perators
nd
atfrices

Volume 11, Number 1 (2017), 23-35 doi:10.7153/0oam-11-02

WEAKLY CLOSED LIE MODULES OF NEST ALGEBRAS

LINA OLIVEIRA AND MIGUEL SANTOS

(Communicated by N.-C. Wong)

Abstract. Let 7 (.4") be a nest algebra of operators on Hilbert space and let .# be a weakly
closed Lie .7 (/") -module. We construct explicitly the largest possible weakly closed .7 (.A4") -
bimodule ¢ (%) and a weakly closed .7 (.#") -bimodule .#"(.Z) such that

I (L)L CH (L) + Dy (),

(L), T(AN)] CZL and Z () is a von Neumann subalgebra of the diagonal .7 (4") N
T(N)*.

1. Introduction

It has been established in [5] that any weakly closed Lie ideal £ of a nest algebra
T (A) of operators on Hilbert space contains a weakly closed associative ideal of
() and is contained in a sum of this ideal with a von Neumann subalgebra of the
diagonal Z(.4") of the nest algebra. That is to say that there exist a weakly closed
associative ideal 7 () and a von Neumann subalgebra & (&) of Z(./4") such that

H(L)C L CHL)+ D). (1)

The purpose of the present work is to show that a similar result holds when we
pass from ideals to modules. More precisely, the main result Theorem 1 asserts that, if
% is a weakly closed Lie 7 (.#")-module, then

I(L)CLCAH L)+ Dy 2) 2)

where % 4() is a von Neumman subalgebra of the diagonal Z(47), 7 (%) is ex-
plicitly constructed as the largest weakly closed .7 (./#")-bimodule contained in ¥
and 7 (£) is a weakly closed .7 (.#")-bimodule such that [# (.£), 7 (A )] C L, a
result reminiscent of [4], Theorem 2.
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Neither is it necessarily the case that _# (.Z) be a subset of J# (.Z) nor that &
be contained in % (£, as Example 1 shows. However, when ¢ is in fact a weakly
closed Lie ideal, a refinement of both (1) and (2) can be obtained, as is outlined in
Remark 2. In this situation, (1) and (2) coalesce yielding

H(ZL)C J (L)L CH(L)+ D 2) 3)

and () might even be a proper subset of 7 (.Z).

The notation is set in this final part of Section 1 and some facts needed in the
sequel are also recalled. Theorem 1 is proved in Section 2.

Let 2% be a complex Hilbert space, let Z(.%°) be the complex Banach space of
bounded linear operators on 5 and let % () be the set of rank one operators in
PB(I). A totally ordered family .4~ of projections in A(.#°) containing 0 and the
identity [ is said to be a nest. If, furthermore, .4 is a complete sublattice of the lattice
of projections in A(), then 4 is called a complete nest. The nest algebra T (N")
associated with a nest .4 is the subalgebra of all operators T in B(.7#) such that, for
all projections P in .4, T(P(J¢)) C P(J¢), or, equivalently, an operator T in B(.7¢)
lies in .7 (/") if and only if, for all projections P in the nest .4, PLTP =0, where
P+ =1—P. Each nest is contained in a complete nest which generates the same nest
algebra (cf. [2, 7]). Henceforth only complete nests will be considered.

The algebra .7 (/") is a weakly closed subalgebra of B(¢), the diagonal 2(.N")
of which is the von Neumann algebra defined by 2( N )=F (A )N T (AN)*.

A nest algebra .7 (_4") together with the product defined, for all operators 7' and
Sin T (A),by [T,S]=TS—ST is a Lie algebra. A complex subspace .# of B(H#)
is said to be a J(A")-bimodule it M T (N ), T (N )M C A and is called a Lie
T(N)-module if [M,T(N)] C A . Lie T (A )-modules and .7 (./)-bimodules
contained in the nest algebra 7 (.4") are called, respectively, Lie ideals and ideals of
T (A). In the sequel, Lie 7 (4")-modules may be referred to as Lie modules for
simplicity. For the same reason, .7 (.4") -bimodules may be called simply bimodules.

Let x and y be elements of the Hilbert space 7 and let x® y be the rank one
operator defined, for all z in JZ, by z— (z,x)y, where (-,-) denotes the inner product
of 7. Let P be a projection in the nest .4 and let P_ (respectively, P;) be the
projection in .4~ defined by P- = V{Q € A4 : Q < P} (respectively, Py = A{Q €
A 1P < Q}). A rank one operator x®y lies in .7 (.4") if, and only if, there exists a
projection P such that P_x =0 and Py = y; moreover, P can be chosen to be equal
to A{Q € 4 : Qy =y} (cf. [7]). For the general theory of nest algebras, the reader is
referred to [2, 7].

In what follows, the closure in the weak operator topology of a subset 2~ of
PB() will be denoted by 2", and the closure in the same topology of the span
of 2" will be denoted by span”'(2"). All subspaces either of 5 or of Z() are
assumed to be complex subspaces.
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2. Lie .7 (./")-modules

This section is devoted to the proof of the main result Theorem 1. To this pur-
pose, some lemmas are firstly obtained concerning the .7 (.4") -bimodules .# (.¢) and
J(Z) in (2).

LEMMA 1. Let .Z be a Lie 7 (AN")-module and let P,Q € T (A") be mutually
orthogonal projections. Then, for all T € £, the operators PTQ,QTP lie in £ .

Proof. Since PQ = 0, it is easily seen that

orP = 2(([I7,P),1,0) - [I7,P}, ),

from which follows that QT P € .. The remaining assertion can be similarly proved.
O

LEMMA 2. Let £ be a weakly closed Lie  (N")-module and let P be a projec-
tionin N . If P £P # {0}, then PL P+ = PB(4)P+.

Proof. Let P€ .4 and T € £ be such that P-TP # 0. Notice that Lemma 1
guarantees that PLTPe Z. To prove the assertion, it suffices to show that, for all
x,y € A , the operator P(x®y)P* lies in .. This trivially holds when P(x®y)P+ =
0. Assume now that P(x® y)P* is a rank one operator. Then

[P(x®y)P+,PLTP],P(x®y)P'] = 2P(x®y)PTP(x®y)P+ (4)
and, therefore,
([P(x@y)P*, PYTP],P(x@y)P] = 2(P TPy, x)P(x®y)P* )

lies in .. Tt follows that P(x ® y)P+ € £, whenever (P-TPy,x) # 0.

On the other hand, if x L PL-TPy, then suppose firstly that PLTPy # 0. In this
case, replacing x®y by P-TPy® Py in the above computations yields that the operator
P-TPy® Py lies in .Z . Notice that the condition under which it can be deduced from
(5) that PXTPy® Py € & is, in this case, that

(PTPy,P*TPy) #0,

which clearly holds. Moreover, since (P-TPy—x,P-TPy) # 0, it also follows from
(5) that (P-TPy — P*x) ® Py lies in .Z. Hence,

P(x®y)Pt =P TPy® Py— (P*TPy— P'x)® Py

lies in .Z.
Assume now that PLTPy =0. Since PLTP £ 0, there exists z € 2 such that
PLTPz+# 0, from which follows that P-TP(z—y) # 0. Applying a reasoning similar
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to that of the preceding paragraph, it follows that both P(x®z)P*+ and P(x® (z—y))P*+
lie in .. Hence,

P(x®y)Pt =P(x®z)Pt — P(x® (z—y))P*

lies in £, which concludes the proof. [J

Let . be a Lie .7 (./")-module and let .7 (.£) be the subspace of Z(#) de-
fined by

HN(L) = Ay (L) + HL(L) + Hp(L) + HNL), (6)

where
Hy (L) =span”{PTP*: P N T € £}, (7
H(ZL) =span*{PITP: Pc N T € £}, (®)
Hp( L) =span”{PSPTP: Pc N, T € £,Sc T(N)}, )
HA(L) =5pan” {PLTPSPL: Pc N T L, Sc T(N)}. (10)

LEMMA 3. Let £ be a weakly closed Lie T (N)-module and let # (L) and
Sy (L) be as in (6) and (7), respectively. Then, # (£) is a weakly closed T (N) -
bimodule and Jty (£) is a weakly closed ideal of T (N).

REMARK 1. Notice that £ (%) is a subspace of .7 (.4") and that, by Lemma 1,
the spaces J#y (%) and 71 (£) are contained in .& .

Proof. Ttisclear that J# (.£) and J#y (.£) are weakly closed subspaces of ()
and, as observed in Remark 1, % (L) C T (AN).

To see that 7y () is an ideal of .7 (./"), it suffices to show that, for all T €
L. PeN,S€ T (N) one has that both PTP+S and SPTP* lie in #/(.%). Since
PSPt € 7(4) and since, by Lemma 1, PTP* lies in &, it follows that

PTP*S = PTP*P+-SP' = [PTP+, PSP

lies in .. But PTP+S = P(PTP*S)P*, which shows that PTP~S lies in %y (.Z).
Similarly,
SPTP' = PSPPTP* = [PSP,PTP"|

lies in . and, therefore,
SPTP+ = P(SPTP+)P+

lies in &y (Z).

It will be shown next that J#7(.L).T (N), T (N )HL(L) C # (). Tt suffices
to show that, forall T € Z,P € .4 and S € .7 (./), the operators P-TPS, SP+TP
lie in ' (.Z). Observe also that, if 7 is an operator in the Lie module ., then, by
Lemma 1, the operator P-TP lies in .Z. Hence, it suffices to assume that 7 € .& is
such that T = P-TP, for some P € .4, and then prove that T'S,ST € % (.£), for all
Se T(N).
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Let T be an operator in .# such that 7 = P-TP, and let S be an operator in the
nest algebra. It follows that

TS =P TPSP+ P-TPSP".
It is clear that P-TPSP+ € J#,(.£). On the other hand,

P-TPSP = [P*TP,PSP]
= P+[T,PSPP.

Since [T,PSP] € ¢, it follows that P*TPSP € #;(%). Hence, TS lies in # (L),
as required.
Similarly,
ST = P*ST 4 PST = [P*SP*,T] + PSP*TP

liesin # (%), since PSPTP € #p(<) and

[PLSPH,T] = PH[P-SP+,T|P
lies in 7 (.%).

To show that #p (L) T (N), T (AN )Hp(L) C (L), it suffices to prove that,
forall T € ., S,Re€ F(A) and P € ¥, the operators PSP-TPR and RPSP-TP
liein 2 (.Z).

As to the operator RPSPLTP, observe that

RPSP*TP = P(RPS)P'TP

and, since RPS € .7 (./'), it immediately follows that RPSP*TP € #p(Z). Hence,
T(N)HDp(L) S H(ZL).

It only remains to show that PSP-TPR € .# (). Observe that, by Lemma 2,
either P.LP+ = PA( )P+ or PL.ZP = {0}. In the latter case, it is obvious that
the assertion to be proved trivially holds. In the former case, notice that, by Lemma 1,
PB(H)P-C L.

Let T,S,R be as above and let P € ./ be such that P@(%”)Pl C % . Then,

PSPTPR = PSP-TPRP + PSP-TPRP*
= PSP*[P'TP,PRP|P+ PSP-TPRP*.

As seen above, PZ( )P+ C & yielding that the operator PSPTPRP* lies in .Z.
Consequently,
PSPTPRP = P(PSP-TPRP*)P*+

lies in (). Moreover, by Lemma 1, P-TP € ., from which follows that [P T P,PRP] €
Z. Hence, PSP-[PTP,PRPIP € #p(%). It follows that
Jp(LYT(N) CH(ZL).

Finally, it will be shown that J¢A (L) T (N), T(N)FA(L) C H (L). That
is to say that, it must be proved that, for all T € £, S,Re€ J(A4") and P € 4, the
operators PXTPSP*R and RPTPSP* lie in % (.Z).



28 L. OLIVEIRA AND M. SANTOS

Suppose again that P.ZP+ = P%(#)P+. Recall that, by Lemma 2, the only
other possibility is P-.ZP = {0}, in which case the assertions to be proved trivially
hold.

Since SPAR € 7 (./), it follows that

PLTPSPR = PLTP(SP R)P*
lies in J#A (%) . Furthermore,

RP-TPSP*+ = PRP-TPSP* + PLRPLTPSP*
= PRP+TPSP* + P*[P-RP*, P+ TP|PSP*.
Observe that PRPTPSP+ € PA(# )P+ C #y (L), since it is assumed that P.Z P+

= PB(A)P-. Moreover, PL[PLRPL PLTP|PSPL lies in #)(¥), since
[PARPL PITPle . O

LEMMA 4. Let £ be a weakly closed Lie T (N")-module and let ¢ (L) be the
weakly closed T (N") -bimodule associated with £ in (6).
Then [ (L), T (N)| C L.

Proof. Since 4y (L), 1(£) C &, itis enough to prove that
[D(L), T (N)], [ (L), T(AN)] € L.

That is to say that it suffices to show that forall T € ¥ ,P € A4 and R,S € T (N),
the operators [PSPLTP,R] and [P-TPSP+,R] liein £ .

Recall once again that, given P € .4, by Lemma 2, either PP+ = PRB(#)P+
or P #P = {0}. In the latter case, for all T € ., PLTP = 0, from which follows
that the assertions to be proved are trivially true.

Suppose now that P.ZP+ = P% (' )P+ and that T € & is such that PATP #0,
in which case, by Lemma 1, PA-TP € .Z. Then, forall R,S € .4,

[PSPTP,R] = [PSP*TP,RP| + [PSP*TP,PRP*] 4 [PSP-TP,P*RP*]
= [PSPLTP — PATPSP RP| + PSPTPRP*
= [[PSP*,P+TP],RP] + PSP*TPRP*

lies in .Z. Similarly,

[PLTPSP* R] = [P*TPSP*,RP] + [P*TPSP*-,PRP*] 4 [P TPSP*, P-RP"]
= —PRP*TPSP* + [P*TPSP* — PSP*TP,P*RP"|
= —PRPTPSP' + [[PTP,PSP'|,PRP!]

is an operator in ., which concludes the proof. [J
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Recall that it is possible to associate with each weakly closed .7 (.4")-bimodule
2 a (not necessarily unique) left order continuous homomorphism ¢: .4~ — .4 such
that
H ={T c B(AH): $(P)*TP=0}

(see [3]).

LEMMA 5. Let £ be a weakly closed Lie T (N")-module, let (L) be the
weakly closed T (N)-bimodule defined in (6)—~(10), and let ¢: N — N be a left
order continuous homomorphism associated with J# (). If P € A is such that
¢ (P) <P, then, forall T € £ and all Q € A with §(P) < Q <P,

(Q—0(P))T(P-Q)=0.

Proof. Let T be an operator in . and let that P,Q € 4. Since, by the definition
(6)—(10) of # (L), QT Q* € # (L), it follows that

o(P)-(QT Q)P =0.
Hence, if ¢(P) < Q < P, then
(Q—9(P))T(P-Q)=0,

as required. [

DEFINITION 1. Given a weakly closed .7 (/) -bimodule .7, define 7 as the
algebra consisting of all operators T € Z(.4") such that, for every P € .4 for which
¢(P) < P_, there exists Ap in C satisfying the equality

T(P—¢(P)) =Ap(P—9(P)).

The algebra & is a von Neumann subalgebra of Z(.4#") and, when ¢ is a
weakly closed Lie ideal of .7 (.4"), the algebra & is that defined in [5].
The next lemma is inspired by results of [5].

LEMMA 6. Let £ be a weakly closed Lie T (N)-module. Then £ C % (£)
+Px(2)

Proof. Let & be an expectation of 7 (4") on Z(.A4) (see [2], Corollary 8.5).
Given T € .Z, let
T =Tp+n(T),

where
T =T—n(T).

Firstly, it will be shown that T € JZ(.Z); that is to say that, for all P € .4,

¢(P) TP =0,
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where ¢: A — A is a left order continuous homomorphism on 4" associated with
the bimodule 7 (.Z).
Let Q be a projection in /. Notice that

9(P)*Q TQP =0,
since Q+TQ € % (£) (see (6)—(10)). Then,
Q" (¢(P)' TxP)Q = ¢(P)" (Q Tz Q)P
¢(P)"Q TQP—¢(P) Q" n(T)QP
=—¢(P) 0" n(T)QP,
But, since by [2], Theorem 8.1, ¢(P)*Q*n(T)QP = nt(¢(P)-Q*TQP), it follows
that, forall Q € 4", Q0+ (¢(P):TP)Q = 0. Similarly,
Q9(P)"TPQ" = ¢(P)"(QTQ")P — ¢(P)-Qn(T)Q"P
= —n(¢(P)*QTQ* P) =0.
Hence, forall P,Q € AN,
9(P)* TxP = Q¢(P) TPQ+ Q" ¢(P) ' TrPQ", (11)
from which follows that ¢(P)*T,P € 2(.#"). Hence, by [2], Theorem 8.1,
O(P) TxP = m(9(P) TrP)
= ¢(P)" n(Tx)P
= ¢(P) n(T — n(T))P.

Since 7(T — x(T)) = 0, it follows that, for all P € 4", ¢(P)* TP = 0 or, in other
words, Ty lies in 2 (.Z).

It remains to show that 7(T') lies in (). Let P € .4 be such that ¢(P) < P-.
Then, there exists a projection Q € .4 such that ¢(P) < Q < P.

Since QT Q™+ € # (&) (see (6)—(10)), it follows that, for all P € .4,

¢(P)-(QTQ )P =0

Observe also that, since T € # (.£), by Lemma 4, [(T), 7 (A4)] C £ . Hence, for
all x,y € 77, the operator

[7(T),(Q—¢(P))(x@y)(P— Q)]
lies in £ . It follows, by Lemma 5, that

(Q—9¢(P)[x(T),(Q—9¢(P))(x2y)(P-Q)|(P-Q) =0

and, consequently,

(P=Q)x@(Q—¢(P)x(T)(Q—9(P))y) = ((P—Q)n(T)"(P—Q)x@(Q—¢(P))y)
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Choosing x,y € 7 such that x = (P — Q)x and y = (Q — ¢(P))y, it is easy to see that
there must exist Ap € C such that

n(T)(P—Q)=Ar(P—Q)

and

n(T)(Q—9¢(P)) = Ap(Q — ¢ (P)).
It follows that

n(T)(P—¢(P)) = Ap(P — ¢(P)),
yielding that 7(T) lies in &, (), as required. [

The characterisation of the largest weakly closed .7 (.4")-bimodule contained in
a weakly closed Lie .7 (.4")-module .# will be obtained in Lemma 8 below.

Let z be an element of the Hilbert space .7 and let P. and P, be the projections
defined by

P=NQeN:0z=2}, P =v{Qe . :0:=0}.

The projections P, and P, lie in the nest .#” and P,z =z, P.z = 0. Following [6], each
rank one operator x ®y will be associated with the projections P, and Py.

LEMMA 7. Let % be anorm closed T(.A")-bimodule and let x®y be a rank one
operator in B(). Then x®Yy lies in % if and only if P,%B( )P} is contained in
z".

Proof. Since 2" isa weakly closed bimodule, by [3], Theorem 1.5, there exists a
left order continuous homomorphism P — P on .4 such that an operator T € B(.7)
liesin %" if and only if, forall P € .4, PLTP =0.

Let x®y be a rank one operator in % , let T lie in P,B(.%)P; and suppose that
P € ./ is a projection such that P < P.. Then,

PrTP=P'PTP P =0. (12)

Suppose now that P € .4 is a projection such that P, < P. Since x®y € % , by the
definition of P, P, < P (see [3], p. 221). Hence

PrTP=P'PTP P =0. (13)

Combining (12)-(13) yields that P,B(¢)P- C %" .
Conversely, if x®y is a rank one operator such that P,B(s¢ )IA’XL C%", thenitis
clear that x®y € %" . By [3], Lemma 1.3, x@ye % . O

Let .Z be a weakly closed Lie 7 (.#")-module and let € (.£) be the subset of
PB(H) defined by

C(L) = {x0yc B(AH): P,B(A)P C 2. (14)
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Observe that the set € () can be properly contained in .2 N.%#(5¢). For ex-
ample, let .7 (.#") be the nest algebra of the 8 x 8 upper triangular complex matrices
and let £ be the subspace of the 8 x 8 complex matrices consisting of those having
null trace. It is clear that . is a Lie .7 (.#")-module and that the matrix unit Egs lies
in . butnotin €(.¥).

LEMMA 8. Let £ be a weakly closed Lie T (N")-module and let € (L) be as
in (14). Then the largest weakly closed T (N")-bimodule contained in £ is

(L) ={T € B(A): $(P)"TP =0}, (15)
where ¢: N — N is the left order continuous homomorphism defined by

¢(P)=V{P;: Ix€ H# x®y € C(L) NP, < P}. (16)

Proof. 1t is easy to see that a set defined as in (15) by any, not even necessarily
order-preserving, map ¢: 4 — A4 is a weakly closed 7 (./)-bimodule. It will be
shown next that €'(.¢) coincides with the subset of rank one operators contained in
S (L)

Let x®y be a rank one operator in € (.¢), let P be a projection in .4  and
suppose initially that P, < P. It follows from the definition of ¢ that P, < ¢(P) and,
consequently,

O(P) (x@y)P=¢(P) P (x2y)P P =0.

It can be similarly shown that ¢(P)-(x®y)P =0, when P < P,. Hence ¢(.¥) C
FACHE

Conversely, let x®y be an operator lying in the weakly closed bimodule 7 (.Z).
Hence, by Lemma 7, forall T € P, %( )P} andall P€ A", ¢(P)-TP=0. It follows
that P, < ¢(P), whenever P € ./ is such that P, < P.

Case 1. P € ./ is such that P, < P and P, < ¢(P).

In this case, by (16), there exists a rank one operator zp @ wp € € (.£) such that
P, <P and P, <P,,. Hence P, B(# )P, C £ and, consequently, P, (x®y)P, =
PLx®y liesin €(£).

Since P, B(A#')P+ C P, B(#')PL . it follows that Px®y lies also in €' (.Z).

Case 2. P € ¥ is such that P, < P and P, = ¢(P).

By (16), there exists a set {z; ®@w;: j € A} contained in ¢'(-) such that (P,;)
is an increasing net converging to P, in the strong operator topology and, for all j,
f’zj < P. Consequently, for all j, the operator I%x@Pij lies in €(.Z). Observing
that P, B(H )P+ C P, B(A)P;; C Z  itfollows that Prx® P,y also lies in €'(Z).

Since . is weakly closed, it is also the case that Pr1x®y € €(.Z).

If ISX < 13x+ , then set P = f’j. If Case 1 applies, then there exists a rank one
operator zp @ wp € € (£) such that P,, < P} and P, < P,,. Consequently,

I%;x@yzﬁxj‘x@y:x@y
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lies in €' (). On the other hand, if Case 2 holds, then, for all j, PZ_,. < P,. Hence, for
all j,

Al ol

szx®Pij =P x®Pyy

:x®Pij7

from which follows that x® P,y lies in €'(). A limit argument similar to that above
finally yields that x@y € € (.Z).

If P, = P, then there exists a decreasing net (P;) in .4  converging to P; in
the strong operator topology and such that, for all j, P, < P;. Since, either by Case
1 or Case 2, for all j, the operator lex® y lies in € (%), taking limits it follows that
P,B(HA)PL C £ . Hence, Prx@y=x®y€c € (%), as required.

It has been shown that a rank one operator lies in the weakly closed bimodule
F(Z) if and only if it lies in €' (.Z). Hence, by [3], Lemma 1.2 and Theorem 1.5,
F (&) =5pan” (¢ (L)) and, consequently, ¢ (.£) C.Z. Notice that it is implicit in
the proof of [3], Theorem 1.5 that a weakly closed 7 (./")-bimodule coincides with
the closure in the weak operator topology of its subset of finite rank operators.

Suppose that there exists a weakly closed bimodule %/ contained in . which
properly contains ¢ (). By Lemma 7 and [3], Lemma 1.2 and Theorem 1.5, there
exists a rank one operator x®y € %\ _# () such that P, Z(# )Pt C % and, there-
fore,

PAB(AHP-C 2. (17)

But this is impossible since, as shown above, _# () contains all operators x®y sat-
isfying (17). Hence _# (.Z) is the largest weak operator closed bimodule contained in
Z.

To end the proof, it will be shown next that the map ¢ is a left order continuous
homomorphism on 4.

If P, < Py, then {P,: Ix € H xRy €C(L)NP, < P} isasubsetof {P,: Ix €
x®y € € (L) NP, < P,}, from which immediately follows that ¢ (P;) < ¢(P>). Hence
¢ is an order homomorphismon 4.

It only remains to show that the map ¢ is left order continuous; that is to say that,
for every subset 2" of A, $(V.Z) =Vo(Z"). This trivially holds for the empty set.
Suppose then that in what follows 2~ # 0.

If VZ € %, then the equality ¢(V.Z") = Vo(Z') is obvious, since ¢ is an
order-preserving map. If, on the other hand, V.2 ¢ 2 then (V2" )_ =V.2 .

Hence, suppose now that P € 4" is such that P_ = P. In this case,

P=V{Re #/:R<P}
and, since ¢ is an order homomorphism, it is clear that
V{p(R) € &/ : R< P} < $(P).

If V{¢(R) € 4 : R< P} < ¢(P), then by (16) there would exist a rank one oper-
ator x®y € & such that P, < P, P,B(# )P+ C & and

V{¢(R) € /': R<P} <P,
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But this cannot happen since, by the definition of supremum,
P, <V{¢(R) € #/: R<P}.

Hence

V{o(R) € A R<P}=9(P),

as required. Letting P = V.2, we finally have ¢(V.Z") = V¢ (2"), which concludes
the proof. [

Given a weakly closed Lie 7 (.4")-module ., let # () and Z 4 (¢) be de-
fined, respectively, by (6)—(10) and Definition 1. The next theorem summarises the
results of Section 2.

THEOREM 1. Let £ be a weakly closed Lie T (N")-module and let € (L) be
as in (14). Then, there exist weakly closed T (N")-bimodules 7 (%) and K* (ZL)
and a von Neumman subalgebra 9 (¢ of the diagonal 9 (A) such that

I(LYCLCAH(L)+ Dw(2)

where 7 (%) ={T € B(A): $(P)*TP =0} and ¢: N — N is the left order
continuous homomorphism defined by

¢(P)=V{P,: Ixe # x0yc C(L)NP, < P}.

Moreover, 7 (L) is the largest weakly closed T (N")-bimodule contained in £ and
H (L) is such that [ (L), T (N)] C L.

EXAMPLE 1. Notice that neither is it necessarily the case that 7 (%) C ¢ (%)
nor that ¥ C J#(.%). A simple counter-example can be given in the nest algebra of
the 5 x 5 upper triangular complex matrices. Consider the Lie module .Z = span{/} +
F (L), where 7 (Z) is the bimodule consisting of the 5 x 5 complex matrices such
that ¢;; =0, if 1 <i<5,and ap =0, if 3 <i<5. In this case, .Z (£) consists of
the matrices in _# (.¢) such that a»; =0.

REMARK 2. When £ is a weakly closed Lie ideal, #1(%), #p(Z),
JN(Z) ={0}. In this situation, it has been shown in [1] that

HN(L)C J(L)C L CH(L)+ Do) = I (L)@ DL),

where & (£) is an appropriate unital weakly closed x-subalgebra of 7 (o).
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