⊥TP ∈ L . To prove the assertion, it suffices to show that, for all
x,y ∈ H , the operator P(x⊗ y)P⊥ lies in L . This trivially holds when P(x⊗ y)P⊥ =
0. Assume now that P(x⊗ y)P⊥ is a rank one operator. Then

[[P(x⊗ y)P⊥,P⊥TP],P(x⊗ y)P⊥] = 2P(x⊗ y)P⊥TP(x⊗ y)P⊥ (4)

and, therefore,

[[P(x⊗ y)P⊥,P⊥TP],P(x⊗ y)P⊥] = 2〈P⊥TPy,x〉P(x⊗ y)P⊥ (5)

lies in L . It follows that P(x⊗ y)P⊥ ∈ L , whenever 〈P⊥TPy,x〉 �= 0.
On the other hand, if x ⊥ P⊥TPy , then suppose firstly that P⊥TPy �= 0. In this

case, replacing x⊗y by P⊥TPy⊗Py in the above computations yields that the operator
P⊥TPy⊗Py lies in L . Notice that the condition under which it can be deduced from
(5) that P⊥TPy⊗Py∈ L is, in this case, that

〈P⊥TPy,P⊥TPy〉 �= 0,

which clearly holds. Moreover, since 〈P⊥TPy− x,P⊥TPy〉 �= 0, it also follows from
(5) that (P⊥TPy−P⊥x)⊗Py lies in L . Hence,

P(x⊗ y)P⊥ = P⊥TPy⊗Py− (P⊥TPy−P⊥x)⊗Py

lies in L .
Assume now that P⊥TPy = 0. Since P⊥TP �= 0, there exists z ∈ H such that

P⊥TPz �= 0, from which follows that P⊥TP(z− y) �= 0. Applying a reasoning similar
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to that of the preceding paragraph, it follows that both P(x⊗z)P⊥ and P(x⊗(z−y))P⊥
lie in L . Hence,

P(x⊗ y)P⊥ = P(x⊗ z)P⊥−P(x⊗ (z− y))P⊥

lies in L , which concludes the proof. �
Let L be a Lie T (N )-module and let K (L ) be the subspace of B(H ) de-

fined by
K (L ) = KV (L )+KL(L )+KD(L )+KΔ(L ), (6)

where

KV (L ) = spanw{PTP⊥ : P ∈ N ,T ∈ L }, (7)

KL(L ) = spanw{P⊥TP : P ∈ N ,T ∈ L }, (8)

KD(L ) = spanw{PSP⊥TP : P ∈ N ,T ∈ L ,S ∈ T (N )}, (9)

KΔ(L ) = spanw{P⊥TPSP⊥ : P ∈ N ,T ∈ L ,S ∈ T (N )}. (10)

LEMMA 3. Let L be a weakly closed Lie T (N )-module and let K (L ) and
KV (L ) be as in (6) and (7), respectively. Then, K (L ) is a weakly closed T (N )-
bimodule and KV (L ) is a weakly closed ideal of T (N ) .

REMARK 1. Notice that KV (L ) is a subspace of T (N ) and that, by Lemma 1,
the spaces KV (L ) and KL(L ) are contained in L .

Proof. It is clear that K (L ) and KV (L ) are weakly closed subspaces of B(H )
and, as observed in Remark 1, KV (L ) ⊆ T (N ) .

To see that KV (L ) is an ideal of T (N ) , it suffices to show that, for all T ∈
L ,P ∈ N ,S ∈ T (N ) one has that both PTP⊥S and SPTP⊥ lie in KV (L ) . Since
P⊥SP⊥ ∈ T (N ) and since, by Lemma 1, PTP⊥ lies in L , it follows that

PTP⊥S = PTP⊥P⊥SP⊥ = [PTP⊥,P⊥SP⊥]

lies in L . But PTP⊥S = P(PTP⊥S)P⊥ , which shows that PTP⊥S lies in KV (L ) .
Similarly,

SPTP⊥ = PSPPTP⊥ = [PSP,PTP⊥]

lies in L and, therefore,
SPTP⊥ = P(SPTP⊥)P⊥

lies in KV (L ) .
It will be shown next that KL(L )T (N ),T (N )KL(L ) ⊆ K (L ) . It suffices

to show that, for all T ∈ L ,P ∈ N and S ∈ T (N ) , the operators P⊥TPS , SP⊥TP
lie in K (L ) . Observe also that, if T is an operator in the Lie module L , then, by
Lemma 1, the operator P⊥TP lies in L . Hence, it suffices to assume that T ∈ L is
such that T = P⊥TP , for some P ∈ N , and then prove that TS,ST ∈ K (L ) , for all
S ∈ T (N ) .
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Let T be an operator in L such that T = P⊥TP , and let S be an operator in the
nest algebra. It follows that

TS = P⊥TPSP+P⊥TPSP⊥.

It is clear that P⊥TPSP⊥ ∈ KΔ(L ) . On the other hand,

P⊥TPSP = [P⊥TP,PSP]

= P⊥[T,PSP]P.

Since [T,PSP] ∈ L , it follows that P⊥TPSP ∈ KL(L ) . Hence, TS lies in K (L ) ,
as required.

Similarly,
ST = P⊥ST +PST = [P⊥SP⊥,T ]+PSP⊥TP

lies in K (L ) , since PSP⊥TP ∈ KD(L ) and

[P⊥SP⊥,T ] = P⊥[P⊥SP⊥,T ]P

lies in KL(L ) .
To show that KD(L )T (N ),T (N )KD(L )⊆K (L ) , it suffices to prove that,

for all T ∈ L , S,R ∈ T (N ) and P ∈ N , the operators PSP⊥TPR and RPSP⊥TP
lie in K (L ) .

As to the operator RPSP⊥TP , observe that

RPSP⊥TP = P(RPS)P⊥TP

and, since RPS ∈ T (N ) , it immediately follows that RPSP⊥TP ∈ KD(L ) . Hence,
T (N )KD(L ) ⊆ K (L ) .

It only remains to show that PSP⊥TPR ∈ K (L ) . Observe that, by Lemma 2,
either PL P⊥ = PB(H )P⊥ or P⊥L P = {0} . In the latter case, it is obvious that
the assertion to be proved trivially holds. In the former case, notice that, by Lemma 1,
PB(H )P⊥ ⊆ L .

Let T,S,R be as above and let P ∈ N be such that PB(H )P⊥ ⊆ L . Then,

PSP⊥TPR = PSP⊥TPRP+PSP⊥TPRP⊥

= PSP⊥[P⊥TP,PRP]P+PSP⊥TPRP⊥.

As seen above, PB(H )P⊥ ⊆ L yielding that the operator PSP⊥TPRP⊥ lies in L .
Consequently,

PSP⊥TPRP⊥ = P(PSP⊥TPRP⊥)P⊥

lies in KV (L ) . Moreover, by Lemma 1, P⊥TP∈L , from which follows that [P⊥TP,PRP]∈
L . Hence, PSP⊥[P⊥TP,PRP]P ∈ KD(L ) . It follows that
KD(L )T (N ) ⊆ K (L ) .

Finally, it will be shown that KΔ(L )T (N ),T (N )KΔ(L ) ⊆ K (L ) . That
is to say that, it must be proved that, for all T ∈ L ,S,R ∈ T (N ) and P ∈ N , the
operators P⊥TPSP⊥R and RP⊥TPSP⊥ lie in K (L ) .
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Suppose again that PL P⊥ = PB(H )P⊥ . Recall that, by Lemma 2, the only
other possibility is P⊥L P = {0} , in which case the assertions to be proved trivially
hold.

Since SP⊥R ∈ T (N ) , it follows that

P⊥TPSP⊥R = P⊥TP(SP⊥R)P⊥

lies in KΔ(L ) . Furthermore,

RP⊥TPSP⊥ = PRP⊥TPSP⊥+P⊥RP⊥TPSP⊥

= PRP⊥TPSP⊥+P⊥[P⊥RP⊥,P⊥TP]PSP⊥.

Observe that PRP⊥TPSP⊥ ∈ PB(H )P⊥ ⊆ KV (L ) , since it is assumed that PL P⊥
= PB(H )P⊥ . Moreover, P⊥[P⊥RP⊥,P⊥TP]PSP⊥ lies in KΔ(L ) , since
[P⊥RP⊥,P⊥TP] ∈ L . �

LEMMA 4. Let L be a weakly closed Lie T (N )-module and let K (L ) be the
weakly closed T (N )-bimodule associated with L in (6).

Then [K (L ),T (N )] ⊆ L .

Proof. Since KV (L ),KL(L ) ⊆ L , it is enough to prove that

[KD(L ),T (N )], [KΔ(L ),T (N )] ⊆ L .

That is to say that it suffices to show that for all T ∈ L ,P ∈ N and R,S ∈ T (N ) ,
the operators [PSP⊥TP,R] and [P⊥TPSP⊥,R] lie in L .

Recall once again that, given P ∈ N , by Lemma 2, either PL P⊥ = PB(H )P⊥
or P⊥L P = {0} . In the latter case, for all T ∈ L , P⊥TP = 0, from which follows
that the assertions to be proved are trivially true.

Suppose now that PL P⊥ = PB(H )P⊥ and that T ∈L is such that P⊥TP �= 0,
in which case, by Lemma 1, P⊥TP ∈ L . Then, for all R,S ∈ N ,

[PSP⊥TP,R] = [PSP⊥TP,RP]+ [PSP⊥TP,PRP⊥]+ [PSP⊥TP,P⊥RP⊥]

= [PSP⊥TP−P⊥TPSP⊥,RP]+PSP⊥TPRP⊥

= [[PSP⊥,P⊥TP],RP]+PSP⊥TPRP⊥

lies in L . Similarly,

[P⊥TPSP⊥,R] = [P⊥TPSP⊥,RP]+ [P⊥TPSP⊥,PRP⊥]+ [P⊥TPSP⊥,P⊥RP⊥]

= −PRP⊥TPSP⊥+[P⊥TPSP⊥−PSP⊥TP,P⊥RP⊥]

= −PRP⊥TPSP⊥+[[P⊥TP,PSP⊥],P⊥RP⊥]

is an operator in L , which concludes the proof. �
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Recall that it is possible to associate with each weakly closed T (N )-bimodule
K a (not necessarily unique) left order continuous homomorphism φ : N →N such
that

K = {T ∈ B(H ) : φ(P)⊥TP = 0}
(see [3]).

LEMMA 5. Let L be a weakly closed Lie T (N )-module, let K (L ) be the
weakly closed T (N )-bimodule defined in (6)–(10), and let φ : N → N be a left
order continuous homomorphism associated with K (L ). If P ∈ N is such that
φ(P) < P, then, for all T ∈ L and all Q ∈ N with φ(P) < Q < P,

(Q−φ(P))T (P−Q) = 0.

Proof. Let T be an operator in L and let that P,Q ∈ N . Since, by the definition
(6)–(10) of K (L ) , QTQ⊥ ∈ K (L ) , it follows that

φ(P)⊥(QTQ⊥)P = 0.

Hence, if φ(P) < Q < P , then

(Q−φ(P))T (P−Q) = 0,

as required. �

DEFINITION 1. Given a weakly closed T (N )-bimodule K , define DK as the
algebra consisting of all operators T ∈ D(N ) such that, for every P ∈ N for which
φ(P) < P− , there exists λP in C satisfying the equality

T
(
P−φ(P)

)
= λP

(
P−φ(P)

)
.

The algebra DK is a von Neumann subalgebra of D(N ) and, when K is a
weakly closed Lie ideal of T (N ) , the algebra DK is that defined in [5].

The next lemma is inspired by results of [5].

LEMMA 6. Let L be a weakly closed Lie T (N )-module. Then L ⊆ K (L )
+DK (L ) .

Proof. Let π be an expectation of T (N ) on D(N ) (see [2], Corollary 8.5).
Given T ∈ L , let

T = Tπ + π(T),

where
Tπ = T −π(T).

Firstly, it will be shown that Tπ ∈ K (L ) ; that is to say that, for all P ∈ N ,

φ(P)⊥TπP = 0,
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where φ : N → N is a left order continuous homomorphism on N associated with
the bimodule K (L ) .

Let Q be a projection in N . Notice that

φ(P)⊥Q⊥TQP = 0,

since Q⊥TQ ∈ K (L ) (see (6)–(10)). Then,

Q⊥(φ(P)⊥TπP)Q = φ(P)⊥(Q⊥TπQ)P

= φ(P)⊥Q⊥TQP−φ(P)⊥Q⊥π(T )QP

= −φ(P)⊥Q⊥π(T )QP.

But, since by [2], Theorem 8.1, φ(P)⊥Q⊥π(T )QP = π
(
φ(P)⊥Q⊥TQP

)
, it follows

that, for all Q ∈ N , Q⊥(φ(P)⊥TP)Q = 0. Similarly,

Qφ(P)⊥TπPQ⊥ = φ(P)⊥(QTQ⊥)P−φ(P)⊥Qπ(T )Q⊥P

= −π
(
φ(P)⊥QTQ⊥P

)
= 0.

Hence, for all P,Q ∈ N ,

φ(P)⊥TπP = Qφ(P)⊥TπPQ+Q⊥φ(P)⊥TπPQ⊥, (11)

from which follows that φ(P)⊥TπP ∈ D(N ) . Hence, by [2], Theorem 8.1,

φ(P)⊥TπP = π(φ(P)⊥TπP)

= φ(P)⊥π(Tπ)P

= φ(P)⊥π(T −π(T))P.

Since π(T −π(T )) = 0, it follows that, for all P ∈ N , φ(P)⊥TπP = 0 or, in other
words, Tπ lies in K (L ) .

It remains to show that π(T ) lies in DK (L ) . Let P∈N be such that φ(P) < P− .
Then, there exists a projection Q ∈ N such that φ(P) < Q < P .

Since QTQ⊥ ∈ K (L ) (see (6)–(10)), it follows that, for all P ∈ N ,

φ(P)⊥(QTQ⊥)P = 0.

Observe also that, since Tπ ∈ K (L ) , by Lemma 4, [π(T ),T (N )] ⊆ L . Hence, for
all x,y ∈ H , the operator

[π(T ),(Q−φ(P))(x⊗ y)(P−Q)]

lies in L . It follows, by Lemma 5, that

(Q−φ(P))[π(T ),(Q−φ(P))(x⊗ y)(P−Q)](P−Q) = 0

and, consequently,

((P−Q)x⊗ (Q−φ(P))π(T)(Q−φ(P))y) = ((P−Q)π(T )∗(P−Q)x⊗ (Q−φ(P))y)
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Choosing x,y ∈ H such that x = (P−Q)x and y = (Q−φ(P))y , it is easy to see that
there must exist λP ∈ C such that

π(T )(P−Q) = λP(P−Q)

and
π(T )

(
Q−φ(P)

)
= λP

(
Q−φ(P)

)
.

It follows that
π(T )

(
P−φ(P)

)
= λP

(
P−φ(P)

)
,

yielding that π(T ) lies in DK (L ) , as required. �
The characterisation of the largest weakly closed T (N )-bimodule contained in

a weakly closed Lie T (N )-module L will be obtained in Lemma 8 below.
Let z be an element of the Hilbert space H and let Pz and P̂z be the projections

defined by

Pz = ∧{Q ∈ N : Qz = z}, P̂z = ∨{Q ∈ N : Qz = 0}.

The projections Pz and P̂z lie in the nest N and Pzz = z , P̂zz = 0. Following [6], each
rank one operator x⊗ y will be associated with the projections P̂x and Py .

LEMMA 7. Let U be a norm closed T (N )-bimodule and let x⊗y be a rank one
operator in B(H ) . Then x⊗ y lies in U if and only if PyB(H )P̂⊥

x is contained in
U

w
.

Proof. Since U
w

is a weakly closed bimodule, by [3], Theorem 1.5, there exists a
left order continuous homomorphism P �→ P̃ on N such that an operator T ∈ B(H )
lies in U

w
if and only if, for all P ∈ N , P̃⊥TP = 0.

Let x⊗ y be a rank one operator in U , let T lie in PyB(H )P̂⊥
x and suppose that

P ∈ N is a projection such that P � P̂x . Then,

P̃⊥TP = P̃⊥PyT P̂⊥
x P = 0. (12)

Suppose now that P ∈ N is a projection such that P̂x < P . Since x⊗ y ∈ U , by the
definition of P̃ , Py � P̃ (see [3], p. 221). Hence

P̃⊥TP = P̃⊥PyT P̂⊥
x P = 0. (13)

Combining (12)-(13) yields that PyB(H )P̂⊥
x ⊆ U

w
.

Conversely, if x⊗ y is a rank one operator such that PyB(H )P̂⊥
x ⊆ U

w
, then it is

clear that x⊗ y ∈ U
w
. By [3], Lemma 1.3, x⊗ y ∈ U . �

Let L be a weakly closed Lie T (N )-module and let C (L ) be the subset of
B(H ) defined by

C (L ) = {x⊗ y∈ B(H ) : PyB(H )P̂⊥
x ⊆ L }. (14)
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Observe that the set C (L ) can be properly contained in L ∩F1(H ) . For ex-
ample, let T (N ) be the nest algebra of the 8× 8 upper triangular complex matrices
and let L be the subspace of the 8× 8 complex matrices consisting of those having
null trace. It is clear that L is a Lie T (N )-module and that the matrix unit E65 lies
in L but not in C (L ) .

LEMMA 8. Let L be a weakly closed Lie T (N )-module and let C (L ) be as
in (14). Then the largest weakly closed T (N )-bimodule contained in L is

J (L ) = {T ∈ B(H ) : φ(P)⊥TP = 0}, (15)

where φ : N → N is the left order continuous homomorphism defined by

φ(P) = ∨{Py : ∃x ∈ H x⊗ y ∈ C (L )∧ P̂x < P}. (16)

Proof. It is easy to see that a set defined as in (15) by any, not even necessarily
order-preserving, map φ : N → N is a weakly closed T (N )-bimodule. It will be
shown next that C (L ) coincides with the subset of rank one operators contained in
J (L ) .

Let x⊗ y be a rank one operator in C (L ) , let P be a projection in N and
suppose initially that P̂x < P . It follows from the definition of φ that Py � φ(P) and,
consequently,

φ(P)⊥(x⊗ y)P = φ(P)⊥Py(x⊗ y)P̂⊥
x P = 0.

It can be similarly shown that φ(P)⊥(x⊗ y)P = 0, when P � P̂x . Hence C (L ) ⊆
J (L ) .

Conversely, let x⊗y be an operator lying in the weakly closed bimodule J (L ) .
Hence, by Lemma 7, for all T ∈PyB(H )P̂⊥

x and all P∈N , φ(P)⊥TP = 0. It follows
that Py � φ(P) , whenever P ∈ N is such that P̂x < P .

Case 1. P ∈ N is such that P̂x < P and Py < φ(P) .
In this case, by (16), there exists a rank one operator zP ⊗wP ∈ C (L ) such that

P̂zP < P and Py < PwP . Hence PwPB(H )P̂⊥
zP ⊆ L and, consequently, PwP(x⊗ y)P̂⊥

zP =
P̂⊥

zPx⊗ y lies in C (L ) .
Since PwPB(H )P⊥ ⊆ PwPB(H )P̂⊥

zP , it follows that P⊥x⊗ y lies also in C (L ) .
Case 2. P ∈ N is such that P̂x < P and Py = φ(P) .
By (16), there exists a set {z j ⊗wj : j ∈ Λ} contained in C (L ) such that (Pwj )

is an increasing net converging to Py in the strong operator topology and, for all j ,
P̂z j < P . Consequently, for all j , the operator P̂⊥

z j
x⊗Pwjy lies in C (L ) . Observing

that PwjB(H )P⊥ ⊆PwjB(H )P̂⊥
z j
⊆L , it follows that P⊥x⊗Pwjy also lies in C (L ) .

Since L is weakly closed, it is also the case that P⊥x⊗ y ∈ C (L ) .
If P̂x < P̂+

x , then set P = P̂+
x . If Case 1 applies, then there exists a rank one

operator zP ⊗wP ∈ C (L ) such that P̂zP < P̂+
x and Py < PwP . Consequently,

P̂⊥
zPx⊗ y = P̂⊥

x x⊗ y = x⊗ y
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lies in C (L ) . On the other hand, if Case 2 holds, then, for all j , P̂z j � P̂x . Hence, for
all j ,

P̂⊥
z j

x⊗Pwjy = P̂⊥
x x⊗Pwjy

= x⊗Pwjy,

from which follows that x⊗Pwjy lies in C (L ) . A limit argument similar to that above
finally yields that x⊗ y ∈ C (L ) .

If P̂x = P̂+
x , then there exists a decreasing net (Pj) in N converging to P̂x in

the strong operator topology and such that, for all j , P̂x < Pj . Since, either by Case
1 or Case 2, for all j, the operator P⊥

j x⊗ y lies in C (L ) , taking limits it follows that

PyB(H )P̂⊥
x ⊆ L . Hence, P̂⊥

x x⊗ y = x⊗ y ∈ C (L ) , as required.
It has been shown that a rank one operator lies in the weakly closed bimodule

J (L ) if and only if it lies in C (L ) . Hence, by [3], Lemma 1.2 and Theorem 1.5,
J (L ) = spanw(C (L )) and, consequently, J (L ) ⊆ L . Notice that it is implicit in
the proof of [3], Theorem 1.5 that a weakly closed T (N )-bimodule coincides with
the closure in the weak operator topology of its subset of finite rank operators.

Suppose that there exists a weakly closed bimodule U contained in L which
properly contains J (L ) . By Lemma 7 and [3], Lemma 1.2 and Theorem 1.5, there
exists a rank one operator x⊗ y ∈ U \J (L ) such that PyB(H )P̂⊥

x ⊆ U and, there-
fore,

PyB(H )P̂⊥
x ⊆ L . (17)

But this is impossible since, as shown above, J (L ) contains all operators x⊗ y sat-
isfying (17). Hence J (L ) is the largest weak operator closed bimodule contained in
L .

To end the proof, it will be shown next that the map φ is a left order continuous
homomorphism on N .

If P1 � P2 , then {Py : ∃x ∈ H x⊗y∈C (L )∧P̂x < P1} is a subset of {Py : ∃x ∈ H
x⊗y∈ C (L )∧ P̂x < P2} , from which immediately follows that φ(P1) � φ(P2) . Hence
φ is an order homomorphism on N .

It only remains to show that the map φ is left order continuous; that is to say that,
for every subset X of N , φ(∨X ) = ∨φ(X ) . This trivially holds for the empty set.
Suppose then that in what follows X �= /0 .

If ∨X ∈ X , then the equality φ(∨X ) = ∨φ(X ) is obvious, since φ is an
order-preserving map. If, on the other hand, ∨X /∈ X then (∨X )− = ∨X .

Hence, suppose now that P ∈ N is such that P− = P . In this case,

P = ∨{R ∈ N : R < P}
and, since φ is an order homomorphism, it is clear that

∨{φ(R) ∈ N : R < P} � φ(P).

If ∨{φ(R) ∈ N : R < P} < φ(P) , then by (16) there would exist a rank one oper-
ator x⊗ y ∈ L such that P̂x < P , PyB(H )P̂⊥

x ⊆ L and

∨{φ(R) ∈ N : R < P} < Py.
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But this cannot happen since, by the definition of supremum,

Py � ∨{φ(R) ∈ N : R < P}.

Hence
∨{φ(R) ∈ N : R < P} = φ(P),

as required. Letting P = ∨X , we finally have φ(∨X ) = ∨φ(X ) , which concludes
the proof. �

Given a weakly closed Lie T (N )-module L , let K (L ) and DK (L ) be de-
fined, respectively, by (6)–(10) and Definition 1. The next theorem summarises the
results of Section 2.

THEOREM 1. Let L be a weakly closed Lie T (N )-module and let C (L ) be
as in (14). Then, there exist weakly closed T (N )-bimodules J (L ) and K (L )
and a von Neumman subalgebra DK (L ) of the diagonal D(N ) such that

J (L ) ⊆ L ⊆ K (L )+DK (L ),

where J (L ) = {T ∈ B(H ) : φ(P)⊥TP = 0} and φ : N → N is the left order
continuous homomorphism defined by

φ(P) = ∨{Py : ∃x ∈ H x⊗ y ∈ C (L )∧ P̂x < P}.

Moreover, J (L ) is the largest weakly closed T (N )-bimodule contained in L and
K (L ) is such that [K (L ),T (N )] ⊆ L .

EXAMPLE 1. Notice that neither is it necessarily the case that J (L ) ⊆ K (L )
nor that L ⊆ K (L ) . A simple counter-example can be given in the nest algebra of
the 5×5 upper triangular complex matrices. Consider the Lie module L = span{I}+
J (L ) , where J (L ) is the bimodule consisting of the 5×5 complex matrices such
that ai1 = 0, if 1 � i � 5, and ai2 = 0, if 3 � i � 5. In this case, K (L ) consists of
the matrices in J (L ) such that a22 = 0.

REMARK 2. When L is a weakly closed Lie ideal, KL(L ) , KD(L ) ,
KΔ(L ) = {0} . In this situation, it has been shown in [1] that

K (L ) ⊆ J (L ) ⊆ L ⊆ K (L )+DK (L ) = J (L )⊕ D̆(L ),

where D̆(L ) is an appropriate unital weakly closed ∗ -subalgebra of DK (L ) .
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