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FOURIER MULTIPLIERS ASSOCIATED WITH

SINGULAR PARTIAL DIFFERENTIAL OPERATORS

C. BACCAR, N. BEN HAMADI AND S. OMRI

(Communicated by F. Gesztesy)

Abstract. We prove the Hörmander-Mikhlin multiplier theorem for the Fourier transform asso-
ciated with the Riemann-Liouville operator.

1. Introduction

Given a measurable bounded function m on R
n , the multiplier operator Tm is

defined by

T̂m f = m f̂ ,

where f̂ denotes the classical Fourier transform. One of the most common problem
connected with these operators is to characterize the function m for which the multiplier
operator Tm is bounded from Lp(Rn) into itself for every 1 < p < +∞ . Such multiplier
operator is referred to as an Lp -Fourier multiplier. This problem is considered to be
difficult and one of the most response is due to Hörmander [18] who took forward
results obtained firstly by Mikhlin [21], it states that if m is a bounded function on Rn ,
satisfying

sup
R>0

|α|�[ n2 ]+1

R2|α |−n
∫

R<|x|<2R

∣∣∣∣∂ αm
∂xα (x)

∣∣∣∣2 dx < A,

for some constant A , then Tm is an Lp -Fourier multiplier.
This result is known as Hörmander-Mikhlin multiplier theorem. Recently, similar

results have been investigated for different Fourier type transforms. Indeed, Gosselin,
Stempak [11] and Kapelko [19] investigated the Hörmander-Mikhlin multiplier theo-
rem for the Hankel transform; whereas Bloom, Xu [7] showed an analogue version
for Chébli-Trimèche hypergroup. In the same context, Fischer, Ruzhansky and Wirth
studied the Fourier multipliers on compact and nilpotent Lie groups (see [10, 23, 24]).
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In this paper, we deal with the Fourier transform associated with the Riemann-
Liouville operator investigated in [4] and we prove for it the Hörmander-Mikhlin mul-
tiplier theorem.

The Riemann-Liouville operator is defined for a continuous function f on R2 ,
even with respect to the first variable as follow

Rα( f )(r,x)

=

⎧⎪⎪⎨⎪⎪⎩
α
π

∫ 1

−1

∫ 1

−1
f
(
rs
√

1− t2,x+ rt
)(

1− t2
)α− 1

2
(
1− s2)α−1

dtds; if α > 0,

1
π

∫ 1

−1
f
(
r
√

1− t2,x+ rt
) dt√

1− t2
; if α = 0.

The particularity of this operator is that it generalizes the well known mean operator
defined by

R0( f )(r,x) =
1
2π

∫ 2π

0
f (r sinθ ,x+ rcosθ )dθ ,

which means that R0( f )(r,x) is the mean value of f on the circle centered at (0,x)
and radius r . This operator plays an important role and have many applications, for
example, in image processing of so-called synthetic aperture radar (SAR) data [1, 16,
17], or in the linearized inverse scattering problem in acoustics [9].

The Fourier transform associated with Rα , is defined on ϒ by

Fα ( f )(μ ,λ ) =
∫ +∞

0

∫
R

f (r,x) jα
(
r
√

μ2 + λ 2
)

exp(−iλx)dνα(r,x),

where jα is the modified Bessel function of first kind and index α, να is the measure
defined on [0,+∞[×R by

dνα(r,x) =
r2α+1

√
2π2α Γ(α +1)

drdx, (1.1)

and ϒ is the set defined by

ϒ = R
2∪{(iμ ,λ ); (μ ,λ ) ∈ R

2, |μ | � |λ |} . (1.2)

Many harmonic analysis results related to the Riemann-Liouville operator have been
established see for example [3, 5, 6, 13, 14, 15, 22] and the references therein.

The main result of this paper is the Hörmander-Mikhlin multiplier theorem for
Fα , that is if m is a function on the set ϒ such that m◦θ−1 is a measurable, bounded
function on [0,+∞[×R satisfying the following condition

sup
R>0

∑
(k,l)∈H2p,2q

Rk+l+ 1
2

(∫
Bc

R∩B2R

∣∣∣∣ ∂ k+l

∂ rk∂xl

(
m◦θ−1)(r,x)∣∣∣∣2 r−3drdx

) 1
2

< +∞,
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where θ is the bijective function defined on ϒ+ by

θ (μ ,λ ) = (
√

μ2 + λ 2,λ ), (1.3)

and ϒ+ is the subspace of ϒ given by

ϒ+ = [0,+∞[×R∪{(iμ ,λ );(μ ,λ ) ∈ R
2;0 � μ � |λ |}.

Then the multiplier operator Tm defined by

Fα(Tm f ) = mFα( f )

is of a weak type (1,1) (see [12]), which will allows us to deduce that Tm is of strong
type (p, p) for every 1 < p < +∞ . Here Bc

R denotes the complementary of

BR =
{
(r,x) ∈ R

2 | r2 + x2 � R2} ,

and

H2p,2q = {(k, l) ∈ N×N | k � 2p, l � 2q} ,

with p =
[α+1

2

]
+1 and q = 1

2

[
α + 1

2

]
+ 1

2 .
This paper is organized as follows. In the second section, we recall some harmonic

analysis results related to the Riemann-Liouville operator Rα and its associated Fourier
transform Fα . In the third section, we establish a Bernstein type inequality for the
generalized translation associated with the Riemann-Liouville operator. The last section
is devoted to the main result of this paper that is the Hörmander-Mikhlin multiplier
theorem for the Riemann-Liouville operator.

2. Harmonic analysis results related to the Riemann-Liouville operator

In this section, we recall some harmonic analysis results related to the Fourier
transform associated with the Riemann-Liouville operator. For this, we denote by

• C k
e,b

(
R

2
)

the space of bounded functions of classe Ck on R
2 , even with respect

to the first variable.
• Se

(
R

2
)

the space of smooth functions on R
2 , even with respect to the first

variable, rapidly decreasing together with all their derivatives.
• De

(
R2
)

the space of smooth functions on R2 with compact support, even with
respect to the first variable.

Let Δ1 =
∂
∂x

and Δ2 be the singular partial differential operator defined by

Δ2 =
∂ 2

∂ r2 +
2α +1

r
∂
∂ r

− ∂ 2

∂x2 (r,x) ∈]0,+∞[×R, α � 0.
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In [4], the authors showed that for all (μ ,λ ) ∈ C2 , the following system⎧⎪⎨⎪⎩
Δ1u(r,x) = −iλu(r,x)
Δ2u(r,x) = −μ2u(r,x)

u(0,0) = 1,
∂u
∂ r

(0,x) = 0; ∀x ∈ R

admits a unique solution given by

ϕμ,λ (r,x) = jα
(
r
√

μ2 + λ 2
)

exp(−iλx) ,

where jα is the modified Bessel function of the first kind and index α , (see [2, 20]).
It is known that the function ϕμ,λ is bounded on [0,+∞[×R if, and only if (μ ,λ )

belongs to the set ϒ defined by relation (1.2). In this case

sup
(r,x)∈R2

∣∣ϕμ,λ (r,x)
∣∣= 1.

For all (r,x) ∈ [0,+∞[×R , the translation operator τ(r,x) associated with the Rie-
mann-Liouville transform is defined on Lp (dνα) , p ∈ [1,+∞] (the Lebesgue space on
[0,+∞[×R with respect to the measure να given by the formula (1.1) equipped with
the Lp−norm denoted by ‖.‖p,να ) and for all (s,y) ∈ [0,+∞[×R , by

T(r,x)( f )(s,y) =
Γ(α +1)√
πΓ
(
α + 1

2

) ∫ π

0
f
(√

r2 + s2 +2rscosθ ,x+ y
)

sin2α θdθ . (2.1)

For all (r,x) and (s,y) ∈]0,+∞[×R , and by a standard change of variables, we have

T(r,x)( f )(s,y) =
1

2αΓ(α +1)

∫ +∞

0
f (t,x+ y)Wα(r,s,t)t2α+1dt, (2.2)

where the kernel Wα is given by

Wα(r,s, t) =
Γ(α +1)2

2α−1Γ(α + 1
2 )
√

π

(
(r+ s)2 − t2

)α− 1
2
(
t2− (r− s)2

)α− 1
2

(rst)2α χ]|r−s|,r+s[(t),

and χ]|r−s|,r+s[ is the characteristic function of the interval ]|r− s|,r+ s[ .
The kernel Wα satisfies the following properties

• For all r,s, t > 0, we have

Wα(r,s,t) = Wα(s,r,t) = Wα(t,s,r) = Wα(r,t,s).

• For all r,s > 0, we have

1
2α Γ(α +1)

∫ +∞

0
Wα(r,s,t)t2α+1dt = 1. (2.3)
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For every f ∈ Lp(dνα), 1 � p � +∞ and (r,x) ∈ [0,+∞[×R , the function T(r,x)( f )
belongs to Lp(dνα ) and we have∥∥T(r,x)( f )

∥∥
p,να

� ‖ f‖p,να . (2.4)

The convolution product of measurable functions f and g is defined, for all
(r,x) ∈ [0,+∞[×R , by

f ∗ g(r,x) =
∫ +∞

0

∫
R

T(r,−x)( f̌ )(s,y)g(s,y)dνα (s,y),

with f̌ (s,y) = f (s,−y), whenever the integral of the right hand side is well defined.
Then for p, q and r ∈ [1,+∞] such that 1/p+ 1/q = 1+ 1/r , and for all f ∈

Lp(dνα), g ∈ Lq(dνα) , the function f ∗g belongs to Lr(dνα) and we have the follow-
ing Young’s inequality

‖ f ∗ g‖r,να � ‖ f‖p,να‖g‖q,να . (2.5)

Let Bϒ+ be the σ -algebra defined on ϒ+ by Bϒ+ = θ−1(B[0,+∞[×R), where γα the
measure defined by

γα(A) = να (θ (A)), A ∈ Bϒ+ .

If f is a measurable function on [0,+∞[×R , then the function f ◦θ is measurable on
ϒ+ . Furthermore, if f is a non negative or an integrable function on [0,+∞[×R with
respect to the measure να , we have∫ ∫

ϒ+
( f ◦θ )(μ ,λ )dγα(μ ,λ ) =

∫ +∞

0

∫
R

f (r,x)dνα (r,x).

Moreover, the function f belongs to Lp(dνα ) if, and only if f ◦θ belongs to Lp(dγα)
(the Lebesgue space on ϒ+ with respect to the measure γα equipped with the Lp - norm
denoted by ‖.‖p,γα ) and we have

‖ f ◦θ‖p,γα = ‖ f‖p,να . (2.6)

According to these notations, we have

• For (μ ,λ ) ∈ ϒ , we have

Fα( f )(μ ,λ ) = F̃α ( f )◦θ (μ ,λ ), (2.7)

where F̃α is the so-called Fourier-Bessel transform defined on L1(dνα) by

∀(μ ,λ ) ∈ R
2, F̃α( f )(μ ,λ ) =

∫ +∞

0

∫
R

f (r,x) jα (rμ)e−iλ xdνα(r,x).

• (Inversion formula) For every function f in L1(dνα) such that the function
Fα ( f ) belongs to L1(dγα) , we have

f (r,x) =
∫ ∫

ϒ+
Fα( f )(μ ,λ )ϕμ,λ (r,x)dγα(μ ,λ ); a.e. (2.8)
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• (Plancherel’s theorem) Since the mapping F̃α is an isometric isomorphism from
L2(dνα) onto itself, then the relations (2.6) and (2.7) show that the Fourier trans-
form Fα is an isometric isomorphism from L2(dνα) into L2(dγα) . Namely, for
every f ∈ L2(dνα ) , the function Fα ( f ) belongs to the space L2(dγα) and we
have

‖Fα( f )‖2,γα = ‖ f‖2,να .

In addition, we state the following results (and notations) that will be used in subsequent
sections.

PROPOSITION 2.1.

1. For every f ∈ L1(dνα) and for all (r,x),(μ ,λ ) ∈ [0,+∞[×R,

F̃α(T(r,x) f )(μ ,λ ) = jα (rμ)e−ixλ F̃α( f )(μ ,λ ). (2.9)

2. For f in L1(dνα) and g in L2(dνα) , we have

F̃α ( f ∗ g) = F̃α ( f ).F̃α (g).

3. Let f and g be in L2(dνα) . The function f ∗ g belongs to L2(dνα) if, and only
if F̃α( f ).F̃α (g) belongs to L2(dνα ) and we have

F̃α ( f ∗ g) = F̃α ( f ).F̃α (g).

For every positive real number ε , we denote by δε f the dilate of f defined by
δε f (r,x) = f (εr,εx) , then for every f ∈ Lp(dνα) , 1 � p < +∞,

‖δε f‖p,να =
1

ε
2α+3

p

‖ f‖p,να .

In particular for p = 1, δε f belongs to L1(dνα) and we have

F̃α(δε f ) =
1

ε2α+3 δ 1
ε
F̃α ( f ). (2.10)

We denote by �α the Bessel operator defined on ]0,+∞[ by

�α =
∂ 2

∂ r2 +
2α +1

r
∂
∂ r

.

Let f ∈C ∞
e (R2)∩L1(dνα) and assume that �

β0
α f ,

∂ β f

∂xβ ∈L1(dνα ) , then it’s known

that for all (μ ,λ ) ∈ [0,+∞[×R , we have

F̃α

(
∂ β f

∂λ β

)
(μ ,λ ) = (−i)β λ β F̃α( f )(μ ,λ ), (2.11)

and
F̃α

(
(Id− �α f )β0

)
(μ ,λ ) = (1+ μ2)β0F̃α ( f )(μ ,λ ). (2.12)
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3. Bernstein type inequality

In order to prove the Hörmander-Mikhlin multiplier theorem for the Fourier trans-
form Fα , we will devote this section to establish a Bernstein type inequality for the
generalized translation associated with the Riemann-Liouville operator which will play
a central role in the final proof of the main theorem. In the sequel, we put p =

[α+1
2

]
+1

and q = 1
2

[
α + 1

2

]
+ 1

2 and we denote by

Ha,b = {(k, l) ∈ N×N | k � a, l � b} , a,b ∈ R+.

Through this paper, C will denote a nonnegative constant, which is not necessarily
the same at each occurrence.

LEMMA 3.1. Let m ∈ C 2p+2q
e,b (R2) . If

sup
R>0

∑
(k,�)∈H2p,2q

Rk+�+ 1
2

(∫ ∫
Bc

R∩B2R

∣∣∣∣ ∂ k+�m
∂ rk∂x�

(r,x)
∣∣∣∣2 r−3drdx

) 1
2

< +∞,

then for every function ϕ ∈ De
(
R2
)

with supp(ϕ) ⊂ Bc
1∩B2 , we have

sup
j∈Z

∑
(k,�)∈Hp,2q

2 j(2k+�−α− 3
2 )

(∫
Bc

2 j∩B
2 j+1

∣∣∣∣�k
α

(
∂ �mj

∂x�

)
(r,x)

∣∣∣∣2 dνα(r,x)

) 1
2

< +∞

where mj = mδ2− jϕ .

Proof. Knowing that for every ψ ∈ Se (R) , and d ∈ N∗ , we have

∀r ∈]0,+∞[, �d
α(ψ)(r) =

2d

∑
i=1

αi

(
diψ
dri

)
(r) ri−2d,

for some constants αi ∈ C , then the result follows immediately by using Minkowski’s
inequality. �

PROPOSITION 3.2. Let m∈ C 2p+2q
e,b (R2) and ϕ ∈De

(
R2
)

with supp(ϕ)⊂ Bc
1∩

B2 . If

sup
R>0

∑
(k,�)∈H2p,2q

Rk+�+ 1
2

(∫ ∫
Bc

R∩B2R

∣∣∣∣ ∂ k+�m
∂ rk∂x�

(r,x)
∣∣∣∣2 r−3drdx

) 1
2

< +∞,

then there is a nonnegative constant C such that for every j ∈ Z , we have∥∥∥(1+22 jμ2)p(1+22 jλ 2)qF̃α (mj)
∥∥∥

2,να
� C2 j(α+ 3

2 ),

where mj = mδ2− jϕ .
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Proof. We have,∥∥∥(1+22 jμ2)p(1+22 jλ 2)qF̃ (mj)
∥∥∥2

2,να

�
2q

∑
k=0

Ck
2q2

2k j
∫ +∞

0

∫
[0,+∞[×R

∣∣∣λ k(1+(2 jμ)2)pF̃ (mj)(μ ,λ )
∣∣∣2 dνα(μ ,λ ).

Using relations (2.11), (2.12) with Plancherel’s theorem and Minkowski’s inequality,
we deduce that∥∥∥(1+22 jμ2)p(1+22 jλ 2)qF̃ (mj)

∥∥∥
2,να

�
2q

∑
k=0

√
Ck

2q2
k j

(∫ +∞

0

∫
R

∣∣∣∣F̃ (
(Id−22 j�α)p

(
∂ kmj

∂λ k

))
(μ ,λ )

∣∣∣∣2 dνα(μ ,λ )

) 1
2

�
2q

∑
k=0

√
Ck

2q

p

∑
l=0

√
Cl

p 2 j(k+2l)

(∫ +∞

0

∫
R

∣∣∣∣�l
α

(
∂ kmj

∂λ k (μ ,λ )
)∣∣∣∣2 dνα(μ ,λ )

) 1
2

.

Hence, by Lemma 3.1∥∥∥(1+22 jμ2)p(1+22 jλ 2)qF̃ (mj)
∥∥∥2

2,να
� C2 j(2α+3). �

LEMMA 3.3. Let h ∈ Se(R2) . Then for every (s,y),(t,z) ∈ [0,+∞[×R , we have

‖T(s,y)h−T(t,z)h‖1,να � sup
s∈{r,x}

∥∥∥∥∂ h
∂ s

∥∥∥∥
1,να

ρ((s,y),(t,z)),

where ρ((s,y),(t,z)) = |s− t|+ |y− z| .

Proof. Following the idea of Stempak [11], let (r,x),(s,y),(t,z) ∈ [0,+∞[×R and
ψ : [0,1]−→ [0,+∞[×R , be the function defined by

ψ(γ) = (ψ0(γ),ψ1(γ)),

where ψ0(γ) = uθ (r,s+γ(t−s)), ψ1(γ) = x+y+γ(z−y) and uθ is the function given
by

uθ (r,s) =
√

r2 + s2 +2rscosθ . (3.1)

Let h ∈ Se(R2) , then we have∣∣T(s,y)h(r,x)−T(t,z)h(r,x)
∣∣

� Γ(α +1)√
πΓ
(
α + 1

2

) ∫ π

0
|h(uθ (r,s),x+ y)−h(uθ(r,t),x+ z)|sin2α θ dθ

=
Γ(α +1)√
πΓ
(
α + 1

2

) ∫ π

0

∣∣∣∣∫ 1

0
(h ◦ψ)′(γ)dγ

∣∣∣∣sin2α θ dθ
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� |s− t|
∫ 1

0

(
Γ(α +1)√
πΓ
(
α + 1

2

) ∫ π

0

∣∣∣∣∂ h
∂ r

(ψ(γ))
∣∣∣∣sin2α θ dθ

)
dγ

+ |y− z|
∫ 1

0

(
Γ(α +1)√
πΓ
(
α + 1

2

) ∫ π

0

∣∣∣∣∂ h
∂x

(ψ(γ))
∣∣∣∣ sin2α θ dθ

)
dγ

and by relations (3.1) and (2.1), we obtain

∣∣T(s,y)h(r,x)−T(t,z)h(r,x)
∣∣� |s− t|

∫ 1

0
T(s+γ(t−s),y+γ(z−y))

∣∣∣∣∂ h
∂ r

(r,x)
∣∣∣∣dγ

+ |y− z|
∫ 1

0
T(s+γ(t−s),y+γ(z−y))

∣∣∣∣∂ h
∂x

(r,x)
∣∣∣∣dγ. (3.2)

Now according to relations (2.4), (3.2) and by applying Fubini’s theorem, we get

‖T(s,y)h−T(t,z)h‖1,να

� |s− t|
∫ 1

0

(∫ +∞

0

∫
R

T(s+γ(t−s),y+γ(z−y))

∣∣∣∣∂ h
∂ r

(r,x)
∣∣∣∣dνα(r,x)

)
dγ

+ |y− z|
∫ 1

0

(∫ +∞

0

∫
R

T(s+γ(t−s),y+γ(z−y))

∣∣∣∣∂ h
∂x

(r,x)
∣∣∣∣dνα (r,x)

)
dγ

� |s− t|
∥∥∥∥∂ h

∂ r

∥∥∥∥
1,να

+ |y− z|
∥∥∥∥∂ h

∂x

∥∥∥∥
1,να

� sup
s∈{r,x}

∥∥∥∥∂ h
∂ s

∥∥∥∥
1,να

ρ((s,y),(t,z)). �

THEOREM 3.4. (Bernstein type inequality) There exists a nonnegative constant
C such that for every positive real number ε , and for every function f ∈ L1(dνα) with

supp
(
F̃α( f )

)
⊂ Bε , we have for all (s,y),(t,z) ∈ [0,+∞[×R

‖T(s,y) f −T(t,z) f‖1,να � Cε‖ f‖1,να ρ((s,y),(t,z)).

Proof. Let f ∈ L1(dνα ) and h∈ Se
(
R2
)

satisfying h B1 = 1, then for every ε > 0
the dilate δ 1

ε
h belongs to Se

(
R2
)

and satisfies δ 1
ε
h

Bε
= 1. Let (s,y)∈ [0,+∞[×R then

according to the hypothesis and relation (2.9), we deduce that Supp
(
F̃α
(
T(s,y) f

))⊂
Bε , and therefore for every (μ ,λ ) ∈ [0,+∞[×R , we have

F̃α
(
T(s,y) f

)
(μ ,λ ) = F̃α

(
T(s,y) f

)
(μ ,λ )δ 1

ε
h(μ ,λ )

= jα (sμ)ei〈λ |y〉F̃α( f )(μ ,λ )F̃α

(
F̃−1

α (δ 1
ε
h)
)

(μ ,λ )

= F̃α

(
f ∗T(s,y)F̃

−1
α (δ 1

ε
h)
)

(μ ,λ )
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and by inversion formula (2.8), we get

T(s,y) f = f ∗T(s,y)F̃
−1
α (δ 1

ε
h). (3.3)

Using relations (2.10) and (3.3), we get

T(s,y) f −T(t,z) f = ε2α+3 f ∗
(
T(s,y)δεF̃

−1
α (h)−T(t,z)δεF̃

−1
α (h)

)
= ε2α+3 f ∗ δε

(
T(εs,εy)F̃

−1
α (h)−T(εt,εz)F̃

−1
α (h)

)
(3.4)

then using relations (2.5), (3.4), Lemma 3.3 and the fact that F̃α is an isomorphism
from Se

(
R2
)

onto itself, we get

‖T(s,y) f −T(t,z) f‖1,να � ε2α+3‖ f‖1,να‖δε

(
T(εs,εy)F̃

−1
α (h)−T(εt,εz)F̃

−1
α (h)

)
‖1,να

= ‖ f‖1,να‖T(εs,εy)F̃
−1
α (h)−T(εt,εz)F̃

−1
α (h)‖1,να

� ε sup
s∈{r,x}

‖∂ F̃−1
α (h)
∂ s

‖1,να‖ f‖1,να ρ((s,y),(t,z)) �

PROPOSITION 3.5. Let m∈ C 2p+2q
e,b (R2) and ϕ ∈De

(
R2
)

with supp(ϕ)⊂ Bc
1∩

B2 . If

sup
R>0

∑
(k,�)∈H2p,2q

Rk+�+ 1
2

(∫ ∫
Bc

R∩B2R

∣∣∣∣ ∂ k+�m
∂ rk∂x�

(r,x)
∣∣∣∣2 r−3drdx

) 1
2

< +∞,

then there is a nonnegative constant C such that for every (s,y),(t,z) ∈ [0,+∞[×R and
j ∈ Z , we have

‖T(s,−y)F̃α (mj)−T(t,−z)F̃α(mj)‖1,να � C2 j+1ρ((s,y),(t,z)), (3.5)

where mj = mδ2− jϕ .

Proof. Using Proposition 3.2 and Hölder’s inequality, we get

‖F̃α(mj)‖1,να

� ‖(1+22 jμ2)p(1+22 jλ 2)qF̃α (mj)‖2,να‖(1+22 jμ2)−p(1+22 jλ 2)−q‖2,να

� C2 j(α+ 3
2 )
(∫ +∞

0

μ2α+1dμ
(1+22 jμ2)2p

) 1
2
(∫

R

dλ
(1+22 jλ 2)2q

) 1
2

= C

(∫ +∞

0

s2α+1ds
(1+ s2)2p

) 1
2
(∫

R

dy
(1+ y2)2q

) 1
2

.
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Then we deduce that there is a nonnegative constant C independent of j such that

‖F̃α(mj)‖1,να � C.

In particular F̃α(mj) ∈ L1(dνα ) and knowing that Supp(mj) ⊂ B2 j+1 , then by Theo-
rem 3.4, we obtain

‖T(s,−y)F̃α(mj)−T(t,−z)F̃α(mj)‖1,να � C2 j+1ρ((s,y),(t,z)). �

4. Hörmander-Mikhlin multiplier theorem for the Fourier transform Fα

Using the Bernstein inequality showed above, we are now able to prove the main
result of this work. For the sake of simplicity, we will express firstly the main theorem
in terms of the Fourier transform F̃α . In the following, we introduce the sets defined
for every (s,y),(t,z) ∈ [0,+∞[×R , by

E(s,y),(t,z) = [0,+∞[×{x ∈ R | |x− y|� |s− t|+2|y− z|},

and

F(s,y),(t,z) = [0,+∞[×{x ∈ R | |x| � |s− t|+ |y− z|}.

We denote by χE(s,y),(t,z) and χF(s,y),(t,z) respectively their associated characteristic func-
tions. Notice that

∀(r,x) ∈ [0,+∞[×R, χE(s,y),(t,z) (r,y− x) � χF(s,y),(t,z) (r,x). (4.1)

PROPOSITION 4.1. Let m∈ C 2p+2q
e,b (R2) and ϕ ∈De

(
R2
)

with supp(ϕ)⊂ Bc
1∩

B2 . If

sup
R>0

∑
(k,�)∈H2p,2q

Rk+�+ 1
2

(∫ ∫
Bc

R∩B2R

∣∣∣∣ ∂ k+�m
∂ rk∂x�

(r,x)
∣∣∣∣2 r−3drdx

) 1
2

< +∞,

then there exists a nonnegative constant C such that, for every j ∈ Z and for every
(s,y),(t,z) ∈ [0,+∞[×R , we have

‖T(s,−y)F̃α (mj)χE(s,y),(t,z) −T(t,−z)F̃α(mj)χE(s,y),(t,z)‖1,να � C
(
2 jρ((s,y),(t,z))

)1−2q
,

(4.2)
where mj = mδ2− jϕ .

Proof. Assume that (s,y) �= (t,z) , then by relations (2.2), (2.3) and (4.1), we get
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‖T(s,−y)F̃α(mj)χE(s,y),(t,z)‖1,να

�
∫ +∞

0

∫
R

T(s,−y)χ̌E(s,y),(t,z) (μ ,λ )
∣∣∣F̃α

−1
(mj)(μ ,λ )

∣∣∣dνα(μ ,λ )

�
∫ +∞

0

∫
R

∣∣∣F̃α
−1

(mj)(μ ,λ )
∣∣∣

×
(∫ +∞

0
χE(s,y),(t,z) (r,y−λ )Wα(μ ,s,r)

r2α+1

2α Γ(α +1)
dr

)
dνα(μ ,λ )

�
∫ +∞

0

∫
R

∣∣∣F̃α
−1

(mj)(μ ,λ )
∣∣∣

×
(∫ +∞

0
χF(s,y),(t,z) (r,λ )Wα(μ ,s,r)

r2α+1

2α Γ(α +1)
dr

)
dνα(μ ,λ )

=
∫ ∫

F(s,y),(t,z)

∣∣∣F̃α(mj)(μ ,λ )
∣∣∣dνα(μ ,λ ). (4.3)

Now, by Hölder’s inequality and Proposition 3.2, we get∫ ∫
F(s,y),(t,z)

∣∣∣F̃α(mj)(μ ,λ )
∣∣∣dνα(μ ,λ )

� C‖(1+22 jμ2)p(1+22 jλ 2)qF̃α (mj)‖2,να

×
(∫ +∞

0

μ2α+1dμ
(1+22 jμ2)2p

) 1
2
(∫

|λ |�ρ((s,y),(t,z))

dλ
(1+22 jλ 2)2q

) 1
2

� C(2 jρ((s,y),(t,z)))
1
2−2q. (4.4)

Then, inequality (4.2) follows immediately by combining relations (4.3) and (4.4). �
In the following, we introduce for every (s,y),(t,z) ∈ [0,+∞[×R the sets defined

by
G(s,y),(t,z) = {r ∈ [0,+∞[ | |r− s| � 2|s− t|+ |y− z|}×R,

and
H(s,y),(t,z) = {r ∈ [0,+∞[ | r � |s− t|+ |y− z|}×R.

By a basic calculus, one can see that

T(s,0)χG(s,y),(t,z) � χH(s,y),(t,z) , (4.5)

and
T(t,0)χG(s,y),(t,z) � χH(s,y),(t,z) . (4.6)

PROPOSITION 4.2. Let m∈ C 2p+2q
e,b (R2) and ϕ ∈De

(
R2
)

with supp(ϕ)⊂ Bc
1∩

B2 . If

sup
R>0

∑
(k,�)∈H2p,2q

Rk+�+ 1
2

(∫ ∫
Bc

R∩B2R

∣∣∣∣ ∂ k+�m
∂ rk∂x�

(r,x)
∣∣∣∣2 r−3drdx

) 1
2

< +∞,
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then there exists a nonnegative constant C such that, for every j ∈ Z and for all
(s,y),(t,z) ∈ [0,+∞[×R , we have

‖T(s,−y)F̃α (mj)χG(s,y),(t,z) −T(t,−z)F̃α(mj)χG(s,y),(t,z)‖1,να

� C
(
2 jρ((s,y),(t,z))

)α+1−2p
. (4.7)

where mj = mδ2− jϕ .

Proof. The proof is similar to that given in the previous proposition, so one can
assume that (s,y) �= (t,z) and a standard change of variables gives

‖T(s,−y)F̃α(mj)χG(s,y),(t,z) −T(t,−z)F̃α(mj)χG(s,y),(t,z)‖1,να

�
∫ +∞

0

∫
R

T(s,0)χG(s,y),(t,z) (μ ,λ )
∣∣∣F̃α (mj)(μ ,λ )

∣∣∣dνα(μ ,λ )

+
∫ +∞

0

∫
R

T(t,0)χG(s,y),(t,z) (μ ,λ )
∣∣∣F̃α(mj)(μ ,λ )

∣∣∣dνα(μ ,λ )

so by virtue of relations (4.5), (4.6) and Proposition 3.2, we conclude that

‖T(s,−y)F̃α (mj)χG(s,y),(t,z) −T(t,−z)F̃α (mj)χG(s,y),(t,z)‖1,να � 2‖F̃α(mj)χH(s,y),(t,z)‖1,να

� 2
∫ +∞

ρ((s,y),(t,z))

∫
R

∣∣∣F̃α(mj)(μ ,λ )
∣∣∣dνα (μ ,λ )

� C‖(1+22 jμ2)p(1+22 jλ 2)qF̃α (mj)‖2,να

×
(∫ +∞

ρ((s,y),(t,z))

μ2α+1dμ
(1+22 jμ2)2p

) 1
2
(∫

R

dλ
(1+22 jλ 2)2q

) 1
2

� C
(
2 jρ((s,y),(t,z))

)α+1−2p �

In order to establish the Hörmander-Mikhlin multiplier theorem for Fα , we need
to cite the following useful theorem [8, Theorem 2.4, p. 75] which will be essential in
the proof of the main theorem.

THEOREM 4.3. Let (X ,μ) be a measure space and ρ be a metric on X . Let K
be the operator defined on L2(X ,dμ) , by

K ( f )(x) =
∫

X
k(x,y) f (y)dμ(y),

where k ∈ L2(X ×X ,dμ ⊗ dμ) . Assume that there is three constants C1,C2,C3 such
that

i) ∀ f ∈ L2(X ,dμ), ‖K ( f )‖2 � C1‖ f‖2 .

ii) ∀y,z ∈ X ,
∫

ρ(x,y)>C2ρ(y,z)
|k(x,y)− k(x,z)|dμ(x) < C3 .
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Then, there exists a positive constant C depending only on C1,C2 and C3 , such that for
every f ∈ L1(X ,dμ)∩L2(X ,dμ) we have

μ {x ∈ X | |K ( f )(x)| > α} � C
α
‖ f‖1.

THEOREM 4.4. (Hörmander-Mikhlin) Let m ∈ C 2p+2q
e,b (R2) . If

sup
R>0

∑
(k,�)∈H2p,2q

Rk+�+ 1
2

(∫ ∫
Bc

R∩B2R

∣∣∣∣ ∂ k+�

∂ rk∂x�
m(r,x)

∣∣∣∣2 r−3drdx

) 1
2

< +∞,

then Tm is of a weak type (1,1) , and consequently is bounded on Lr(dνα) for 1 < r <
+∞ .

Proof. We follow the idea of Hörmander [18, pp 121], then we know that there is a

positive function ϕ ∈De
(
R2
)

such that supp(ϕ)⊂ Bc
1∩B2 and

+∞

∑
j=−∞

δ2− jϕ(μ ,λ ) = 1

for every (μ ,λ ) �= (0,0) and m =
+∞

∑
j=−∞

mj be the dyadic decomposition of m , where

mj = mδ2− jϕ . Then Tm =
+∞

∑
j=−∞

Tmj and for every f ∈ L1(dνα )∩L2(dνα) , we have for

all (s,y) ∈ [0,+∞[×R

Tmj f (s,y) = F̃α
−1

(mj)∗ f (s,y)

=
∫ +∞

0

∫
R

k j((r,x),(s,y)) f (r,x)dνα (r,x),

where

k j((r,x),(s,y)) = T(s,−y)(F̃α
−1

(mj))̌ (r,x) = T(s,−y)(F̃α (mj))(r,x),

and therefore according to Theorem 4.3, to prove that Tm is of a weak type (1,1) , it is
sufficient to show that

+∞

∑
j=−∞

∫ ∫
ρ((r,x),(s,y))>3ρ((s,y),(t,z))

|k j ((r,x),(s,y))− k j ((r,x),(t,z)) |dνα(r,x) < C.

However, we remark that

{(r,x) ∈ [0,+∞[×R | ρ((r,x),(s,y)) > 3ρ((s,y),(t,z))} ⊂ E(s,y),(t,z)∪G(s,y),(t,z),

and therefore

+∞

∑
j=−∞

∫ ∫
ρ((r,x),(s,y))>3ρ((s,y),(t,z))

∣∣∣T(s,−y)(F̃α (mj))(r,x)−T(t,−z)(F̃α(mj))(r,x)
∣∣∣dνα (r,x)
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�
+∞

∑
j=−∞

∫ ∫
E(s,y),(t,z)

∣∣∣T(s,−y)(F̃α(mj))(r,x)−T(t,−z)(F̃α (mj))(r,x)
∣∣∣dνα(r,x)

+
+∞

∑
j=−∞

∫ ∫
G(s,y),(t,z)

∣∣∣T(s,−y)(F̃α(mj))(r,x)−T(t,−z)(F̃α (mj))(r,x)
∣∣∣dνα(r,x).

(4.8)

On the other hand, by relations (3.5), (4.2) and (4.7) we deduce that there is a positive
constant C such that, for every j ∈ Z we have∫ ∫

E(s,y),(t,z)

∣∣∣T(s,−y)(F̃α (mj))(r,x)−T(t,−z)(F̃α (mj))(r,x)
∣∣∣dνα(r,x)

� Cmin(
(
2 jρ((s,y),(t,z))

) 1
2−2q

;2 j+1ρ((s,y),(t,z))), (4.9)

and ∫ ∫
G(s,y),(t,z)

∣∣∣T(s,−y)(F̃α(mj))(r,x)−T(t,−z)(F̃α (mj))(r,x)
∣∣∣dνα(r,x)

� Cmin(
(
2 jρ((s,y),(t,z))

)α+1−2p
;2 j+1ρ((s,y),(t,z))). (4.10)

Hence, relations (4.8), (4.9) and (4.10) show that

+∞

∑
j=−∞

∫ ∫
ρ((r,x),(t,z))>3ρ((s,y),(t,z))

|k j ((r,x),(s,y))− k j ((r,x),(t,z)) |dνα(r,x) < C,

and consequently the operator Tm is of a weak type (1,1) , but Plancherel’s theorem
implies that Tm is of a strong type (2,2) , and therefore as in the euclidian case, the
proof is complete by using the Marcinkiewicz interpolation theorem and duality (see
[12, 25]). �

The main result is then given by the following theorem.

THEOREM 4.5. Let m be a function on ϒ satisfying m◦θ−1 ∈ C 2p+2q
e,b (R2) and

sup
R>0

∑
(k,�)∈H2p,2q

Rk+�+ 1
2

(∫ ∫
Bc

R∩B2R

∣∣∣∣ ∂ k+�

∂ rk∂x�
(m◦θ−1)(r,x)

∣∣∣∣2 r−3drdx

) 1
2

< +∞,

then the multiplier operator Tm defined by F (Tm f ) = mF ( f ) , is an Lr -Fourier mul-
tiplier for 1 < r < +∞ .
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